
1

Individual Sequence Prediction using
Memory-efficient Context Trees

Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer

Abstract— Context trees are a popular and effective tool
for tasks such as compression, sequential prediction, and
language modeling. We present an algebraic perspective of
context trees for the task of individual sequence prediction.
Our approach stems from a generalization of the notion
of margin used for linear predictors. By exporting the
concept of margin to context trees, we are able to cast
the individual sequence prediction problem as the task
of finding a linear separator in a Hilbert space, and
to apply techniques from machine learning and online
optimization to this problem. Our main contribution is a
memory efficient adaptation of the Perceptron algorithm
for individual sequence prediction. We name our algorithm
the Shallow Perceptron and prove a shifting mistake bound,
which relates its performance with the performance of any
sequence of context trees. We also prove that the Shallow
Perceptron grows a context tree at a rate that is upper-
bounded by its mistake-rate, which imposes an upper-
bound on the size of the trees grown by our algorithm.

Index Terms— context trees, online learning, Perceptron,
shifting bounds

I. INTRODUCTION

Universal prediction of individual sequences is con-
cerned with the task of observing a sequence of symbols
one-by-one and predicting the identity of each symbol
before it is revealed. In this setting, no assumptions
regarding the underlying process that generates the se-
quence are made. In particular, we do not assume that
the sequence is generated by a stochastic process. Over
the years, individual sequence prediction has received
much attention from game theorists [1]–[3], information
theorists [4]–[7], and machine learning researchers [8]–
[10]. Context trees are a popular type of sequence

A preliminary version of this paper appeared at Advances in Neural
Information Processing Systems 17 under the title “The Power of
Selective Memory: Self-Bounded Learning of Prediction Suffix Trees”

O. Dekel is with Microsoft Research.
S. Shalev-Shwartz is with the Department of Computer Science and

Engineering, The Hebrew University.
Y. Singer is with Google Research.
Part of this work was supported by the Israeli Science Foundation

grant number 522-04 while all three authors resided at the Hebrew
University.

Manuscript received January 24 2008; revised September 30 2008.

predictors. Context trees are unique in that the number
of previous symbols they use to make each prediction is
context dependent, rather than being a constant. In this
paper, we exploit insights from machine learning and on-
line optimization to present an algebraic perspective on
context tree learning and individual sequence prediction.
Our alternative approach becomes possible after we cast
the sequence prediction problem as a linear separation
problem in a Hilbert space.

The investigation of individual sequence prediction
began with a series of influential papers by Robbins,
Blackwell and Hannan [1]–[3]. This line of work re-
volved around the compound sequential Bayes predictor,
a randomized prediction algorithm that is guaranteed
to perform asymptotically as well as the best constant
prediction. Cover and Shenhar [5] extended this result
and gave an algorithm that is guaranteed to perform
asymptotically as well as the best k’th order Markov
predictor, where k is a parameter of the algorithm.
Feder et al. [6] presented a similar algorithm1 with a
similar theoretical guarantee, and a faster convergence
rate than earlier work. We call these algorithms fixed
order predictors, to emphasize their strong dependence
on the prior knowledge of the order k of the Markov
predictor.

The fixed order assumption is undesirable. The num-
ber of previous symbols needed to make an accurate
prediction is usually not constant, but rather depends on
the identity of the recently observed symbols. For exam-
ple, assume that the sequence we are trying to predict is
a text in the English language and assume that the last
observed symbol is the letter “q”. In English, the letter
“q” is almost always followed by the letter “u”, and we
can confidently predict the next symbol in the sequence
without looking farther back. However, a single symbol
does not suffice in general in order to make accurate
predictions and additional previous symbols are required.
This simple example emphasizes that the number of
previous symbols needed to make an accurate prediction

1We refer to the predictor described in Eq. (43) of [6], and not to
the IP predictor presented later in the same paper.

depends on the identity of those symbols. Even setting a
global upper-bound on the maximal number of previous
symbols needed to make a prediction may be a difficult
task. Optimally, the prediction algorithm should be given
the freedom to look as far back as needed to make
accurate predictions.

Feder et al. [6] realized this and presented the in-
cremental parsing predictor (IP), an adaptation of the
Lempel-Ziv compression algorithm [11] that incremen-
tally constructs a context tree predictor. The context
of each prediction is defined as the suffix of the ob-
served sequence used to predict the next symbol in the
sequence. A context tree is the means for encoding
the context length required to make a prediction, given
the identity of the recently observed symbols. More
precisely, the sequence of observed symbols is read
backwards, and after reading each symbol the context
tree tells us whether we have seen enough to make
a confident prediction or whether we must read off
an additional symbol and increase the context length
by one. The desire to lift the fixed order assumption
also influenced the design of the context tree weighting
algorithm (CTW) [7], [12], [13] and various related
statistical algorithms for learning variable length Markov
models [14]–[16]. These works, however focused on
probabilistic models with accompanying analyses, which
centered on likelihood-based regret and generalization
bounds.

We now give a more formal definition of context trees
in a form that is convenient for our presentation. For
simplicity, we assume that the alphabet of the observed
symbols is Σ = {−1,+1}. We discuss relaxations to
non-binary alphabets in Sec. VI. Let Σ? denote the
set of all finite-length sequences over the alphabet Σ.
Specifically, Σ? includes ε, the empty sequence. We
say that a set V ⊂ Σ? is suffix-closed if for every
s ∈ V , every suffix of s, including the empty suffix
ε, is also contained in V . A context tree is a function
T : V → Σ, where V is a suffix-closed subset of Σ?. Let
x1, . . . , xt−1 be the symbols observed until time t − 1.
We use xkj to denote the subsequence xj , . . . , xk, and
for completeness, we adopt the convention xt−1

t = ε.
We denote the set of all suffixes of xk1 by, suf

(
xk1
)
, thus

suf
(
xk1
)

=
{
xkj
∣∣ 1 ≤ j ≤ k+1

}
. A context tree predicts

the next symbol in the sequence to be T (xt−1
t−i), where

xt−1
t−i is the longest suffix of xt−1

1 contained in V .
Our goal is to design online algorithms that incremen-

tally construct context tree predictors, while predicting
the symbols of an input sequence. An algorithm of this
type maintains a context tree predictor in its internal
memory. The algorithm starts with a default context tree.

After each symbol is observed, the algorithm has the
option to modify its context tree, with the explicit goal
of improving the accuracy of its predictions in the future.

A context tree T can be viewed as a rooted tree.
Each node in the tree represents one of the sequences
in V . Specifically, the root of the tree represents the
empty sequence ε. The node that represents the sequence
sk1 = s1, . . . , sk is the child of the node representing
the sequence sk2 . When read backwards, the sequence of
observed symbols defines a path from the root of the tree
to one of its nodes. Since the tree is not required to be
complete, this path can either terminate at an inner node
or at a leaf. Each of the nodes along this path represents
a suffix of the observed sequence. The node at the end
of the path represents the longest suffix of the observed
sequence that is a member of V . This suffix is the context
used to predict the next symbol in the sequence, and the
function T maps this suffix to the predicted symbol. This
process is illustrated in Fig. 1.

Our presentation roughly follows the evolutionary
progress of existing individual sequence prediction al-
gorithms. Namely, we begin our presentation with the
assumption that the structure of the context tree is known
a-priori. This assumption is analogous to the fixed order
assumption mentioned above. Under this assumption, we
show that the individual sequence prediction problem
can be solved through a simple embedding into an appro-
priate Hilbert space followed with an application of tech-
niques from online learning and convex programming.
We next lift the assumption that the context tree structure
is fixed ahead of time, and present algorithms that incre-
mentally learn the tree structure with no predefined limit
on the maximal tree depth. The construction of these
algorithms requires us to define a more sophisticated
embedding of the sequence prediction problem into a
Hilbert space, but applies the same algorithms on the
embedded problem. A major drawback of this approach
is that it may grow very large context trees, even when
it is unnecessary. The space required to store the context
tree grows with the length of the input sequence, and this
may pose serious computational problems when predict-
ing very long sequences. Interestingly, this problem also
applies to the IP predictor of Feder et al. [6] and to the
unbounded-depth version of the CTW algorithm [12].
The most important contribution of this paper is our final
algorithm, which overcomes the memory inefficiency
problem underscored above.

We evaluate the performance of our algorithms using
the game-theoretic notion of regret. Formally, let C be a
comparison class of predictors. For example, C can be
the set of all context tree predictors of depth k. Had the

2

input sequence xT1 been known up-front, one could have
chosen the best predictor from C, namely, the predictor
that makes the least number of mistakes on xT1 . The
regret of an online prediction algorithm with respect to
the class C is the difference between the average number
of prediction mistakes made by the algorithm and the
average number of prediction mistakes made by the best
predictor in C.

Cover [17] showed that any deterministic online pre-
dictor cannot attain a vanishing regret universally for
all sequences. One way to circumvent this difficulty
is to allow the online predictor to make randomized
predictions and to analyze its expected regret. This
approach was taken, for example, in the analysis of the
IP predictor [6].

Another way to avoid the difficulty observed by Cover
is to slightly modify the regret-based model in which we
analyze our algorithm. A common approach in learning
theory is to associate a confidence value with each
prediction, and to use the hinge-loss function to evaluate
the performance of the algorithm, instead of simply
counting errors. Before giving a formal definition of
these terms, we first need to generalize our previous
definitions and establish the important concept of a
margin-based context tree. A margin-based context tree
is a context tree with real-valued outputs. In other words,
it is a function τ : V → R, where as before, V is a
suffix-closed subset of Σ?. If xt-1t-i is the longest suffix
of xt-11 contained in V , then sign(τ(xt-1t-i)) is the binary
prediction of the next symbol and |τ(xt-1t-i)| is called the
margin of the prediction. The margin of a prediction
should be thought of as a degree of confidence in that
prediction.

The hinge-loss attained by a context tree τ , when it
attempts to predict the last symbol in the sequence xt1,
is defined as

`(τ,xt1) =
[
1− xt τ(xt-1t-i)

]
+

, (1)

where [a]+ = max{0, a}. Note that `(τ,xt-11) is zero
iff xt = sign(τ(xt-1t-i)) and |τ(xt-1t-i)| ≥ 1. The hinge-
loss is a convex upper bound on the indicator of a
prediction mistake. When considering deterministic in-
dividual sequence predictors in later sections, we bound
the number of prediction mistakes made by our algorithm
using the cumulative hinge-loss suffered by any compet-
ing predictor from C. Interestingly, the two techniques
discussed above, randomization and using the notions of
margin and hinge-loss, are closely related. We discuss
this relation in some detail in Sec. III.

A margin-based context tree can be converted back
into a standard context tree simply by defining T (s) =

sign(τ(s)) for all s ∈ V . Clearly, T and τ are entirely
equivalent predictors in terms of the symbols they pre-
dict, and any bound on the number of mistakes made
by τ applies automatically to T . Therefore, from this
point on, we put aside the standard view of context
trees and focus entirely on margin-based context trees.
The advantage of the margin-based approach is that it
enables us to cast the context tree learning problem as the
problem of linear separation in a Hilbert space. Linear
separation is a popular topic in machine learning, and
we can harness powerful machine learning tools to our
purposes. Specifically, we use the Perceptron algorithm
[18]–[20] as well as some of its variants. We also
use a general technique for online convex programming
presented in [21], [22].

Main Results
We now present an overview of the main contributions

of this paper, and discuss how these contributions relate
to previous work on the topic. We begin with Sec. II in
which we make the simplifying assumption that the set V
is finite, fixed, and known in advance to the algorithm.
Under this strong assumption, a simple application of
the Perceptron algorithm to our problem results in a
deterministic individual sequence predictor with vari-
ous desirable qualities. Following [23], we generalize
Novikoff’s classic mistake bound for the Perceptron
algorithm [20] and prove a bound that compares the
performance of the Perceptron with the performance
of a competitor that is allowed to change with time.
In particular, let τ?1 , . . . , τ

?
T be an arbitrary sequence

of context-tree predictors from C. We denote by L?

the cumulative hinge-loss suffered by this sequence of
predictors on the symbol sequence x1, . . . , xT , namely,
L? =

∑T
t=1 `(τ

?
t ,x

t
1). Our goal is to bound the number

of prediction mistakes made by our algorithm in terms
of L?. Also define

S =
T∑
t=2

√∑
s∈V

(
τ?t (s)− τ?t−1(s)

)2
and

U = max
t

√∑
s∈V

(τ?t (s))2
.

(2)

The variable S represents the amount by which the
sequence τ?1 , . . . , τ

?
T changes over time and U is the

maximal norm over the context-trees in this sequence.
Letting x̂1, . . . , x̂T denote the sequence of predictions
made by our algorithm, we prove the following mistake
bound
|{t : x̂t 6= xt}| − L?

T
≤ (S + U)

√
L? + (S + U)2

T
.

(3)

3

A bound of this type is often called a shifting or a drifting
bound, as it permits the predictor we are competing
against to change with time. When the performance of
our bound is compared to a fixed context tree predictor,
S in Eq. (3) simply becomes zero.

The assumption of a fixed Markov order k is equiva-
lent to assuming that V contains all possible sequences
of length at most k, and is therefore a special case
of our setting. Under certain additional constraints, we
can compare the bound in Eq. (3) with existing bounds
for sequential prediction. In this setting, the expected
regret of the fixed order predictor of Feder et al. [6]
with respect to the class of all fixed k-order context tree
predictors is O(

√
2k/T). The expected regret of Cover

and Shenhar’s fixed order predictor [5] is O(2k/
√
T).

A meaningful comparison between these bounds and
Eq. (3) can be made in the special case where the
sequence is realizable, namely, when there exists some
τ? ∈ C such that `(τ?,xt1) = 0 for all t. In this case,
Eq. (3) reduces to the bound,

|{t : x̂t 6= xt}|
T

≤ 2k

T
. (4)

This regret bound approaches zero much faster than the
bounds of Feder et al. [6] and Cover and Shenhar [5].
Other advantages of our bound are the fact that we
compete against sequences of context trees that may
change with time, and the fact that our bound does not
hold only in expectation.

In Sec. III we make an important digression in our de-
velopment of a memory efficient context tree algorithm
in order to show how the fixed order predictor of [6] can
be recaptured and derived directly using our approach.
Concretely, we cast the individual sequence prediction
problem as an online convex program and solve it us-
ing an online convex programming procedure described
in [21], [22]. Interestingly, the resulting algorithm turns
out to be precisely the fixed order predictor proposed in
[6], and the O(

√
2k/T) expected regret bound proven by

[6] follows immediately from the convergence analysis
of the online convex programming scheme we present.

In Sec. IV we return to the main topic of this paper
and relax the assumption that V is known in advance.
By embedding the sequence prediction problem into a
Hilbert space, we are able to learn context tree predictors
of an arbitrary depth. As in the previous sections, we
still rely on the standard Perceptron algorithm as the
bound in Eq. (3) still holds. Once again, considering
the realizable case, where the sequence is generated by
a k-order context tree, the regret of our algorithm is
O(22k/T), while the expected regret of Feder et al.’s
IP predictor is O(k/ log(T) + 1/

√
log(T)). Similar to

the IP predictor and other unbounded-depth context tree
growing algorithms, our algorithm grows context trees
that may become excessively large.

In Sec. V we overcome the memory inefficiency prob-
lem mentioned above and present the main contribution
of this paper, which is the Shallow Perceptron algorithm
for online learning of context trees. Our approach bal-
ances the two opposing requirements presented above.
On one hand, we do not rely on any a-priori assumptions
on V , and permit the context tree to grow as needed to
make accurate predictions. On the other hand, we only
use a short context length when it is sufficient to make
accurate predictions. More precisely, the context trees
constructed by the shallow Perceptron grow only when
prediction mistakes are made, and the total number of
nodes in the tree is always upper-bounded by the number
of prediction mistakes made so far. We again prove a
shifting mistake bound similar to the bound in Eq. (3).
In the case of the Shallow Perceptron, the mistake bound
implicitly bounds the number of nodes in the context
tree. All of our bounds are independent of the length
of the sequence, a property which makes our approach
suitable for predicting arbitrarily long sequences.

II. MARGIN-BASED CONTEXT TREES AND LINEAR
SEPARATION

In this section we cast the context tree learning prob-
lem as the problem of finding a separating hyperplane
in a Hilbert space. As described above, a context tree
over the alphabet {−1,+1} is a mapping from V to
the set {−1,+1}, where V is a suffix-closed subset of
{−1,+1}?. Throughout this section we make the (rather
strong) assumption that V is finite, fixed, and known to
the algorithm. This assumption is undesirable and we
indeed lift it in the next sections. However, as outlined
in Sec. I, it enables us to present our algebraic view of
context trees in its simplest form.

Let H be a Hilbert space of functions from V into R,
endowed with the inner product

〈ν, µ〉 =
∑
s∈V

ν(s)µ(s) (5)

and the induced norm ‖µ‖ =
√
〈µ, µ〉. The Hilbert

space H is isomorphic to the |V |-dimensional vector
space, R|V |, whose elements are indexed by sequences
or strings from V . We use the more general notion of
a Hilbert space since we later lift the assumption that
V is fixed and known in advance, and it may become
impossible to bound V | by a constant.

A margin-based context tree is a vector in H by
definition. The input sequence can also be embedded in

4

context tree
margin-based

context tree (τ)
context function (g)

Fig. 1. An example of a context tree (left), along with its equivalent margin-based context tree (center), and an equivalent
context function (right). The context associated with each node is indicated on the edges of the tree along the path from the
root to that node. The output associated with each node is provided inside the node. The nodes and values that constitute the
prediction for the input sequence (+ − + + +) are designated with a dashed line.

H as follows. Let k be any positive integer and let xk1
be any sequence of k symbols from Σ. We map xk1 to a
function φ ∈ H as follows,

φ(si1) =
{

1 if si1 is longest suffix of xk1 s.t. si1 ∈ V
0 otherwise

(6)
Returning to our sequence prediction problem, let xt-11

be the sequence of observed symbols on round t, and let
φt be its corresponding vector in H. Furthermore, let
xt-1t-i denote the longest suffix of xt-11 contained in V .
Then for any margin-based context tree τ ∈ R|V | we
have that

τ(xt-1t-i) = 〈φt, τ〉 . (7)

Geometrically, τt can be viewed as the normal of a
separating hyperplane in H. We predict that the next
symbol in the sequence is +1 if the vector φt falls in
the positive half-space defined by τt, that is, if 〈φt, τt〉 ≥
0. Otherwise, we predict that the next symbol in the
sequence is −1.

Embedding margin-based context trees in H also
provides us with a natural measure of tree complexity.
We define the complexity of the margin-based context
tree to be the squared-norm of the vector τ , namely

‖τ‖2 =
∑
s∈V

τ2(s) .

Next, we use the equivalence of context trees and
linear separators to devise a context tree learning al-
gorithm based on the Perceptron algorithm [18]–[20].
The Perceptron, originally formulated for the task of
binary classification, observes a sequence of inputs and
predicts a binary outcome for each input. Before any
symbols are revealed, the Perceptron sets the initial

margin-based context tree, τ1, to be the zero vector in
H. On round t, the Perceptron is given the input φt, as
defined in Eq. (6), and predicts the identity of the next
symbol in the sequence to be the sign of 〈τt, φt〉, where
τt is the margin-based context tree it currently holds
in memory. Immediately after making this prediction,
the next symbol in the sequence, xt, is revealed and
the Perceptron constructs τt+1. The Perceptron applies
a conservative update rule, which means that if xt is
correctly predicted, then the next context tree τt+1 is
simply set to be equal to τt. However, if a prediction
mistake is made, the Perceptron sets

τt+1 = τt + xtφt .

While we focus in this section on vector-based represen-
tations, it is worth describing the resulting update in its
functional form. Viewing τt+1 as a function, from V to
R, the updates described above amounts to,

τt+1(s) =
{
τt(s) + xt if s = xt-1t-i
τt(s) otherwise ,

where xt-1t-i is the longest suffix of xt-11 contained in V .
This update implies that only a single coordinate of τt
is modified as the Perceptron constructs τt+1.

We now state and prove a mistake bound for the
Perceptron algorithm. This analysis not only provides a
bound on the number of sequence symbols that our algo-
rithm predicts incorrectly, but also serves as an important
preface to the analysis of the algorithms presented in
the next sections. The primary tool used in our analysis
is encapsulated in the following general lemma, which
holds for any application of the Perceptron algorithm and
is not specific to the case of context tree learning. It is

5

a generalization of Novikoff’s classic mistake bound for
the Perceptron algorithm [20]. This lemma can also be
derived from the analyses presented in [23], [24].

Lemma 1 Let H be a Hilbert space and Let
{(φt, xt)}Tt=1 be a sequence of input-output pairs, where
φt ∈ H, ‖φt‖ ≤ R, and xt ∈ {−1,+1} for all
1 ≤ t ≤ T . Let u?1, . . . , u

?
T be a sequence of arbitrary

functions in H. Define `?t = [1 − xt 〈u?t , φt〉]+, L? =∑T
t=1 `

?
t , S =

∑T
t=2 ‖u?t −u?t−1‖, and U = maxt ‖u?t ‖.

Let M denote the number of prediction mistakes made
by the Perceptron algorithm when it is presented with
{(φt, xt)}Tt=1. Then,

M −
√
M R(U + S) ≤ L? .

The proof of the lemma is given in the appendix.
Applying Lemma 1 in our setting is a straightforward

matter due to the equivalence of context tree learning
and linear separation. Note that the construction of φt as
described in Eq. (6) implies that ‖φt‖ = 1, thus we can
set R = 1 in the lemma above and get that the number of
mistakes, M , made by the Perceptron algorithm satisfies
M −

√
M(U + S) ≤ L?. The latter inequality is a

quadratic equation in
√
M . Solving this inequality for

M (see Lemma 8 in the appendix) yields the following
corollary.

Corollary 2 Let x1, x2, . . . , xT be a sequence of binary
symbols. Let τ?1 , . . . , τ

?
T be a sequence of arbitrary

margin-based trees. Define `?t = `(τ?t ,x
t
1), L? =∑T

t=1 `
?
t , S =

∑T
t=2 ‖τ?t − τ?t−1‖ and U = maxt ‖τ?t ‖.

Let M denote the number of prediction mistakes made
by the Perceptron algorithm when it is presented with
the sequence of binary symbols. Then,

M ≤ L? + (S + U)2 + (S + U)
√
L? .

Note that if τ?t = τ? for all t, then S equals zero
and we are essentially comparing the performance of the
Perceptron to a single and fixed margin-based context
tree. In this case, Thm. 2 reduces to a bound due to
Gentile [24]. If L? also equals zero then Thm. 2 reduces
to Novikoff’s original analysis of the Perceptron [20].
In the latter case, it is sufficient to set τ?(s) to either 1
or −1 in order to achieve a hinge-loss of zero on each
round. We can thus simply bound ‖τ?‖2 by |V | and the
bound in Thm. 2 reduces to

M

T
≤ |V |

T
.

As mentioned in Sec. I, this bound approaches zero
much faster than the bounds of Feder et al. [6] and of
Cover and Shenhar [5].

III. RANDOMIZED PREDICTIONS AND THE
HINGE-LOSS

In the previous section we reduced the individual
sequence prediction problem to the task of finding a
separating hyperplane in a Hilbert space. This perspec-
tive enabled us to use the Perceptron algorithm for se-
quence prediction and to bound the number of prediction
mistakes in terms of the cumulative hinge-loss of any
sequence of margin-based context trees. An alternative
approach, taken for instance in [6], [17], is to derive
an algorithm that makes randomized predictions and to
prove a bound on the expected number of prediction
mistakes. In this section, we describe an interesting
relation between these two techniques. This relation
enables us to derive the first algorithm presented in [6]
directly from our setting.

Assume that we have already observed the sequence
xt−1

1 and that we are attempting to predict the next
symbol xt. Let τt be a margin-based context tree whose
output is restricted to the interval [−1,+1]. We use τt
to make the randomized prediction x̂t, where

∀ a ∈ {+1,−1} : P(x̂t = a) =
1 + aτt(xt-1t-i)

2
.

(8)
It is easy to verify that

E[x̂t 6= xt] =
1− xtτt(xt-1t-i)

2

=
[1− xtτt(xt-1t-i)]+

2

=
`(τt,xt1)

2
.

(9)

In words, the cumulative hinge-loss of a deterministic
margin-based context tree τt translates into the expected
number of prediction mistakes made by an analogous
randomized prediction rule.

When making randomized predictions, our goal is to
attain a small expected regret. Specifically, let x1, . . . , xT
be a sequence of binary symbols and let τ1, . . . , τT be
the sequence of margin-based context trees constructed
by our algorithm as it observes the sequence of symbols.
Assume that each of these trees is a function from V
to [−1, 1] and let x̂1, . . . , x̂t be the random predictions
made by our algorithm, where each x̂t is sampled from
the probability distribution defined in Eq. (8). Let τ? :
V → [−1, 1] be a margin-based context tree, and let
x?1, . . . , x

?
T be a sequence of random variables distributed

according to P[x?t = a] = (1 + aτ?(xt-1t-i))/2 for a ∈
{+1,−1}. Assume that τ? is the tree that minimizes

6

1
T

∑T
t=1 E[x?t 6= xt], and define the expected regret as

1
T

T∑
t=1

E[x̂t 6= xt]− 1
T

T∑
t=1

E[x?t 6= xt] .

Using Eq. (9), the above can be equivalently written as
1
2 times

1
T

T∑
t=1

`(τt,xt1)− 1
T

T∑
t=1

`(τ?,xt1) . (10)

Our goal is to generate a sequence of margin-based
context trees τ1, . . . , τT that guarantees a small value of
Eq. (10), for any input sequence of symbols. This new
problem definition enables us to address the context tree
learning problem within the more general framework of
online convex programming.

Convex programming focuses on the goal of finding
a vector in a given convex set that minimizes a convex
objective function. In online convex programming, the
objective function changes with time and the goal is to
generate a sequence of vectors that minimizes the re-
spective sequence of objective functions. More formally,
online convex programming is performed in a sequence
of rounds where on each round the learner chooses a
vector from a convex set and the environment responds
with a convex function over the set. In our case, the
vector space is H and we define the convex subset of
H to be [−1,+1]|V |. Choosing a vector in [−1,+1]|V |

is equivalent to choosing a margin-based context tree
τ : V → [−1,+1]. Therefore, on round t of the online
process the learner chooses a margin-based context tree
τt. Then, the environment responds with a loss function
over [−1,+1]|V |. In our case, let us slightly overload our
notation and define the loss function over [−1,+1]|V | to
be `t(τ) = `(τ,xt1). We note that given xt1 the hinge-
loss function is convex with respect to its first argument
and thus `t is a convex function in τ over [−1,+1]|V |.

Since we cast the context tree learning problem as
an online convex programming task, we can now use
a variety of online convex programming techniques. In
particular, we can use the algorithmic framework for
online convex programming described in [22]. For com-
pleteness, we present a special case of this framework in
the Appendix. The resulting algorithm can be described
in terms of two context trees. The first tree, denoted τ̃t
is a counting tree, which is defined as follows. For t = 1
we set, τ̃1 ≡ 0, and for t > 1,

τ̃t+1(s) =

{
τ̃t(s) + xt if s = xt-1t-i
τ̃t(s) otherwise

(11)

Note that the range of the τ̃t is not [−1,+1] and therefore
it can not be used directly for defining a randomized

prediction. We thus construct a second tree by scaling
and thresholding τ̃t. Formally, the second tree is defined
as follows: For all s ∈ V ,

τt(s) = min
{

1 , max
{
−1 , τ̃t(s)

√
|V |/t

}}
.

(12)
Finally, the algorithm randomly chooses a prediction ac-
cording to the distribution, P[x̂t = 1] = (1+τt(xt-1t-i))/2.
Based on the definition of τt we can equivalently express
the probability of predicting the symbol 1 as

P[x̂t = 1] =


1 if τ̃t(xt-1t-i) ≥

√
t
|V |

0 if τ̃t(xt-1t-i) ≤ −
√

t
|V |

1
2 +
√
|V | τ̃t(xt-1

t-i)

2
√
t

otherwise
(13)

Surprisingly, the algorithm we obtain is a variant of
the first algorithm given in [6]. Comparing the above
algorithm with the Perceptron algorithm described in
the previous section, we note two differences. First,
the predictions of the Perceptron are deterministic and
depend only on the sign of τt(xt-1t-i) while the predictions
of the above algorithm are randomized. Second, the
Perceptron updates the tree only after making incorrect
predictions, while the above algorithm updates the tree
at the end of each round. In later sections, we rely on
this conservativeness property to keep the tree size small.
Nonetheless, the focus of this section is on making the
connection between our framework and existing work.
The following theorem provides a regret bound for the
above algorithm.

Theorem 3 Let x1, x2, . . . , xT be a sequence of binary
symbols. Let τ? : V → [−1,+1] be an arbitrary margin
based tree and let x?1, . . . , x

?
T be the randomized predic-

tions of τ?, namely, P[x?t = a] = (1 + aτ?(xt-1t-i))/2.
Assume that an online algorithm for context trees is
defined according to Eq. (13) and Eq. (11) and is
presented with the sequence of symbols. Then,

1
T

T∑
t=1

E[x̂t 6= xt]− 1
T

T∑
t=1

E[x?t 6= xt] ≤
√
|V |
T

.

The proof follows from the equivalence between context
function learning and online convex programming. For
completeness, we sketch the proof in the Appendix.

We have shown how the randomized algorithm of [6]
can be derived directly from our setting, using the online
convex programming framework. Additionally, we can
compare the expected regret bound proven in [6] with
the bound given by Thm. 3. [6] bounds the expected
regret with respect to the set of all k-order context tree

7

predictors by O(
√

2k/T). In our setting, we set V to
be the set of all binary strings of length at most k,
and the bound in Thm. 3 also becomes O(

√
2k/T). In

other words, the generic regret bound that arises from
the online convex programming framework reproduces
the bound given in [6].

IV. LEARNING CONTEXT TREES OF ARBITRARY
DEPTH

In the previous sections, we assumed that V was fixed
and known in advance. We now relax this assumption
and permit our algorithm to construct context trees of
arbitrary depth. To this end, we must work with infinite
dimensional Hilbert spaces, and thus need to redefine
accordingly our embedding of the sequence prediction
problem.

Let H be the Hilbert space of square integrable
functions f : Σ? → R, endowed with the inner product

〈g, f〉 =
∑
s∈Σ?

g(s)f(s) , (14)

and the induced norm ‖g‖ =
√
〈g, g〉. Note that the sole

difference between the inner products defined in Eq. (14)
and in Eq. (5) is in the support of f , which is extended
in Eq. (14) to Σ?.

To show how the context tree learning problem can
be embedded in H, we map both symbol-sequences
and context trees to functions in H. Our construction
relies on a predefined decay parameter α > 0. Let
x1, . . . , xk be any sequence of symbols from Σ. We map
this sequence to the function f ∈ H, defined as follows,

f(si1) =

 1 if si1 = ε
e−α i if si1 ∈ suf

(
xk1
)

0 otherwise
, (15)

where, as before, suf
(
xk1
)

denotes the set of all suffixes
of xk1 . The decay parameter α mitigates the effect of
long contexts on the function ft. This idea reflects the
assumption that statistical correlations tend to decrease
as the time between events increases, and is common
to many context tree learning approaches [8], [9], [13].
Comparing the definition of φ from Eq. (6) and the above
definition of f we note that in the former only a single
element of φ is non-zero while in the latter all suffixes
of x1, . . . , xk are mapped to non-zero values.

Next, we turn to the task of embedding margin-based
context trees in H. Let τ : V → R be a margin-based
context tree. We map τ to the function g ∈ H, defined

by

g(si1) =

 τ(ε) if si1 = ε
(τ(si1)− τ(si2)) eα i if si1 6= ε and si1 ∈ V
0 otherwise

(16)
We say that g is the context function which represents
the context tree τ . Our assumption that H includes
only squared integrable functions implicitly restricts our
discussion to trees that induce a square integrable context
function. We discuss the implications of this restriction
at the end of this section, and note that any tree with
a bounded depth induces a square integrable context
function.

The mapping from a context tree τ to a context
function g is a bijective mapping. Namely, every τ is
represented by a unique g and vice versa. This fact is
stated in the following lemma.

Lemma 4 Let g ∈ H be a context function. Let V be the
smallest suffix-closed set that contains {s : g(s) 6= 0},
and let τ : V → R be a margin-based context tree
defined from the context function g such that for all sk1 ∈
V ,

τ(sk1) = g(ε) +
k−1∑
i=0

g(skk−i)e
−α (i+1) .

Then, the mapping defined by Eq. (16) maps τ(·) back
to g(·).

The proof is deferred to the appendix.
Returning to our sequence prediction problem, let xt-11

be the sequence of observed symbols on round t, and
let ft be its corresponding function in H. Also, let
τt : Vt → R be the current context tree predictor and
let gt be its corresponding context function. Finally, let
xt-1t-i denote the longest suffix of xt-11 contained in Vt.
Then, the definition of ft from Eq. (15) and Lemma 4
immediately imply that

τt(xt-1t-i) = 〈ft, gt〉 . (17)

In the light of Lemma 4, the problem of learning an
accurate context tree can be reduced to the problem
of learning an accurate context function g ∈ H. We
define the complexity of τ to be the squared norm of
its corresponding context function. Written explicitly, the
squared norm of a context function g is

‖g‖2 =
(∑

s∈Σ?

g2(s)
)

. (18)

Since we assumed that H is square integrable, the norm
of g is finite. The decay parameter α clearly affects

8

input: decay parameter α
initialize: V1 = {ε}, g1(s) = 0 ∀s ∈ Σ?

for t = 1, 2, . . . do
Predict: x̂t = sign

(∑t−1
i=0 e

−α i gt
(
xt-1t-i

))
Receive xt
if (x̂t = xt) then
Vt+1 = Vt
gt+1 = gt

else
Pt = {xt-1t-i : 0 ≤ i ≤ t− 1}
Vt+1 = Vt ∪ Pt

gt+1(s) =
{
gt(s) + xt e

−α i if s = xt-1t-i ∈ Pt
gt(s) otherwise

end for

Fig. 2. The arbitrary-depth Perceptron for context tree learning.

the definition of context tree complexity: adding a (unit
weight) new node of depth i to a tree τ increases the
complexity of the corresponding context function by
e2α i.

We can now adapt the Perceptron algorithm to the
problem of learning arbitrary-depth context trees. In our
case, the input on round t is ft and the output is xt.
The Perceptron predicts the label on round t to be the
sign of 〈gt, ft〉, where the context function gt ∈ H plays
the role of the current hypothesis. We also define Vt to
be the smallest suffix-closed set which contains the set
{s : gt(s) 6= 0} and we picture Vt as a rooted tree. The
Perceptron initializes g1 to be the zero function in H,
which is equivalent to initializing V1 to be a tree of a
single node (the root) which assigns a weight of zero to
the empty sequence. After predicting a binary symbol
and receiving the correct answer, the Perceptron defines
gt+1. If xt is correctly predicted, then gt+1 is simply
set to be equal to gt. Otherwise, the Perceptron updates
its hypothesis using the rule gt+1 = gt + xtft. In this
case, the function gt+1 differs from the function gt only
on inputs s for which ft(s) 6= 0, namely on every xt-1t-i
for 0 ≤ i ≤ t − 1. For these inputs, the update takes
the form gt+1(xt-1t-i) = gt(xt-1t-i) + xte

−α i. The pseudo-
code of the Perceptron algorithm applied to the context
function learning problem is given in Fig. 2.

We readily identify a major drawback with this ap-
proach. The number of non-zero elements in ft is t− 1.
Therefore, |Vt+1| − |Vt| may be on the order of t. This
means that the number of new nodes added to the context
tree on round t may be on the order of t, and the size
of Vt my grow quadratically with t. To underscore the

issue, we refer to this algorithm as the arbitrary-depth
Perceptron for context tree learning.

Implementation shortcuts, such as the one described
in [16], can reduce the space complexity of storing
Vt to O(t), however even memory requirements that
grow linearly with t can impose serious computational
problems. Consequently, the arbitrary-depth Perceptron
may not constitute a practical choice for context tree
learning, and we present it primarily for illustrative
purposes. We resolve this memory growth problem in the
next section, where we modify the Perceptron algorithm
such that it utilizes memory more conservatively.

The mistake bound of Lemma 1 assumes that the
maximal norm of ft, where ft is given in Eq. (15), is
bounded. To show that the norm of ft is bounded, we
use the fact that ‖ft‖2 can be written as a geometric
series and therefore can be bounded based on the decay
parameter α as follows,

‖ft‖2 =
t∑
i=0

e−2α i =
1− e−2α t

1− e−2α
≤ 1

1− e−2α
.

(19)
Applying Lemma 1 with the above bound on ‖ft‖ we
obtain the following mistake bound for the arbitrary-
depth Perceptron for context tree learning.

Theorem 5 Let x1, x2, . . . , xT be a sequence of binary
symbols. Let g?1 , . . . , g

?
T be a sequence of arbitrary con-

text functions, defined with decay parameter α. Define
`?t = `(g?t ,x

t
1), L? =

∑T
t=1 `

?
t , S =

∑T
t=2 ‖g?t − g?t−1‖,

U = maxt ‖g?t ‖ and R = 1/
√

1− e−2α. Let M denote
the number of prediction mistakes made by the arbitrary-
depth Perceptron with decay parameter α when it is
presented with the sequence of symbols. Then,

M ≤ L? +R2 (S + U)2 +R (S + U)
√
L? .

Proof: Using the equivalence of context function
learning and linear separation along with Eq. (19), we
apply Lemma 1 with R = 1/

√
1− e−2α and obtain the

inequality,

M −R (U + S)
√
M − L? ≤ 0 . (20)

Solving the above for M (see Lemma 8 in the appendix)
proves the theorem.
The mistake bound of Thm. 5 depends on U , the
maximal norm of a competing context function g?t . As
mentioned before, since we assumed that H is square
integrable, U is always finite. However, if a context
tree τ : V → R contains a node of depth k, then
Eq. (16) implies that the induced context function has
a squared norm of at least exp(2αk). Consequently, the

9

mistake bound given in Thm. 5 is at least R2 U2 =
Ω
(

exp(2αk)
1−exp(−2α)

)
≥ Ω(k). Put another way, after ob-

serving a sequence of T symbols, we cannot hope to
compete with context trees of depth Ω(T). This fact is
by no means surprising. Indeed, the following simple
lemma implies that no algorithm can compete with a
tree of depth T − 1 after observing only T symbols.

Lemma 6 For any online prediction algorithm, there
exists a sequence of binary symbols x1, . . . , xT such that
the number of prediction mistakes is T while there exists
a context tree τ? : V → R of depth T − 1 that perfectly
predicts the sequence. That is, for all 1 ≤ t ≤ T we
have sign(τ?(xt-11)) = xt and |τ?(xt-11)| ≥ 1.

Proof: Let x̂t be the prediction of the online
algorithm on round t, and set xt = −x̂t. Clearly,
the online algorithm makes T prediction mistakes on
the sequence. In addition, let V = ∪Tt=1{xt-11 } and
τ?(xt-11) = xt. Then, the depth of τ? is T − 1 and τ?

perfectly predicts the sequence.
To conclude this section, we discuss the effect of

the decay parameter α as implied by Thm. 5. On one
hand, a large value of α causes R to be small, which
results in a better mistake bound. On the other hand,
the construction of a context function g from a given
margin-based context tree τ depends on α (see Eq. (16)),
and in particular, ‖g?t ‖ increases with α. Therefore, as
α increases, so do U and S.

To illustrate the effect of α, consider again the re-
alizable case, in which the sequence is generated by
a context tree with r nodes, of maximal depth k. If
V is known ahead of time, we can run the algorithm
defined in Sec. II and obtain the mistake bound M ≤ r.
However, if V is unknown to us, but we do know the
maximal depth k, we can run the same algorithm with V
set to contain all strings of length at most k, and obtain
the mistake bound M ≤ 2k. An alternative approach is
to use the arbitrary-depth Perceptron described in this
section. In that case, Eq. (16) implies that ‖g?‖2 ≤
r exp(2αk) and the mistake bound becomes M =
(RU)2 ≤ r exp(2αk)

1−exp(−2α) . Solving for α yields the optimal
choice of α = 1

2 log(1+ 1
k) ≈ 1

2 k and the mistake bound
becomes approximately r k, which can be much smaller
than 2k if r � 2k. The optimal choice of α depends
on τ?1 , . . . , τ

?
T , the sequence of context functions the

algorithm is competing with, which we do not know
in advance. Nevertheless, no matter how we set α, our
algorithm remains asymptotically competitive with trees
of arbitrary depth.

V. THE SHALLOW PERCEPTRON

As mentioned in the previous section, the arbitrary-
depth Perceptron suffers from a major drawback: the
memory required to hold the current context tree may
grow linearly with the length of the sequence. We
resolve this problem by aggressively limiting the growth
rate of the context trees generated by our algorithm.
Specifically, before adding a new path to the tree, we
prune it to a predefined length. We perform the pruning
in a way that ensures that the number of nodes in
the current context tree never exceeds the number of
prediction mistakes made so far. Although the context
tree grows at a much slower pace than in the case of the
arbitrary-depth Perceptron, we can still prove a mistake
bound similar to Thm. 5. This mistake bound naturally
translates into a bound on the growth-rate of the resulting
context tree.

Recall that every time a prediction mistake is made,
the Perceptron performs the update gt+1 = gt + xtft,
where ft is defined in Eq. (15). Since the non-zero
elements of ft correspond to xt-1t-i for all 0 ≤ i ≤ t− 1,
this update adds a path of depth t to the current context
tree. Let Mt denote the number of prediction mistakes
made on rounds 1 through t. Instead of adding the full
path to the context tree, we limit the path length to
dt, where dt is proportional to log(Mt). We call the
resulting algorithm the shallow Perceptron for context
tree learning, since it grows shallow trees. Formally,
define the abbreviations, β = ln 2

2α and dt = bβ log(Mt)c.
We set

gt+1(s) =
{
gt(s) + xte

−α i if ∃i ≤ dt s.t s = xt-1t-i
gt(s) otherwise

(21)
An analogous way of stating this update rule is obtained
by defining the function νt ∈ H

νt(s) =
{
−xte−α i if ∃i ≤ dt s.t s = xt-1t-i
0 otherwise

(22)
Using the definition of νt, we can state the shallow
Perceptron update from Eq. (21) as

gt+1 = gt + xtft + νt . (23)

Namely, the update is obtained by first applying the stan-
dard Perceptron update, and then altering the outcome
of this update by adding the vector νt. It is convenient
to conceptually think of νt as an additive noise which
contaminates the updated hypothesis. Intuitively, the
standard Perceptron update guarantees positive progress,
whereas the additive noise νt pushes the updated hypoth-
esis slightly off its course.

10

Next, we note some important properties of the shal-
low Perceptron update. Primarily, it ensures that the
maximal depth of Vt+1 always equals dt. This property
trivially follows from the fact that dt is monotonically
non-decreasing in t. Since Vt+1 is a binary tree of depth
bβ log(Mt)c, then it must contain less than

2bβ log(Mt)c ≤ 2β log(Mt) = Mβ
t

nodes. Therefore, any bound on the number of prediction
mistakes made by the shallow Perceptron also yields a
bound on the size of its context tree hypothesis. For
instance, when α = 1

2 log(2), we have β = 1 and the
size of Vt+1 is upper bounded by Mt.

Another property which follows from the bound on
the maximal depth of Vt is that

〈gt, ft + xtνt〉 = 〈gt, ft〉+ xt 〈gt, νt〉 = 〈gt, ft〉 ,
(24)

where the last equality holds simply because gt(s) = 0
for every sequence s whose length exceeds dt. As de-
fined above, the shallow Perceptron makes its prediction
based on the entire sequence xt-11 , and confines the
usage of the input sequence to a suffix of dt symbols
before performing an update. A simple but powerful
implication of Eq. (24) is that we can equivalently
limit xt-11 to length dt before the Perceptron extends its
prediction. This property comes in handy in the proof
of the following theorem, which bounds the number of
prediction mistakes made by the shallow Perceptron.

Theorem 7 Let x1, x2, . . . , xT be a sequence of binary
symbols. Let g?1 , . . . , g

?
T be a sequence of arbitrary

context functions, defined with a decay parameter α.
Define `?t = `(g?t ,x

t
1), L? =

∑T
t=1 `

?
t , S =

∑T
t=2 ‖g?t −

g?t−1‖, U = maxt ‖g?t ‖ and R = 1/
√

1− e−2α. Let M
denote the number of prediction mistakes made by the
shallow Perceptron with a decay parameter α when it is
presented with the sequence of symbols. Then,

M ≤ L? +R2
(
S + 3U

)2

+R
(
S + 3U

)√
L? .

Proof: Let f̂t = ft + xtνt. In other words,

f̂t(s) =
{
e−α i if ∃i s.t s = xt-1t-i ∧ i ≤ dt
0 otherwise .

(25)
Since gt(s) = 0 for every s which is longer than dt, we
have 〈gt, ft〉 =

〈
gt, f̂t

〉
. Additionally, we can rewrite

the shallow Perceptron update, defined in Eq. (23), as

gt+1 = gt + xtf̂t . (26)

The above two equalities imply that the shallow Percep-
tron update is equivalent to a straightforward application

of the Perceptron to the input sequence {(f̂t, xt)}Tt=1,
which enables us to use the bound in Lemma 1. Eq. (25)
also implies that the norm of f̂t is bounded,

‖f̂t‖2 =
dt∑
i=0

e−2α i =
1− e−2αdt

1− e−2α
≤ 1

1− e−2α
,

so Lemma 1 is applied with R = 1/
√

1− e−2α, and we
have,

M−R (S+U)
√
M ≤

T∑
t=1

[
1− xt

〈
g?t , f̂t

〉]
+

. (27)

We focus on the term
[
1− xt

〈
g?t , f̂t

〉]
+

. Since f̂t =
ft + xtνt, we rewrite[

1− xt
〈
g?t , f̂t

〉]
+

= [1− xt 〈g?t , ft〉 − 〈g?t , νt〉]+ .

Using the Cauchy-Schwartz inequality and the fact that
the hinge-loss is a Lipschitz function, we obtain the
upper bound[
1− xt

〈
g?t , f̂t

〉]
+
≤ [1−xt 〈g?t , ft〉]+ + ‖g?t ‖ ‖νt‖ .

Recall that `?t = [1− xt 〈g?t , ft〉]+. Summing both sides
of the above inequality over 1 ≤ t ≤ T and using the
definitions of L? and U , we obtain

T∑
t=1

[
1− xt

〈
g?t , f̂t

〉]
+
≤ L? + U

T∑
t=1

‖νt‖ . (28)

On rounds where the Shallow Perceptron makes a correct
prediction, ‖νt‖ = 0. If a prediction mistake is made on
round t, then

‖νt‖2 =
t∑

i=dt+1

e−2α i ≤ e−2α (dt+1)

1− e−2α

= R2 e−2α (bβ log(Mt)c+1)

≤ R2 e−2αβ log(Mt)

=
R2

Mt
,

and therefore ‖νt‖ ≤ R/
√
Mt. Summing both sides of

this inequality over 1 ≤ t ≤ T gives
T∑
t=1

‖νt‖ ≤ R

M∑
i=1

√
1/i .

Since the function 1/
√
x is monotonically decreasing in

x, we obtain the bound,
M∑
i=1

√
1/i ≤ 1 +

∫ M

1

√
1/x dx

= 1 + 2
√
M − 2 ≤ 2

√
M .

11

input: decay parameter α
initialize: β = ln 2

2α , V1 = {ε},
g1(s) = 0 ∀s ∈ Σ?, M0 = 0, d0 = 0

for t = 1, 2, . . . do
Predict: x̂t = sign

(∑dt−1
i=0 e−α i gt

(
xt-1t-i

))
Receive xt

if (x̂t 6= xt) then
Set: Mt = Mt−1, dt = dt−1,

Vt+1 = Vt, gt+1 = gt
else

Set: Mt = Mt−1 + 1
Set: dt = bβ log(Mt)c
Pt = {xt-1t-i : 0 ≤ i ≤ dt}
Vt+1 = Vt ∪ Pt

gt+1(s) =
{
gt(s) + xt e

−α i if s = xt-1t-i ∈ Pt
gt(s) otherwise

end for

Fig. 3. The shallow Perceptron for context tree learning.

Recapping, we showed that
∑T
t=1 ‖νt‖ ≤ 2R

√
M .

Combining this inequality with Eq. (28) gives

T∑
t=1

[
1− xt

〈
g?t , f̂t

〉]
+
≤ L? + 2RU

√
M .

Combining this inequality with Eq. (27) and rearranging
terms gives

M −R
(
S + 3U

)√
M − L? ≤ 0 . (29)

Solving the above for M (see again Lemma 8 in the
appendix) concludes the proof.

VI. DISCUSSION

In this paper, we addressed the widely studied problem
of individual sequence prediction using well known
machine learning tools. By recasting the sequence pre-
diction problem as the problem of linear separation in
a Hilbert space, we gained the ability to use several
of-the-shelf algorithms to learn context tree predictors.
However, the standard algorithms lacked an adequate
control of the context tree size. This drawback motivated
the derivation of the Shallow Perceptron algorithm.

A key advantage of our approach is that our prediction
algorithm updates its context tree in a conservative
manner. In other words, if the predictor stops making
prediction mistakes, the context tree stops growing. For
example, take the infinitely alternating binary sequence
(−1,+1,−1,+1, . . .). This sequence is trivially realized

by a context tree of depth 1. For this sequence, even
the simple arbitrary-depth predictor presented in Sec. IV
would grow a depth 1 tree and then cease making
updates. On the other hand, the IP predictor of Feder et
al. [6] would continue to grow its context tree infinitely,
even though it is clearly unnecessary.

In contrast to typical information-theoretic algorithms
for sequence prediction, the Perceptron-based algorithms
presented in this paper do not rely on randomized pre-
dictions. Throughout this paper, we sidestepped Cover’s
impossibility result [17], which states that deterministic
predictors cannot have a vanishing regret, universally for
all sequences. We overcame the difficulty by using the
hinge-loss function as a proxy for the error (indicator)
function. As a consequence of this choice, our bounds
are not proper regret bounds, and can only be compared
to proper regret bounds in the realizable case, where the
sequence is deterministically generated by some context
tree. On the other hand, when the sequence is indeed re-
alizable, the convergence rates of our bounds are superior
to those of randomized sequence prediction algorithms,
such as those presented in [5], [6]. Additionally, our
approach allows us to prove shifting bounds, which
compare the performance of our algorithms with the
performance of any predefined sequence of margin-based
context trees.

Our algorithms can be extended in a number of
straightforward ways. First, when the size of the symbol
alphabet is not binary, we can simply replace the binary
Perceptron algorithm with one of its multiclass classifi-
cation extensions (see for example Kessler’s construction
in [25] and [26]). It is also rather straightforward to
obtain a multiclass variant of the Shallow Perceptron
algorithm, using the same techniques used to extend
the standard Perceptron to multiclass problems. Another
simple extension is the incorporation of side information.
If the side information can be given in the form of a
vector in a Hilbert space H̃, then we can incorporate it
into our predictions by applying the Perceptron algorithm
in the product space H× H̃.

This work also gives rise to a few interesting open
problems. First, it is worth investigating whether our
approach could be used for compression. A binary
sequence x1, . . . , xT can be compressed using our de-
terministic predictor by transmitting only the indices of
the symbols that are incorrectly predicted. Thus, the
average number of prediction mistakes made by our al-
gorithm is precisely the compression ratio of the induced
compressor. A seemingly more direct application of our
techniques to the compression problem, namely one that
does not make a detour through the prediction problem,

12

could yield better theoretical guarantees. Another direc-
tion which deserves more attention is the relationship be-
tween randomization and margin-based approaches. The
connections between the two seem to run deeper than
the result provided in Sec. III. Finally, it would be very
interesting to prove an expected shifting regret bound,
that is, a bound with respect to a sequence of competitors
rather than with respect to a single competitor, for any of
the randomized sequential predictors referenced in this
paper. We leave these questions open for future research.

ACKNOWLEDGMENT

We would like to thank Tsachy Weissman and Yaacov
Ziv for correspondences on the general framework.

REFERENCES

[1] H. Robbins, “Asymptotically subminimax solutions of compound
statistical decision problems,” in Proceedings of the 2nd Berkeley
symposium on mathematical statistics and probability, 1951, pp.
131–148.

[2] D. Blackwell, “An analog of the minimax theorem for vector
payoffs,” Pacific Journal of Mathematics, vol. 6, no. 1, pp. 1–8,
Spring 1956.

[3] J. Hannan, “Approximation to Bayes risk in repeated play,” in
Contributions to the Theory of Games, M. Dresher, A. W. Tucker,
and P. Wolfe, Eds. Princeton University Press, 1957, vol. III,
pp. 97–139.

[4] T. Cover and P. Hart, “Nearest neighbor pattern classification,”
IEEE Transactions in Information Theory, vol. IT-13, no. 1, pp.
21–27, Jan. 1967.

[5] T. M. Cover and A. Shenhar, “Compound Bayes predictors for
sequences with apparent Markov structure,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. SMC-7, no. 6, pp. 421–
424, June 1977.

[6] M. Feder, N. Merhav, and M. Gutman, “Universal prediction of
individual sequences,” IEEE Transactions on Information Theory,
vol. 38, pp. 1258–1270, 1992.

[7] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “Context
tree weighting: a sequential universal source coding procedure
for FSMX sources,” in Proceedings of the IEEE International
Symposium on Information Theory, 1993, p. 59.

[8] D. P. Helmbold and R. E. Schapire, “Predicting nearly as well as
the best pruning of a decision tree,” Machine Learning, vol. 27,
no. 1, pp. 51–68, Apr. 1997.

[9] F. Pereira and Y. Singer, “An efficient extension to mixture
techniques for prediction and decision trees,” Machine Learning,
vol. 36, no. 3, pp. 183–199, 1999.

[10] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games.
Cambridge University Press, 2006.

[11] J. Ziv and A. Lempel, “Compression of individual sequences via
variable rate coding,” IEEE Transactions on Information Theory,
vol. 24, pp. 530–536, 1978.

[12] F. M. J. Willems, “Extensions to the context tree weighting
method,” in Proceedings of the IEEE International Symposium
on Information Theory, 1994, p. 387.

[13] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context
tree weighting method: basic properties,” IEEE Transactions on
Information Theory, vol. 41, no. 3, pp. 653–664, 1995.

[14] D. Ron, Y. Singer, and N. Tishby, “The power of amnesia:
learning probabilistic automata with variable memory length,”
Machine Learning, vol. 25, no. 2, pp. 117–150, 1996.

[15] P. Buhlmann and A. Wyner, “Variable length markov chains,”
The Annals of Statistics, vol. 27, no. 2, pp. 480–513, 1999.

[16] G. Bejerano and A. Apostolico, “Optimal amnesic probabilistic
automata, or, how to learn and classify proteins in linear time
and space,” Journal of Computational Biology, vol. 7, no. 3/4,
pp. 381–393, 2000.

[17] T. M. Cover, “Behavior of sequential predictors of binary se-
quences,” Trans. 4th Prague Conf. Information Theory Statistical
Decision Functions, Random Processes, 1965.

[18] S. Agmon, “The relaxation method for linear inequalities,” Cana-
dian Journal of Mathematics, vol. 6, no. 3, pp. 382–392, 1954.

[19] F. Rosenblatt, “The perceptron: A probabilistic model for infor-
mation storage and organization in the brain,” Psychological Re-
view, vol. 65, pp. 386–407, 1958, (Reprinted in Neurocomputing
(MIT Press, 1988).).

[20] A. B. J. Novikoff, “On convergence proofs on perceptrons,” in
Proceedings of the Symposium on the Mathematical Theory of
Automata, vol. XII, 1962, pp. 615–622.

[21] S. Shalev-Shwartz and Y. Singer, “Convex repeated games and
fenchel duality,” in Advances in Neural Information Processing
Systems 20, 2006.

[22] S. Shalev-Shwartz, “Online learning: Theory, algorithms, and
applications,” Ph.D. dissertation, The Hebrew University, 2007.

[23] N. Cesa-Bianchi and C. Gentile, “Tracking the best hyperplane
with a simple budget perceptron,” in Proceedings of the Nine-
teenth Annual Conference on Computational Learning Theory,
2006, pp. 483–498.

[24] C. Gentile, “The robustness of the p-norm algorithms,” Machine
Learning, vol. 53, no. 3, 2002.

[25] R. O. Duda and P. E. Hart, Pattern Classification and Scene
Analysis. Wiley, 1973.

[26] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and
Y. Singer, “Online passive aggressive algorithms,” Journal of
Machine Learning Research, vol. 7, pp. 551–585, Mar 2006.

APPENDIX

Proof: [of Lemma 1] We prove the lemma by bound-
ing 〈u?T , τT+1〉 from above and from below, starting with
an upper bound. Using the Cauchy-Schwartz inequality
and the definition of U we get that

〈u?T , τT+1〉 ≤ ‖u?T ‖ ‖τT+1‖ ≤ U ‖τT+1‖ . (30)

Next, we upper bound ‖τT+1‖ by
√
M . The Perceptron

update sets τt+1 = τt + ρtxtφt, where ρt = 1 if
a prediction mistake occurs on round t, and ρt = 0
otherwise. Expanding the squared norm of τt+1 we get

‖τt+1‖2 = ‖τt + ρtxtφt‖2

= ‖τt‖2 + 2ρtxt 〈τt, φt〉+ ρt ‖φt‖2 .

If ρt = 1 then a prediction mistake is made on round t
and xt 〈τt, φt〉 ≤ 0. Additionally, we assume that ‖φt‖ ≤
R. Using these two facts gives

‖τt+1‖2 ≤ ‖τt‖2 +R2ρt .

If ρt = 0 then τt+1 = τt and the above clearly
holds as well. Since τ1 ≡ 0, we obtain that, for all
t, ‖τt+1‖2 ≤ R2

∑t
i=1 ρi, and in particular ‖τT+1‖ ≤

R
√
M . Plugging this fact into Eq. (30) gives the upper

bound
〈u?T , τT+1〉 ≤ RU

√
M . (31)

13

Next we derive a lower bound on 〈u?T , τT+1〉. Again,
using the fact that τt+1 = τt + ρtxtφt gives

〈u?t , τt+1〉 = 〈u?t , τt + ρtxtφt〉
= 〈u?t , τt〉+ ρtxt 〈u?t , φt〉 .

The definition of the hinge-loss in Eq. (1) implies that
`?t = [1 − xt 〈u?t , φt〉]+ ≥ 1 − xt 〈u?t , φt〉. Since the
hinge-loss is non-negative, we get

ρtxt 〈u?t , φt〉 ≥ ρt(1− `?t) ≥ ρt − `?t .

Overall, we have shown that

〈u?t , τt+1〉 ≥ 〈u?t , τt〉+ ρt − `?t .

Adding the null term
〈
u?t−1, τt

〉
−
〈
u?t−1, τt

〉
to the above

and rearranging terms, we get

〈u?t , τt+1〉 ≥
〈
u?t−1, τt

〉
+
〈
u?t − u?t−1, τt

〉
+ ρt− `?t .

Using the Cauchy-Schwartz inequality on the term〈
u?t − u?t−1, τt

〉
, the above becomes

〈u?t , τt+1〉 ≥
〈
u?t−1, τt

〉
−‖u?t −u?t−1‖ ‖τt‖+ρt−`?t .

Again using the fact that ‖τt‖ ≤ R
√
M , we have

〈u?t , τt+1〉 ≥
〈
u?t−1, τt

〉
−R
√
M ‖u?t−u?t−1‖+ρt−`?t .

Applying this inequality recursively, for t = 2, . . . , T ,
gives

〈u?T , τT+1〉 ≥ 〈u?1, τ2〉 −R
√
M

T∑
t=2

‖u?t − u?t−1‖

+
T∑
t=2

ρt −
T∑
t=2

`?t .

(32)

Since τ1 ≡ 0, our algorithm necessarily invokes an
update on the first round. Therefore, τ2 = x1φ1, and
〈u?1, τ2〉 = x1 〈u?1, φ1〉. Once again, using the definition
of the hinge-loss in Eq. (1), we can lower bound,
〈u?1, τ2〉 ≥ 1 − `?1. Plugging this inequality back into
Eq. (32) gives

〈u?T , τT+1〉 ≥ −R
√
M

T∑
t=2

‖u?t−u?t−1‖+
T∑
t=1

ρt−
T∑
t=1

`?t .

Using the definitions of S and M , we rewrite the above
as

〈u?T , τT+1〉 ≥ −R
√
MS +M − L? .

Comparing the lower bound given above with the upper
bound in Eq. (31) proves the lemma.

Proof: [of Thm. 3] Since our randomized algorithm
is similar to the randomized algorithm of [6], one can

prove Thm. 3 using the proof technique of [6]. An
alternative route, which we adopt here, is to directly use
general regret bounds for online convex programming.
For completeness, let us first describe a setting which
is a special case of the algorithmic framework given in
[22] for online convex programming. This special case
is derived from Fig. 3.2 in [22] by choosing the strongly
convex function to be 1

2‖w‖
2 with a domain S and the

dual update scheme to be according to Eq. (3.11) in [22].
Let S ⊂ Rn be a convex set and let Π : Rn → S
be the Euclidean projection onto S, that is, Π(τ̃) =
arg minτ∈S ‖τ − τ̃‖. Denote U = maxτ∈S 1

2‖τ‖
2 and

let L be a constant. The algorithm maintains a vector τ̃t
which is initialized to be the zero vector, τ̃1 = (0, . . . , 0).
On round t, the algorithm sets ct =

√
tL/U and predicts

τt = Π(τ̃t/ct). Then it receives a loss function `t : S →
R. Finally, the algorithm updates τ̃t+1 = τ̃t − λt where
λt is a sub-gradient of `t computed at τt. Assuming that
‖λt‖ ≤

√
2L for all t, Corollary 3 in [22] implies the

bound

∀τ? ∈ S, 1
T

T∑
t=1

`t(τt)− 1
T

T∑
t=1

`t(τ?) ≤ 4
√

LU
T .

(33)
In our case, let S = [+1,−1]|V |. This choice of S
implies that S is a convex set and that τ? ∈ S. For
each round t, define `t(τ) = [1 − xt 〈τ, φt〉]+ and note
that if τ ∈ S then λt = −xtφt is a subgradient of
`t at τ . Therefore, the update of τ̃t given in Eq. (11)
coincides with the update τ̃t+1 = τ̃t − λt as required.
It is also simple to verify that the definition of τt given
in Eq. (12) coincides with τt = Π(τ̃t/ct). We have thus
shown that the algorithm defined according to Eq. (13)
and Eq. (11) is a special case of the online convex
programming setting described above. To analyze the
algorithm we note that U = maxτ∈S 1

2‖τ‖
2 = |V |

2 and
that for all t we have ‖λt‖ = 1. Therefore, Eq. (33)
gives

∀τ? ∈ S, 1
T

T∑
t=1

`t(τt)− 1
T

T∑
t=1

`t(τ?) ≤ 2
√
|V |
T .

(34)
Finally, making predictions based on τt yields the ran-
domized prediction given in Eq. (13). Thus, using Eq. (9)
we obtain that

`t(τt) = 2 E[x̂t 6= xt] and `t(τ?) = 2 E[y?t 6= xt] .

Combining the above equalities with Eq. (34) concludes
our proof.

Proof: [of Lemma 4] Let g′ denote the function
obtained by applying the mapping defined in Eq. (16) to
τ . Our goal is thus to show that g′ ≡ g. Let s ∈ Σ? be

14

an arbitrary sequence. If s = ε then g′(ε) = τ(ε) = g(ε).
If s /∈ V then g′(ε) = 0 and the definition of V
implies that g(ε) = 0 as well. We are left with the case
s = s1, . . . , sk ∈ V . In this case we get that,

g′(sk1) = (τ(sk1)− τ(sk2)) eαk

=
(
g(ε) +

k−1∑
i=0

g(skk−i)e
−α (i+1)

− g(ε)−
k−2∑
i=0

g(skk−i)e
−α (i+1)

)
eαk

= g(sk−(k−1), . . . , sk) e−α (k−1+1) eαk

= g(sk1) .

Lemma 8 Let x, b, c be non-negative scalars such that,
x− b

√
x− c ≤ 0, then, x ≤ c+ b2 + b

√
c.

Proof: Denote Q(y) = y2−b y−c and note that Q is
a convex second degree polynomial. Thus, Q(

√
x) ≤ 0

whenever
√
x is between the two roots of Q(y),

r1,2 =
b

2
±

√(
b

2

)2

+ c .

In particular,
√
x is smaller than the larger root of Q(y),

and thus
√
x ≤ b

2
+

√(
b

2

)2

+ c .

Since both sides of the above are non-negative we obtain
that

x ≤

 b

2
+

√(
b

2

)2

+ c

2

=
b

2

2

+ c+ b

√(
b

2

)2

+ c

≤ c+ b2 + b
√
c .

Ofer Dekel joined Microsoft Research in
2007, after receiving his Ph.D. in com-
puter science from the Hebrew University
of Jerusalem. His research interests include
statistical learning theory, online prediction,
and theoretical computer science.

Shai Shalev-Shwartz received the Ph.D. de-
gree in computer science from The Hebrew
University of Jerusalem, in 2007. From 2007
through 2009 he was a research Assistant
Professor of Computer Science at Toyota
Technological Institute at Chicago. He is now
an Assistant Professor of computer science
at the Hebrew University of Jerusalem. His
research interests are in the areas of machine
learning, online prediction, and optimization
techniques.

Yoram Singer is a senior research scientist
at Google. From 1999 through 2007 he was
an associate professor of computer science
and engineering at the Hebrew University of
Jerusalem. From 1995 through 1999 he was
a member of the technical staff at AT&T
Research. He received his Ph.D. in computer
science from the Hebrew University in 1995.
His research focuses on the design, analysis,
and implementation of statistical learning al-
gorithms.

15

	Introduction
	Margin-Based Context Trees and Linear Separation
	Randomized Predictions and the Hinge-Loss
	Learning Context Trees of Arbitrary Depth
	The Shallow Perceptron
	Discussion
	References
	Appendix
	Biographies
	Ofer Dekel
	Shai Shalev-Shwartz
	Yoram Singer

