
From Online to Batch Learning with
Cutoff-Averaging

Ofer Dekel
Microsoft Research

One Microsoft Way, Redmond, WA 98052, USA
oferd@microsoft.com

Abstract

We presentcutoff averaging, a technique for converting any conservative online
learning algorithm into a batch learning algorithm. Most online-to-batch conver-
sion techniques work well with certain types of online learning algorithms and not
with others, whereas cutoff averaging explicitly tries to adapt to the characteristics
of the online algorithm being converted. An attractive property of our technique
is that it preserves the efficiency of the original online algorithm, making it appro-
priate for large-scale learning problems. We provide a statistical analysis of our
technique and back our theoretical claims with experimental results.

1 Introduction

Batch learning(also calledstatistical learning) andonline learningare two different supervised
machine-learning frameworks. In both frameworks, a learning problem is primarily defined by an
instance spaceX and a label setY, and the goal is to assign labels fromY to instances inX . In batch
learning, we assume that there exists a probability distribution over the product spaceX × Y, and
that we have access to a training set drawn i.i.d. from this distribution. A batch learning algorithm
uses the training set to generate anoutput hypothesis, which is a function that maps instances in
X to labels inY. We expect a batch learning algorithm togeneralize, in the sense that its output
hypothesis should accurately predict the labels of previously unseen examples, which are sampled
from the distribution.

On the other hand, in the online learning framework, we typically make no statistical assumptions
regarding the origin of the data. An online learning algorithm receives a sequence of examples and
processes these examples one-by-one. On each online-learning round, the algorithm receives an
instance and predicts its label using an internal hypothesis, which it keeps in memory. Then, the
algorithm receives the correct label corresponding to the instance, and uses the new instance-label
pair to update and improve its internal hypothesis. There isno notion of statistical generalization,
as the algorithm is only expected to accurately predict the labels of examples it receives as input.
The sequence of internal hypotheses constructed by the online algorithm from round to round plays
a central role in this paper, and we refer to this sequence as theonline hypothesis sequence.

Online learning algorithms tend to be computationally efficient and easy to implement. However,
many real-world problems fit more naturally in the batch learning framework. As a result, we are
sometimes tempted to use online learning algorithms as if they were batch learning algorithms. A
common way to do this is to present training examples one-by-one to the online algorithm, and
use the last hypothesis constructed by the algorithm as the output hypothesis. We call this tech-
nique thelast-hypothesisonline-to-batch conversion technique. The appeal of this technique is that
it maintains the computational efficiency of the original online algorithm. However, this heuris-
tic technique generally comes with no theoretical guarantees, and the online algorithm’s inherent
disregard for out-of-sample performance makes it a risky practice.

1

In addition to the last-hypothesis heuristic, various principled techniques for converting online al-
gorithms into batch algorithms have been proposed. Each of these techniques essentially wraps the
online learning algorithm with an additional layer of instructions that endow it with the ability to
generalize. One approach is to use the online algorithm to create the online hypothesis sequence, and
then to choose asinglegood hypothesis from this sequence. For instance, thelongest survivortech-
nique [8] (originally called the pocket algorithm) choosesthe hypothesis that survives the longest
number of consecutive online rounds before it is replaced. The validation technique [12] uses a
validation set to evaluate each online hypothesis and chooses the hypothesis with the best empirical
performance. Improved versions of the validation technique are given in [2, 3], where the wasteful
need for a separate validation set is resolved. All of these techniques follow thesingle hypothesis
approach. We note in passing that a disadvantage of the various validation techniques [12, 2, 3] is
that their running time scales quadratically with the number of examples. We typically turn to online
algorithms for their efficiency, and often a quadratic running time can be problematic.

Another common online-to-batch conversion approach, which we call theensembleapproach, uses
the online algorithm to construct the online hypothesis sequence, and combines the hypotheses in
the sequence by taking a majority [7] or by averaging [2, Sec.2.A]. When using linear hypotheses,
averaging can be done on-the-fly, while the online algorithmis constructing the online hypothesis
sequence. This preserves the computational efficiency of the online algorithm. Taking the majority
or the average over a rich set of hypotheses promotes robustness and stability. Moreover, since we
do not truly know the quality of each online hypothesis, building an ensemble allows us to hedge
our bets, rather than committing to a single online hypothesis.

Sometimes the ensemble approach outperforms the single hypothesis approach, while other times
we see the opposite behavior (see Sec. 4 and [9]). Ideally, wewould like a conversion technique
that enjoys the best of both worlds: when a single good onlinehypothesis can be clearly identified,
it should be chosen as the output hypothesis, but when a good hypothesis cannot be identified, we
should play it safe and construct an ensemble.

A first step in this direction was taken in [10, 5], where the conversion technique selectively chooses
which subset of online hypotheses to include in the ensemble. For example, thesuffix averaging
conversion [5] sets the output hypothesis to be the average over a suffix of the online hypothesis
sequence, where the suffix length is determined by minimizing a theoretical upper-bound on the
generalization ability of the resulting hypothesis. One extreme of this approach is to include the
entire online hypothesis sequence in the ensemble. The other extreme reduces to the last-hypothesis
heuristic. By choosing the suffix that gives the best theoretical guarantee, suffix averaging automat-
ically balances the trade-off between these two extremes. Regretfully, this technique suffers from
a computational efficiency problem. Specifically, the suffixaveraging technique only chooses the
suffix length after the entire hypothesis sequence has been constructed. Therefore, it must store
the entire sequence in memory before it constructs the output hypothesis, and its memory footprint
grows linearly with training set size. This is in sharp contrast to the last-hypothesis heuristic, which
uses no memory aside from the memory used by the online algorithm itself. When the training set
is massive, storing the entire online hypothesis sequence in memory is impossible.

In this paper, we present and analyze a new conversion technique calledcutoff averaging. Like
suffix averaging, it attempts to enjoy the best of the single hypothesis approach and of the ensemble
approach. One extreme of our technique reduces to the simpleaveraging conversion technique,
while the other extreme reduces to the longest-survivor conversion technique. Like suffix averaging,
we search for the sweet-spot between these two extremes by explicitly minimizing a tight theoretical
generalization bound. The advantage of our technique is that much of it can be performed on-the-fly,
as the online algorithm processes the data. The memory required by cutoff averaging scales with
square-rootthe number of training examples in the worst case, and is far less in the typically case.

This paper is organized as follows. In Sec. 2 we formally present the background for our approach.
In Sec. 3 we present the cutoff averaging technique and provide a statistical generalization analysis
for it. Finally, we demonstrate the merits of our approach with a set of experiments in Sec. 4.

2

2 Preliminaries

Recall thatX is an instance domain and thatY is a set of labels, and letH be a hypothesis class,
where eachh ∈ H is a mapping fromX to Y. For example, we may be faced with a confidence-
rated binary classification problem, whereH is the class of linear separators. In this case,X is a
subset of the Euclidean spaceR

n, Y is the real line, and each hypothesis inH is a linear function
parametrized by a weight vectorw ∈ R

n and defined ash(x) = 〈w,x〉. We interpretsign(h(x)) as
the actual binary label predicted byh, and|h(x)| as the degree of confidence in this prediction.

The quality of the predictions made byh is measured using a loss functionℓ. We useℓ(h; (x, y))
to denote the penalty incurred for predicting the labelh(x) when the correct label is actuallyy.
Returning to the example of linear separators, a common choice of loss function is thezero-one loss,
which is simply the indicator function of prediction mistakes. Another popular loss function is the
hinge loss, defined as

ℓ(h; (x, y)) =

{

1− y〈w,x〉 if y〈w,x〉 ≤ 1
0 otherwise .

As noted above, in batch learning we assume the existence of aprobability distributionD over the
product spaceX × Y. The input of a batch learning algorithm is a training set, sampled fromDm.
The risk of a hypothesish, denoted byℓ(h;D), is defined as the expected loss incurred byh over
examples sampled fromD. Formally,

ℓ(h;D) = E(X,Y)∼D [ℓ(h; (X, Y))] .

We can talk about the zero-one-risk or the hinge-loss-risk,depending on which loss function we
choose to work with. The goal of a batch learning algorithm for the hypothesis classH and for the
loss functionℓ is to find a hypothesish⋆ ∈ H whose risk is as close as possible toinfh∈H ℓ(h;D).

In online learning, the labeled examples take the form of a sequenceS =
(

(xi, yi)
)m

i=1
. We typically

refrain from making any assumptions on the process that generatesS; it could very well be a stochas-
tic process but it doesn’t have to be. The online algorithm observes the examples in the sequence
one-by-one, and incrementally constructs the sequence of online hypotheses(hi)

m
i=0, where each

hi ∈ H. The first hypotheses,h0, is adefault hypothesis, which is defined in advance. Before round
t begins, the algorithm has already constructed the prefix(hi)

t−1
i=0 . At the beginning of roundt, the

algorithm observesxt and makes the predictionht−1(xt). Then, the correct labelyt is revealed and
the algorithm suffers a loss ofℓ(ht−1; (xt, yt)). Finally, the algorithm uses the new example(xt, yt)
to construct the next hypothesisht. The update rule used to constructht is the main component of
the online learning algorithm. In this paper, we make the simplifying assumption that the update
rule is deterministic, and we note that our derivation can beextended to randomized update rules.
SinceS is not necessarily generated by any distributionD, we cannot define the risk of an online
hypothesis. Instead, the performance of an online algorithm is measured using the game-theoretic
notion ofregret. The regret of an online algorithm is defined as

1

m

m
∑

i=1

ℓ(hi−1; (xi, yi)) − min
ĥ∈H

1

m

m
∑

i=1

ℓ
(

ĥ; (xi, yi)
)

. (1)

In words, regret measures how much better the algorithm could have done by using the best fixed
hypothesis inH on allm rounds. The goal of an online learning algorithm is to minimize regret.

To make things more concrete, we focus on two online learningalgorithms for binary classification.
The first is the classic Perceptron algorithm [13] and the second is afinite-horizon margin-based
variant of the Perceptron, which closely resembles algorithms given in [11, 4]. The termfinite-
horizonindicates that the algorithm knows the total length of the sequence of examples before ob-
serving any data. The termmargin-basedindicates that the algorithm is concerned with minimizing
the hinge-loss, unlike the classic Perceptron, which dealsdirectly with the zero-one loss. Pseudo-
code for both algorithms is given in Fig. 1. We chose these twoparticular algorithms because they
exhibit two extreme behaviors when converted into batch learning algorithms. Specifically, if we
were to present the classic Perceptron with an example-sequenceS drawn i.i.d. from a distribution
D, we would typically see large fluctuations in the zero-one-risk of the various online hypotheses.
(see Sec. 4). Due to these fluctuations, the ensemble approach suits the classic Perceptron very well,

3

PERCEPTRON FINITE-HORIZON MARGIN-BASED PERCEPTRON

input S =
(

(xi, yi)
)m

i=1
input S =

(

(xi, yi)
)m

i=1
s.t.‖xi‖2 ≤ R

set w0 = (0, . . . , 0) set w0 = (0, . . . , 0)

for i = 1, . . . , m for i = 1, . . . , m

receivexi, predict sign〈wi−1,xi〉 receivexi, predict sign〈wi−1,xi〉
receiveyi ∈ {−1, +1} receiveyi ∈ {−1, +1}
if sign

(

〈wi−1,xi〉
)

6= yi if ℓ(wi−1; (xi, yi)) > 0

wi ← wi−1 + yixi w
′
i−1 ← wi−1 + yixi√

mR

wi ← w
′

i−1

‖w′

i−1
‖2

Figure 1: Two versions of the Perceptron algorithm.

and typically outperforms any single hypothesis approach.On the other hand, if we were to repeat
this experiment with the margin-based Perceptron, using hinge-loss-risk, we would typically see a
monotonic decrease in risk from round to round. A possible explanation for this is the similarity
between the margin-based Perceptron and some incremental SVM solvers [14]. The last hypothesis
constructed by the margin-based Perceptron is typically better than any average. This difference
between the classic Perceptron and its margin-based variant was previously observed in [9]. Ideally,
we would like a conversion technique that performs well in both cases.

From a theoretical standpoint, the purpose of an online-to-batch conversion technique is to turn an
online learning algorithm with a regret bound into a batch learning algorithm with a risk bound. We
state a regret bound for the margin-based Perceptron, so that we can demonstrate this idea in the
next section.

Theorem 1. LetS =
(

(xi, yi)
)m

i=1
be a sequence of examples such thatxi ∈ R

n andy ∈ {−1, +1}
and letℓ denote the hinge loss. LetH be the set of linear separators defined by weight vectors in
the unitL2 ball. Let (hi)

m
i=0 be the online hypothesis sequence generated by the margin-based

Perceptron (see Fig. 1) when it processesS. Then, for anŷh ∈ H,

1
m

∑m
i=1 ℓ

(

hi−1; (xi, yi)
)

− 1
m

∑m
i=1 ℓ

(

ĥ; (xi, yi)
)

≤ R√
m

.

The proof of Thm. 1 is not much different from other regret bounds for Perceptron-like algorithms;
for completeness we give the proof in [1].

3 Cutoff Averaging

We now present the cutoff averaging conversion technique. This technique can be applied to any
conservative online learning algorithm that uses a convex hypothesis classH. A conservative al-
gorithm is one that modifies its online hypotheses only on rounds where a positive loss is suffered.
On rounds where no loss is suffered, the algorithm keeps its current hypothesis, and we say that
the hypothesissurvivedthe round. Thesurvival timeof each distinct online hypothesis is the num-
ber of consecutive rounds it survives before the algorithm suffers a loss and replaces it with a new
hypothesis.

Like the conversion techniques mentioned in Sec. 1, we startby applying the online learning algo-
rithm to an i.i.d. training set, and obtaining the online hypothesis sequence(hi)

m−1
i=0 . Let k be an

arbitrary non-negative integer, which we call thecutoff parameter. Ultimately, our technique will
setk automatically, but for the time-being, assumek is a predefined constant. LetΘ ⊆ (hi)

m−1
i=0 be

the set of distinct hypotheses whose survival time is greater thank. The cutoff averaging technique
defines the output hypothesish⋆ as a weighted average over the hypotheses inΘ, where the weight
of a hypothesis with survival times is proportional tos− k. Intuitively, each hypothesis must qual-
ify for the ensemble, by suffering no loss fork consecutive rounds. The cutoff parameterk sets the
bar for acceptance into the ensemble. Once a hypothesis is included in the ensemble, its weight is
determined by the number of additional rounds it perseveresafter qualifying.

4

We present a statistical analysis of the cutoff averaging technique. We use capital-letter notation
throughout our analysis to emphasize that our input is stochastic and that we are essentially ana-
lyzing random variables. First, we represent the sequence of examples as a sequence of random
variables

(

(Xi, Yi)
)m

i=1
. Once this sequence is presented to the online algorithm, weobtain the on-

line hypothesis sequence(Hi)
m
i=1, which is a sequence of random functions. Note that each random

functionHi is deterministically defined by the random variables((Xj , Yj))
i
j=1. Therefore, the risk

of Hi is also a deterministic function of((Xj , Yj))
i
j=1. Since(Xi+1, Yi+1) is sampled fromD

independently of((Xj , Yj))
i
j=1, we observe that

ℓ(Hi;D) = E
[

ℓ
(

Hi; (Xi+1, Yi+1)
)∣

∣

(

(Xj , Yj)
)i

j=1

]

. (2)

In words, therisk of the random functionHi equals the conditional expectation of theonline loss
suffered on roundi + 1, conditioned on the random examples1 throughi. This simple observation
relates statistical risk with online loss, and is the key to converting regret bounds into risk bounds.

Define the sequence of binary random variables(Bi)
m−1
i=0 as follows

Bi =

{

1 if i = 0 or if i ≥ k and Hi−k = Hi−k+1 = . . . = Hi

0 otherwise
. (3)

Now define the output hypothesis

H⋆
k =

(m−1
∑

i=0

Bi

)−1 m−1
∑

i=0

BiHi . (4)

Note that we automatically include the default hypothesisH0 in the definition ofH⋆
k . This technical

detail makes our analysis more elegant, and is otherwise irrelevant. Also note that settingk = 0
results inBi = 1 for all i, and would reduce our conversion technique to the standard averaging
conversion technique. At the other extreme, ask increases, our technique approaches the longest
survivor conversion technique.

The following theorem bounds the risk ofH⋆
k using the online loss suffered on rounds whereBi = 1.

The theorem holds only when the loss functionℓ is convex in its first argument and bounded in[0, C].
Note that this is indeed the case for the margin-based Perceptron and the hinge loss function. Since
the margin-based Perceptron enforces‖wi‖ ≤ 1, and assuming that‖xi‖ ≤ R, it follows from the
Cauchy-Schwartz inequality thatℓ ∈ [0, R + 1]. If the loss function is not convex, the theorem does
not hold, but note that we can still bound the average risk of the hypotheses in the ensemble.

Theorem 2. Let k be a non-negative constant and letℓ be a convex loss function such that
ℓ(h; (x, y)) ∈ [0, C]. An online algorithm is givenm ≥ 4 independent samples fromD and
constructs the online hypothesis sequence(Hi)

m
i=0. Define Bi and H⋆

k as above, letLi =
Bi−1ℓ

(

Hi−1; (Xi, Yi)
)

for all i and let L̄ = (
∑

Bi)
−1
∑

Li. For any δ ∈ (0, 1), with proba-
bility at least1− δ, it holds that

ℓ(H⋆
k ;D) < L̄ +

√

2C ln(m
δ)L̄

∑

Bi
+

7C ln(m
δ)

∑

Bi
.

To prove the theorem, we require the following tail bound, which is a corollary of Freedman’s tail
bound for martingales [6], similar to [3, Proposition 2].

Lemma 1. Let(Li)
m
i=1 be a sequence of real-valued random variables and let(Zi)

m
i=1 be a sequence

of arbitrary random variables such thatLi = E[Li|(Zj)
i
j=1] and Li ∈ [0, C] for all i. Define

Ui = E[Li|(Zj)
i−1
j=1] for all i, and definēLt =

∑t
i=1 Li and Ūt =

∑t
i=1 Ui for all t. For any

m ≥ 4 and for anyδ ∈ (0, 1), with probability at least1− δ, it holds that

∀ t ∈ {1, . . . , m} Ūt < L̄t +
√

2C ln(m
δ)L̄t + 7C ln(m

δ) .

Due to space constraints, the proof of Lemma 1 is given in [1].It can also be reverse-engineered
from [3, Proposition 2]. Equipped with Lemma 1, we now prove Thm. 2.

5

Proof of Thm. 2.Define Ui = E[Li|((Xj , Yj))
i−1
j=1] for all i ∈ {1, . . . , m}, and defineŪ =

∑m
i=1 Ui. Using Lemma 1, we have that, with probability at least1− δ

Ū < L̄ +
√

2C ln(m
δ)L̄ + 7C ln(m

δ) .

Now notice that, by definition,

Ui = E

[

Bi−1ℓ
(

Hi−1; (Xi, Yi)
) ∣

∣ ((Xj , Yj))
i−1
j=1

]

.

SinceBi is deterministically defined by((Xj , Yj))
i−1
j=1, it can be taken outside of the conditional

expectation above. Using the observation made in Eq. (2), wehaveUi = Bi−1ℓ(Hi−1;D). Overall,
we have shown that

m
∑

i=1

Bi−1ℓ(Hi−1;D) < L̄ +
√

2C ln(m
δ)L̄ + 7C ln(m

δ) .

Using Jensen’s inequality, the left-hand side above is at least
(
∑m

i=1 Bi−1

)

ℓ(H⋆
k ;D).

We can now complete the definition of the cutoff averaging technique. Note that by replacingδ
with δ/m in Thm. 2 and by using the union bound, we can ensure that Thm. 2holds uniformly for
all k ∈ {0, . . . , m − 1} with probability at least1 − δ. The cutoff averaging technique sets the
output hypothesisH⋆ to be hypothesis in{H⋆

0 , . . . , H⋆
m−1} for which Thm. 2 gives the smallest

bound. In other words,k is chosen automatically so as to balance the trade-off between the benefits
of averaging and those of good empirical performance. If a small number of online hypotheses
stand out with significantly long survival times, then our technique will favor a largek and a sparse
ensemble. On the other hand, if most of the online hypotheseshave medium/short survival times,
then our technique will favor small values ofk and a dense ensemble. Even ifℓ is not convex,
minimizing the bound in Thm. 2 implicitly minimizes the average risk of the ensemble hypotheses.

If the online algorithm being converted has a regret bound, then the data dependent risk bound
given by Thm. 2 can be turned into a dataindependentrisk bound. A detailed derivation of such a
bound exceeds the scope of this paper, and we just sketch the proof in the case of the margin-based
Perceptron. It trivially holds that the risk ofH⋆ is upper-bounded by the bound given in Thm. 2 for
k = 0. When Thm. 2 is applied withk = 0, L̄ simply becomes the average loss suffered by the
online algorithm over the entire training set and

∑

Bi = m. We can now use Thm. 1 to bound̄L
by the average loss of anŷh ∈ H on the sequence

(

(Xi, Yi)
)m

i=1
. Particularly, we can choosêh to

be the hypothesis with the smallest risk inH, namely,ĥ = arg minh∈H ℓ(h;D). The final step is
to bound the difference between1m

∑

ℓ(ĥ; (Xi, Yi)) andℓ(ĥ;D), which can be done using any tail
bound for sums of independent bounded random variables, such as Hoeffding’s bound or Bernstein’s
bound. The result is that, with high probability,ℓ(H⋆;D) ≤ minh∈H ℓ(h;D) + O(m−1/2). Similar
derivations appear in [2, 3].

As mentioned in the introduction, our approach is similar tothe suffix averaging conversion tech-
nique of [5], which also interpolates between an ensemble approach and a single hypothesis ap-
proach. However, the suffix conversion requiresΩ(m) space, which is problematic whenm is large.
In contrast, cutoff averaging requires onlyO(

√
m) space. Our technique cannot choose the optimal

value ofk before the entire dataset has been processed, but nevertheless, it does not need to store
the entire hypothesis sequence. Instead, it can group the online hypotheses based on their survival
times, and stores only the average hypothesis in each group and the total loss in each group. By
the time the entire dataset is processed, most of the work hasalready been done and calculating the
optimalk and the output hypothesis is straightforward. Using simplecombinatorics, the maximal
number of distinct survival times in a sequence ofm hypotheses isO(

√
m).

Finally, note that Lemma 1 is a Kolmogorov-type bound, namely, it holds uniformly for every prefix
of the sequence of random variables. Therefore, Thm. 2 actually holds simultaneously for every
prefix of the training set. Since our conversion is mostly calculated on-the-fly, in parallel with the
online rounds, we can easily construct intermediate outputhypotheses, before the online algorithm
has a chance to process the entire dataset. Thanks to the Kolmorogorv-type bound, the risk bounds
for all of these hypotheses all hold simultaneously. We can monitor how the risk bound changes
as the number of examples increases, and perhaps even use thebound to define an early stopping
criterion for the training algorithm. Specifically, we could stop processing examples when the risk
bound becomes lower than a predefined threshold.

6

te
st

er
ro

r

10
1

10
3

10
5

0.1

0.2

0.3

0.4

0.5
CCAT vs. GCAT

cutoff
last

10
1

10
3

10
5

0.1

0.2

0.3

0.4

0.5
CCAT vs. MCAT

10
1

10
3

10
5

0.1

0.2

0.3

0.4

0.5
CCAT vs. ECAT

10
1

10
3

10
5

0.1

0.2

0.3

0.4

0.5
CCAT vs. OTHER

10
1

10
3

10
5

0.1

0.2

0.3

0.4

0.5
GCAT vs. MCAT

te
st

er
ro

r

10
1

10
3

10
5

0.1

0.2

0.3

0.4

0.5
GCAT vs. ECAT

10
1

10
3

10
5

0.1

0.2

0.3

0.4

0.5
GCAT vs. OTHER

10
1

10
3

10
5

0.1

0.2

0.3

0.4

0.5
MCAT vs. ECAT

10
1

10
3

10
5

0.1

0.2

0.3

0.4

0.5
MCAT vs. OTHER

10
1

10
3

10
5

0.1

0.2

0.3

0.4

0.5
ECAT vs. OTHER

Figure 2: Test error (zero-one-loss) oflast-hypothesisandcutoff averaging, each applied to the stan-
dard Perceptron, on ten binary classification problems fromRCV1. The x-axis represents training
set size, and is given in log-scale. Each plot represents theaverage over 10 random train-test splits.

4 Experiments and Conclusions

We conducted experiments usingReuters Corpus Vol. 1(RCV1), a collection of over 800K news
articles collected from the Reuters news wire. An average article in the corpus contains 240 words,
and the entire corpus contains over half a million distinct tokens (not including numbers and dates).
Each article in the corpus is associated with one or morehigh-level categories, which are: Cor-
porate/Industrial (CCAT), Economics (ECAT), Government/Social (GCAT), Markets (MCAT), and
Other (OTHER). About20% of the articles in the corpus are associated with more than one high-
level category. After discarding this20%, we are left with over 600K documents, each with a single
high-level label. Each pair of high-level labels defines thebinary classification problem of distin-
guishing between articles of the two categories, for a totalof ten different problems. Each problem
has different characteristics, due to the different numberof articles and the varying degree of homo-
geneity in each category.

Each article was mapped to a feature vector using a logarithmic bag-of-words representation.
Namely, the length of each vector equals the number of distinct tokens in the corpus, and each
coordinate in the vector represents one of these tokens. If atoken appearss times in a given article,
the respective coordinate in the feature vector equalslog2(1 + s).

We applied the cutoff averaging technique to the classic Perceptron and to the margin-based Per-
ceptron. We repeated each of our experiments ten times, eachtime taking a new random split of
the data into a training set (80%) and a test set (20%), and randomly ordering the training set. We
trained each algorithm on each dataset in an incremental manner, namely, we started by training the
algorithm using a short prefix of the training sequence, and gradually increased the training set size.
We paused training at regular intervals, computed the output hypothesis so far, and calculated its test
loss. This gives us an idea of what would happen on smaller training sets.

Fig. 2 shows the test zero-one loss attained when our technique is applied to the classic Perceptron
algorithm. It also shows the test zero-one loss of the last-hypothesis conversion technique. Clearly,
the test loss of the last hypothesis is very unstable, even after averaging over10 repetitions. In some
cases, adding training data actually deteriorates the performance of the last hypothesis. If we decide
to use the last hypothesis technique, our training set size could happen to be such that we end up with
a bad output hypothesis. On the other hand, the cutoff averaging hypothesis is accurate, stable and
consistent. The performance of the simple averaging conversion technique is not plotted in Fig. 2,
but we note that it was only slightly worse than the performance of cutoff averaging. When using
the classic Perceptron, any form of averaging is beneficial,and our technique successfully identifies
this.

Fig. 3 shows the test hinge loss of cutoff averaging, last-hypothesis, and simple averaging, when
applied to the margin-based Perceptron. In this case, the last hypothesis performs remarkably well

7

te
st

h
in

g
e-

lo
ss

10
1

10
3

10
5

0.1

0.3

0.5

0.7

0.9

CCAT vs. GCAT

cutoff
average
last

10
1

10
3

10
5

0.1

0.3

0.5

0.7

0.9

CCAT vs. MCAT

10
1

10
3

10
5

0.1

0.3

0.5

0.7

0.9

CCAT vs. ECAT

10
1

10
3

10
5

0.1

0.3

0.5

0.7

0.9

CCAT vs. OTHER

10
1

10
3

10
5

0.1

0.3

0.5

0.7

0.9

GCAT vs. MCAT

te
st

h
in

g
e-

lo
ss

10
1

10
3

10
5

0.1

0.3

0.5

0.7

0.9

GCAT vs. ECAT

10
1

10
3

10
5

0.1

0.3

0.5

0.7

0.9

GCAT vs. OTHER

10
1

10
3

10
5

0.1

0.3

0.5

0.7

0.9

MCAT vs. ECAT

10
1

10
3

10
5

0.1

0.3

0.5

0.7

0.9

MCAT vs. OTHER

10
1

10
3

10
5

0.1

0.3

0.5

0.7

0.9

ECAT vs. OTHER

Figure 3: Test hinge-loss oflast-hypothesis, averaging, andcutoff averaging, each applied to the
finite-horizon margin-based Perceptron, on ten binary classification problems from RCV1. The x-
axis represents training set size and each plot represents the average over 10 random train-test splits.

and the simple averaging conversion technique is significantly inferior for all training set sizes.
Within 1000 online rounds (0.1% of the data), the cutoff averaging technique catches up to the last
hypothesis and performs comparably well from then on. Our technique’s poor performance on the
first 0.1% of the data is expected, since the tail bounds we rely on are meaningless with so few
examples. Once the tail bounds become tight enough, our technique essentially identifies that there
is no benefit in constructing a diverse ensemble, and assignsall of the weight to a short suffix of the
online hypothesis sequence.

We conclude that there are cases where the single-hypothesis approach is called for and there are
cases where an ensemble approach should be used. If we are fortunate enough to know which case
applies, we can simply choose the right approach. However, if we are after a generic solution that
performs well in both cases, we need a conversion technique that automatically balances the trade-
off between these two extremes. Suffix averaging [5] and cutoff averaging are two such techniques,
with cutoff averaging having a significant computational advantage.

References

[1] Ofer Dekel. From Online to Batch Learning with Cutoff-Averaging (long version), 2008.
[2] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of online learning

algorithms.IEEE Transactions on Information Theory, 50(9):2050–2057, September 2004.
[3] N. Cesa-Bianchi and C. Gentile. Improved risk bounds foronline algorithms.NIPS 19, 2006.
[4] O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kernel-based perceptron on a

budget.SIAM Journal on Computing, 37:1342–1372, 2008.
[5] O. Dekel and Y. Singer. Data-driven online to batch conversions.NIPS 18, 2006.
[6] D. A. Freedman. On tail probabilities for martingales.Annals of Prob., 3(1):100–118, 1975.
[7] Y. Freund and R. E. Schapire. Large margin classificationusing the perceptron algorithm.

Machine Learning, 37(3):277–296, 1999.
[8] S. I. Gallant. Optimal linear discriminants.Proc. of ICPR 8, pages 849–852. IEEE, 1986.
[9] R. Khardon and G. Wachman. Noise tolerant variants of theperceptron algorithm.Journal of

Machine Learning Research, 8:227–248, 2007.
[10] Y. Li. Selective voting for perceptron-like learning.Proc. of ICML 17, pages 559–566, 2000.
[11] Y. Li, H. Zaragoza, R. He, J. ShaweTaylor, and J. Kandola. The perceptron algorithm with

uneven margins.Proc. of ICML 19, pages 379–386, 2002.
[12] N. Littlestone. From online to batch learning.Proc. of COLT 2, pages 269–284, 1989.
[13] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization

in the brain.Psychological Review, 65:386–407, 1958.
[14] T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent

algorithms.Proc. of ICML 21, 2004.

8

Cutoff Averaging: Technical Appendix

A Proof of Thm. 1: A Regret Bound for Margin-Based Perceptron

Proof. Throughout this proof,ℓ denotes the hinge loss. We define∆i = ‖u−wi−1‖2−‖u−wi‖2
and prove the theorem by proving upper and lower bounds on

∑m
i=1 ∆i. Beginning with the upper

bound, we notice that
∑m

i=1 ∆i is a telescopic sum that collapses to
m
∑

i=1

∆i = ‖u−w0‖2 − ‖u−wm‖2 .

Neglecting‖u − wm‖2 and using the facts thatw0 = (0, . . . , 0) and that‖u‖ ≤ 1, we obtain the
upper bound

m
∑

i=1

∆i ≤ 1 . (5)

Moving on to the lower bound, we focus on rounds whereℓ(wi−1; (wi, yi)) > 0. We rewrite∆i as
αi + βi, where

αi = ‖u−wi−1‖2 − ‖u−w
′
i−1‖2 and βi = ‖u−w

′
i−1‖2 − ‖u−wi‖2 .

Settingη = 1/(
√

mR), we can rewriteαi as

αi = ‖u−wi−1‖2 − ‖u−wi−1 − ηyixi‖2

= 2η (yi〈u,xi〉 − yi〈wi−1,xi〉) − η2‖xi‖2 , (6)
where the first inequality follows from the definition ofw

′
i−1 and the second equality is straight-

forward linear algebra. Next, we combine the term in Eq. (6) with three additional facts: (1) by
assumption‖x‖ ≤ R, (2) by the assumption thatℓ(wi−1; (xi, yi)) > 0 and using the definition of
the hinge loss, we haveℓ(wi−1; (xi, yi)) = 1− yi〈wi−1,xi〉, and (3) by the definition of the hinge
lossℓ(u; (xi, yi)) ≥ 1− yi〈u,xi〉. We obtain the lower bound

αi ≥ 2η
(

− ℓ
(

u; (xi, yi)
)

+ ℓ
(

wi−1; (xi, yi)
)

)

− η2R2 .

Next we prove thatβi is always non-negative. If1 ≤ 1
‖w′

i−1
‖ then this claim is an immediate

consequence of the definition ofwi. Otherwise, it holds that‖w′
i−1‖ ≥ 1, wi = w

′
i−1/‖w′

i−1‖,
and we have that

βi = ‖u−w
′
i−1‖2 −

∥

∥

∥

∥

u− w
′
i−1

‖w′
i−1‖

∥

∥

∥

∥

2

= −2

(

1− 1

‖w′
i−1‖

)

〈u,w′
i−1〉 + ‖w′

i−1‖2 − 1 . (7)

Using the Cauchy-Schwartz inequality and the assumption that‖u‖ ≤ 1, we lower bound the term

−2

(

1− 1

‖w′
i−1‖

)

〈u,w′
i−1〉

with −2‖w′
i−1‖+ 2. Plugging this lower bound into Eq. (7) gives

βi ≥ 1− 2‖w′
i−1‖+ ‖w′

i−1‖2 =
(

1− ‖w′
i−1‖

)2
.

We have proven thatβi is non-negative and we conclude that

∆i ≥ 2η
(

− ℓ
(

u; (xi, yi)
)

+ ℓ
(

wi−1; (xi, yi)
)

)

− η2R2 . (8)

Note that the above holds trivially wheneverℓ(wi−1; (xi, yi)) = 0, and therefore the above holds
for all i. Summing∆i over alli, we get

m
∑

i=1

∆i ≥ − 2η

m
∑

1=1

ℓ
(

u; (xi, yi)
)

+ 2η

m
∑

1=1

ℓ
(

wi−1; (xi, yi)
)

− mη2R2 .

Comparing the above to the upper bound in Eq. (5) and rearranging terms gives the bound

1

m

m
∑

1=1

ℓ
(

wi−1; (xi, yi)
)

≤ 1

m

m
∑

1=1

ℓ
(

u; (xi, yi)
)

+
1

2mη
+

ηR2

2
.

Recalling thatη = 1/(
√

mR) proves the bound.

9

B Proof of Lemma 1: An Adaptation of Freedman’s Bound

The following is a detailed proof of Lemma 1. We show that the lemma is a direct corollary from
Freedman’s tail bound for martingales [6]. This proof is adapted from the work of Cesa-Bianchi and
Gentile in [3, Proposition 2] with two exceptions: First we use the full power of Freedman’s theorem
and prove a Kolmogorov-type maximal inequality, namely, aninequality that holds uniformly for
any prefix of the random variable sequence. Second, we build on Freeman’s original bound, as it
appears in [6], rather than the slightly different version used in [3].

One of the straightforward techniques used in our proof is the square root trick. There is really
nothing tricky about this elementary technique: it involves finding the positive root of a second-
degree polynomial, in order to satisfy a quadratic constraint. The term “square root trick” has been
coined elsewhere and we stick with this name.

Lemma 2. Letb andc be positive numbers. Then,

(1) x2 − bx− c > 0 and x ≥ 0 ⇐⇒ x > b+
√

b2+4c
2

(2) x2 − bx− c < 0 and x ≥ 0 ⇐⇒ 0 ≤ x < b+
√

b2+4c
2

Proof. The left-hand side of (1) above is a second degree polynomialin x with a positive leading
term, one negative rootN and one positive rootP . Therefore, it is positive in the region(−∞, N)∪
(P,∞). Intersecting this constraint withx ≥ 0, givesx > P . Equivalently, the left-hand side of
(2) is negative betweenN andP . Intersecting this constraint withx ≥ 0 results in the constraint
0 ≤ x < P . In both cases, the value ofP can be calculated using the quadratic formula.

For completeness, we give Freedman’s original theorem:

Theorem 3 (Freedman, [6]). Let (Ai)
m
i=0 be a martingale with respect to(Zi)

m
i=1. LetBi = Ai −

Ai−1 be the corresponding sequence of martingale differences and let Di = Var[Bi|(Zj)
i−1
j=1] be

the corresponding sequence of conditional variances. Assume|Bi| ≤ 1 for all i. For any positive
numbersa andb,

Pr

(

∃t
t
∑

i=1

Bi ≥ a ,

t
∑

i=1

Di ≤ b

)

≤ exp

(

− a2

2(a + b)

)

.

We are now ready to prove Lemma 1.

Proof of Lemma 1.Define, for alli ∈ {1, . . . , m}

Bi =
Ui − Li

C
and Vi = Var

[

Bi

∣

∣(Zj)
i−1
j=1

]

.

Note that(Bi)
m
i=1 is a sequence of martingale differences with respect to(Zi)

m
i=1, and that|Bi| ≤ 1

for all i. For brevity, defineα = ln(m
δ). We begin by examining the probability

Pr

(

∃t
t
∑

i=1

Bi ≥ α +

√

α2 + 2α
(

1 +
∑t

i=1 Vi

)

)

.

Since|Bi| ≤ 1, it holds that
∑m

i=1 Vi ≤ m. Therefore, we can upper-bound the above by

m
∑

s=1

Pr

(

∃t
t
∑

i=1

Bi ≥ α +
√

α2 + 2αs ,

t
∑

i=1

Vi ≤ s

)

.

Each summand above satisfies the requirements of Freedman’sbound, Thm. 3. Applying the theo-
rem for each summand gives the upper bound

m
∑

s=1

exp

(

−
(

α +
√

α2 + 2αs
)2

2
(

α +
√

α2 + 2αs + s
)

)

=
m
∑

s=1

exp(−α) = δ .

10

Overall, we have proven that, with probability at least1− δ, it holds that

∀ t
t
∑

i=1

Bi < α +

√

α2 + 2α(1 +
∑t

i=1 Vi) , (9)

Given a concrete value of(Zj)
i−1
j=1, Ui is just a constant and does not effect the variance. Therefore,

Vi =
Var
[

Li

∣

∣(Zj)
i−1
j=1

]

C2
≤

E
[

L2
i

∣

∣(Zj)
i−1
j=1

]

C2
≤

E
[

Li

∣

∣(Zj)
i−1
j=1

]

C
=

Ui

C
.

where the first inequality follows from the definition of variance, the second inequality follows from
the fact thatLi ∈ [0, C], and the last equality uses the definition ofUi. Plugging this bound into
Eq. (9), we have

∀ t
t
∑

i=1

Bi < α +

√

α2 + 2α
(

1 + 1
C

∑t
i=1 Ui

)

.

Using the definition ofBi and the fact that
√

a + b ≤ √a +
√

b, we have

∀ t 1
C

∑t
i=1 Ui − 1

C

∑t
i=1 Li < 2α +

√

2α
(

1 + 1
C

∑t
i=1 Ui

)

.

Focus for a moment on one value oft. Substitutingγ =
√

1 + 1
C

∑t
i=1 U1 andλ = 1

C

∑t
i=1 Li,

the above can be rewritten as the following quadratic constraint onγ

γ2 −
√

2αγ − (2α + λ + 1) < 0 .

Using the square-root trick, outlined in Lemma 2, the above is equivalent to

γ <

√
2α +

√
10α + 4λ + 4

2
.

Taking the square of both sides above, we get

γ2 < 3α + λ + 1 +
√

5α2 + 2αλ + 2α .

Once again using the inequality
√

a + b + c ≤ √a +
√

b +
√

c, we get

γ2 < λ + (3 +
√

5)α +
√

2αλ +
√

2α .

Finally, assumingm ≥ 4 we have thatα >
√

α and therefore

γ2 < λ + (3 +
√

5 +
√

2)α +
√

2αλ .

Plugging in the definitions ofγ andλ and using3 +
√

5 +
√

2 < 7 concludes the proof.

11

