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Abstract

We consider a supervised machine learning sce-
nario where labels are provided by a hetero-
geneous set of teachers, some of which are
mediocre, incompetent, or perhaps even mali-
cious. We presentan algorithm, built on the SVM
framework, that explicitly attempts to cope with
low-quality and malicious teachers by decreas-
ing their influence on the learning process. Our
algorithm does not receive any prior information
on the teachers, nor does it resort to repeated la-
beling (where each example is labeled by mul-
tiple teachers). We provide a theoretical analy-
sis of our algorithm and demonstrate its merits
empirically. Finally, we present a second algo-
rithm with promising empirical results but with-

future search engine results. A search-engine log records
which links were clicked-on by each user. We think of
each user as a distinct teacher, and of each click as a la-
bel. The click-patterns of most users are informative and
helpful, while the click-patterns of other users merely in-
troduce noise. Search-engine optimizers (SEOs) are in-
dividuals who try to reverse-engineer the algorithms used
to construct a search engine and to manipulate these algo-
rithms in their favor. If a SEO knows that our search en-
gine promotes pages that received many historic clicks, he
may masquerade as numerous users and simulate fictitious
clicks on the links that he wants to promote. Identifying
this form of click-spamand attenuating its effect is an es-
sential step in the learning process.

Another example of a multi-teacher scenario involves the
use ofcrowdsourcingwebsites. Websites such @alaxy

out a formal analysis. Zoo (galaxy classification) an8tardust@homénterstel-

lar dust particle detection) let members of the public vol-
unteer their services by labeling astronomical images over
the Internet. Amazon.comiglechanical Turkis an online
system on which any individual can publish a crowdsourc-

A supervised machine learning algorithm receives a tram:n task and offer a pavment for its completion. Tvpicall
ing set of labeled examples and returns a hypothesis thaltY . pay ompietion. Typically,
: . a dataset labeling task is broken up into multiple subtasks,
attempts to accurately predict the labels of new unseen in- . .
S . . . and each subtask is completed by a different worker. Oc-
stances. When designing learning algorithms, we typically

overlook the data collection process and make the simplisgaS'ona”y’ workers are tempted to cheat by building au-

tomated systems, known asts that appear to solve the

tic assumption that the training set is sampled i.i.d. from .
some fixeg distribution. Howegver real datl?asets are oftertlaSks but actually provide worthless labels. Althoughéhes

) o bots do not directly try to harm our learning algorithm, they
non-homogeneous. In particular, training examples may b

labeled by various different teachers. Labels provided b%otry to trick us into believing that their labels are gerauin
different tgachers can be of different .ualit dug to i ¥rhis intentional deceitful input can be as detrimental to ou
q Y. O learning algorithm as deliberate malice. Weeding out the

degrees of expertise, competence, and dedication amon ts from amond the human teachers is an important and
teachers. Moreover, some teachers may deliberately try tgi%f)'ﬁcult foat 9 P

manipulate or confuse our learning algorithms by provid-
ing incorrect labels.

1. Introduction

To our knowledge, the existing literature on multi-teacher

For example, imagine an algorithm that analyzes the IOglsearnmg discusses two main approaches: using prior infor-

generated by a search engine, with the intent of improvin mqtlon and repeated labeling. For example, the work in
' gZBhtzer etal., 2007; Crammer et al., 2008) assumes that la-

Appearing inProceedings of the6'" International Conference beled examples are obtained from multiple heterogeneous

on Machine LearningMontreal, Canada, 2009. Copyright 2009 sources, and that we have explicit prior knowledge on the

by the author(s)/owner(s). relationships between these sources. This approach is in-
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adequate for the type of problems we are concerned with2. Setting and Notation

since no such prior knowledge is available to us. Addition-_. , ) . .

ally, an adversarial teacher will behave in a way that conT 'St We review the typical setting of an SVM learning
tradicts any prior information we may rely on. Repeatedprc,’blem' Assume t_hat each e>_<ample |snan instance-label
labeling (see (Smyth et al., 1994; Sheng et al., 2008) anf&'" (x,_y), wherex is a vector in < R™ andy takes
references therein) is the practice of having each exampl\é‘?llues m{—l, +1}. ) Additionally, define a featu_re map-
labeled by multiple teachers, and then aggregating thes%'nggbf which maps instances frofito a r.ep.rod.uqng ker-
labels in a way that cleans noise and identifies bad teactle! Hilbert spacei (Shawe-Taylor & Cristianini, 2000).

ers. Repeated labeling is a powerful and successful tectfUr classifier is composed of a vecter & 7¢ and a bias

nique when it can be applied. However, we often havd€mb € R. The marginof an instancex is defined as

no control over the assignment of examples to teachers ( <é_b(x)’ w) +b an(_j the pr§d|ct_ed label for is S|_mply the

in the search engine example). Additionally, even wher'9" O_f the margin. To S'mp“fy our presentatlon, asstme
we do have control over the assignments, repeated labeli at¢ is the identity mapping and tha{ = &, which al-

is wasteful and ultimately decreases the size of our train- WS US to drop? altogether. Additionally, we focus.on
ing set. Yet another related approach is to design machinlénb'ased classifiers, whe&_se: 0. All of our results easily
learning algorithms that withstand specific types of IabeI-EXtend to the general setting.

noise, either on the training set (Kearns, 1998) or on therhe standard statistical learning paradigm assumes that a
test set (Teo et al., 2007; Dekel & Shamir, 2008). Theseraining setS is sampled i.i.d. from an unknown dis-
approaches do not make use of teacher identities, and dgbution D over the space of example&, x {—1,+1}.

not assume any heterogeneity in the data. We also note thehe goal is to useS to find a classifierw such that
related work in (Dekel et al., 2008), which addresses thepr, ) p (sign((x,w) # y)) is small. While our goal
multi-teacher learning problem from a mechanism designn this paper remains the same, we modify the training set
perspective, and incentivises teachers to be good. generation process as follows: First, a setofinlabeled

In this paper, we address the problem of learning fromnstancesi{x;}i2,, is drawn i.i.d. from the marginal dis-

heterogeneous, possibly malicious, teachatbout prior trib_ut_io_n of D onX. This setis then.randqmly split ‘”tP
knowledgeon the teachers angithout repeated labeling k disjoint subsets, and each subset is assigned to a differ-

For concreteness, we focus on the classic learning probe-nt teacher. Each teacher labels his examples, resulting in

lem of binary classification. We present a new algorithm 2 labeled training seff = {()_(i.’yi) i1 At.thls stage, we
based on the well-known support vector machine (SVM)Ieave the exact random splitting mechanism unspecified.
framework, that explicitly attempts to identify low-quali  For the sake of our theoretical analysis, we assume that
and malicious teachers and to decrease their influence asach teacher is eithgood or evil. This is a harsh sim-
the learning process. We exploit the fact that SVMs, likeplification of the real-world, but it is one that enables us
many other machine learning algorithms, explicitly revealto derive a rigorous theory, which inspires the design of
how important each training example is to the learning pro-our algorithms. An evil teacher may label his instances
cess. SVMs indicate which training examples are supporin any arbitrary, possibly malicious, manner. Evil teach-
vectors and which are not, and non-support vectors can bgrs are even allowed to collude amongst themselves. The
removed from the training set without changing the learnedhnly assumption we make regarding the evil teachers is that
classifier. In the multi-teacher setting, we can measure théhey do not know the identity of the good teachers’ exam-
influence of each teacher by the cumulative effect of the exples. This happens, for instance, if good teachers never re-
amples he controls. Intuitively, if examples are assigioed t veal their instances to evil teachers, or if teachers are sim
teachers randomly and if all teachers are alike, we expegily isolated from each other. On the other hand, a good
any two teachers to have a similar influence on the algoteacher labels each of its instancedy sampling a label
rithm output. Specifically, for support vector machines, wefrom pp (y|x), the marginal distribution over labels condi-
expect each teacher to contribute roughly the same numbébned onx. In other words, examples controlled by good
of support vectors. Our algorithm essentially turns this ob teachers are essentially sampled directly frBmIn fact,
servation into a constraint, namely, we require that all ofthis assumption is not really necessary, but the important
the teachers have a similar contribution to the learned hyeondition that must be met is that when all of the teachers
pothesis. In our analysis, we show that this constraint isare good, a low error-rate classifier (in termsid)fcan be
likely to affect only low-quality and malicious teachers.  learned. To avoid making our problem trivially impossible,
we assume that a majority of the data comes from good
teachers.

Turning to more technical notation, we abbreviate the sets
{1,...,m} and{1,...,k} by [m] and [k] respectively.
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Also, we define the hinge functidn]; = max{a,0}. We  optimization problem:

assume that the support of the marginal distributiorDof .

on X is bounded in a ball of radiug® around the origin. 1 1 €
Teachers are recognized by an index [k], the set of vt € [k] Al Z % = o Zai + N
evil teachers is denoted ¢ C [k], and the set of good s =

teachers is denoted by C [k]. For any instancé, we let  wheree > 0 is a parameter. In the scenario described
t(i) € [k] denote the teacher that labeled instandgnally,  above, this constraintis likely to affect only the evil teac,

we let S; denote the set of examples labeled by tea¢her and to reduce his influence am. The form of the slack

®)

and we abbreviat§? = Uicrs Sy andS® = Ugere St term,e/(m+/|S:|), comes from large deviation considera-
tions: If instances are assigned randomly to teachers and
3. Facing Evil Teachers the sample size increases, we expect the random variable

ﬁ Yic s, Qi tO be concentrated about its expected value
We_ beg|r! the derivation of our algorithm by r_ecallm_g the ¢ ‘Slg| > ,c0 i Ifmost of the examples are controlled by
plain vanilla2-norm soft-margin SVM formulation. Given 1 —m .
. m L good teachers, thep; >, ., a; and-- 3" | «; will be
a training setS = {x;,y;}1*, and a regularization param- i [S9] £~i€ m i .
eter\ > 0. define close. These informal statements are made more precisely
' in our theoretical analysis in Sec. 4.

A s, 1 & Adding the constraints in Eq. (3) to the optimization prob-
Fw|S,A) = §”W” T Z[l —yibki Wil () lem in Eq. (2), and using standard tools from convex anal-
ysis to convert the problem back into its primal form, we
The SVM classifier is the minimizer df(w|S, \). As dis- ~ obtain:
cussed in the introduction, the philosophy behind our ap- m &
proach is to prevent any single teacher from disproportion- min A [wl|? + 1 Z &+ Z v
ally influencing the learned classifier. We find it conve- weRr™ ¢cr7 veRrs 2 m ’ \/@
nient to enforce this constraint in tleial formulation of

=1

i=1 t=1

. ) ) N M) k e
the SVM optimization problem, s.t.Vi e [m] yi(xi,w) = 1 (\Stml 21 ’/t) &
m 1 & This problem is convex, and there exist various methods of
max ai = 55 Z oy (xi, %) (2)  solving it, either in the primal or in the dual formulation.
B i,j=1 Our proposed learning algorithm calculates the solution to
stVie[m 0<a; <L ]tc_his optimization problem and outputs the resulting classi
ier w.

We also know additional useful facts about the SVM opti-
mization problem. First, the primal and dual variables are4, Theoretical Analysis

related by the equatiow = >, a;y;x;. Second, it holds o _

thata,; > 0 (namely, examplé is asupport vectoy, only ~ Our new opt|m|.zz.;\t|(.)n problem can be written more com-
if y;(x;, w) < 1, and thato; = 1/m if y;(x;, w) < 1. pactly as the minimization ovev of

These results are thoroughly discussed in (Shawe-Taylor &

k
Cristianini, 2000) and elsewhere. G(w|S, ) = min AHWHQ n vy 4)
To motivate our next step, imagine a situation where all very 2 =1 V15
but one of the teachers are good. Now assume that de- 1 & ) B
spite the presence of the evil teacher, we manage to find + m Z {1 - (\sm” =it ’/t) - yi<xi,W>L
i=1

a good classifiew with respect toD. We expect this

classifier to disagree with many of the labels provided by o ) o ) _
the evil teacher. As a result, many of the examples conJ he basic idea behind our analysis is that instead of a hinge
trolled by the evil teacher will have a margin less than 0SS defined with a fixed required-marginios in Eq. (1),
(y(x,w) < 1). Using the facts stated above, we expect theh€ required-margin in Eq. (4) is teacher-dependent. This
average value of the dual variables associated with the evf|exibility allows us to trade-off the margin requirement fo

teacher, & 3"._.. a, to be unusually high compared to different teachers. When; = 0 for all ¢, our formula-
ity . tion reduces to the standard SVM formulation. However,
the overall average dual variablg, >". o;. On the other ' . :
L (gl settingy; to a high value for each evil teacher and to zero
hand, we intuitively expect a good teacher to have an aver: . :
) for each good teacher decreases the margin requirement for
age dual variable value close 0>, «;. : = .
Lt evil teachers and compensates by requiring a higher mar-

This motivates us to add the following constraint to the dualgin for good teachers. The end result is that if we can find a
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high-margin classifier for the good teachers’ instances) th theorem has an additional non-trivial condition. We see
Eq. (4) automatically becomes less sensitive to the loss otshortly when this condition holds.

tained on the evil teachers’ instances, and is thus less influrheorem 2. Let a training setS of sizem be fixed. Let
enced by them. W = arg miny, G(w|S, \) (with optimal auxiliary param-
There are many ways to provide this intuitive observationetersis, . .., ), andletw* = argminy F(w|S5Y, r5ir A).
with a more solid theoretical grounding. Here, we take arFurthermore, assume that for any € 79, 7y <
optimization-based approach. Suppose we somehow knel:| >, 7+/m. ThenF(w|S?, rgirA) — F(W*|S7, 15 A)
beforehand the identity of9, the subset of examples la- is at most

beled by good teachers. By assumptidfi,is essentially .

sampledi.i.d. fronD. Therefore, with high probability, the @(1 + R||w*|) m ﬂw
standard SVM solutionw* = arg miny, F(w|S9,\) hasa 57| |59 59| |5¢| 7

low error-rate over the entire distribution (Shawe-Tayor i )

Cristianini, 2000). However, we do not kno# in ad-  Where#V (w*) is the number of instances, y) € 59
vance and we cannot calculate. We therefore pose the SUCh thaty(x, w*) <1+ (1 + R[w[|)[S¢|/[S|.

question: How large cal’(w|S9,\) — F(w*|S9,\) be
whenw = arg min G(w|S, A) ? In other words, how sub-
optimal is the classifier trained by our algorithm Srtom-
pared to a classifier trained by a standard SVMS8n We

Comparing the two bounds, we see that they both include
the term(1 + R|w*|))|S¢|/|S?|. In Thm. 2, this term is
multiplied by an additional expression

also ask the same question whén= arg min F'(w|S, \), V(w* em /1S,]
namely, how sub-optimal is the SVM classifier trained on # |qu| ) + @Zte%el 15l . (5)
all of S? ‘ ‘

Although this is not the focus of our paper, it is straight- Vr\]/e nlon eﬁplalrl wh);_tf;:ts eﬁpresglpn_lt_:ra]m bg much Sm(;:lltler
forward to derive a generalization analysis for our Iearnec&ﬁn ,1e2 'n% c_)athlg er C]:L:I’I Itn n'lth compa:jet 0
classifier based on the sub-optimality bound describe m. 2. Ilqb( ) Is the sum o . Wothe:r?ﬁ' ez[s?ccton herm
above. The idea is to use a uniform convergence argumer'ﬁ generaty (e/v/m), assuming that the set of teachers
to relate bothF (W] 59, \) and F(w*| 59, \) to their expec- remains fixed, and that the fraction of examples controlled
’ ' by each teacher remains roughly constant as the training

tations with respect to the underlying distribution. Thus, ¢ The first t is the fracti f |
the sub-optimality of our learned classifier with respect to>Ct grows. Ihe first term IS the fraction of examples con-
trolled by good teachers that attain a high margin with re-

SY translates to a similar sub-optimality with respect to the it | d classifier. This definii tches th
underlying distribution, and generalization guarantess f Spect fo our fearned classiner. This detinition matches the
intuitive explanation given earlier about how large masgin

w* can be converted into similar guarantees for We ) s
refer the interested reader to standard references such %ger gpod teaCh?rS Instances can redgce our se_nS|t|V|t¥ 0
(Shawe-Taylor & Cristianini, 2000). the evil teachers’ instances. In a certain sense, if the orig
inal data is easy to classify (in terms of having large mar-
For technical reasons, we actually prove bounds omins), it is easy to identify teachers who are misbehaving.
F(w|S9, Ig”—gl)\) — F(w*|S9, Ig”—gl)\) rather than on These observations should be taken with a grain of salt,
F(w|S9,)\) — F(w*|S9,)\). Namely, we compare the since we are comparing theoretical upper-bounds. How-
SVM objective value using a slightly different regulariza- ever, we believe that our analysis supports our algorithmic
tion parameter. Since:/|SY| is assumed to be small, this design choices and that it complements the empirical study

does not materially affect the conclusions. presented later on.

We begin with a simple theorem that bounds the effect evillo complete the analysis, it remains to justify the techni-
teachers may have on a standard SVM. Proofs are given &l condition in Thm. 2, namely that that for alle 79,

the end of the section. vy < |S¢| >, oe/m, wherep, ..., 0, are the optimal pa-
Theorem 1. Let a training set S of size m be rameters with respect to our learned classifiefTo under-
fixed. Letw = argming F(w|S,\) and letw* = stand this more clearly, con5|derthe|rr_1|_oortantspeC|a§ cas
arg miny, F(w|S9, Ign_-‘ll)‘)' Then F(w|S9, ﬁ/\) _ where|S;| = m/k for all t. The condition now reduces

toy < Y, :/k. Namely, for any good teacherr;, is at
most the average value of over all the teachers. This is
|5e| ) intuitively plausible, since we expegt to be large for the
59| L+ Rl[w) . evil teachers and small for the good teachers. Below, we
prove a stronger assertion, provideid not too small.

Similarly, the next theorem bounds the effect evil teachers’roposition 1. Using the notation of Thm. 2, assume
may have on our algorithm. Compared to Thm. 1, the nexthat the evil teachers do not have accesssS®, that

F(w*|S9, rga7A) is at most
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instances are split randomly between the teachers (wittRecall thatG(w|S, \) (defined in Eq. (4)) for anw is in

|Sil,...,|Sk| being fixed in advance), and that > fact a minimum over the non-negative variahlgs. . . , v},
|S€|\/|St|/m for any good teachet € T9. Then with  Therefore, we can upper bound it for any giwerby fixing
probability of at least vy =0forallt € 7Y, and

? |5t
€ S 1+R
1- E exp —2|St|< 5 _|m|> , e = |Sg|( + Rllwl))
teTo VISt

forall t € T°. Note that for this choic€} _, vy = |S¢|(1 +
over the random assignment of instances to teachers, WE||wl|)/(]S9]). By definition,

have that’; = 0 forall ¢t € T9.

k
A
For example, say thdt,| is the same for alt, a quarter gf] G(w|S,\) < 2”;(} |wl|* + an Z il 9)
of the teachers are evil, and = 1000,k = 40. Then |59 |59

the bound in Proposition 1 is greater th@a3 for a very 1 k

reasonable — 3. The bound in Proposition 1 depends -+ 1oz ST+ v —wilx,w) (10)
somewhat on the exact mechanism used to assign instances (x,y)€S9 t=1 +

to teachers. However, we note that a somewhat different oy

expression can be obtained if we choose a teacher for each+ —— Z 0] Z Ve — Y(Xw ] (11)
instance uniformly at random, independently and without |59] (x,y)ESe |St(l t=1 4
fixing |S1], ..., |Sk| in advance. In both cases, the bottom .

line remains the same. Line (10) can be upper bounded by

. . . k
We conclude this section with proofs of the results stated g m mA 5 #V(w)

t=1

Proof of Thm. 1.By the definition ofF"(w|S, \) in Eq. (1), Leaving this aside for a minute, it is easy to verify that

we have for anyw that with our choice ofvq, ..., v, it holds for allt € T that
m TSV Zt =1+ R||w|| This implies that line (11)
—F(W|57 A) = F(W|5g7 @)\) (6) can be upper bounded by:
1 1
= s, Z o — 3 = (U RIw) - yx,w)l,
y)ESe (x,y)eSe
1 Se 1
<oy, 2 I+l < o Rl <— 3 FRwI+RWIL =0 (3
y)eS (x,y)ese

Substituting Eq. (12), Eq. (13) and our choicesf. . . , vy

In a similar manner, for any, into the decomposition of7(w|S, A) in Eqg. (9), we get

F(ws, 5 |/\) T3 FOV18.%) Ed. (8).
1 Now, using the assumptions in the theorem statement, we
= —@( ;5 [1—y(x,w)]; <0. (7)  have that
XY)e5° m mA
Finally, by the definition ofw, F'(w|S,\) < F(w*|S, ). .
Chaining this with Eq. (6) (fow = w*) and Eq. (7) (for 1 th(l
w = W), the theorem follows. O 159] 2 Seol Z
(x.y)€S9 t=1 +
. mA\ . 1
Proof of Thm. 2.The_pr00f hgs a similar structure to the > < ||| ol Z 1 - y(x,w)],
proof of Thm. 1, but is more involved. The first part of the 2|59] | | (x,9)€59
proof consists of showing that for any, ‘
g
|Sg| G(w|S, \) (w|s , |Sg|)\) 8)
e Also, sincew = argminy G(w|S,)\), we have that
S 14 /18 & V19 A W
< |Sg|(1+RHWH) (#Sg”” %%) G(W[S,\) < G(w*|S,\). Chaining this with Eq. (14),
591 591 |59] |5¢] and Eq. (8) (fow = w*), the theorem follows. O
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Proof of Proposition 1.We begin by recalling that isthe  corpus contains around 240 words, and the entire corpus
global minimum ofG(w|S, \) (Eq. (4)). Also let be the  contains over half a million distinct tokens (not including
optimal value of the auxiliary vectar in Eq. (4) and letx numbers and dates). Each article in the corpus is associ-
be the corresponding optimizer of the dual problem. Usingated with one or moréigh-level categorigswhich are:

the KKT optimality conditions, a sufficient condition for Corporate/Industrial (CCAT), Economics (ECAT), Gov-
y = 0 is that the corresponding inequality constraint in ernment/Social (GCAT), and Markets (MCAT). We rep-
the dual problem istrictly satisfied. Thus, it suffices to resented each article in the corpus by a vector of TF-IDF

show thaix satisfies values, and considered the 6 binary classification problems
m of distinguishing between each pair of two high-level cate-
L Z by < 1 Z b + € (15) gories. Specifically, for high-level categories A and B, we
S| ics, m = m+/|St| considered the problem of distinguishing articles of cate-

gory A from articles of category B, while ignoring articles
forall t € T9. But sincei; € [0,1/m], itis not hard to see associated with both A and B, or with neither A nor B. Each

that of these 6 problems has different characteristics, duegto th
m . non-uniform category sizes, the varying degree of category
1 Zdi > 1 Z by > 1 Z & — @ similarity, and the varying degree of homogeneity within
m — m = 99| &, m each category.

For each binary problem, we todk random splits of the
corpus into equally sized training and test sets. On each
split, we trained a standard well-tuned linear SVM classi-
1 . 1 . € |5 fier (Shalev-Shwartz et al., 2007) on the training set, and
A ZEXS: % < 159] Z i + S| T2 (16)  evaluated the resulting classifier on the test set. This test
t

Therefore, for Eq. (15) to hold, it is sufficient to show that
foranyt € T,

. m
€59 error-rate represents the performance of SVM when all of

59 is labeled by good teachers, all of whom draw IabeIthe teachers are good, qnd serves as a baseline for measur-
according tep(y|x), andS? is unknown to the evil teach- "9 the effect of Iabel noise. Next, for each train/testtspli
ers. Therefore, the labeling and learning process is statidVe randomly assigned each training example to orig)of
tically equivalent to the following: First spli§ into s¢  different teachers. For eachin the set{5, 10,..., 40},

and 59, distribute S¢ to the evil teachers and have them We selected: of the 100 teachers, designated them as ma-

generate labels, draw labels f6f according topp(y|x) licious teachers, and flipped all of the labels under their
(hence fixing the optimaf, .. ., &) and only thenas- control. It is likely that there exists a more sophisticated

sign S¢ to the different teachers ifi?. As a result, we can and harmful way of simulating a malicious teacher, but we
think of 3", @i/|Si| in Eq. (16) simply as the average decided to choose the simplest and most obvious candidate
€Sy '

of a random subset af's from {d; };css. The condition for the job. No_manipulat.ion was applied to any of the test
in Eq. (16) is then simply the event (over splitting this) sets. Thet0 different train/test splits and th® different
that for each good teacher, the average ofiisis not sig- choices ofk led to a total 0f320 different noisy variations
nificantly larger than the average of alls. Since then’s ~ Of ach of ouf binary problems.

were split at random, we can apply Hoeffding's bound plusgor each of the noisy variations described above, we trained

a union bound to get that with probability at least a classifier using standard linear SVM and using our algo-
) rithm (with e = 1), and we evaluated both classifiers on the
€ |S€] test data. We then compared the results using the follow-
1= Z exp | 2|5 <\/m T ) ing metric: lete; be the test error-rate attained by the SVM
teT9 t

that was trained on noise-free training data,dgte the

conditioned ors¥, Eq. (16) holds for alt € 7. Since the test error-rate attained by SVM With noisy training d_ata,
bound holds for anys¥, we can remove the conditioning and letes be the test error-rate attained by our algorithm

to get a bound on the unconditional probability of Eq. (16)with noisy training data. Define tlmcess—errosystained
holding for all¢ € 7. 0 by SVM ases; — e; and the excess-error sustained by our

algorithm ases — e;. Finally, define theexcess-error ra-
) tio of the two algorithms to bées — e1)/(e2 — e1). This
5. Experiments number compares the resistance of the two algorithms to

We empirically evaluated our new algorithm with a Setthe evil teachfars. Specifically, if this ratio is less thian
of text categorization experiments usiRguters Corpus then our algorithm outperforms SVM. The main advantage

Vol. 1(RCV1) (Lewis et al., 2004), a collection 800K of reporting our results in this way is that it allows us to
news articles collected by Reuters. A typical article in thef@iry compare our algorithm to a standard SVM across a
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Figure 1.Damage ratio of the algorithm presented in Sec. 3 vs.Figure 2.Damage ratio of the algorithm presented in Sec. 6 vs.
SVM, as a function of the fraction of evil teachers, examples  SVM, as a function of the fraction of evil teachers, examples
assigned to teachers randomly. assigned to teachers randomly.

descent step, we check if this step will cause the constraint

: . : 1 1 €
wide range of noise levels and érbinary problems, each — Z a; < — Z a + ——
with a different inherent baseline difficulty. ISt &5 mi= ma/[ St

The plots in Fig. 1 show the distribution of damage ratios ago be violated. If so, we reduce the update step-size, and
a function ofk, the number of evil teachers. The effective- set it to the largest non-negative value that still satifies
ness of our algorithm varies on different binary problemsconstraint, which may even be zero. As a result, no teacher
and on different noise-levels, but it consistently perferm can have a disproportionate influence on our classifier: if
no worse than SVM. As noise levels increase, the advanthe examples of teachéhave already received more than
tage of our algorithm over the naive SVM becomes moretheir fair share of updates in the past, the algorithm will
profound. On three of thé binary problems, wheh takes  compensate by performing smaller updates on the exam-
its highest values, the excess-error of our algorithm is gles of teachet in the future.

mere20% of the excess-error of SVM. We repeated the experiment outlined in Sec. 5 using the

) heuristic algorithm and obtained the plots presented in
6. A Second Algorithm Fig. 2. While the performance of our first algorithm im-
o . . proved with higher levels of label-noise, our second algo-
Drawing intuition from the preceding approach, we derive’.
rithm seems to perform well on low to moderate levels of

a second algorithm, which also attempts to limit the influ-_ . -
. o L noise. Wherk, the number of malicious teachers, equals
ence of any single teacher. Despite its close similarity to

. . . 10, the excess-error of our second algorithri(i§; — 70%
our first algorithm, we currently have no theoretical anal- )

. ; . . of the excess-error attained by the standard SVM. However,
ysis for this second algorithm. We present it here because . .
, - . L . as the number of evil teachers increases, the advantage of
its empirical behavior is surprisingly different from thaft

our first algorithm. our algorithm deteriorates.

In our experiments so far, each teacher controlled roughly
the same number of examples. Moreover, the set of exam-
ples controlled by a teacher was chosen randomly. Either of

problem, rather than to its dual. Our starting point is a . . ;
. . . ._these assumptions may not always hold in practice. There-
stochastic gradient-descent approach for primal SVM train .
fore, we also conducted another set of experiments, where

ing (Shalev-Shwartz et al,, 2007). This algorithm repeat-we assumed that each teacher has a distinct topic of exper-

edly draws a random example and performs a gradientt-j . . :
. . . se, and is required to contribute labeled examples from
descent step with a decreasing step size. At each step of tt}%s

N . . Is own topic. In this setting, the examples controlled by
process, the current classifier is defined as the linear con)- " .
L . . . wo teachers are statistically different, and the number of
binationw = ). o;y;x;. We modified this algorithm as

follows: at each step and for each teacher, we keep track Oefxamples contributed by each teacher may vary greatly.

the average coefficient across all of the examples controlleln addition to the high-level categories mentioned in Sec. 5
by that teacher. Namely, for teachewe keep track of above, each article in RCV1 is also associated with one
ﬁ > ics, «i- Before performing the stochastic gradient- or morelow-level categorieswith 99 different low-level

The idea behind this algorithm is to apply a constraint
similar to the one in Eq. (3) directly to the primal SVM
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Overall, the results in Fig. 2 resemble the results in Fig. 3.
In all but the CCAT-ECAT binary problem, our algorithm
outperformed the standard SVM a majority of the time.
When a low to moderate noise was applied, our algo-
rithm often attained an excess-error that wa$; of the
SVM excess-error, or better. On the CCAT-ECAT problem,
our algorithm actually performed slightly worse than SVM
when a very low noise level was applied, and performed
no worse than SVM when a moderate to high noise level
was applied. In alb binary problems, the advantage of our
algorithm could no longer be noticed when the noise level
exceeded5%.



