DataGarage: Warchousing Massive Amounts of Performance Data
on Commodity Servers

Charles Loboz Slawek Smyl Suman Nath

cloboz@microsoft.com slsmyl@microsoft.com sumann@microsoft.com

Microsoft Research Technical Report MSR-TR-2010-22

Abstract

Contemporary datacenters house tens of thousands of servers. The servers are closely monitored for
operating conditions and utilizations by collecting their performance data (e.g., CPU utilization). In
this paper, we show that existing database and file-system solutions are not suitable for warehousing
performance data collected from a large number of servers because of the scale and the complexity
of performance data. We describe the design and implementation of DataGarage, a performance data
warehousing system that we have developed at Microsoft. DataGarage is a hybrid solution that combines
benefits of DBMSs, file-systems, and MapReduce systems to address unique requirements of warehousing
performance data. We describe how DataGarage allows efficient storage and analysis of years of historical
performance data collected from hundreds of thousands of servers—on commodity servers. We also
report DataGarage’s performance on a real dataset and a 32-node, 256-core shared-nothing cluster and
our experience of using DataGarage at Microsoft for the last nine months.

1 Introduction

Contemporary datacenters house tens of thousands of servers. Since they are large capital investments
for online service providers, the servers are closely monitored for operating conditions and utilizations.
Assume that each server in a datacenter is continuously monitored by collecting 500 hardware and software
performance counters (e.g., CPU utilization, job queue size). Then, a data center with 100,000 servers yields
50 million concurrent data streams and, with a mere 15-second sampling rate, more than 1TB data a day.
While the most recent data is used in real-time monitoring and control, archived historical data is also used
for tasks such as capacity planning, workload placement, pattern discovery, and fault diagnostics. Many of
these tasks require computing pair-wise correlation, histogram, and first-order trend of time series data over
last several months [12]. However, due to sheer volume and complexity of the data, archiving it for a long
period of time and supporting useful queries on it reasonably fast is extremely challenging.

In this paper we show that traditional data warehousing solutions are suboptimal for performance data,
the data of performance counters collected from monitored servers. This is primarily due to the scale and the
complexity of performance data. For example, one important design goal of performance data warehousing
is to reduce storage footprint since an efficient storage solution can reduce storage, operational, and query
processing overhead. Prior works have shown two different approaches to organize data as relational tables.
In the wide-table approach, a single table having one column for each possible counter is used to store data
from a large number of heterogenous servers, with null values in the columns that do not exist for a server.
In the narrow-table approach, data from different servers is stored in a single table as key-value pairs [5]. We
show that both these approaches have a high storage overhead, as well as high query execution overhead,
for performance data warehousing. This is because different sets of software and hardware counters are
monitored in different servers and therefore performance data collected from different servers are highly
heterogenous. Another reason why off-the-shelf warehousing solutions are not optimal for performance data

is that their data compression techniques, which work well for text or integer data, do not perform well on
floating-point performance data. (We discuss the challenges in details in Sections 3 and 4.)

Prior works have also shown two different approaches to general, large-scale data storage and analy-
sis. The first approach, which we call TableStore, stores data as relational tables in a parallel DBMS or
multiple single-node DBMS (e.g., HadoopDB [2]). Parallel DBMSs process queries with database engines,
while HadoopDB processes queries using a combination of database engine and a MapReduce-style query
processor [6]. The second approach, which we call FileStore, stores data as files or streams in a distributed
filesystem and processes queries on it using a MapReduce-like system (such as Hadoop [7] or Dryad [8]).
We show in Section 3 that both TableStore and FileStore have very large storage footprints for performance
data due to its high heterogeneity. Previous work has shown that a database query engine on top of a Ta-
bleStore has better query performance and simpler query interface, but it has poor fault tolerance [11]. On
the other hand, FileStore has a lower cost, higher data management flexibility, and more robustness during
MapReduce query processing, but it has inferior query performance and more complex query interface than
a DBMS approach.

In this paper, we describe our attempt to build a DBMS and filesystem hybrid that combines the benefits
of TableStore and FileStore for performance data warehousing. We describe design and implementation of
DataGarage, a system that we have built in Microsoft to warehouse performance data collected from tens of
thousands of servers in Microsoft datacenters. The design of DataGarage makes the following contributions:

1. In contrast to traditional single wide-table or single narrow-table approaches of organizing data as
relational tables, DataGarage uses a new approach of using many (e.g., tens of thousands) wide-tables.
Each wide-table contains performance data collected from a single server and is stored as a database
file in a format accessible by embedded databases. Database files are stored in a distributed file system,
resulting in a novel DBMS-filesystem hybrid. We show that such a design reduces storage footprint
and makes queries compact, simple, and run faster than alternative approaches.

2. DataGarage uses novel floating-point data compression algorithms that use ideas from column-oriented
databases.

3. For data analysis, DataGarage accepts SQL queries, pushes them inside many parallel instances of
embedded databases, aggregates results along an aggregation hierarchy, and dynamically adapts with
faulty or resource-poor nodes (like MapReduce).

Thus, DataGarage combines the storage flexibility and low cost of a file system, compression benefits of
column-store databases, performance and simple query interface of a DBMS, and robustness of MapReduce
in the same system. To the best of our knowledge, DataGarage is the first large-scale data warehousing
system that combines the benefits of these different systems.

In our production prototype of DataGarage, we use Microsoft SQL Server Compact Edition (SSCE)
files [13] to store data and SSCE runtime library to execute queries on them. SSCE was originally designed
for mobile and embedded systems, and to the best of our knowledge, DataGarage is the first large-scale data
analysis system to use SSCE. Our implementation of the DataGarage system is extremely simple—it uses
existing NTFS file system, Windows scripting shell, SSCE files and runtime library, and several thousand
lines of custom code to glue everything together. We have been using DataGarage for the last nine months
to archive data from many tens of thousands of servers in Microsoft datacenters.

Many design decisions behind DataGarage were guided by the lessons we learnt from our previous unsuc-
cessful attempts of using existing solutions to warehouse performance data. At a high level, DataGarage and
HadoopDB have similarities—they both use TableStore for storage and MapReduce for query processing.
However, the fundamental difference between these two systems is that HadoopDB uses a single DBMS
system in each node, while DataGarage uses tens of thousands of embedded database files. As we will
show later, storing data in a large number of files significantly reduces storage footprint of heterogenous
performance datasets and makes typical DataGarage queries simple, compact, and efficient. We believe that
our current design adequately addresses the unique challenges of a typical performance data warehousing
system.

In the rest of the paper, we make the following contributions. First, we discuss unique properties of
performance data, desired goals of a warehousing system for performance data, and why existing solutions fail

Figure 1: A tabular view of performance data from a server

ServerID SampledTime CPUUtil MemFreeGB NetworkUtil dskOBytes dsk1Bytes

131563 15:00:00.460 98.2 2.3 47 78231 19000

13153 15:00:16.010 97.3 3.4 49 65261 18293

13153 15:00:31.610 96.1 3.5 51 46273 23132
3.8

13163 15:00:46.020 95.2 48 56271 28193

to achieve the goals (Sections 2 and 3). Second, we describe design and implementation of DataGarage. We
show how it reduces storage footprint by novel data organization and compression techniques (Section 4). We
also describe how its query processing engine achieves scalability and fault-tolerance by using a MapReduce-
like approach (Section 5). Third, We evaluate DataGarage with a real dataset and a 32-node, 256-core
shared nothing cluster (Section 6). Finally, we describe our experience of using DataGarage in Microsoft for
the last nine months (Section 7).

2 Design Rationale

In this section, we describe performance data collection process, properties of performance data, and desired
properties of a performance data warehousing system.

2.1 Performance Data Collection

Performance data from a server is collected by a background monitoring process that periodically scans
selected software and hardware performance counters (e.g., CPU utilization) of the server and stores their
values in a file. In effect, daily performance data looks like a wide-table, each row containing counter values
collected at a time (as shown in Table 1). A few hundred performance counter values are collected from a
typical server.

The number of performance counters and the sampling period are decided based on analysis requirements
and resource availability. The more counters one can collect, the more types of analysis he can perform.
For example, if one collects only hardware counter data (e.g., processor and disk utilization), he can analyze
only how much load a server is handling—but he may not precisely know the underlying reason of such load.
If he also collects SQL Server usage counters, he can correlate these two types of counters and obtain some
insight into why the server is loaded and if something can be done about it. Similarly, the more frequently
one collects counter data, the more precise he can be about his analysis—using hourly averages of counter
data, one can find which hour has the highest load, using 15-second averages he can also find under which
conditions a particular disk is a bottleneck, using 1-second sampling he can also obtain good estimates of
disk queue lengths.

In the production deployment of DataGarage, the sampling interval is 15 seconds and the number of
collected counters varies from 100 to 1000 among different servers. For some other monitoring solutions the
sampling period may be as high as 2 minutes and the number of counters as low as 10.

Monitoring is relatively cheap for a single server. Our DataGarage monitoring process uses 0.01% of
processor time on a standard sever and produces 5-100MB of data per server per day. For 100,000 servers
this results in a daily flow of over 1TB of data. This sheer volume alone can make the tasks of transferring
the data, archiving it for years, and analyzing it extremely challenging.

2.2 Performance Data Characteristics

Performance data collected from a large number of servers has the following unique properties.

Counter sets. Performance data collected from different servers can be highly heterogenous. This is
because each server may have a different set of counters due to different numbers of physical and logical
disks, network cards, installed applications (SQL Server, IIS, .NET), etc. We have seen around 30,000
different performance counters over all DataGarage monitored servers, while different servers are monitored
for different subsets, of size less than 1,000 for most servers, of these counters.

Counter Data. Almost all performance data is floating-point data (with timestamps). Once collected, the
data is read-only. Data can often be "dirty”; e.g., due to bugs in the OS or in the data collection process, we
have observed dirty values such as 2,000, 000 for the performance counter %DiskIdleTime, which is supposed
to be within the range [0, 100]. Such dirty data must be i) ignored during computing average disk idle time,
and ii) retained in the database, as the frequency and scale of such strange values may indicate something
unusual in the server.

Query. Queries are relatively infrequent. While most queries involve simple selection, filtering, and ag-
gregation, complex data mining queries (e.g., discovering trajectories or correlations) are not uncommon.
Queries are typically scoped according to a hierarchy of monitored servers (e.g., hotmail. com servers within
a rack inside a given datacenter). Example queries include computing average memory utilization or discov-
ering unusual CPU load of servers within a datacenter or used by an online property (e.g., hotmail.com),
estimating hardware usage trend for long term capacity planning, correlating one server’s behavior with
another server’s, etc.

2.3 Desired Properties

We now describe the desired properties of a warehousing system designed for handling a massive amount of
performance data.

Storage Efficiency. The primary design goal is to reduce the storage footprint as much as possible.
As mentioned before, monitoring 100,000 servers produces more than 1TB raw binary data; archiving and
backing up this data for years can easily take a petabyte of storage space. Transferring this massive data
(e.g., from monitored servers to storage nodes), archiving it, and running queries on it can be extremely
expensive and slow. Moreover, if the data is stored on a public cloud computing platform (for flexibility in
using more storage and processing on demand), one pays only for what one uses and hence price increases
linearly with requisite storage and network bandwidth. This again highlights the importance of reducing
storage footprint.

One can envision building a custom cluster solution such as eBay’s Teradata that can manage approx-
imately 2.4PB of relational data in a cluster of 72 nodes (two quad-core CPUs, 32GB RAM, 104 300GB
disks per node); however, the huge cost of such a solution cannot be justified for archiving performance data
because of its relatively light workload and often non-critical usage.

Query Performance and Robustness. The system should be fast in processing complex queries on a
large volume of data. A faster system can make a big difference in the amount, quality, and depth of analysis
a user can do. A high performance system can also result in cost savings, as it can allow a company to delay
an expensive hardware upgrade or to avoid buying additional compute nodes as an application continues to
scale. It can also reduce the cost of running queries in a cloud computing platform, where the cost increases
linearly with the requisite compute power.

The system should also be able to tolerate faulty or slow nodes. Our desired system will likely be run on a
shared-nothing cluster of cheap and unreliable commodity hardware, where the probability of a node failure
during query processing is very high. Moreover, it is nearly impossible to get a homogenous performance
across a large number of compute nodes (due to heterogeneity in hardware and software configuration, disk
fragmentation, etc.) Therefore, it is desirable that the system can run queries even if a small number of
storage nodes are unavailable and its query processing time is not adversely affected if a small number of
the computing nodes involved in query processing fail or experience slowdown.

Simple and flexible query interface. Average data analysts are not expected to write code for simple

and routine queries such as selection /filtering /aggregation; these should be answered using familiar languages
such as SQL. More complex queries, which are infrequent, may require loading outputs of simpler queries into
business intelligence tools that aid in visualization, query generation, result dash-boarding, and advanced
data analysis. Complex queries also may require user defined functions for complex (e.g., data mining)
queries that are not easily supported by standard tools; the system should support this as well.

3 Performance Data Warehousing Alternatives

In this section we first consider two available approaches of general, large-scale data storage and analysis.
Then we discuss how they fail to achieve all the aforementioned desirable properties in the context of
performance data warehousing.

3.1 Existing Approaches

» TableStore. We call TableStore the traditional approach of storing data in standard relational tables,
which are partitioned over multiple nodes in a shared nothing cluster. Parallel DBMSs (e.g., DBMS-X)
transparently partition data over nodes and give users the illusion of a single-node DBMS. Recently proposed
HadoopDB uses multiple single node DBMS. Queries on a TableStore are executed by parallel DBMSs’
query processing engines (e.g., in DBMS-X) or by MapReduce-like systems (e.g., in HadoopDB). Existing
TableStore systems support standard SQL queries.

»FileStore. We call FileStore the alternative data storage approach where data is stored as files or streams
in a file system distributed over a large cluster of shared-nothing servers. Executing distributed queries on
FileStore using a MapReduce-like system (e.g., Hadoop, Dryad) has got much attention lately. Recent work
on this approach has focused on efficiently storing a large collection of unstructured and structured data
(e.g., BigTable [5]) in a distributed filesystem, integrating declarative query interfaces to the MapReduce
framework (e.g., SCOPE [4], Pig [10]), etc.

3.2 Comparison
We compare the two above approaches in terms of several desirable properties.

e Storage efficiency. Both TableStore and FileStore score poorly in terms of storage efficiency for per-
formance data. For TableStore, the inefficiency comes from two factors. First, due to the high heterogeneity
of dataset, storing data collected from different servers within a single DBMS can waste a lot of space.
We will discuss the issue in more details in Section 4.1. Second, compression schemes available in existing
row-oriented database systems do not work well on floating point data. For example, our experiments show
that the built-in compression techniques in SQL Server 2008 provides a compression factor of ~ 2 for real
performance data.! Such a small compression factor is not sufficient for massive data and does not justify
the additional decompression overhead during query processing. On the other hand, FileStore can have
comparable or even larger storage footprint than TableStore. Without a schema, a compression algorithm
may not be able to take advantage of temporal correlation of data in a single column (e.g., as in column-store
databases [1]) and to use lossy compression technique appropriate for certain columns.

e Query performance. Previous work has shown that for many different workloads, queries over a
TableStore runs significantly faster than those over a FileStore [11]. Query processing systems on FileStore
are slower because they need to parse and load data during query time. The overhead would be even more
significant for performance data—since performance data from different servers have different schemas, a
query (e.g., the Map function in MapReduce) needs to first load and parse the appropriate schema for a
file before parsing and loading the file’s content. In contrast, a TableStore can model and load the data
into tables before query processing. Moreover, query engine over a TableStore can use many performance

1Column-store databases optimized for floating point data may provide a better compression benefit.

Server [Time|CPU |[Memory|Disk |[Network Server |Time|Counter [Value ServerlTimelCPU |Memory|
s1 |11 |10 |28 null_[null s1__ |r1_[cpu_ |10 51 Server [Time]Memory]Disk |
S1 T2 |12 |31 null [null S1 [Tl |Memory|28 5_152 Ser!ver Ti‘me = Mem,ory re—
S2 T1 |null [45 72 |null S2 Tl |Memory|45 51 [55]
2 T2 |null fas 75 [null S3 71 |Network|42 —E: E z: :i :;
S3 T1 [31 [82 null a2 S3 T1 [cPu 31 o< |
S3 T3 33 82 49
(a) Single wide-table (b) Single narrow-table (c) Many wide-tables

Figure 2: Wide- and Narrow-tables

enhancing mechanisms (e.g., indexing) developed by the database research community over the past few
decades.

e Robustness. Parallel DBMSs (that run on TableStores) score poorer than MapReduce systems (that
typically run on FileStores) in fault tolerance and ability to operate in a heterogenous environment [2,
11]. MapReduce systems exhibit better robustness due to their frequent checkpoint of completed subtasks,
dynamic identification of failed or slow nodes and reassignment of their tasks to other live or faster nodes.

e Query interface. Database solutions over TableStore have simple query interfaces: they all support SQL
and ODBC, and many of them also allow user defined functions. However, typical queries over performance
data are scoped hierarchically, which cannot be naturally supported in a pure TableStore. MapReduce also
has flexible query interface. Since Map and Reduce functions are written using general purpose language, it
is possible for each task to do anything on its input. However, average performance data analysts may find
it cumbersome to write code for data loading, Map, and Reduce functions for everyday queries.

e Cost. Apart from the limitations discussed above, an off-the-shelf TableStore solution may be overkill
for performance data warehousing. A parallel database is very expensive, especially in a cloud environment
(e.g., in Microsoft Azure, the database service is 100x more expensive than the storage service for the
same storage capacity). A significant part of the cost is due to expensive mechanisms to ensure high
data availability, transaction processing with the ACID property, high concurrency, etc. These properties
are not essential for a performance data warehouse where data is read-only, queries are infrequent, and
weaker data durability/availability guarantee (e.g., that given by a distributed file system) is sufficient. In
contrast, FileStores are cheaper to own and manage than DBMSs. A distributed file system allows simple
manipulation of files: files can be easily copied or moved across machines for analysis and older files can
be easily deleted to reclaim space. A file system provides the flexibility to compress individual files using
domain-specific algorithms, to replicate important files to more machines, to access files according to the file
system hierarchy, to place related files together, and to place fewer files in machines with less resource or
degraded performance.

Discussion. Ideally, a performance data warehousing system should have the best of both these ap-
proaches: the storage flexibility and cost of a file system, compression benefits of column-store databases,
query processing performance and simple query interface of a DBMS, and robustness of MapReduce. In the
following, we describe our attempt to build such a hybrid system.

4 DataGarage

The architecture of DataGarage follows two design principles. First, data is stored in many TableStores and
queries on TableStores are executed using many parallel instances of a database engine. Second, individual
TableStores are stored in a distributed file system. Both these principles contribute to reducing storage
footprint. In addition, the first principle gives us query execution performance of DBMSs, while the second
principle enables us to use MapReduce-style query execution for its scalability and fault-tolerance.

4.1 The Choice of TableStores

The heterogeneity of performance data collected from different server poses a challenge in deciding a suitable
TableStore structure. Consider different options of storing heterogenous counter sets collected from different
servers inside a TableStore.

A Wide-table. First consider the wide-table option, where data from all servers are stored in a single table,
with one column for each possible counter across all servers (Figure 2(a)). Then, each row will represent data
from a server at a specific timestamp—the counters monitored in that server will have valid values while
other counters will have null values. Clearly, such a wide-table will have a large number of columns. In our
DataGarage deployment, we have seen around 30,000 different performance counters from different servers.
Hence, a wide-table needs to have that many columns, many more than the maximum number of columns
a table can have in many commercial database systems.? Even if so many columns can be accommodated,
the table will be very sparse, as a small subset of all possible counters are monitored in each server. In our
deployment, most servers are monitored for fewer than 1000 counters, and the sets of monitored counters
vary across servers. The table will therefore have a very high space overhead.?

One option to reduce the space overhead is to create different server types such that all the servers with
the same type have the same set of counters. Then, one can create multiple wide-tables, one for each server
type. Each wide-table will store data for all servers of the same type. Such an organization will avoid the
null entries in the table. Unfortunately, this does not work in practice as a typical data center has too many
server types (i.e., most servers are different in terms of both their hardware and software counters). Also,
rearrangement of logical disks or application mix on a server create new set of counters for the server, making
the number of combinations (or, types) simply too big. Moreover, such rearrangements require the server
to move from one type to another and its data to span multiple tables over time, complicating the query
processing on historical data. Although such rearrangements do not happen frequently for a single server,
they become frequent in a population of tens of thousands of servers.

A Narrow-table. Another option to avoid the above problems created by wide-tables is to use a narrow-
table, with one counter per row (Figure 2(b)). Each column in the original table is translated into multiple
data rows of the form (ServerID, Timestamp, CounterID, Value). This narrow-table approach allows us
to keep data from different servers in one table - even if their counter sets differ. Moreover, since data
can be accommodated within a single table, any off-the-shelf DBMS can be used as the TableStore. Before
DataGarage, we tried this option for performance data warehousing.

However, this solution has two serious side effects: large storage overhead and limited computability. Since
ServerID and TimeStamp values are replicated in each row, a narrow-table has larger storage footprint than
the original binary data. For example, assuming typical server with 200 counters and 15-second sampling
interval, the narrow-table solution takes 33MB, which is 7x higher than the original data size (4.53MB in
binary). Then, a one-terabyte disk can hold daily data for only 30,000 servers. Multiple servers are required
to hold daily data for 100,000 servers; this moots any attempt to keep historical data for several months.

The narrow-table solution also limits computability. Any query involving multiple counters needs multiple
joins on the narrow-table. For example, in Figure 2(b), a query with predicate CPU>10 AND Memory>20 would
involve a join on the Time column to link CPU and Memory attributes from the same sample time. The number
of join operations would further increase with the number of counters in the query. This makes a query on a
narrow-table significantly longer (in number of lines) and more complicated (often requiring an SQL expert)
than an equivalent query on a wide-table. In addition, execution time of such a query is significantly high
due to expensive join operations.

»DataGarage solution. In DataGarage, we address the shortcomings of above approaches by using many
wide-tables. In particular, we store data from different servers in separate TableStores (Figure 2(c)). Such

2SQL Server 2008 supports at most 1024 columns per table.

3This storage overhead can be avoided with SQL Server 2008’s Sparse Columns, which have an optimized storage for null
values. However, this introduces additional query processing overhead and still suffers from the limitation of maximum column
count.

Queryé[Controller]% ar?aal\t/zis
(Query Dissemination) tool

—————————— ~
]

8@{ Distributed File System
.

summary Embedded databases
database S====S==So2o -
QUCCLO ollecto

Figure 3: DataGarage Architecture

1
1
1
7

an organization avoids the overhead of too many columns and the storage overhead due to sparse entries in
a single wide-table. It also avoids the space overhead and query complexity of a single narrow-table.

Using one wide-table per server requires maintaining a large number of tables, many more than many
off-the-shelf DBMS systems can handle efficiently. We address this using our second design principle of
storing the individual TableStores within a distributed file system.

4.2 TableStore-FileSystem Hybrid Storage

To store a large number (hundreds of thousands) of TableStores, we store each TableStore as a file in a
format accessible by an embedded database. In implementing DataGarage, we use SQL Server Compact
Edition (SSCE) files [13]. SSCE is an embedded relational database that allows storing an entire database
within a single SSCE file (default extension .sdf). An SSCE file can reside in any standard file system
and can be accessed for database operations (e.g., update and query) through standard ADO or OLEDB
APIs. Accessing an SSCE file requires a lightweight library (Windows DLL file) and does not require
installation of any database server application. Each SSCE file encapsulates a fully functioning relational
database supporting indices, SQL (and a subset of T-SQL) queries, ACID transactions, referential integrity
constraints, encryption, etc.

Storing data within many SSCE files is the key design aspect that gives DataGarage its small storage
footprint, the storage simplicity and flexibility of a file system, and query performance of a DBMS. Each
SSCE file in DataGarage contains data collected from one server over the duration of one day. Since data
from different days are stored in different files, deleting older data simply requires deleting corresponding
files. The files are named and organized in a directory structure that naturally facilitates selecting a subset
of files that contain data from servers within a datacenter, and/or a given owner, and/or within a range
of dates using regular expressions on file names and paths. For example, assuming that files are organized
in a hierarchy of server owners, datacenters, and dates, all data collected from hotmail.com servers in the
datacenter DC1 in the month of October, 2009 can be expressed as hotmail/dc1/*.10-*-2009.sdf.

Figure 3 shows the architecture of DataGarage. The Data Collector is a background process that runs
at every monitored server and collects its performance counter data. The set of performance counters and
data collection interval are configured by server owners. The raw data collected by collectors are saved in as
SSCE files in a distributed file system. A Summary Database maintains hourly and daily summaries of data
from each server. This enables efficiently running frequent queries on summary data and retaining summary
data even when the corresponding raw data is discarded due to storage limitation. The Controller takes
queries from users, processes it, and outputs the results in various formats, which can further be pushed to
external data analysis tools for additional analysis.

Another advantage of using independent SSCE file for each server is that the owner of a server can
independently define its schema (i.e., the set of counters to collect data from) and tune it for appropriate
queries (e.g., by defining appropriate indices). The column name for a counter is the same as the counter

name reported by the data collector. It is important to note that the same data collector is used in all
monitored servers and it uses the same name for the same (or, semantically equivalent) counter across
severs. For example, the data collector names the amount of available memory as TotalMemoryFree, and
hence database files for all servers that have chosen to collect this specific counter will have a column with
name TotalMemoryFree. Such uniformity in column naming is essential for processing queries over data
from multiple servers.

4.3 Reducing Storage Footprint with Compression

As mentioned before, the most important design goal of DataGarage is to reduce the storage footprint
and network bandwidth to store performance data (or to increase the amount of performance data within
available storage). Our design principle of using many wide-tables already reduces storage footprint compared
to alternative approaches. We use data compression to further reduce storage footprint. However, lossless
compression techniques available in off-the-shelf DBMSs do not work very well for floating-point performance
data. For example, our experiments with real dataset show a compression factor of only two by using the
compression techniques in SQL Server 2008. Such a small compression ratio is not sufficient for DataGarage.

To address this, we have developed a suite of compression algorithms that work well for performance
data. Since data in DataGarage is stored as individual files, we can use our custom algorithms to compress
these files (and automatically decompress them before query processing). To compress each SSCE file, we
first extract all its metadata describing its schema, indices, stored procedures, etc., and compress them using
standard lossless compression techniques such as Lempel-Ziv. The bulk part of each file is its tables, and
they are compressed using the following techniques.

4.3.1 Column-oriented Organization

Following observations from previous works [1, 9], we employ a column-oriented storage in DataGarage:
inside each compressed file, we store data from the same table and column together. Since performance data
comes from temporally correlated processes, such a column-oriented organization increases data locality and
compression factor. This also improves query processing time as only the columns that are accessed by a
query can be read off the disk.

4.3.2 Lossless Compression

A typical performance data table contains few timestamp and integer columns and many floating point
columns. The effective compression scheme for a column depends on its data type. For example, timestamp
data is most effectively compressed with delta encoding followed by a run-length encoding (RLE) of the
deltas. Delta encoding is effective due to small sampling periods. Moreover, since a single file contains data
from a single server and sampling period (or, delta) is a constant for each server, RLE is very effective to
compress such deltas. Integer data is compressed with variable-byte encoding. Specifically, we allow integer
values to use a variable number of bytes and encode the number of bytes needed to store each value in the
first byte of the representation. This allows small integer values to be encoded in a small number of bytes.

Standard lossless compression techniques, however, are not effective for floating point data due to its
unique binary representation. For example, consider the IEEE-754 single precision floating point encoding,
the widely used standard for floating point arithmetic. It stores a number in 32 bits: 1 sign bit, 8 exponent
bits, and 23 fraction bits. Then, a number has value v = s x 2°7127 x m, where s is +1 if the sign bit is 0
and -1 otherwise, e is the 8-bit number given by the exponent bits, and m = 1. fraction in binary. Since a
32-bit representation can encode only a finite number of values, a given floating point value is mapped to
the nearest value representable by the above encoding.

Since floating point data coming from a performance counter changes almost at every sample, techniques
such as RLE does not work. Moreover, due to unique binary representation of floating point values, techniques
such as delta encoding or dictionary-based compression are not very effective. Finally, a small change in
the decimal values can result in a big change in the underlying binary representation. For example, the

hexadecimal representations of IEEE-754 encoding of the decimal values 80.89 and 80.9 are 0x42A1C7AE
and 0x42A1CCCC, respectively. Even though the two numbers are within 0.01% of each other, their binary
representations differ in the 37.5% least significant bits. Lossless compression schemes that do not understand
the semantics of binary representations of numbers cannot exploit the relative similarity of the two numbers
just by looking at their binary representations.

»Byte-interleaving. To address the above problem, we observe that a small change in values results
in changes in the lower-order fraction bits only; the sign bit, the exponent bits, higher-order fraction bits
remain the same for a small change in values. Since data in a column represents temporally correlated data
from the same server collected relatively frequently, subsequent values show small changes. To exploit this,
we use byte-interleaving as follows. Given a column of floating point values, we first store the first bytes of
all values together, then we store their second bytes together, and so on. Since higher order bytes do not
change for small changes, such an organization significantly improves compression factor, even with simple
compression techniques such as RLE or dictionary-based compression. In some sense, byte-interleaving is
an extreme case of column-oriented organization, where each byte of the binary representation of a floating
point value is treated as a separate column.

4.3.3 Lossy Compression

DataGarage supports an optional lossy compression technique. Performance data warehouse can typically
tolerate some small (e.g., < 0.1%) loss in accuracy of archived data for following reasons. First, due to
its cheap, sampling-based data acquisition process, data collectors often introduce small noise in certain
performance counter data and hence the data is not treated as precise. Second, most of the time the data
is analyzed in aggregation and hence a small error in raw data does not significantly affect the accuracy of
outputs. On the other hand, tolerating a very small decompression error can result in a very high compression
factor, as we show in our evaluation.

An important design decision is to choose the appropriate lossy compression algorithm. Each column in
a table is essentially a time-series, and prior work has shown many different lossy compression techniques
including DFT, DCT, Wavelet transform, random projection, etc. [12]. Most of these techniques guarantee
or minimize average reconstruction error (or, Lo norm). Such techniques are not suitable for DataGarage
since they can lose local spikes in the time series, which are extremely important in applications intended for
local anomaly detection. Techniques such as Piecewise Linear/Constant Approximation guarantees worst-
case (L) reconstruction error, but there effectiveness in compression comes from smoothness of data [3].
Performance data (e.g., CPU or memory utilization) is rarely smooth and is dominated by frequent jitters and
spikes. Our experiments show that using PLA or PCA gives very small compression factor for performance
data, and in some cases data cannot be compressed at all.

»Bit Truncation. We use a novel IEEE-754 floating point compression algorithm for compressing noisy
floating point data with worst-case decompression error. The algorithm is called bit-truncation, and is
based on the observation that removing a small number of fraction bits from the IEEE-754 representation
introduces a small and bounded relative error® in the reconstructed value. More specifically, we claim that

Claim 1 Replacing k least significant fraction bits of a IEEE-754 32-bit single precision (or 64-bit double
precision) floating point representation with zero bits introduces an relative error of < Zf;ol 2i=2 (or <
Zf;ol 21752 respectively).

We omit the proof of the claim for brevity. Quantitatively, removing 8 and 16 lowest order bits of a 32-bit
single precision representation result in relative errors of only < 6.1 x 107° and < 0.16 respectively. For
64-bit double precision representation, the effect is even more negligible. For example, even after removing
the 32 least-significant bits, the relative reconstruction error is guaranteed to be < 1.3 x 1076,

Figure 4 shows how a column of floating point numbers is compressed using truncation and interleaving.
First, depending on the maximum tolerable relative error, least significant bits of each number of the column

41f a value v is reconstructed as v’, the relative reconstruction error is given by |v — v/|/v.

10

42A1C19A
42A1B92D

oo

...... g — K=

42alcccc S 42nlcC 3

3 Q
aone § e £ i
Z 2 42.A1A1A1

j;iig; AlAl..CCC7
B1C1BO9..

Figure 4: Bit-truncation and byte-interleaving of floating point representations.

are truncated. This step is done only if a lossy compression is allowed. If the number of truncated bits
is not a multiple of 8, remaining bits are packed together into the minimum number of bytes. After trun-
cation, individual bytes are interleaved into stripes. Finally, different stripes are compressed using lossless
compression (e.g., RLE or Lempel-Ziv).

4.4 Data Thinning

DataGarage periodically needs to discard existing data from its storage. Such data thinning discards high-
fidelity raw data; the corresponding aggregate summaries may still be left in the summary database. Data
thinning is operationally important as it allows gradual reduction of the size of archived data, and it can
happen in many scenarios including the following.

1. Operational restrictions such as storage limitations of the system and privacy considerations of the
data can force dropping data older than a certain date.

2. Many servers have days when they are not used much. For such days, it is sufficient to keep only
aggregate (hourly) data in the summary database and drop the raw data.

3. Even in heavily used servers, some counters are less important than others—especially after the data
is older than a week or a month.

The design choices we have made for storing data in DataGarage makes data thinning simple and efficient.
Since typical data thinning granularity is multiple of a day and data from one server over a day is stored in
a separate file, data thinning in DataGarage does not involve any database operations—it involves simply
selecting the target files using regular expression on file names and deleting them. Data thinning by dropping
less important columns involves operations inside files; but due to our column oriented organization of the
compressed database files, such operations can be done efficiently within compressed files. In contrast, if
data were stored in a single parallel DBMS, data thinning could be very expensive as it might involve bulk
deletion, index update, and even schema change.

4.5 Schema optimization

In our original design of DataGarage, each database file contained one wide-table called RawData, containing
data from all counters of a server. However, based on operational experience, we realized that certain queries
cannot be efficiently supported on this simple schema. So, we added two additional elements into the schema
to facilitate those queries.

Separate tables for multiple-instance counters. We remove all counters with multiple instances
from the RawData table and put them in separate tables in the same SSCE file. For example servers
typically have multiple instances of physical disks, and each physical disk has a set of counters. Therefore,
we create a separate table for physical disks with one disk instance per row and one disk-related counter
per column. This simplifies certain types of queries. For example, consider the query of computing total

11

disk space in all non-system disks (i.e., disks with instance number higher than 0) in each server. With
a separate disk table, this can be expressed simply as SELECT Sum(AvailableSpace) FROM DiskTable WHERE
InstanceID>0. This would not be so simple if all disk instances were stored in the RawData table as column
names DiskOBytes, Disk1Bytes, etc., and different servers have different numbers of physical disks (e.g.,
the Disk5Bytes column may be available in some disk tables and unavailable in others). Like physical disks,
logical disks, processors, network cards are also kept in separate tables.

Separate instance tables have two additional benefits. First, this helps keeping the number of columns
in the RawData table less than 1024, the maximum number of columns possible in a table inside SSCE file.
Second, queries over instance tables run faster as they need to access tables significantly smaller than the
main RawData table.

Identification of ’previous’ sample time. DataGarage sometimes need to compare data in temporal
order of their collection timestamps. For example, often data analysts are not interested in the absolute
value of a counter, but in the change of its values—e.g., How did processor utilization grew from the last
time? How many times CPU utilization was over a threshold, excluding the isolated spikes between two low
utilization samples? This pattern of comparing data in temporal order occurs in many classes of analysis.
Unfortunately, relational databases are inefficient in handling such pattern. To address this, we make the
data collector to report the 'previous timestamp’ with each sample and store this value with each record in
the main table. This allows us to retrieve previous sample of a server by using self-join on timestamp and
'previous timestamp’ (see an example in Section 5).

5 Query Processing

Since data in DataGarage is stored in many small files in a distributed file system, a MapReduce-style query
processing system seems natural for DataGarage. We have developed such a system, which is optimized for
typical queries in DataGarage.

5.1 DataGarage Queries

A DataGarage query (or, DGQuery in short) runs over a collection of SSCE files and outputs a single SSCE,
or Excel, or CSV file containing the result. Encapsulating the output as an SSCE file enables us to pipeline
a sequence of DGQueries and to easily use the output in external data processing applications that can
directly load SSCE files. A DGQuery has the following general syntax:

APPLY <apply_script>
ON <source>
COMBINE <combine_script>

The query has three components.

1. The <apply_script> is applied to a set of input SSCE files to produce a set of output files (in SSCE,
CSV or Excel format). The script is applied to multiple input files in parallel.

2. The ON statement of a DGQuery specifies a set of input SSCE files for the query to operate on. The set
of files can be expressed with a regular expression on filesystem path or with a text file containing an
explicit list of files. The source can also be another DGQuery, in which case, output of one query acts
as input for another. This enables hierarchical data aggregation by recursively applying one DGQuery
on the output of another DGQuery.

3. The <combine_script> is applied to a set of SSCE files (outputs of the Apply scripts) to produce a
single output file (SSCE, CSV, or Excel format).

To illustrate, we here give a few simple example queries in DataGaragre. In practice, DataGarage queries
are more complicated as they involve more counters and predicates.

12

e Queryl. Find 10 servers with maximum average memory usage among all hotmail.com servers in
the datacenter DC1 in the month of of October 2009. Consider only samples with nontrivial cpu and disk
utilization (CPUUsage < 0.2 and DiskIdle <0.02).

APPLY "Select ServerID, Avg(MemUsage) as AvgMem
From RawData
Where CPUUsage<0.2 AND DiskIdle<0.02
Group by ServerID"

ON //hotmail/dcl/#*.11-%-2009.sdf

COMBINE "Select Top 10 ServerID, AvgMem
from ApplyResult
Order by AvgMem Desc"

The Apply script above computes average memory usage of all servers. The ON statement scopes the
query to the appropriate set of SSCE files. The example shows how DataGarage uses file system hierarchy
to define hierarchical scope of a query. Finally, the Combine script computes the top 10 servers based on
average memory usage. (The table ApplyResult in the Combine script above is a virtual table that contains
all data output by the Apply script.)

e Query 2. Compute sequences of 15-minute average CPU usage of all servers. The Apply script looks
like as follows (we omit the Combine script as it simply concatenates outputs of the Apply script).

Select ServerID, __Mins15Time; as Minslil5,
Avg(CPUUsage) as AvgCPUUsage
From RawData

Group by _Mins15Time; order by __Minsl15Time;

The keyword __Mins15Time; denotes a predefined macro that produces the 15-minute interval of a sample
time.

e Query 3. Compute disk response time for non-trivial situations in the system. Computing this accurately
is tricky since disk response time is affected by disk paging and frequently we observe isolated peaks of
counter values. For example, the time series from the ”% Disk Busy” counter (pctDiskBusy) may look like:
...,0,0,6,0,0,...,0,3,8,7,2,0,0,.... We must be careful not to include the response time for utilization 6,
as it is a momentary aberration. So, to obtain better estimate of disk response time, we want compute the
response times only in situations when (i) pctDiskBusy really nontrivial, e.g. > 5%, (ii) the previous sample
had nontrivial pctDiskBusy, e.g., > 1%, and (iii) there is no significant paging. This can be expressed using
the following Apply script.

Select r.serverID, r.sampleTime,
r.pctDiskBusy, r.diskResponseTime
From RawData as r
Join RawData as rprev
on r.prevsampleTime = rprev.sampleTime
Where r.pctDiskBusy > 5 and rprev.pctDiskBusy > 1

and r.paging < 10 and rprev.paging < 10

Note that our wide-table approach makes the above queries compact and relatively simple. All of them
would be significantly longer and complicated if data were organized as a narrow-table.

13

DGQuery Disseminationl

Controller Result
Apply
scrip¢

Execution

nodes

File System

(Embedded

Databases)

Figure 5: Query Execution in DataGarage

5.2 Query Execution

A DGQuery is executed in two phases: an Apply phase when the <apply_script> is applied on input
files and a Combine phase when the <combine_script> is applied on the outputs of the apply phase. The
Controller module of DataGarage performs the necessary synchronization between these two phases. At a
high level, the Apply and the Combine phase resemble the Map and the Reduce phase of the MapReduce
framework.

To see how a DGQuery is executed, consider a simple scenario where the input files are given as a regular
expression on filesystem path and the query is run on a single machine. The Controller first enumerates all
the input files (using the filesystem directory structure). Then it starts the Apply phase, where it invokes
multiple parallel Apply threads, each of which processes the sequence of input files and serializes the results
to temporary SSCE files. To process a compressed SSCE file, the Apply thread decompresses the relevant
columns from the file and applies the <apply_script> inside an embedded database. After all the apply
threads terminate, multiple temporary SSCE files, each containing the intermediate results of applying the
<apply_script> to one input database file, reside in the file system. Since the same <apply_script> runs
on all input files, the intermediate files are in fact horizontal partitions of a larger database tables. Finally,
the Controller starts the combine phase, where it constructs a single SSCE file, with a virtual table called
ApplyResult by concatenating data from all intermediate files and applies the <combine_script> on the
combined file to produce the final result.

A DGQuery can also run on multiple machines, as shown in Figure 5. In that case, the Controller is
configured with a list of execution nodes, each of which has access to the filesystem storing DataGarage data.
To run a query, the Dissemination module of the Controller partitions the input database file names and
sends the partitions to available execution nodes. If explicit locations of input files are known, execution
nodes are chosen as close as possible to the file sources. Each execution node then runs the <apply_script>
on its portion of the database files. The outputs of the apply phase are written to temporary SSCE files in
the distributed filesystem. Finally, the controller runs the <combine_script> on the intermediate results.

In principle, the combine phase with decomposable functions can be made parallel as well, e.g., by running
the combine function along a tree hierarchy. However, we have found that the combine phase in a typical
DataGarage query, such as aggregation, filtering, anomaly detection, etc. needs to deal with a relatively
small amount of data and hence running the combine phase in a single execution node is sufficient.

5.3 Robustness

DataGarage uses several techniques to deal with faulty or slow nodes. The underlying file system uses
replication, and hence data is available during query processing even if a small number of storage nodes are
down. To cope with faulty execution nodes during query processing, the Controller monitors liveness and

14

progress of each execution node. Liveness is monitored by periodic heartbeat messages, while progress of
each node is monitored by examining the number of temporary intermediate files it has produced so far.
If a node fails during the Apply phase, the controller determines the list of input files yet to be processed
by the node and distributes the processing of these remaining files among other live execution nodes (by
simply sending them additional lists of files to process). Thus a query does not need to be restarted from
the beginning due to the failure of an execution node. Moreover, only the unfinished portion of the task at
the faulty node needs to be redistributed, thanks to the small granularity of inputs to each task.

Datagarage copes with heterogenous nodes by using two techniques. First, during query dissemination,
the Controller assigns less work (i.e., fewer input files to process) to nodes that are known to be slower.
However, seemingly homogenous machines with similar tasks can perform very differently in practice. For
example, two similar machines can process the same query in different speeds if they have different degrees
of disk fragmentations or if one accesses data from its own physical rack in the datacenter but the other
accesses data from a far away rack. To avoid a slow node from becoming the bottleneck, whenever a fast
node completes its share of the Apply task, it starts working on the remaining task of the slowest node. To
make this happen, the Controller node creates a list of the input files the slow node is yet to process and
sends the second half of the list to the faster node. Thus, some tasks of slower nodes may be replicated in
faster nodes, and the Apply phase finishes when all the files have been processed by at least one execution
node.

Like many MapReduce systems, the Controller remains the single point of failures. However, by using a
node with good hardware and software configuration as the Controller, the probability of its failure during
processing of a query can be made very small. If further reliability of the Controller is desired, two (or more)
Controller nodes can be used where the secondary Controller can take the control after the primary one
fails. Note that since the results of the Apply phase are persisted to the file system, failure of one Controller
does not require running the Apply phase again—the new Controller can simply start with the intermediate
results in the filesystem.

6 Experiments

In this section, we evaluate DataGarage with a real workload and a shared-nothing cluster.

Dataset. We use performance data collected over one day from 34,946 servers in several Microsoft
datacenters. Thus, the data is archived as 34,946 SSCE files in a distributed file system. The total size of
the dataset is around 220GB. The minimum, maximum, average, std. deviation, and median of the file sizes
are 20KB, 11.2MB, 6.4MB, 5.4MB, and 2.1MB respectively. The high standard deviation of file sizes implies
high heterogeneity of counter data sets collected from different servers.

Computing nodes. We use a Windows High Performance Computing (HPC) cluster of 32 2.5GHz nodes,
each having 8 cores and 16GB RAM. The execution granularity in the cluster is a core, and hence the cluster
allows us to use up to 248 cores in parallel in 31 nodes (except the head node of the cluster). The head node
of the cluster is used as the DataGarage Controller node, which schedules Apply tasks on other nodes. The
Combine tasks are executed at the Controller node.

Queries. We use the three queries mentioned in Section 5 in our evaluation. The queries exercise different
aspects of query execution. Queryl has a nontrivial Combine script (Combine phases in other queries
simply concatenate outputs of Apply scripts). Query2 has more I/O overhead than Queryl, as its Apply
script produces and writes to disk a larger output. Query3, in addition to having a large intermediate
results, involves a self join and hence is computationally more expensive that the other queries.

6.1 Compression

We first evaluate the most important aspect of DataGarage: its storage efficiency. The storage efficiency
comes from two factors. The first one is its organizing data in many wide-tables. On our dataset, this

15

100 :
80 |
& 60t i]
LL B & .
L - X % Zip — |
£ 40 0 DGZip
20 F PGZip(0.00006) m: |
i ¢ DGZip(0.16)
0 NI ,
0 5 10 15 20

Compression factor

Figure 6: Cumulative distribution of compression factors

Table 1: Compression factor

Compression Compression factor
Scheme Min | Max | Average | Std. Dev
DGZip 4.03 | 21.7 5.9 1.99

DGZip(0.00006) | 5.1 | 28.25 7.6 2.5

DGZip(0.16) 6.8 | 41.74 10.8 3.6

Zip 2.1 4.7 2.5 0.4

approach reduces storage footprint by 7x compared to the narrow-table approach mentioned in Section 3.
The second factor contributing to DataGarage’s storage efficiency is its data compression techniques. To
show the benefit, we compare DataGarage’s compression and decompression algorithms, which we denote as
DGZip and DGUnzip respectively, with popular Zip and Unzip algorithms.

Figure 6 and Table 1 show the distribution of compression factors achieved by different algorithms.
We use DGZip with three configurations: DGZip denotes lossless compression, while DGZip(0.16) and
DGZip(0.00006) denote lossy compression with mazimum relative decompression error of 0.16 and 0.00006
respectively. As shown, Zip provides very little compression for our dataset (the average compression fac-
tor is 2.5).5 In contrast, DGZip achieves an average compression factor of 5.9, more than 2x higher than
Zip’s compression factor. The high compression factor comes from column-oriented organization and byte-
stripping technique used by DGZip. The compression factor further increases with lossy compression. As
shown, even with a very small relative decompression error of 0.00006, DGZip can provide a compression
factor of 7.6, a 3x improvement over Zip.

The high compression factor of DGZip comes at the cost of its higher comrpession/decompression time
compared to Zip/UnZip. Figure 7 and Table 2 show the distribution of compression and decompression times
of different algorithms. The compression time of DGZip is independent of the decompression error, and hence
we report the time of lossless compression only. However, since DGUnzip allows efficiently decompressing only
few selected columns from a table, its decompression time depends on the number of columns to decompress.
In Figure 7 and Table 2, we consider two configurations: DGUnzip that decompresses the entire database,
and DGUnzip(5) that decompresses only 5 columns (corresponding to 5 performance counters) from a table.
The results show that DGZip and DGUnzip are = 2-3x slower than Zip and UnZip. High latency of DGZip
is tolerable, as data is compressed only once, during collection. With an average compression time of 1.3
seconds, DGZip on a 8-core machine can compress data from 100,000 servers in less than 6 hours. However,
reducing decompression latency is important as data is decompressed on the fly during query processing.
Fortunately, even though DGUnzip is expensive, most queries are run over a relatively small number of

5With SQL Server 2008’s row- and page-compression techniques, we found a compression factor of ~ 2 for our dataset.

16

100

80 DGUnzip(5)
-~—DGZip -

% Files

B N
40 | Unzip ~DGUnzip-

20

0.01 0.1 1 10
Time (sec)

Figure 7: Cumulative distribution of compression/decompression time

Table 2: Compression/decompression time

Compression Time (sec)
Scheme Min | Max | Avg. | Std. Dev.
Zip 0.11 | 3.32 | 0.67 0.2
Unzip 0.08 | 1.98 | 0.25 0.12
DGZip 0.09 | 5.03 1.3 0.8
DGUnzip 0.27 | 1.97 | 0.72 0.22
DGUnzip(5) | 0.05 | 0.19 | 0.1 0.014

columns, and using DGUnzip to decompress only the relevant columns from a compressed SSCE file is very
fast. As shown in the figures, DGUnzip (5) is 60% faster than UnZip, which decompresses the entire file even
if only a few columns are required for query processing. Another advantage of DGUnzip’s column-oriented
decompression is that the decompression time is independent of the total number of columns in the table,
as shown by the very small variance of decompression times of DGUnzip(5).

6.2 Query processing

» Scalability of different queries. To understand how data analysis on DataGarage scales with the
number of query execution nodes, we run all three queries on our 32-node, 256-core Windows HPC cluster.
All queries run on the entire dataset, and we vary the number of query execution cores. The cores are evenly
distributed among 31 non-head nodes of the cluster. We report average completion time of five executions
of the queries.

Figure 10 shows the total execution time of different queries as a function of the number of execution
cores. Even though the absolute execution time depends of processing power and I/O bandwidth of execution
nodes, the figure makes a few general points. First, Queryl is the fastest. Query2 is slower due to its
additional I/O overhead for writing larger intermediate results. Query3 is the slowest as it involves, in
addition to its high I/O overhead for writing larger intermediate results, an expensive join operation. This
also highlights a performance problem with a narrow-table approach, where every query involving multiple
performance counters (even Query1l and Query2) would involve multiple join operations, making the queries
run extremely slow. In contrast, most common aggregation queries can be expressed without any join in our
wide-table approach, making the performance of Queryl and Query?2 representative of typical DataGarage
queries.

Second, for all queries, the execution latency decreases almost linearly with the number of execution cores.
For Queryl and Query2, the scaling becomes sublinear after 62 cores as I/O becomes the bottleneck when

17

T

0

Running Tasks
N
o

6 E
6 E
1

(o]

QU PRRPE
QUIOUIOUIOUIOUIOORLEN
Quiouio

Minutes (from beginning)

Figure 8: Effect of stragglers

2 1000 —
5 FileStore ==
é TableStore
:: 100 f 1
£
c
i=] 10 F 1
o
[=X
IS
8 l 1 1
1 10 100 100C
Cores

Figure 9: Executing Query2 onFileStore and TableStore

multiple parallel instances of a query run on the same node. In contrast, Query3 does not see such behavior,
as CPU is the bottleneck for the query. In general, the overall execution time of a typical non-join query is
dominated by I/O cost. In the above experiments, each node had a peak disk bandwidth of only 6MB/sec.
In our experiments, both Queryl and Query2 consumed < 5% CPU time per core and disk idle time
approached zero when more than two cores per node were running queries (which explains the sub-linear
scaling in Figure 10 after 62 cores). In a separate experiment with nodes configured with much faster disks
(up to 92MB/sec peak bandwidth), we observed a linear decrease in execution time even with 8 cores per
node.

Finally, Query1 has a smaller slope that other two queries. This is due to a higher overhead of Query1’s
Combine phase, which cannot be parallelized.

» Comparison with a FileStore. We also compared DataGarage with a pure FileStore-based solution.
We consider a hypothetical MapReduce-style execution, where input data is read from a binary file and
the Apply script (i.e., the Map function) parses and loads the data during query time. Figure 9 shows the
execution times for these two approaches for Query2. As shown, the query runs almost 2x faster than on
TableStore than in FileStore. This highlights the benefits of preloading data into tables and pushing queries
inside databases

6.3 Heterogeneity and fault tolerance

Heterogeneity Tolerance. Even though we used a cluster of nodes with similar hardware and software
configurations and allocated similar amount of tasks (in terms of the number of database files to process)
to each node, surprisingly, we observed that some nodes finished execution of their tasks much faster than
others. To illustrate, consider an experiment where we executed Queryl in 31 cores in 31 nodes. Figure 8

18

Z 1000 : .
E Query 3 =

E Query 2

~ 100 f = Query 1 nnun

) g

£

é 10F ""'.""'o........... E
Q

o

g L . .

° 1 10 100 100¢

Cores

Figure 10: Completion time ofdifferent queries

shows the number of nodes still executing their assigned tasks over the entire duration of the execution of
the Apply phase of Queryl. As shown, two nodes finished execution within the first 45 minutes, all of the
remaining but four finished execution within 85 minutes, and 2 nodes took more than 100 minutes to finish
execution. After closer examination of the slower nodes (that took more than 85 minutes to execute), we
identified two reasons behind their running slow. First, even though all nodes were given the same number
of input files, slower nodes had larger average file sizes than faster nodes. This is possible since our input
files have a large variance in size as the number of performance counters monitored in different servers vary a
lot. Second, the slower nodes had slower disk operations due to disk fragmentation. More specifically, slower
nodes and faster nodes had > 40% and < 5% of their files fragmented, respectively. This caused slower
nodes to have 15% less disk throughput than faster nodes. Since the Combine phase starts after all Apply
tasks (including the ones in the slowest node) finish, this considerably increases the overall query execution
time.

As mentioned in Section 5.3, DataGarage schedules unfinished portion of a slower node’s task in a faster
node after the faster node has finished execution of its own tasks. For example, in the above scenario, after
the fastest node finishes executing its own task, the Controller examines the progress of remaining nodes (by
looking at how many output files they have generated). Then, it assigns half the input files of the slowest
node to the fastest node. In addition, it writes in a file the list of input files the fastest node has started
working on, so that the slowest node can ignore them. This simple technique significantly improves the
overall execution time. When running Query1 on 31 nodes, we observed a reduction of 25% in the overall
execution time (from ~ 112 minutes to ~ 82 minutes).

Fault Tolerance. To test fault tolerance of DataGarage’s query execution, we executed Queryl on 10
nodes, with one Apply task on each node. Then we terminated one node after it has completed 50% of its
task. As mentioned in Section 5.3, when the Controller node detects failure of a node due to absence of
periodic heartbeat messages, it redistributes the remaining task of the failed node to other available nodes.
Since the other nodes now have more to do, the overall execution time increases.

We observed that, as a result of the above failure, the overall execution time increased by 7.6%. Note
that since DataGarage assigns tasks at the granularity of a file, only the unfinished portion of the faulty
node’s task need to redistribute. Therefore, the overall slowdown depends on when a node fails. The more
a node processes before it fails, the less is the additional tasks for other nodes. Our experiments show that
if a node fails after 75% and 90% completion of its task, the overall slowdown becomes 4.8% and 3.1%. We
also simulated a HadoopDB-like policy of distributing the whole task of the faulty node to other nodes, and
observed a slowdown of 13.2%. This again highlights the advantage of small input granularity of DataGarage.

19

7 Operational Experience

We have been using a production prototype of DataGarage for last nine months to archive data collected
from many tens of thousands of servers in Microsoft datacenters. We here discuss some of the lessons we
have learnt over this time.

Performance data warehousing is mostly about storage and computability and our compressed, wide-
table storage has been a key to DataGarage’s success. Before designing DataGarage, we made an attempt
to use narrow-tables. The decision was natural because it supports heterogeneous sets of counters and can
be stored inside any off-the-shelf DBMS. However, we soon realized that such a design severely limits the
amount of data we can archive as well as the type of computations we can perform. As mentioned before, a
narrow-table has a high storage overhead. Compression algorithms perform poorly too as data loses locality
in a narrow-table. As a specific example, with narrow-table, we could store 30,000 server-days worth of
data in a single 1TB disk. In contrast, with our compressed wide-table scheme, DataGarage can archive
1,000,000 to 3,000,000 server-days worth of data on the same amount of storage. In many situations, a
significant portion of all DataGarage data can be stored in one or two storage servers, which significantly
reduces operational overhead of the system.

Narrow-tables also limit computability. A typical query involving multiple counters involves multiple
self-joins on the table, making the query long and error-prone and extremely slow to run. For example, a
narrow-table equivalent of the example Query3 in Section 5 requires tens of lines in SQL and runs orders of
magnitude slower than the same query on a wide-table. Moving to wide-table gave DataGarage a significant
benefit in terms of storage footprint and computability.

We also experienced several unanticipated benefits of storing data as SSCE files in a file system. First,
we could easily scavenge available storage from additional machines that were originally not intended for
DataGarage warehousing. Whenever we discover some available storage in a machine, possibly used for some
other purpose, we use it for storing our SSCE files (the Controller node remembers the name of the new
machine). Had we used a pure DBMS approach for data archival, this wouldn’t have been such easy since
we had to statically allocate space on these new machines and to connect them to the main database server.
Second, SSCE files simplify the data backup problem as a backed-up SSCE file can be accessed in the same
way the original SSCE file is accessed. In contrast, to access backup data from a DBMS, the data must first
be loaded into a DBMS, which can be extremely slow for a large dataset.

A practical lesson we learnt from DataGarage is that it is important to keep the system as simple as
possible and to use as many existing proven tools as possible. The DataGarage system is extremely simple—
it uses existing file systems, scripting shell, SSCE files, Windows SQL Server Compact Edition runtime
library, and a several thousand lines of custom code to glue everything together. The outputs of a DGQuery
can be a SSCE file, a SQL Server database files, an excel file, or a CSV file—so that the output can be
used by another DGQuery or be loaded into SQL Server, Excel, Matlab or R. We also found that having
visibility of query execution is extremely useful to detect and identify effects of node failure. For example,
since our Apply phase writes output results as separate files, just by looking at the number of output files at
different execution nodes help us to easily deal with faulty or slow nodes. Another lesson we learnt is that it
is important to delay adding new features until it is clear how the new features will be used. For example,
even though, in principle, it is possible to parallelize Combine phase for certain functions, we delayed such
implementation and later found that the Combine phase typically deals with a small amount of data and
hence running it on a single node is sufficient.

There appears to be a natural fit between DataGarage and cloud computing, and we can use DataGarage
at various stages in a cloud computing platform for its attractive pay-as-you-go model. For example, we can
use the cloud (e.g., Microsoft Azure or Amazon EC2) to store data only (e.g., SSCE files). Data can then be
downloaded on demand for processing. To execute expensive queries or to avoid expensive data transfer, we
can use the cloud for executing our MapReduce-style query engine as well. Thus, we can seamlessly move
DataGarage to a cloud computing platform without any significant change in our design and implementation.
Our design decision of storing data as files, rather than as tables inside a DBMS, again shows its worth:
DataGarage on the cloud will use a file storage service only, which is much cheaper than a cloud DBMS
service. For example, Windows Azure (which supports file storage and program execution) is 100x cheaper

20

than Microsoft SQL Azure (which provides a relational database solution) for the same storage capacity.

8 Conclusion

We described the design and implementation of DataGarage, a performance data warehousing system that we
have developed at Microsoft. DataGarage is a hybrid solution that combines benefits of DBMSs, file-systems,
and MapReduce systems to address the unique requirements of warehousing performance data. We described
how DataGarage allows efficient storage and analysis of years of historical performance data collected from
many tens of thousands of servers—on commodity servers. Our experience of using DataGarage at Microsoft
for the last nine months shows significant performance and operational advantage over alternative approaches.

Acknowledgements. We would like to thank the Microsoft SQL Server Compact Edition team, specifically
Murali Krishnaprasad, Manikyam Bavandla and Imran Siddique, for technical support related to SSCE files,
Anu Engineer for helping on the first Windows Azure version of DataGarage, Julian Watts for his help in
implementing the initial version of the DataGarage system, and Jie Liu for useful inputs on compression
algorithms.

References

[1] D. Abadi, S. Madden, and M. Ferreira. Integrating compression and execution in column-oriented
database systems. In ACM SIGMOD, 2006.

[2] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Silberschatz, and A. Rasin. Hadoopdb: An
architectural hybrid of mapreduce and dbms technologies for analytical workloads. In VLDB, 2009.

[3] C. Buragohain, N. Shrivastava, and S. Suri. Space efficient streaming algorithms for the maximum error
histogram. In ICDE, 2007.

[4] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. Scope: easy and
efficient parallel processing of massive data sets. Proc. VLDB Endow., 1(2), 2008.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: a distributed storage system for structured data. In Useniz OSDI, 2006.

[6] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. In Useniz OSDI,
2004.

[7] Hadoop. http://hadoop.apache.org.

[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel programs from
sequential building blocks. In FuroSys, 2007.

[9] S. Khoshafian, G. P. Copeland, T. Jagodis, H. Boral, and P. Valduriez. A query processing strategy for
the decomposed storage model. In ICDFE, 1987.

[10] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In ACM SIGMOD, pages 1099-1110, 2008.

[11] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stonebraker. A
comparison of approaches to large-scale data analysis. In ACM SIGMOD, 2009.

[12] G. Reeves, J. Liu, S. Nath, and F. Zhao. Managing massive time series streams with multiscale com-
pressed trickles. In VLDB, 2009.

[13] P. Seshadri and P. Garrett. SQLServer for Windows CE - A Database Engine for Mobile and Embedded
Platforms. In ICDE, 2000.

21

