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Abstract

We presentutoff averaginga technique for converting any conservative online
learning algorithm into a batch learning algorithm. Moslilne-to-batch conver-
sion techniques work well with certain types of online leagalgorithms and not
with others, whereas cutoff averaging explicitly tries tapt to the characteristics
of the online algorithm being converted. An attractive mdp of our technique

is that it preserves the efficiency of the original onlinecaithm, making it appro-
priate for large-scale learning problems. We provide astiedl analysis of our
technique and back our theoretical claims with experimeatailts.

1 Introduction

Batch learning(also calledstatistical learning and online learningare two different supervised
machine-learning frameworks. In both frameworks, a leggroblem is primarily defined by an
instance spac& and a label s, and the goal is to assign labels fr@ito instances ik’ In batch
learning, we assume that there exists a probability didiob over the product spaceé x ), and
that we have access to a training set drawn i.i.d. from theitution. A batch learning algorithm
uses the training set to generate@rtput hypothesjswhich is a function that maps instances in
X to labels in). We expect a batch learning algorithmdeneralize in the sense that its output
hypothesis should accurately predict the labels of preshounseen examples, which are sampled
from the distribution.

On the other hand, in the online learning framework, we glhjcmake no statistical assumptions
regarding the origin of the data. An online learning alguoritreceives a sequence of examples and
processes these examples one-by-one. On each onlinéalpaonnd, the algorithm receives an
instance and predicts its label using an internal hypathedhich it keeps in memory. Then, the
algorithm receives the correct label corresponding to itiseaince, and uses the new instance-label
pair to update and improve its internal hypothesis. Ther®isotion of statistical generalization,
as the algorithm is only expected to accurately predict éhels of examples it receives as input.
The sequence of internal hypotheses constructed by theeaaljjorithm from round to round plays

a central role in this paper, and we refer to this sequendeeamitine hypothesis sequence

Online learning algorithms tend to be computationally éffit and easy to implement. However,
many real-world problems fit more naturally in the batch méag framework. As a result, we are
sometimes tempted to use online learning algorithms a®if tiere batch learning algorithms. A
common way to do this is to present training examples one#®/{o the online algorithm, and
use the last hypothesis constructed by the algorithm asutmibhypothesis. We call this tech-
nigue thdast-hypothesisnline-to-batch conversion technique. The appeal of #dhnique is that
it maintains the computational efficiency of the originaline algorithm. However, this heuris-
tic technique generally comes with no theoretical guaesjytand the online algorithm’s inherent
disregard for out-of-sample performance makes it a riskgtice.



In addition to the last-hypothesis heuristic, various gipled techniques for converting online al-
gorithms into batch algorithms have been proposed. Eadieskttechniques essentially wraps the
online learning algorithm with an additional layer of insttions that endow it with the ability to
generalize. One approach is to use the online algorithnetatethe online hypothesis sequence, and
then to choose singlegood hypothesis from this sequence. For instancdptigest survivotech-
nique [8] (originally called the pocket algorithm) choogdlks hypothesis that survives the longest
number of consecutive online rounds before it is replaceke vRlidation technique [12] uses a
validation set to evaluate each online hypothesis and esabg hypothesis with the best empirical
performance. Improved versions of the validation techaigte given in [2, 3], where the wasteful
need for a separate validation set is resolved. All of thesbriiques follow theingle hypothesis
approach. We note in passing that a disadvantage of theugavadidation techniques [12, 2, 3] is
that their running time scales quadratically with the nundi@xamples. We typically turn to online
algorithms for their efficiency, and often a quadratic rungnime can be problematic.

Another common online-to-batch conversion approach, ivhie call theensembl@pproach, uses
the online algorithm to construct the online hypothesisusage, and combines the hypotheses in
the sequence by taking a majority [7] or by averaging [2, 2e&]. When using linear hypotheses,
averaging can be done on-the-fly, while the online algorithironstructing the online hypothesis
sequence. This preserves the computational efficiencyeabiine algorithm. Taking the majority
or the average over a rich set of hypotheses promotes raassémd stability. Moreover, since we
do not truly know the quality of each online hypothesis, thnijy an ensemble allows us to hedge
our bets, rather than committing to a single online hypathes

Sometimes the ensemble approach outperforms the singtethegs approach, while other times
we see the opposite behavior (see Sec. 4 and [9]). Ideallyyoued like a conversion technique
that enjoys the best of both worlds: when a single good oilypothesis can be clearly identified,
it should be chosen as the output hypothesis, but when a ggmathesis cannot be identified, we
should play it safe and construct an ensemble.

A first step in this direction was taken in [10, 5], where thewa@rsion technique selectively chooses
which subset of online hypotheses to include in the ensentbibe example, theuffix averaging
conversion [5] sets the output hypothesis to be the averageasuffix of the online hypothesis
sequence, where the suffix length is determined by minimiairtheoretical upper-bound on the
generalization ability of the resulting hypothesis. On&@&xe of this approach is to include the
entire online hypothesis sequence in the ensemble. The®tlreme reduces to the last-hypothesis
heuristic. By choosing the suffix that gives the best thécabguarantee, suffix averaging automat-
ically balances the trade-off between these two extremegra®fully, this technique suffers from
a computational efficiency problem. Specifically, the suffi'eraging technique only chooses the
suffix length after the entire hypothesis sequence has beestracted. Therefore, it must store
the entire sequence in memory before it constructs the ohygpothesis, and its memory footprint
grows linearly with training set size. This is in sharp castrto the last-hypothesis heuristic, which
uses no memory aside from the memory used by the online #igoiiself. When the training set
is massive, storing the entire online hypothesis sequeneemory is impossible.

In this paper, we present and analyze a new conversion tpohalledcutoff averaging Like
suffix averaging, it attempts to enjoy the best of the singjedthesis approach and of the ensemble
approach. One extreme of our technique reduces to the siapl@ging conversion technique,
while the other extreme reduces to the longest-survivovexsion technique. Like suffix averaging,
we search for the sweet-spot between these two extremepbgityx minimizing a tight theoretical
generalization bound. The advantage of our techniqueisribah of it can be performed on-the-fly,
as the online algorithm processes the data. The memoryreshjoy cutoff averaging scales with
square-roothe number of training examples in the worst case, and ie&&rih the typically case.

This paper is organized as follows. In Sec. 2 we formally @néghe background for our approach.
In Sec. 3 we present the cutoff averaging technique and geavstatistical generalization analysis
for it. Finally, we demonstrate the merits of our approactiwi set of experiments in Sec. 4.



2 Préiminaries

Recall thatY is an instance domain and thxtis a set of labels, and 16{ be a hypothesis class,
where eachh € H is a mapping from’ to ). For example, we may be faced with a confidence-
rated binary classification problem, whékgis the class of linear separators. In this ca¥es a
subset of the Euclidean spaRé, ) is the real line, and each hypothesisthis a linear function
parametrized by a weight vectar € R" and defined a&(x) = (w, x). We interpretign(h(x)) as
the actual binary label predicted by and|h(x)| as the degree of confidence in this prediction.

The quality of the predictions made layis measured using a loss functibnWe usel(h; (x,y))

to denote the penalty incurred for predicting the labet) when the correct label is actually.
Returning to the example of linear separators, a commorelailoss function is theero-one loss
which is simply the indicator function of prediction mistak Another popular loss function is the
hinge lossdefined as

. _ 1- y<W,X> If y<W,X> S 1
Uh; (x,y)) = { 0 otherwise

As noted above, in batch learning we assume the existencerobability distributionD over the
product spaceér’ x ). The input of a batch learning algorithm is a training semgked fromD™.
Therisk of a hypothesis:, denoted by(h; D), is defined as the expected loss incurredhlgver
examples sampled frof. Formally,

((h;D) = Ex,y)~p [£(h; (X,Y))] .

We can talk about the zero-one-risk or the hinge-loss-dgipending on which loss function we
choose to work with. The goal of a batch learning algorithmtii@ hypothesis clasg and for the
loss functiory is to find a hypothesid* € H whose risk is as close as possibléiy, 1 £(h; D).

m

In online learning, the labeled examples take the form otjaerceS = ((xi, yl-))izl. We typically
refrain from making any assumptions on the process thatrg®ss'; it could very well be a stochas-
tic process but it doesn’t have to be. The online algorithreenlzes the examples in the sequence
one-by-one, and incrementally constructs the sequencalisfeohypothesesh;)? ,, where each
h; € H. The first hypothesegy, is adefault hypothesjsvhich is defined in advance. Before round
t begins, the algorithm has already constructed the p(emﬁ;é. At the beginning of round, the
algorithm observes; and makes the predictidn_; (x;). Then, the correct labeli is revealed and
the algorithm suffers a loss 6€h:—1; (x:, y:)). Finally, the algorithm uses the new examfde, v;)

to construct the next hypothesgis. The update rule used to constrigtis the main component of
the online learning algorithm. In this paper, we make thepsifiying assumption that the update
rule is deterministic, and we note that our derivation camktended to randomized update rules.
SincesS is not necessarily generated by any distributidnwe cannot define the risk of an online
hypothesis. Instead, the performance of an online algarithhmeasured using the game-theoretic
notion ofregret The regret of an online algorithm is defined as

m

% Zﬁ(hi,l; (xi,¥i)) — min i Zﬁ(ﬁ; (xi, 1/1)) ) Q)

m
i—1 her 1T

In words, regret measures how much better the algorithmddoave done by using the best fixed
hypothesis iri{ on allm rounds. The goal of an online learning algorithm is to mizieniegret.

To make things more concrete, we focus on two online learaiggrithms for binary classification.
The first is the classic Perceptron algorithm [13] and th@sdds afinite-horizon margin-based
variant of the Perceptron, which closely resembles algorit given in [11, 4]. The terrfinite-
horizonindicates that the algorithm knows the total length of thgussce of examples before ob-
serving any data. The termargin-basedndicates that the algorithm is concerned with minimizing
the hinge-loss, unlike the classic Perceptron, which déiadxtly with the zero-one loss. Pseudo-
code for both algorithms is given in Fig. 1. We chose thesepmnicular algorithms because they
exhibit two extreme behaviors when converted into batchiaeg algorithms. Specifically, if we
were to present the classic Perceptron with an exampleeseg drawn i.i.d. from a distribution
D, we would typically see large fluctuations in the zero-ois&-of the various online hypotheses.
(see Sec. 4). Due to these fluctuations, the ensemble apysois the classic Perceptron very well,



PERCEPTRON

FINITE-HORIZON MARGIN-BASED PERCEPTRON

m

input S = ((Xivyi))i:1
set wo = (0,...,0)
fori=1,...,m
receivex;, predict sigriw;_1,x;)
receivey; € {—1,+1}
if sign((wi—1,%;)) # i

input S = ((x,9:));, Stllxil2 <R
setwo = (0,...,0)
fori=1,...,m
receivex;, predict sigiw;_1,x;)
receivey; € {—1,+1}
if Z(Wi_l; (Xi,yi)) >0

YiXi

VmR

!
W; — W1+ ¥iX; W, 1 — W1+

’
Wi—1

W o i1
¢ wi_1ll2

Figure 1: Two versions of the Perceptron algorithm.

and typically outperforms any single hypothesis appro&mthe other hand, if we were to repeat
this experiment with the margin-based Perceptron, usingerioss-risk, we would typically see a
monotonic decrease in risk from round to round. A possibj@anation for this is the similarity
between the margin-based Perceptron and some increméfitbs&vers [14]. The last hypothesis
constructed by the margin-based Perceptron is typicaltiebthan any average. This difference
between the classic Perceptron and its margin-based varepreviously observed in [9]. Ideally,
we would like a conversion technique that performs well ithbrases.

From a theoretical standpoint, the purpose of an onlinkatch conversion technique is to turn an
online learning algorithm with a regret bound into a bat@rméng algorithm with a risk bound. We
state a regret bound for the margin-based Perceptron, sawéhaan demonstrate this idea in the
next section.

m

Theorem 1. LetS = ((x;,%:)),_, be asequence of examples such that R™ andy € {—1,+1}
and let/ denote the hinge loss. L&t be the set of linear separators defined by weight vectors in
the unit L, ball. Let (h;)!™, be the online hypothesis sequence generated by the maagedb

Perceptron (see Fig. 1) when it processesThen, for any: € H,
LS (s (xiy0)) — & i (s (ki) <

The proof of Thm. 1 is not much different from other regret bdsifor Perceptron-like algorithms;
for completeness we give the proofin [1].

3 Cutoff Averaging

We now present the cutoff averaging conversion techniques fechnique can be applied to any
conservative online learning algorithm that uses a conygothesis clasg{. A conservative al-
gorithm is one that modifies its online hypotheses only omdsuvhere a positive loss is suffered.
On rounds where no loss is suffered, the algorithm keepauiteot hypothesis, and we say that
the hypothesisurvivedthe round. Thesurvival timeof each distinct online hypothesis is the num-
ber of consecutive rounds it survives before the algorithffess a loss and replaces it with a new
hypothesis.

Like the conversion techniques mentioned in Sec. 1, we Byaapplying the online learning algo-
rithm to an i.i.d. training set, and obtaining the online biyesis sequende;)!;'. Letk be an
arbitrary non-negative integer, which we call thetoff parameter Ultimately, our technique will
setk automatically, but for the time-being, assumis a predefined constant. L&t C (hi);’;_ol be
the set of distinct hypotheses whose survival time is gréags k. The cutoff averaging technique
defines the output hypothedis as a weighted average over the hypothesés, iwhere the weight
of a hypothesis with survival timeis proportional tos — k. Intuitively, each hypothesis must qual-
ify for the ensemble, by suffering no loss ferconsecutive rounds. The cutoff paraméiesets the
bar for acceptance into the ensemble. Once a hypothesisligled in the ensemble, its weight is
determined by the number of additional rounds it persevedites qualifying.



We present a statistical analysis of the cutoff averagingngue. We use capital-letter notation
throughout our analysis to emphasize that our input is ststihand that we are essentially ana-
lyzing random variables. First, we represent the sequehegamples as a sequence of random
variables((Xi, Yi))zl. Once this sequence is presented to the online algorithnopteen the on-
line hypothesis sequen¢él; )™, , which is a sequence of random functions. Note that eactorand
function H; is deterministically defined by the random variableX;, Y;));_,. Therefore, the risk

of H; is also a deterministic function df X;,Yj))i_,. Since(X;,1,Yi;1) is sampled fromD
independently of (X,Y;))’_,, we observe that

U(Hi; D) = E[0(Hi (Xit, Yirn)) [ (X5, Y9)) ] - (2
In words, therisk of the random functiorf; equals the conditional expectation of theline loss
suffered on round + 1, conditioned on the random exampliethrough:. This simple observation
relates statistical risk with online loss, and is the keydowerting regret bounds into risk bounds.

Define the sequence of binary random varialjie ;’;_01 as follows

o 1 ifi=0 or 1szkandHl,k:Hl,k+1::Hz
Bi = { 0 otherwise ) ®)

Now define the output hypothesis

m—1 -1 m—1
H} = (Z Bi) Z B;H; . 4)
=0

=0

Note that we automatically include the default hypothégjsn the definition ofH ;. This technical
detail makes our analysis more elegant, and is otherwiskwaint. Also note that settinfg = 0
results inB; = 1 for all ¢, and would reduce our conversion technique to the standemcging
conversion technique. At the other extremekaacreases, our technique approaches the longest
survivor conversion technique.

The following theorem bounds the risk & using the online loss suffered on rounds whBye= 1.
The theorem holds only when the loss functias convex in its first argument and boundedinC].
Note that this is indeed the case for the margin-based Peocegnd the hinge loss function. Since
the margin-based Perceptron enforffes| < 1, and assuming thditx;|| < R, it follows from the
Cauchy-Schwartz inequality thate [0, R + 1]. If the loss function is not convex, the theorem does
not hold, but note that we can still bound the average riskehtypotheses in the ensemble.

Theorem 2. Let k be a non-negative constant and létbe a convex loss function such that
0(h; (x,y)) € [0,C]. An online algorithm is givemn > 4 independent samples frof? and
constructs the online hypothesis sequelég)™,. Define B; and H} as above, letl; =
B;_1((H;—1;(X;,Y;)) forall i and letL = (3 B;)~' Y L;. Foranyé € (0,1), with proba-
bility at leastl — ¢, it holds that

2CIm()L  7CIn(™)
> B > B;

((HED) < L+

To prove the theorem, we require the following tail boundijaliis a corollary of Freedman’s tail
bound for martingales [6], similar to [3, Proposition 2].

Lemmal. Let(L;);”, be asequence of real-valued random variables an@4g) , be a sequence
of arbitrary random variables such that; = E[L;|(Z;);-,] and L; € [0,C] for all i. Define

U; = E[L|(Z;)iZ}] for all 4, and defineL, = i, L; andU; = Y_;_, U; for all . For any
m > 4 and for anys € (0, 1), with probability at least — 4, it holds that

Vte{l,....m} Up < Ly+/2CIn(2)L; +7CIn(2) .

Due to space constraints, the proof of Lemma 1 is given in [fl¢an also be reverse-engineered
from [3, Proposition 2]. Equipped with Lemma 1, we now provenT. 2.



Proof of Thm. 2.Define U; = E[L[((X;,Y;))’'Z}] for all i € {1,...,m}, and defineU =
>, U;. Using Lemma 1, we have that, with probability at lebst &

U < L+4/2CIn(3)L+7CIn(%) .
Now notice that, by definition,
U, = E{Bi—lf(Hi—ﬁ(Xi,Yi)) | ((XjaY.vj));;ll} .
Since B; is deterministically defined by(X, Yj))j;ﬁ, it can be taken outside of the conditional
expectation above. Using the observation made in Eq. 2hawveU; = B;_1¢(H;_1; D). Overall,
we have shown that

> B 1((Hi-1;D) < L+/2CIn(%)L+7CIn(%) .
=1
Using Jensen’s inequality, the left-hand side above isat (€)' | B;—1)¢(H}; D). O

We can now complete the definition of the cutoff averagindtéque. Note that by replacing
with 6 /m in Thm. 2 and by using the union bound, we can ensure that THrlds uniformly for

all £ € {0,...,m — 1} with probability at leastt — §. The cutoff averaging technique sets the
output hypothesid7* to be hypothesis i{ Hg, ..., HY,_;} for which Thm. 2 gives the smallest
bound. In other words; is chosen automatically so as to balance the trade-off legtiwree benefits
of averaging and those of good empirical performance. If allsmumber of online hypotheses
stand out with significantly long survival times, then ouwteique will favor a largé: and a sparse
ensemble. On the other hand, if most of the online hypothieses medium/short survival times,
then our technique will favor small values bfand a dense ensemble. Everf ifs not convex,
minimizing the bound in Thm. 2 implicitly minimizes the aage risk of the ensemble hypotheses.

If the online algorithm being converted has a regret bouhdn tthe data dependent risk bound
given by Thm. 2 can be turned into a datdependentisk bound. A detailed derivation of such a
bound exceeds the scope of this paper, and we just sketchabgip the case of the margin-based
Perceptron. It trivially holds that the risk éf* is upper-bounded by the bound given in Thm. 2 for
k = 0. When Thm. 2 is applied witk = 0, L simply becomes the average loss suffered by the
online algorithm over the entire training set andB; = m. We can now use Thm. 1 to bourdd

by the average loss of artyc H on the sequenc(a(Xi, Yi)):’ll. Particularly, we can choodeto
be the hypothesis with the smallest risk7ify namely,h, = arg minj,cx ¢(h; D). The final step is

to bound the difference betweé;anE(fL; (X;,Y;)) and¢(h; D), which can be done using any tail
bound for sums of independent bounded random variablels aaidoeffding’s bound or Bernstein’s
bound. The result is that, with high probability/7*; D) < miny,cx £(h; D) + O(m~1/2). Similar
derivations appear in [2, 3].

As mentioned in the introduction, our approach is similathe suffix averaging conversion tech-
nigue of [5], which also interpolates between an ensembbecgeh and a single hypothesis ap-
proach. However, the suffix conversion requifs:) space, which is problematic whenmis large.

In contrast, cutoff averaging requires orily/m) space. Our technique cannot choose the optimal
value ofk before the entire dataset has been processed, but neesghitldoes not need to store
the entire hypothesis sequence. Instead, it can group fireedrypotheses based on their survival
times, and stores only the average hypothesis in each gritha total loss in each group. By
the time the entire dataset is processed, most of the worklreedy been done and calculating the
optimal k£ and the output hypothesis is straightforward. Using singpiebinatorics, the maximal
number of distinct survival times in a sequencerohypotheses i§(,/m).

Finally, note that Lemma 1 is a Kolmogorov-type bound, nasmieholds uniformly for every prefix

of the sequence of random variables. Therefore, Thm. 2 lctualds simultaneously for every
prefix of the training set. Since our conversion is mostlycgkted on-the-fly, in parallel with the
online rounds, we can easily construct intermediate odippbtheses, before the online algorithm
has a chance to process the entire dataset. Thanks to th@gorv-type bound, the risk bounds
for all of these hypotheses all hold simultaneously. We camitor how the risk bound changes
as the number of examples increases, and perhaps even useutitbto define an early stopping
criterion for the training algorithm. Specifically, we cdustop processing examples when the risk
bound becomes lower than a predefined threshold.
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Figure 2: Test error (zero-one-loss)ast-hypothesiandcutoff averagingeach applied to the stan-
dard Perceptron, on ten binary classification problems fREV1. The x-axis represents training
set size, and is given in log-scale. Each plot representavbi@ge over 10 random train-test splits.

4 Experiments and Conclusions

We conducted experiments usiRguters Corpus Vol. (RCV1), a collection of over 800K news
articles collected from the Reuters news wire. An averatiel@in the corpus contains 240 words,
and the entire corpus contains over half a million distio&ens (not including numbers and dates).
Each article in the corpus is associated with one or ningé-level categorigswhich are: Cor-
porate/Industrial (CCAT), Economics (ECAT), Governm8oitial (GCAT), Markets (MCAT), and
Other (OTHER). Abou20% of the articles in the corpus are associated with more thanhagh-
level category. After discarding th&)%, we are left with over 600K documents, each with a single
high-level label. Each pair of high-level labels defines lireary classification problem of distin-
guishing between articles of the two categories, for a wh&kn different problems. Each problem
has different characteristics, due to the different nunatbarticles and the varying degree of homo-
geneity in each category.

Each article was mapped to a feature vector using a logadthag-of-words representation.
Namely, the length of each vector equals the number of distakens in the corpus, and each
coordinate in the vector represents one of these tokendoKean appears times in a given article,
the respective coordinate in the feature vector equalg1 + s).

We applied the cutoff averaging technique to the classicdfdron and to the margin-based Per-
ceptron. We repeated each of our experiments ten times,teaehaking a new random split of
the data into a training se8{%) and a test se2(0%), and randomly ordering the training set. We
trained each algorithm on each dataset in an incrementatenamamely, we started by training the
algorithm using a short prefix of the training sequence, aaduplly increased the training set size.
We paused training at regular intervals, computed the atypothesis so far, and calculated its test
loss. This gives us an idea of what would happen on smalleitigasets.

Fig. 2 shows the test zero-one loss attained when our tegliscppplied to the classic Perceptron
algorithm. It also shows the test zero-one loss of the lgptthesis conversion technique. Clearly,
the test loss of the last hypothesis is very unstable, esenaferaging over0 repetitions. In some
cases, adding training data actually deteriorates the@pednce of the last hypothesis. If we decide
to use the last hypothesis technique, our training set sialellappen to be such that we end up with
a bad output hypothesis. On the other hand, the cutoff airegdxypothesis is accurate, stable and
consistent. The performance of the simple averaging csiwetechnique is not plotted in Fig. 2,
but we note that it was only slightly worse than the perforogaof cutoff averaging. When using
the classic Perceptron, any form of averaging is benefial ,our technique successfully identifies
this.

Fig. 3 shows the test hinge loss of cutoff averaging, lagtetiyesis, and simple averaging, when
applied to the margin-based Perceptron. In this case, shdyothesis performs remarkably well
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Figure 3: Test hinge-loss dést-hypothesisaveraging andcutoff averaging each applied to the
finite-horizon margin-based Perceptron, on ten binarystfiaation problems from RCV1. The x-
axis represents training set size and each plot represengserage over 10 random train-test splits.

and the simple averaging conversion technique is significamferior for all training set sizes.
Within 1000 online rounds@.1% of the data), the cutoff averaging technique catches upetdett
hypothesis and performs comparably well from then on. Cehirigjue’s poor performance on the
first 0.1% of the data is expected, since the tail bounds we rely on asnimgless with so few
examples. Once the tail bounds become tight enough, ounitpot essentially identifies that there
is no benefit in constructing a diverse ensemble, and asalbofthe weight to a short suffix of the
online hypothesis sequence.

We conclude that there are cases where the single-hypstigsioach is called for and there are
cases where an ensemble approach should be used. If wetareaterenough to know which case
applies, we can simply choose the right approach. Howelvee iare after a generic solution that
performs well in both cases, we need a conversion technigaieatitomatically balances the trade-
off between these two extremes. Suffix averaging [5] andftateraging are two such techniques,
with cutoff averaging having a significant computationalautage.
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Cutoff Averaging: Technical Appendix

A Proof of Thm. 1. A Regret Bound for Margin-Based Perceptron

Proof. Throughoutthis proof, denotes the hinge loss. We defifie = ||[u —w;_1 || — ||u — w;||?
and prove the theorem by proving upper and lower bounds ¢h, A;. Beginning with the upper
bound, we notice thdf_;" | A; is a telescopic sum that collapses to

m
DA = Ju=wol? — u—will
i=1

Neglecting||u — w,, ||* and using the facts that, = (0,...,0) and that/u|| < 1, we obtain the
upper bound

A <1 ©)
i=1

Moving on to the lower bound, we focus on rounds whise; _1; (w;,y;)) > 0. We rewriteA; as
a; + Bi, where
a; = Ju—wiq|? —lu—wi_,[> and B = [u—wi_ i[> —[u—w;]* .
Settingn = 1/(v/mR), we can rewritey; as
a = Jlu— Wz‘—1||2 —lu—w;_g — ﬁiniHQ

= 29 (yi(w,xi) —ys(wimi,xi)) — o [Ixi? (6)
where the first inequality follows from the definition of,_, and the second equality is straight-
forward linear algebra. Next, we combine the term in Eq. (8hvhree additional facts: (1) by
assumptiorj|x|| < R, (2) by the assumption thé{w,_1; (x;,¥;)) > 0 and using the definition of
the hinge loss, we havw; _1; (x;,%:)) = 1 — ys(wi_1, X;), and (3) by the definition of the hinge
loss?(u; (x;, ;) > 1 — y;{u,x;). We obtain the lower bound

a; > 2n(—€(m (xi, i) +€(wi71;(xi,yi))) - ’R* .

Next we prove thap; is always non-negative. If < m then this claim is an immediate
i—1

consequence of the definition of;. Otherwise, it holds thatw’_,|| > 1, w; = w]_,/|lw]_4]|,

and we have that

2

!
o _w! 2 Wi
S L el T
1
-~ (1——) (Wl ) + Wl — 1. @)
W : :

Using the Cauchy-Schwartz inequality and the assumptia|th| < 1, we lower bound the term

1 /
=2 (1 ) i
with —2||w/_, | + 2. Plugging this lower bound into Eq. (7) gives

2
Bi = 1=2|wiy | +[wii|* = (1 lwi_]l)” .
We have proven thag; is non-negative and we conclude that
A > 277(—5(11; (xi,9i)) +€(Wi—1;(xi,yi))) - °R* . 8)

Note that the above holds trivially whenevéw; _1; (x;,v;)) = 0, and therefore the above holds
for all i. SummingA; over alli, we get

Z A > — 27725(11; (xi,yi)) + 27725(“’1'—1; (xi,yi)) — mn°R* .
i=1 1=1 1=1
Comparing the above to the upper bound in Eq. (5) and readmrgigrms gives the bound

1 G 1 m 1 R2
EZ[(Wi—l;(Xiayi)) < EZé(u; (xi,y:)) + o 777 .
=1 1=1
Recalling that) = 1/(,/mR) proves the bound. 0



B Proof of Lemma 1. An Adaptation of Freedman’s Bound

The following is a detailed proof of Lemma 1. We show that tv@ina is a direct corollary from
Freedman'’s tail bound for martingales [6]. This proof isgted from the work of Cesa-Bianchi and
Gentile in [3, Proposition 2] with two exceptions: First waetthe full power of Freedman’s theorem
and prove a Kolmogorov-type maximal inequality, namelyjraquality that holds uniformly for
any prefix of the random variable sequence. Second, we bnilereeman’s original bound, as it
appears in [6], rather than the slightly different versisediin [3].

One of the straightforward techniques used in our proof ésstjuare root trick There is really
nothing tricky about this elementary technique: it invaeding the positive root of a second-
degree polynomial, in order to satisfy a quadratic constrdihe term “square root trick” has been
coined elsewhere and we stick with this name.

Lemma 2. Letb andc be positive numbers. Then,
D a?—br—c>0andz >0 < g> =i

(2 2?—br—c<0andz >0 <<= 0<qg< bbbt

Proof. The left-hand side of (1) above is a second degree polynamialith a positive leading
term, one negative rod{ and one positive roaP. Therefore, it is positive in the regidr-co, N) U
(P, o0). Intersecting this constraint with > 0, givesz: > P. Equivalently, the left-hand side of
(2) is negative betweelv and P. Intersecting this constraint with > 0 results in the constraint
0 < x < P. In both cases, the value &f can be calculated using the quadratic formula. O

For completeness, we give Freedman'’s original theorem:

Theorem 3 (Freedman, [6]) Let (4;), be a martingale with respect {&Z;)™,. LetB, = A; —

A;_1 be the corresponding sequence of martingale differencddetrD; = Var[Bi|(Zj)§;11] be
the corresponding sequence of conditional variances. es$B;| < 1 for all . For any positive
numbers: andb,

t t a2
Pr <3t ;Bi >a, ;Di < b) < exp (—m)
We are now ready to prove Lemma 1.
Proof of Lemma 1Define, foralli € {1,...,m}
B; = % and V; = Var [B;|(Z;)/_}]

Note that(B;)™™ , is a sequence of martingale differences with respecfi9” ,, and thaiB;| < 1
for all i. For brevity, definex = In(% ). We begin by examining the probability

t
Pr <3t ZBi > a+\/o¢2—|—20z(1+22_1vi)>
i=1

Since|B;| < 1, itholds thaty"" ; V; < m. Therefore, we can upper-bound the above by

m t t
ZPr(Et ZBi > a+vVa?+2as, Z%Ss)
s=1 =1 =1

Each summand above satisfies the requirements of Freedbmanisl, Thm. 3. Applying the theo-
rem for each summand gives the upper bound

n (a+\/a2—|—2as)2 L — B
;exp <_2(a+ 7a2+2as+s) = ;exp(—a) =0 .

10



Overall, we have proven that, with probability at least ¢, it holds that

t
vVt Y Bi < a+\/a2+2a(1+z§:1vi) : 9)
i=1
Given a concrete value Qij)j;ﬁ, U, is just a constant and does not effect the variance. Therefor
 Var[Li|(Z))15] - E[L?|(Z;)}] - E[Li|(Z;)iZ3] Ui
t C? - Cc? - C - C

where the first inequality follows from the definition of vamice, the second inequality follows from
the fact thatZ; € [0, C], and the last equality uses the definitionlgf Plugging this bound into
Eq. (9), we have

t
Vit ZBi < oz+\/o¢2+2o¢(1+%z:_lUi) .
=1

Using the definition of3; and the fact that/a + b < \/a + Vb, we have

Vi LY U-LY L < 2a+\/2a(1+éz§_1Ui) .

Focus for a moment on one valuetofSubstitutingy = /1 + & S Uy and) = & S Li,

the above can be rewritten as the following quadratic cairgton~y
Y =V2ay—(2a+A+1) < 0.
Using the square-root trick, outlined in Lemma 2, the abswjuivalent to

V2o ++v10a +4)\ + 4
v < 5 .

Taking the square of both sides above, we get
7 < 3a+A+1+ 502+ 20) + 2 .
Once again using the inequalitya + b + ¢ < v/a + Vb + /¢, we get
v2 < A+ (3+VB)a+ vV2ar +V2a .

Finally, assumingn > 4 we have thatr > \/« and therefore
Y2 < A+ B+ V5 +V2)a +V2a) .
Plugging in the definitions of and\ and using + v/5 + v/2 < 7 concludes the proof. O
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