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Abstract
We consider a supervised machine learning sce-
nario where labels are provided by a hetero-
geneous set of teachers, some of which are
mediocre, incompetent, or perhaps even mali-
cious. We present an algorithm, built on the SVM
framework, that explicitly attempts to cope with
low-quality and malicious teachers by decreas-
ing their influence on the learning process. Our
algorithm does not receive any prior information
on the teachers, nor does it resort to repeated la-
beling (where each example is labeled by mul-
tiple teachers). We provide a theoretical analy-
sis of our algorithm and demonstrate its merits
empirically. Finally, we present a second algo-
rithm with promising empirical results but with-
out a formal analysis.

1. Introduction

A supervised machine learning algorithm receives a train-
ing set of labeled examples and returns a hypothesis that
attempts to accurately predict the labels of new unseen in-
stances. When designing learning algorithms, we typically
overlook the data collection process and make the simplis-
tic assumption that the training set is sampled i.i.d. from
some fixed distribution. However, real datasets are often
non-homogeneous. In particular, training examples may be
labeled by various different teachers. Labels provided by
different teachers can be of different quality, due to varying
degrees of expertise, competence, and dedication among
teachers. Moreover, some teachers may deliberately try to
manipulate or confuse our learning algorithms by provid-
ing incorrect labels.

For example, imagine an algorithm that analyzes the logs
generated by a search engine, with the intent of improving
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future search engine results. A search-engine log records
which links were clicked-on by each user. We think of
each user as a distinct teacher, and of each click as a la-
bel. The click-patterns of most users are informative and
helpful, while the click-patterns of other users merely in-
troduce noise. Search-engine optimizers (SEOs) are in-
dividuals who try to reverse-engineer the algorithms used
to construct a search engine and to manipulate these algo-
rithms in their favor. If a SEO knows that our search en-
gine promotes pages that received many historic clicks, he
may masquerade as numerous users and simulate fictitious
clicks on the links that he wants to promote. Identifying
this form ofclick-spamand attenuating its effect is an es-
sential step in the learning process.

Another example of a multi-teacher scenario involves the
use ofcrowdsourcingwebsites. Websites such asGalaxy
Zoo (galaxy classification) andStardust@home(interstel-
lar dust particle detection) let members of the public vol-
unteer their services by labeling astronomical images over
the Internet. Amazon.com’sMechanical Turkis an online
system on which any individual can publish a crowdsourc-
ing task and offer a payment for its completion. Typically,
a dataset labeling task is broken up into multiple subtasks,
and each subtask is completed by a different worker. Oc-
casionally, workers are tempted to cheat by building au-
tomated systems, known asbots, that appear to solve the
tasks but actually provide worthless labels. Although these
bots do not directly try to harm our learning algorithm, they
do try to trick us into believing that their labels are genuine.
This intentional deceitful input can be as detrimental to our
learning algorithm as deliberate malice. Weeding out the
bots from among the human teachers is an important and
difficult feat.

To our knowledge, the existing literature on multi-teacher
learning discusses two main approaches: using prior infor-
mation and repeated labeling. For example, the work in
(Blitzer et al., 2007; Crammer et al., 2008) assumes that la-
beled examples are obtained from multiple heterogeneous
sources, and that we have explicit prior knowledge on the
relationships between these sources. This approach is in-
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adequate for the type of problems we are concerned with,
since no such prior knowledge is available to us. Addition-
ally, an adversarial teacher will behave in a way that con-
tradicts any prior information we may rely on. Repeated
labeling (see (Smyth et al., 1994; Sheng et al., 2008) and
references therein) is the practice of having each example
labeled by multiple teachers, and then aggregating these
labels in a way that cleans noise and identifies bad teach-
ers. Repeated labeling is a powerful and successful tech-
nique when it can be applied. However, we often have
no control over the assignment of examples to teachers (as
in the search engine example). Additionally, even when
we do have control over the assignments, repeated labeling
is wasteful and ultimately decreases the size of our train-
ing set. Yet another related approach is to design machine
learning algorithms that withstand specific types of label-
noise, either on the training set (Kearns, 1998) or on the
test set (Teo et al., 2007; Dekel & Shamir, 2008). These
approaches do not make use of teacher identities, and do
not assume any heterogeneity in the data. We also note the
related work in (Dekel et al., 2008), which addresses the
multi-teacher learning problem from a mechanism design
perspective, and incentivises teachers to be good.

In this paper, we address the problem of learning from
heterogeneous, possibly malicious, teacherswithout prior
knowledgeon the teachers andwithout repeated labeling.
For concreteness, we focus on the classic learning prob-
lem of binary classification. We present a new algorithm,
based on the well-known support vector machine (SVM)
framework, that explicitly attempts to identify low-quality
and malicious teachers and to decrease their influence on
the learning process. We exploit the fact that SVMs, like
many other machine learning algorithms, explicitly reveal
how important each training example is to the learning pro-
cess. SVMs indicate which training examples are support
vectors and which are not, and non-support vectors can be
removed from the training set without changing the learned
classifier. In the multi-teacher setting, we can measure the
influence of each teacher by the cumulative effect of the ex-
amples he controls. Intuitively, if examples are assigned to
teachers randomly and if all teachers are alike, we expect
any two teachers to have a similar influence on the algo-
rithm output. Specifically, for support vector machines, we
expect each teacher to contribute roughly the same number
of support vectors. Our algorithm essentially turns this ob-
servation into a constraint, namely, we require that all of
the teachers have a similar contribution to the learned hy-
pothesis. In our analysis, we show that this constraint is
likely to affect only low-quality and malicious teachers.

2. Setting and Notation

First, we review the typical setting of an SVM learning
problem. Assume that each example is an instance-label
pair (x, y), wherex is a vector inX ⊆ R

n andy takes
values in{−1, +1}. Additionally, define a feature map-
pingφ, which maps instances fromX to a reproducing ker-
nel Hilbert spaceH (Shawe-Taylor & Cristianini, 2000).
Our classifier is composed of a vectorw ∈ H and a bias
term b ∈ R. The margin of an instancex is defined as
〈φ(x),w〉 + b and the predicted label forx is simply the
sign of the margin. To simplify our presentation, assume
thatφ is the identity mapping and thatH = X , which al-
lows us to dropφ altogether. Additionally, we focus on
unbiased classifiers, whereb = 0. All of our results easily
extend to the general setting.

The standard statistical learning paradigm assumes that a
training setS is sampled i.i.d. from an unknown dis-
tribution D over the space of examples,X × {−1, +1}.
The goal is to useS to find a classifierw such that
Pr(x,y)∼D

(

sign(〈x,w〉 6= y)
)

is small. While our goal
in this paper remains the same, we modify the training set
generation process as follows: First, a set ofm unlabeled
instances,{xi}m

i=1, is drawn i.i.d. from the marginal dis-
tribution of D on X . This set is then randomly split into
k disjoint subsets, and each subset is assigned to a differ-
ent teacher. Each teacher labels his examples, resulting in
a labeled training setS = {(xi, yi)}m

i=1. At this stage, we
leave the exact random splitting mechanism unspecified.

For the sake of our theoretical analysis, we assume that
each teacher is eithergood or evil. This is a harsh sim-
plification of the real-world, but it is one that enables us
to derive a rigorous theory, which inspires the design of
our algorithms. An evil teacher may label his instances
in any arbitrary, possibly malicious, manner. Evil teach-
ers are even allowed to collude amongst themselves. The
only assumption we make regarding the evil teachers is that
they do not know the identity of the good teachers’ exam-
ples. This happens, for instance, if good teachers never re-
veal their instances to evil teachers, or if teachers are sim-
ply isolated from each other. On the other hand, a good
teacher labels each of its instancesx by sampling a label
from pD(y|x), the marginal distribution over labels condi-
tioned onx. In other words, examples controlled by good
teachers are essentially sampled directly fromD. In fact,
this assumption is not really necessary, but the important
condition that must be met is that when all of the teachers
are good, a low error-rate classifier (in terms ofD) can be
learned. To avoid making our problem trivially impossible,
we assume that a majority of the data comes from good
teachers.

Turning to more technical notation, we abbreviate the sets
{1, . . . , m} and {1, . . . , k} by [m] and [k] respectively.
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Also, we define the hinge function[a]+ ≡ max{a, 0}. We
assume that the support of the marginal distribution ofD
on X is bounded in a ball of radiusR around the origin.
Teachers are recognized by an indext ∈ [k], the set of
evil teachers is denoted byT e ⊂ [k], and the set of good
teachers is denoted byT g ⊂ [k]. For any instancei, we let
t(i) ∈ [k] denote the teacher that labeled instancei. Finally,
we letSt denote the set of examples labeled by teachert,
and we abbreviateSg = ∪t∈T gSt andSe = ∪t∈T eSt.

3. Facing Evil Teachers

We begin the derivation of our algorithm by recalling the
plain vanilla2-norm soft-margin SVM formulation. Given
a training setS = {xi, yi}m

i=1 and a regularization param-
eterλ > 0, define

F (w|S, λ) =
λ

2
‖w‖2 +

1

m

m
∑

i=1

[1 − yi〈xi,w〉]+ . (1)

The SVM classifier is the minimizer ofF (w|S, λ). As dis-
cussed in the introduction, the philosophy behind our ap-
proach is to prevent any single teacher from disproportion-
ally influencing the learned classifier. We find it conve-
nient to enforce this constraint in thedual formulation of
the SVM optimization problem,

max
α∈R

m
+

m
∑

i=1

αi −
1

2λ

m
∑

i,j=1

αiαjyiyj〈xi,xj〉 (2)

s.t. ∀i ∈ [m] 0 ≤ αi ≤ 1
m

.

We also know additional useful facts about the SVM opti-
mization problem. First, the primal and dual variables are
related by the equationw =

∑

i αiyixi. Second, it holds
thatαi > 0 (namely, examplei is asupport vector), only
if yi〈xi,w〉 ≤ 1, and thatαi = 1/m if yi〈xi,w〉 < 1.
These results are thoroughly discussed in (Shawe-Taylor &
Cristianini, 2000) and elsewhere.

To motivate our next step, imagine a situation where all
but one of the teachers are good. Now assume that de-
spite the presence of the evil teacher, we manage to find
a good classifierw with respect toD. We expect this
classifier to disagree with many of the labels provided by
the evil teacher. As a result, many of the examples con-
trolled by the evil teacher will have a margin less than1
(y〈x,w〉 < 1). Using the facts stated above, we expect the
average value of the dual variables associated with the evil
teacher, 1

|Se|

∑

i∈Se αi, to be unusually high compared to

the overall average dual variable,1
m

∑

i αi. On the other
hand, we intuitively expect a good teacher to have an aver-
age dual variable value close to1

m

∑

i αi.

This motivates us to add the following constraint to the dual

optimization problem:

∀t ∈ [k]
1

|St|
∑

i∈St

αi ≤ 1

m

m
∑

i=1

αi +
ǫ

m
√

|St|
, (3)

whereǫ > 0 is a parameter. In the scenario described
above, this constraint is likely to affect only the evil teacher,
and to reduce his influence onw. The form of the slack
term,ǫ/(m

√

|St|), comes from large deviation considera-
tions: If instances are assigned randomly to teachers and
the sample size increases, we expect the random variable

1
|St|

∑

i∈St
αi to be concentrated about its expected value

of 1
|Sg|

∑

i∈Sg αi. If most of the examples are controlled by

good teachers, then1|Sg|

∑

i∈Sg αi and 1
m

∑m

i=1 αi will be
close. These informal statements are made more precisely
in our theoretical analysis in Sec. 4.

Adding the constraints in Eq. (3) to the optimization prob-
lem in Eq. (2), and using standard tools from convex anal-
ysis to convert the problem back into its primal form, we
obtain:

min
w∈Rn,ξ∈R

m
+ ,ν∈R

k
+

λ

2
‖w‖2 +

1

m

m
∑

i=1

ξi +

k
∑

t=1

ǫνt
√

|St|

s.t. ∀i ∈ [m] yi〈xi,w〉 ≥ 1 −
(

mνt(i)

|St(i)|
−∑k

t=1 νt

)

− ξi

This problem is convex, and there exist various methods of
solving it, either in the primal or in the dual formulation.
Our proposed learning algorithm calculates the solution to
this optimization problem and outputs the resulting classi-
fier w.

4. Theoretical Analysis

Our new optimization problem can be written more com-
pactly as the minimization overw of

G(w|S, λ) = min
ν∈R

m
+

λ

2
‖w‖2 +

k
∑

t=1

ǫνt
√

|St|
(4)

+
1

m

m
∑

i=1

[

1 −
(

mνt(i)

|St(i)|
−∑k

t=1 νt

)

− yi〈xi,w〉
]

+

The basic idea behind our analysis is that instead of a hinge
loss defined with a fixed required-margin of1, as in Eq. (1),
the required-margin in Eq. (4) is teacher-dependent. This
flexibility allows us to trade-off the margin requirement for
different teachers. Whenνt = 0 for all t, our formula-
tion reduces to the standard SVM formulation. However,
settingνt to a high value for each evil teacher and to zero
for each good teacher decreases the margin requirement for
evil teachers and compensates by requiring a higher mar-
gin for good teachers. The end result is that if we can find a
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high-margin classifier for the good teachers’ instances, then
Eq. (4) automatically becomes less sensitive to the loss ob-
tained on the evil teachers’ instances, and is thus less influ-
enced by them.

There are many ways to provide this intuitive observation
with a more solid theoretical grounding. Here, we take an
optimization-based approach. Suppose we somehow knew
beforehand the identity ofSg, the subset of examples la-
beled by good teachers. By assumption,Sg is essentially
sampled i.i.d. fromD. Therefore, with high probability, the
standard SVM solutionw⋆ = arg minw F (w|Sg, λ) has a
low error-rate over the entire distribution (Shawe-Taylor&
Cristianini, 2000). However, we do not knowSg in ad-
vance and we cannot calculatew

⋆. We therefore pose the
question: How large canF (ŵ|Sg, λ) − F (w⋆|Sg, λ) be
whenŵ = arg minG(w|S, λ) ? In other words, how sub-
optimal is the classifier trained by our algorithm onS com-
pared to a classifier trained by a standard SVM onSg. We
also ask the same question whenŵ = arg minF (w|S, λ),
namely, how sub-optimal is the SVM classifier trained on
all of S?

Although this is not the focus of our paper, it is straight-
forward to derive a generalization analysis for our learned
classifier based on the sub-optimality bound described
above. The idea is to use a uniform convergence argument
to relate bothF (ŵ|Sg, λ) andF (w⋆|Sg, λ) to their expec-
tations with respect to the underlying distribution. Thus,
the sub-optimality of our learned classifier with respect to
Sg translates to a similar sub-optimality with respect to the
underlying distribution, and generalization guarantees for
w

⋆ can be converted into similar guarantees forŵ. We
refer the interested reader to standard references such as
(Shawe-Taylor & Cristianini, 2000).

For technical reasons, we actually prove bounds on
F (ŵ|Sg, m

|Sg|λ) − F (w⋆|Sg, m
|Sg|λ) rather than on

F (ŵ|Sg, λ) − F (w⋆|Sg, λ). Namely, we compare the
SVM objective value using a slightly different regulariza-
tion parameter. Sincem/|Sg| is assumed to be small, this
does not materially affect the conclusions.

We begin with a simple theorem that bounds the effect evil
teachers may have on a standard SVM. Proofs are given at
the end of the section.

Theorem 1. Let a training set S of size m be
fixed. Let ŵ = argminw F (w|S, λ) and let w

⋆ =
arg minw F (w|Sg, m

|Sg|λ). Then F (ŵ|Sg, m
|Sg|λ) −

F (w⋆|Sg, m
|Sg|λ) is at most

|Se|
|Sg| (1 + R‖w⋆‖) .

Similarly, the next theorem bounds the effect evil teachers
may have on our algorithm. Compared to Thm. 1, the next

theorem has an additional non-trivial condition. We see
shortly when this condition holds.

Theorem 2. Let a training setS of sizem be fixed. Let
ŵ = arg minw G(w|S, λ) (with optimal auxiliary param-
etersν̂1, . . . , ν̂k), and letw⋆ = argminw F (w|Sg, m

|Sg|λ).
Furthermore, assume that for anyt ∈ T g, ν̂t ≤
|St|

∑

t ν̂t/m. ThenF (ŵ|Sg, m
|Sg|λ) − F (w⋆|Sg, m

|Sg|λ)
is at most

|Se|
|Sg| (1 + R‖w⋆‖)

(

#V (w⋆)

|Sg| +
ǫm

|Sg|

∑

t∈T e

√

|St|
|Se|

)

,

where#V (w⋆) is the number of instances(x, y) ∈ Sg

such thaty〈x,w⋆〉 ≤ 1 + (1 + R‖w⋆‖)|Se|/|Sg|.

Comparing the two bounds, we see that they both include
the term(1 + R‖w⋆‖)|Se|/|Sg|. In Thm. 2, this term is
multiplied by an additional expression

#V (w⋆)

|Sg| +
ǫm

|Sg|

∑

t∈T e

√

|St|
|Se| . (5)

We now explain why this expression can be much smaller
than1, leading to a tighter bound in Thm. 2 compared to
Thm. 1. Eq. (5) is the sum of two terms: the second term
is generallyO(ǫ/

√
m), assuming that the set of teachers

remains fixed, and that the fraction of examples controlled
by each teacher remains roughly constant as the training
set grows. The first term is the fraction of examples con-
trolled by good teachers that attain a high margin with re-
spect to our learned classifier. This definition matches the
intuitive explanation given earlier about how large margins
over good teachers’ instances can reduce our sensitivity to
the evil teachers’ instances. In a certain sense, if the orig-
inal data is easy to classify (in terms of having large mar-
gins), it is easy to identify teachers who are misbehaving.
These observations should be taken with a grain of salt,
since we are comparing theoretical upper-bounds. How-
ever, we believe that our analysis supports our algorithmic
design choices and that it complements the empirical study
presented later on.

To complete the analysis, it remains to justify the techni-
cal condition in Thm. 2, namely that that for allt ∈ T g,
ν̂t ≤ |St|

∑

t ν̂t/m, whereν̂1, . . . , ν̂k are the optimal pa-
rameters with respect to our learned classifierŵ. To under-
stand this more clearly, consider the important special case
where|St| = m/k for all t. The condition now reduces
to ν̂t ≤ ∑

t ν̂t/k. Namely, for any good teachert, ν̂t is at
most the average value ofν̂t over all the teachers. This is
intuitively plausible, since we expectν̂t to be large for the
evil teachers and small for the good teachers. Below, we
prove a stronger assertion, providedǫ is not too small.

Proposition 1. Using the notation of Thm. 2, assume
that the evil teachers do not have access toSg, that
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instances are split randomly between the teachers (with
|S1|, . . . , |Sk| being fixed in advance), and thatǫ >
|Se|

√

|St|/m for any good teachert ∈ T g. Then with
probability of at least

1 −
∑

t∈T g

exp



−2|St|
(

ǫ
√

|St|
− |Se|

m

)2


 ,

over the random assignment of instances to teachers, we
have that̂νt = 0 for all t ∈ T g.

For example, say that|St| is the same for allt, a quarter
of the teachers are evil, andm = 1000, k = 40. Then
the bound in Proposition 1 is greater than0.93 for a very
reasonableǫ = 3. The bound in Proposition 1 depends
somewhat on the exact mechanism used to assign instances
to teachers. However, we note that a somewhat different
expression can be obtained if we choose a teacher for each
instance uniformly at random, independently and without
fixing |S1|, . . . , |Sk| in advance. In both cases, the bottom
line remains the same.

We conclude this section with proofs of the results stated
above.

Proof of Thm. 1.By the definition ofF (w|S, λ) in Eq. (1),
we have for anyw that

m

Sg
F (w|S, λ) − F

(

w|Sg,
m

|Sg|λ
)

(6)

=
1

|Sg|
∑

(x,y)∈Se

[1 − y〈x,w〉]+

≤ 1

|Sg|
∑

(x,y)∈Se

[1 + ‖x‖‖w‖]+ ≤ |Se|
|Sg| (1 + R‖w‖).

In a similar manner, for anyw,

F
(

w|Sg,
m

|Sg|λ
)

− m

|Sg|F (w|S, λ)

= − 1

|Sg|
∑

(x,y)∈Se

[1 − y〈x,w〉]+ ≤ 0. (7)

Finally, by the definition ofŵ, F (ŵ|S, λ) ≤ F (w⋆|S, λ).
Chaining this with Eq. (6) (forw = w

⋆) and Eq. (7) (for
w = ŵ), the theorem follows.

Proof of Thm. 2.The proof has a similar structure to the
proof of Thm. 1, but is more involved. The first part of the
proof consists of showing that for anyw,

m

|Sg|G(w|S, λ) − F
(

w|Sg,
m

|Sg|λ
)

(8)

≤ |Se|
|Sg| (1 + R‖w‖)

(

#V (w)

|Sg| +
ǫm

|Sg|

∑

t∈T e

√

|St|
|Se|

)

.

Recall thatG(w|S, λ) (defined in Eq. (4)) for anyw is in
fact a minimum over the non-negative variablesν1, . . . , νk.
Therefore, we can upper bound it for any givenw by fixing
νt = 0 for all t ∈ T g, and

νt =
|St|
|Sg| (1 + R‖w‖)

for all t ∈ T e. Note that for this choice,
∑

t νt = |Se|(1 +
R‖w‖)/(|Sg|). By definition,

m

|Sg|G(w|S, λ) ≤ mλ

2|Sg| ‖w‖2 +
ǫm

|Sg|

k
∑

t=1

νt
√

|St|
(9)

+
1

|Sg|
∑

(x,y)∈Sg

[

1 +

k
∑

t=1

νt − yi〈x,w〉
]

+

(10)

+
1

|Sg|
∑

(x,y)∈Se

[

1 − mνt(i)

|St(i)|
+

k
∑

t=1

νt − y〈xw〉
]

+

(11)

Line (10) can be upper bounded by

F
(

w|Sg,
m

|Sg|λ
)

− mλ

2|Sg| ‖w‖2 +
#V (w)

|Sg|

k
∑

t=1

νt . (12)

Leaving this aside for a minute, it is easy to verify that
with our choice ofν1, . . . , νk, it holds for all t ∈ T e that
m
|St|

νt −
∑k

t=1 νt = 1 + R‖w‖. This implies that line (11)
can be upper bounded by:

1

m

∑

(x,y)∈Se

[1 − (1 + R‖w‖) − y〈x,w〉]+

≤ 1

m

∑

(x,y)∈Se

[−R‖w‖ + R‖w‖]+ = 0 . (13)

Substituting Eq. (12), Eq. (13) and our choice ofν1, . . . , νk

into the decomposition ofG(w|S, λ) in Eq. (9), we get
Eq. (8).

Now, using the assumptions in the theorem statement, we
have that

m

|Sg|G(ŵ|S, λ) ≥ mλ

2|Sg| ‖ŵ‖2

+
1

|Sg|
∑

(x,y)∈Sg

[

1 − mν̂t(i)

|St(i)|
+

k
∑

t=1

ν̂t − y〈x,w〉
]

+

≥ mλ

2|Sg| ‖ŵ‖2 +
1

|Sg|
∑

(x,y)∈Sg

[1 − y〈x,w〉]+

= F (ŵ|Sg,
m

|Sg|λ). (14)

Also, since ŵ = argminw G(w|S, λ), we have that
G(ŵ|S, λ) ≤ G(w⋆|S, λ). Chaining this with Eq. (14),
and Eq. (8) (forw = w

⋆), the theorem follows.
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Proof of Proposition 1.We begin by recalling that̂w is the
global minimum ofG(w|S, λ) (Eq. (4)). Also letν̂ be the
optimal value of the auxiliary vectorν in Eq. (4) and let̂α
be the corresponding optimizer of the dual problem. Using
the KKT optimality conditions, a sufficient condition for
ν̂t = 0 is that the corresponding inequality constraint in
the dual problem isstrictly satisfied. Thus, it suffices to
show thatα̂ satisfies

1

|St|
∑

i∈St

α̂i <
1

m

m
∑

i=1

α̂i +
ǫ

m
√

|St|
(15)

for all t ∈ T g. But sinceα̂i ∈ [0, 1/m], it is not hard to see
that

1

m

m
∑

i=1

α̂i ≥
1

m

∑

i∈Sg

α̂i ≥
1

|Sg|
∑

i∈Sg

α̂i −
|Se|
m2

.

Therefore, for Eq. (15) to hold, it is sufficient to show that
for anyt ∈ T g,

1

|St|
∑

i∈St

α̂i <
1

|Sg|
∑

i∈Sg

α̂i +
ǫ

m
√

|St|
− |Se|

m2
. (16)

Sg is labeled by good teachers, all of whom draw labels
according topD(y|x), andSg is unknown to the evil teach-
ers. Therefore, the labeling and learning process is statis-
tically equivalent to the following: First splitS into Se

andSg, distributeSe to the evil teachers and have them
generate labels, draw labels forSg according topD(y|x)
(hence fixing the optimal̂α1, . . . , α̂m) and only thenas-
signSg to the different teachers inT g. As a result, we can
think of

∑

i∈St
α̂i/|St| in Eq. (16) simply as the average

of a random subset ofα’s from {α̂i}i∈Sg . The condition
in Eq. (16) is then simply the event (over splitting theα’s)
that for each good teacher, the average of itsα’s is not sig-
nificantly larger than the average of allα’s. Since theα’s
were split at random, we can apply Hoeffding’s bound plus
a union bound to get that with probability at least

1 −
∑

t∈T g

exp



−2|St|
(

ǫ
√

|St|
− |Se|

m

)2


 ,

conditioned onSg, Eq. (16) holds for allt ∈ T g. Since the
bound holds for anySg, we can remove the conditioning
to get a bound on the unconditional probability of Eq. (16)
holding for allt ∈ T g.

5. Experiments

We empirically evaluated our new algorithm with a set
of text categorization experiments usingReuters Corpus
Vol. 1 (RCV1) (Lewis et al., 2004), a collection of800K
news articles collected by Reuters. A typical article in the

corpus contains around 240 words, and the entire corpus
contains over half a million distinct tokens (not including
numbers and dates). Each article in the corpus is associ-
ated with one or morehigh-level categories, which are:
Corporate/Industrial (CCAT), Economics (ECAT), Gov-
ernment/Social (GCAT), and Markets (MCAT). We rep-
resented each article in the corpus by a vector of TF-IDF
values, and considered the 6 binary classification problems
of distinguishing between each pair of two high-level cate-
gories. Specifically, for high-level categories A and B, we
considered the problem of distinguishing articles of cate-
gory A from articles of category B, while ignoring articles
associated with both A and B, or with neither A nor B. Each
of these 6 problems has different characteristics, due to the
non-uniform category sizes, the varying degree of category
similarity, and the varying degree of homogeneity within
each category.

For each binary problem, we took40 random splits of the
corpus into equally sized training and test sets. On each
split, we trained a standard well-tuned linear SVM classi-
fier (Shalev-Shwartz et al., 2007) on the training set, and
evaluated the resulting classifier on the test set. This test
error-rate represents the performance of SVM when all of
the teachers are good, and serves as a baseline for measur-
ing the effect of label noise. Next, for each train/test split,
we randomly assigned each training example to one of100
different teachers. For eachk in the set{5, 10, . . . , 40},
we selectedk of the100 teachers, designated them as ma-
licious teachers, and flipped all of the labels under their
control. It is likely that there exists a more sophisticated
and harmful way of simulating a malicious teacher, but we
decided to choose the simplest and most obvious candidate
for the job. No manipulation was applied to any of the test
sets. The40 different train/test splits and the8 different
choices ofk led to a total of320 different noisy variations
of each of our6 binary problems.

For each of the noisy variations described above, we trained
a classifier using standard linear SVM and using our algo-
rithm (with ǫ = 1), and we evaluated both classifiers on the
test data. We then compared the results using the follow-
ing metric: lete1 be the test error-rate attained by the SVM
that was trained on noise-free training data, lete2 be the
test error-rate attained by SVM with noisy training data,
and lete3 be the test error-rate attained by our algorithm
with noisy training data. Define theexcess-errorsustained
by SVM ase2 − e1 and the excess-error sustained by our
algorithm ase3 − e1. Finally, define theexcess-error ra-
tio of the two algorithms to be(e3 − e1)/(e2 − e1). This
number compares the resistance of the two algorithms to
the evil teachers. Specifically, if this ratio is less than1
then our algorithm outperforms SVM. The main advantage
of reporting our results in this way is that it allows us to
fairly compare our algorithm to a standard SVM across a
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Figure 1.Damage ratio of the algorithm presented in Sec. 3 vs.
SVM, as a function of the fraction of evil teachers, examplesare
assigned to teachers randomly.

wide range of noise levels and on6 binary problems, each
with a different inherent baseline difficulty.

The plots in Fig. 1 show the distribution of damage ratios as
a function ofk, the number of evil teachers. The effective-
ness of our algorithm varies on different binary problems
and on different noise-levels, but it consistently performs
no worse than SVM. As noise levels increase, the advan-
tage of our algorithm over the naive SVM becomes more
profound. On three of the6 binary problems, whenk takes
its highest values, the excess-error of our algorithm is a
mere20% of the excess-error of SVM.

6. A Second Algorithm

Drawing intuition from the preceding approach, we derive
a second algorithm, which also attempts to limit the influ-
ence of any single teacher. Despite its close similarity to
our first algorithm, we currently have no theoretical anal-
ysis for this second algorithm. We present it here because
its empirical behavior is surprisingly different from thatof
our first algorithm.

The idea behind this algorithm is to apply a constraint
similar to the one in Eq. (3) directly to the primal SVM
problem, rather than to its dual. Our starting point is a
stochastic gradient-descent approach for primal SVM train-
ing (Shalev-Shwartz et al., 2007). This algorithm repeat-
edly draws a random example and performs a gradient-
descent step with a decreasing step size. At each step of this
process, the current classifier is defined as the linear com-
binationw =

∑

i αiyixi. We modified this algorithm as
follows: at each step and for each teacher, we keep track of
the average coefficient across all of the examples controlled
by that teacher. Namely, for teachert we keep track of

1
|St|

∑

i∈St
αi. Before performing the stochastic gradient-
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Figure 2.Damage ratio of the algorithm presented in Sec. 6 vs.
SVM, as a function of the fraction of evil teachers, examplesare
assigned to teachers randomly.

descent step, we check if this step will cause the constraint

1

|St|
∑

i∈St

αi ≤ 1

m

m
∑

i=1

αi +
ǫ

m
√

|St|

to be violated. If so, we reduce the update step-size, and
set it to the largest non-negative value that still satisfiesthis
constraint, which may even be zero. As a result, no teacher
can have a disproportionate influence on our classifier: if
the examples of teachert have already received more than
their fair share of updates in the past, the algorithm will
compensate by performing smaller updates on the exam-
ples of teachert in the future.

We repeated the experiment outlined in Sec. 5 using the
heuristic algorithm and obtained the plots presented in
Fig. 2. While the performance of our first algorithm im-
proved with higher levels of label-noise, our second algo-
rithm seems to perform well on low to moderate levels of
noise. Whenk, the number of malicious teachers, equals
10, the excess-error of our second algorithm is60%− 70%
of the excess-error attained by the standard SVM. However,
as the number of evil teachers increases, the advantage of
our algorithm deteriorates.

In our experiments so far, each teacher controlled roughly
the same number of examples. Moreover, the set of exam-
ples controlled by a teacher was chosen randomly. Either of
these assumptions may not always hold in practice. There-
fore, we also conducted another set of experiments, where
we assumed that each teacher has a distinct topic of exper-
tise, and is required to contribute labeled examples from
his own topic. In this setting, the examples controlled by
two teachers are statistically different, and the number of
examples contributed by each teacher may vary greatly.

In addition to the high-level categories mentioned in Sec. 5
above, each article in RCV1 is also associated with one
or more low-level categories, with 99 different low-level
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Figure 3.Damage ratio of the algorithm presented in Sec. 6 vs.
SVM, as a function of the fraction of evil examples, examplesare
assigned to teachers by topic.

categories overall. Instead of using the low-level cate-
gories to define additional classification problems, we used
them to define99 different expert-teachers. Namely, we
assumed that each low-level category corresponds to a dif-
ferent teacher, who controls all of the articles that belongto
that low-level category. If an article has more than one low-
level category, we assigned it to one of the relevant teachers
at random.

As with the previous set of experiments, we choosek ran-
dom teachers, designated them as malicious, and flipped all
of their labels. Since the sizes of the low-level categories
vary greatly, we observed cases where5 evil teachers con-
trolled a large portion of the training set while in other cases
40 evil teachers only controlled a small set of examples.
As before, we calculated the damage ratio for8 values of
k, with 40 different train/test splits and random choices of
the evil teacher set, for each of our 6 binary problems. For
each of these random variations of the noisy classification
problem, lettingν denote the fraction of flipped labels, we
marked a “+” at location(ν, (e3 − e1)/(e2 − e1)) in the
respective plot in Fig. 3. Since each repetition of the exper-
iment introduced a different amount of noise, it is unclear
how to report average results.

Overall, the results in Fig. 2 resemble the results in Fig. 3.
In all but the CCAT-ECAT binary problem, our algorithm
outperformed the standard SVM a majority of the time.
When a low to moderate noise was applied, our algo-
rithm often attained an excess-error that was40% of the
SVM excess-error, or better. On the CCAT-ECAT problem,
our algorithm actually performed slightly worse than SVM
when a very low noise level was applied, and performed
no worse than SVM when a moderate to high noise level
was applied. In all6 binary problems, the advantage of our
algorithm could no longer be noticed when the noise level
exceeded35%.
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