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Abstract A common assumption in supervised machine learning is that the training exam-
ples provided to the learning algorithm are statistically identical to the instances encountered
later on, during the classification phase. This assumption is unrealistic in many real-world
situations where machine learning techniques are used. We focus on the case where features
of a binary classification problem, which were available during the training phase, are ei-
ther deleted or become corrupted during the classification phase. We prepare for the worst
by assuming that the subset of deleted and corrupted features is controlled by an adver-
sary, and may vary from instance to instance. We design and analyze two novel learning
algorithms that anticipate the actions of the adversary and account for them when training
a classifier. Our first technique formulates the learning problem as a linear program. We
discuss how the particular structure of this program can be exploited for computational ef-
ficiency and we prove statistical bounds on the risk of the resulting classifier. Our second
technique addresses the robust learning problem by combining a modified version of the
Perceptron algorithm with an online-to-batch conversion technique, and also comes with
statistical generalization guarantees. We demonstrate the effectiveness of our approach with
a set of experiments.
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1 Introduction

Supervised machine learning techniques are often used to train classifiers that are put to
work in complex real-world systems. A training set of labeled examples is collected and
presented to a machine learning algorithm, and the learning algorithm outputs a classifier.
The process of collecting the training set and constructing the classifier is called the training
phase, while everything that occurs after the classifier is constructed is called the classifica-
tion phase. In many cases, the training phase can be performed under sterile and controlled
conditions, and specifically, care can be taken to collect a high quality training set. In con-
trast, the classification phase often takes place in the noisy and uncertain conditions of the
real world. Specifically, features that were available during the training phase may become
missing or corrupted in the classification phase. In the worst case, the set of missing and
corrupted features may be controlled by an adversary, who may even be familiar with the
inner-workings of the classifier. In this paper, we explore the possibility of anticipating this
scenario and preparing for it in advance.

The problem of missing and corrupted features that are controlled by an adversary occurs
in a variety of classification problems. For example, consider the task of learning an email
spam filter. Once the training phase is complete, adversaries attempt to infiltrate the learned
filter by constructing emails with feature representations that appear to be benign. A reason-
able approach to email spam filtering should prepare for the actions of these adversaries.

Our setting also encompasses learning problems where features are deleted and corrupted
due to other, less malicious, circumstances. For example, say that our goal is to learn an au-
tomatic medical diagnosis system. Each instance represents a patient, each feature contains
the result of a medical test performed on that patient, and the purpose of the system is to
detect a certain disease. When constructing the training set, we go to the trouble of care-
fully performing every possible test on each patient. However, when the learned classifier is
eventually deployed as part of a diagnosis system, and applied to new patients, it is highly
unlikely that all of the test results will be available. Technical difficulties may prevent cer-
tain tests from being performed. Different patients may have different insurance policies,
each covering a different set of tests. A patient’s blood sample may become contaminated,
essentially replacing the corresponding features with random noise, while having no effect
on other features. We would still like our diagnosis system to make accurate predictions. In
this example, the classification-time feature corruption is not adversarial, but it is not purely
stochastic either. If a classifier is trained to tolerate adversarial noise, it will certainly be able
to handle less deliberate forms of noise.

If we do not limit the adversary’s ability to remove and modify features, our classifier
obviously stands no chance of making correct predictions. We overcome this problem by
assigning each feature with an a-priori importance value and assuming that the adversary
may remove or corrupt any feature subset whose total value is upper-bounded by a prede-
fined constant.

In this paper, we present two new learning algorithms for learning with missing and
corrupted features. Both approaches attempt to learn a noise-tolerant linear threshold clas-
sifier. The first approach formulates the learning problem as a linear program (LP), in a
way that closely resembles the quadratic programming formulation of the Support Vector
Machine (Vapnik 1998). However, the number of constraints in this LP grows exponen-
tially with the number of features. Using tricks from convex analysis, we derive a related
polynomial-size LP, and give conditions under which it is an exact reformulation of the
original exponential-size LP. When these conditions do not hold, the polynomial-size LP
still approximates the exponential-size LP, and we prove an upper bound on the approxi-
mation difference. The polynomial-size LP can be solved efficiently by exploiting certain
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properties of its structure. Despite the fact that the distribution of training examples is effec-
tively different from the distribution of examples observed during the classification phase,
we prove a statistical generalization bound for this approach.

We show that the time complexity of our LP-based approach scales linearly with the num-
ber of training examples. However, the running time of this approach grows quadratically
with the number of features and this poses a problem when the approach is applied to large
datasets. This brings us to our second algorithm: We define an online learning problem that
is closely related to the original statistical learning problem. We address this online prob-
lem with a modified version of the online Perceptron algorithm (Rosenblatt 1958), and then
convert the online algorithm into a statistical learning algorithm using an online-to-batch
conversion technique (Cesa-Bianchi et al. 2004). This approach benefits from the compu-
tational efficiency of the Perceptron, and from the generalization properties and theoretical
guarantees provided by the online-to-batch technique. Experimentally, we observe that the
efficiency of our second approach seems to come at the price of a small accuracy penalty.

Choosing an adequate regularization scheme is one of the keys to successfully learning
a linear classifier in our setting. Existing learning algorithms for linear classifiers, such as
the Support Vector Machine, often use L2 regularization to promote statistical generaliza-
tion. When L2 regularization is used, the learning algorithm may put a large weight on one
feature and compensate by putting a small weight on another feature. This promotes clas-
sifiers that focus their weight on the features that contribute the most during training. For
example, in the degenerate case where one of the features actually equals the correct label,
an L2 regularized learning algorithm is likely to put most of its weight on that one feature.
Some algorithms use L1 regularization to further promote sparse solutions (Bennett 1999).
In the context of our work, sparsity actually makes a classifier more susceptible to adver-
sarial feature-corrupting noise. Here, we prefer dense classifiers, which hedge their bets
across as many features as possible. Both of the algorithms presented in this paper achieve
this density by using a L∞ regularization scheme. It is interesting to note that our L∞ reg-
ularization scheme emerges as a natural choice in the statistical analysis of our LP-based
learning approach.

This paper is organized as follows. We conclude this section by referencing related work.
In Sect. 2 we present our LP-based learning algorithm. Section 2.1 casts the problem of
learning with feature deletion as an exponential-size LP, Sect. 2.2 presents a polynomial ap-
proximation to this program, and Sect. 2.3 describes an efficient customized LP solver that
takes advantage of the special structure of our problem. We prove statistical generalization
bounds in Sect. 2.4 and extend our discussion from the feature deletion scenario to the fea-
ture corruption scenario in Sect. 2.5. Next, in Sect. 3, we move on to our second algorithm,
which combines a modified Perceptron algorithm with an online-to-batch conversion tech-
nique. The modified Perceptron is presented in Sect. 3.1 and the online-to-batch technique
is discussed in Sect. 3.2. We conclude the paper with experimental results in Sect. 4 and
closing remarks in Sect. 5.

1.1 Related work

Previous papers on “noise-robust learning” mainly deal with the problem of learning with a
noisy training set, a research topic which is entirely orthogonal to ours. The learning algo-
rithms presented in Dietterich and Bakiri (1995) and Gamble et al. (2007) try to be robust to
general additive noise that appears at classification time, but not specifically to adversarial
feature deletion or corruption. Dalvi et al. (2004) presents adversarial learning as a one-shot
two-player game between the classifier and an adversary, and designs a robust learning al-
gorithm from a Bayesian-learning perspective. Our approach shares the motivation of Dalvi
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et al. (2004) but is otherwise significantly different. The topic of email spam filtering, and
its wider implications on learning in the face of an adversary, has recently received special
attention. Notable contributions on the intersection of spam filtering and machine learning
are Lowd and Meek (2005) and Wittel and Wu (2004). In the related field of online learning,
where the training and classification phases are interlaced and cannot be distinguished, Lit-
tlestone (1991) proves that the Winnow algorithm can tolerate various types of noise, both
adversarial and random.

Our work is most similar to the work in Globerson and Roweis (2006), and its more
recent enhancement in Teo et al. (2008). Our experiments, presented in Sect. 4, suggest that
our algorithms achieve significantly better performance, but we can also emphasize more
fundamental differences between the two approaches: Our approach uses L∞ regularization
to promote a dense solution, where Globerson and Roweis (2006) uses L2 regularization.
We allow features to have different a-priori importance levels, and take this information
into account in our algorithm and analysis, whereas Globerson and Roweis (2006) assume
uniform feature values. Finally, we prove statistical generalization bounds for our algorithms
despite the change in distribution at classification time, while Globerson and Roweis (2006)
do not discuss this topic.

This paper is a long version of the preliminary work published in Dekel and Shamir
(2008). In this paper, we present a more complete and elaborate theoretical analysis of our
algorithms, as well as a significantly improved empirical study. Specifically, this paper in-
cludes complete proofs of all theorems and new experiments using larger and more diverse
datasets. The extended scope of our experiments now includes empirical evidence that our
algorithms outperform the current state-of-the-art results of Teo et al. (2008), and new em-
pirical results in the feature corruption scenario. Moreover, the novel linear programming
algorithm presented in Sect. 2.3 addresses important computational problems that were ig-
nored in Dekel and Shamir (2008).

2 A linear programming formulation

In this section, and throughout the paper, we use lower-case bold-face letters to denote vec-
tors, and their plain-face counterparts to denote each vector’s components. We also use the
notation [n] as shorthand for {1, . . . , n}.

2.1 Feature deleting noise

We first examine the case where features are missing at classification time. Let X ⊆ R
n be

an instance space and let D be a probability distribution on the product space X × {±1}.
We receive a training set S = {(xi , yi)}m

i=1 sampled i.i.d from D, which we use to learn our
classifier. We assign each feature j ∈ [n] a value vj ≥ 0. Informally, we think of vj as the
a-priori informativeness of feature j , or as the importance of feature j to the classification
task. Next, we define the value of a subset J of features as the sum of values of the fea-
tures in that subset, and we denote V (J ) = ∑

j∈J vj . For instance, we frequently use V ([n])
when referring to

∑n

j=1 vj and V ([n] \ J ) when referring to
∑

j �∈J vj . Next, we fix a noise-
tolerance parameter N in [0,V ([n])] and define P = V ([n]) − N . During the classification
phase, instances are generated in the following way: First, a pair (x, y) is sampled from D.
Then, an adversary selects a subset of features J ⊂ [n] such that V ([n] \ J ) ≤ N , and re-
places xj with 0 for all j �∈ J . The adversary selects J for each instance individually, and
with full knowledge of the inner workings of our classifier. The noise-tolerance parameter
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N essentially acts as an upper bound on the amount of damage the adversary is allowed to
inflict. We would like to use the training set S (which does not have missing features) to
learn a binary classifier that is robust to this specific type of classification-time noise.

We focus on learning linear margin-based classifiers. A linear classifier is defined by
a weight vector w ∈ R

n and a bias term b ∈ R. Given an instance x, which is sampled
from D, and a set of coordinates J left intact by the adversary, the linear classifier outputs
b + ∑

j∈J wjxj . The sign of b + ∑
j∈J wjxj constitutes the actual binary prediction, while

|b+∑
j∈J wjxj | is understood as the degree of confidence in that prediction. A classification

mistake occurs if and only if y(b + ∑
j∈J wjxj ) ≤ 0, so we define the risk of the linear

classifier (w, b) as

R(w, b) = Pr
(x,y)∼D

(

∃J with V ([n] \ J ) < N s.t. y

(

b +
∑

j∈J

wjxj

)

≤ 0

)

. (1)

Since D is unknown, we cannot explicitly minimize (1). Thus, we turn to the empirical
estimate of (1), the empirical risk, defined as

1

m

m∑

i=1

[[

min
J :V ([n]\J )≤N

yi

(

b +
∑

j∈J

wjxi,j

)

≤ 0

]]

, (2)

where [[π]] denotes the indicator function of the predicate π . Minimizing the empirical risk
directly constitutes a difficult combinatorial optimization problem. Instead, we formulate a
linear program that closely resembles the formulation of the Support Vector Machine (Vap-
nik 1998). We choose a regularization parameter C > 0, and solve the problem

min
w,b,ξ

1

m

m∑

i=1

ξi

s.t. ∀i ∈ [m] ∀J : V ([n] \ J ) ≤ N yi

(

b +
∑

j∈J

wjxi,j

)

≥ V (J )

P
− ξi,

∀i ∈ [m] ξi ≥ 0,

‖w‖∞ ≤ C.

(3)

The objective function of (3) is called the empirical hinge-loss obtained on the sample S.
Since ξi is constrained to be non-negative, each training example contributes a non-negative
amount to the total loss. Moreover, the objective function of (3) upper bounds the empirical
risk of (w, b). More specifically, for any feasible point (w, b, ξ) of (3), ξi upper bounds the
indicator function of the event

min
J :V ([n]\J )≤N

yi

(

b +
∑

j∈J

wjxi,j

)

≤ 0.

To see this, note that for a given example (xi , yi), if there exists a feature subset J such
that V ([n] \ J ) ≤ N and yi(b + ∑

j∈J wjxj ) ≤ 0 then the first constraint in (3) enforces
ξi ≥ V (J )/P . The assumption V ([n] \ J ) ≤ N now implies that V (J ) ≥ P , and therefore
ξi ≥ 1. If such a set J does not exist, then the second constraint in (3) enforces ξi ≥ 0.

The optimization problem above actually does more than minimize an upper bound on
the empirical risk. It also requires the margin attained by the feature subset J to grow with
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proportion to V (J ). While a true adversary would always inflict the maximal possible dam-
age, our optimization problem also prepares for the case where less damage is inflicted,
requiring the confidence of our classifier to increase as less noise is introduced. Also, as-
suming that the margin scales with the number of features is a natural assumption to make
when we have feature redundancy, a necessary prerequisite for our approach to work in the
first place. We also restrict w to a hyper-box of radius C, which controls the complexity of
the learned classifier and promotes robust dense solutions. Moreover, this constraint is easy
to compute and makes our algorithms more efficient. Although (3) is a linear program, it is
immediately noticeable that the size of its constraint set may grow exponentially with the
number of features n. For example, if vj = 1 for all j ∈ [n] and if N is a positive integer,
then the linear program contains over

(
n

N

)
constrains per example. We deal with this problem

below.

2.2 A polynomial approximation

Taking inspiration from Carr and Lancia (2000), we find an efficient approximate formu-
lation of (3), which turns out to be an exact reformulation of (3) when vj ∈ {0,1} for all
j ∈ [n]. Specifically, we replace (3) with

min
1

m

m∑

i=1

ξi

s.t. ∀i ∈ [m] Pλi −
n∑

j=1

αi,j + yib ≥ −ξi,

∀i ∈ [m] ∀j ∈ [n] yiwjxi,j − vj

P
≥ λivj − αi,j ,

∀i ∈ [m] ∀j ∈ [n] αi,j ≥ 0,

∀i ∈ [m] λi ≥ 0 and ξi ≥ 0,

‖w‖∞ ≤ C,

(4)

where the minimization is over w ∈ R
n, b ∈ R, ξ ∈ R

m, λ ∈ R
m, and α1, . . . ,αm, each in

R
n. The number of variables and the number of constraints in this problem are both O(mn).

The following theorem explicitly relates the optimization problem in (4) with the one in (3).

Theorem 1 Let (w�, b�, ξ �,λ�,α�
1, . . . ,α

�
m) be an optimal solution to (4).

(a) (w�, b�, ξ �) is a feasible point of (3), and therefore the value of (4) upper-bounds the
value of (3).

(b) If vj ∈ {0,1} for all j ∈ [n], then (w�, b�, ξ �) is also an optimal solution to (3).
(c) If it does not hold that vj ∈ {0,1} for all j ∈ [n], and assuming ‖xi‖ ≤ 1 for all i, then

the difference between the value of (4) and the value of (3) is at most C.

As a first step towards proving Theorem 1, we momentarily forget about the optimization
problem at hand and focus on another question: given a specific triplet (w, b, ξ), is it a
feasible point of (3) or not? More concretely, for each training example (xi , yi), we would
like to determine if for all J with V ([n] \ J ) ≤ N it holds that

yi

(

b +
∑

j∈J

wjxi,j

)

≥ V (J )

P
− ξi . (5)
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We can answer this question by comparing −ξi with the value of the following integer
program:

min
τ∈{0,1}n

yib +
n∑

j=1

τj

(

yiwjxi,j − vj

P

)

s.t. P ≤
n∑

j=1

τj vj .

(6)

For example, if the value of this integer program is less than −ξi , then let τ ′ be an optimal
solution and we have that yi(b+∑n

j=1 τ ′
jwjxi,j ) < (

∑n

j=1 τ ′
j vj )/P −ξi . Namely, the set J =

{j ∈ [n] : τ ′
j = 1} violates (5). On the other hand, if there exists some J with V ([n] \J ) ≤ N

that violates (5) then its indicator vector is a feasible point of (6) whose objective value is
less than −ξi .

Directly solving the integer program in (6) may be difficult, so instead we examine the
properties of the following linear relaxation:

min
τ

yib +
n∑

j=1

τj

(

yiwjxi,j − vj

P

)

s.t. ∀j ∈ [n] 0 ≤ τj ≤ 1 and P ≤
n∑

j=1

τjvj .

(7)

The key result needed to analyze this relaxation is the following lemma.

Lemma 1 Fix an example (xi , yi), a linear classifier (w, b), and a scalar ξi > 0, and let θ

be the value of (7) with respect to these choices.

(a) If θ ≥ −ξi then (5) holds.
(b) There exists a minimizer of (7) with at most one non-integer element.
(c) In the special case where vj ∈ {0,1} for all j ∈ [n] and where N is an integer, θ ≥ −ξi

if and only if (5) holds.

The proof of Lemma 1 is rather technical and monotonous, and is therefore differed to
Appendix A. The lemma tells us that comparing the value of the linear program in (7) with
−ξi provides a sufficient condition for (5) to hold for the example (xi , yi). Moreover, this
condition becomes both sufficient and necessary in the special case where vj ∈ {0,1} for all
j ∈ [n]. This equivalence enables us to prove Theorem 1.

Proof of Theorem 1 We begin with the proof of claim (a). Let (w�, b�, ξ �,λ�,α�
1, . . . ,α

�
m)

be an optimal solution to the linear program in (4). Specifically, it holds for all i ∈ [m] that
α�

i and λ�
i are non-negative, that Pλ�

i − ∑n

j=1 α�
i,j + yib

� ≥ −ξ�
i , and that

∀j ∈ [n] yiw
�
jxi,j − vj

P
≥ λ�

i vj − α�
i,j .



Mach Learn

Therefore, it also holds that the value of the following optimization problem

max
αi ,λi

P λi −
n∑

j=1

αi,j + yib
�

s.t. ∀j ∈ [n] yiw
�
j xi,j − vj

P
≥ λivj − αi,j ,

∀j ∈ [n] αi,j ≥ 0 and λi ≥ 0,

(8)

is at least −ξ�
i . The strong duality principle of linear programming (e.g., Boyd and Vanden-

berghe 2004) states that the value of (8) equals the value of its dual optimization problem,
which is:

min
τ

yib
� +

n∑

j=1

τj

(

yiw
�
j xi,j − vj

P

)

s.t. ∀j ∈ [n] 0 ≤ τj ≤ 1 and P ≤
n∑

j=1

τjvj .

(9)

In other words, the value of (9) is also at least −ξ�
i . Using claim (a) of Lemma 1, we have

that

yi

(

b� +
∑

j∈J

w�
j xi,j

)

≥ V (J )

P
− ξ�

i ,

holds for all J with V ([n] \ J ) ≤ N . The optimization problem in (4) also constrains
‖w‖∞ ≤ C and ξi ≥ 0 for all i ∈ [m], thus, (w�, b�, ξ �) satisfies the constraints in (3). Since
(3) and (4) have the same objective function, the value of (3) is upper bounded by the value
of (4).

Claim (b) of the theorem states that if vj ∈ {0,1} for all j ∈ [n] then (w�, b�, ξ �) is an
optimum of (3). Assume the contrary, namely, assume that there exist w′, b′, and ξ ′ in the
feasible region of (3) for which

∑m

i=1 ξ ′
i <

∑m

i=1 ξ�
i . Using claim (c) of Lemma 1, we know

that the value of (9) (with w�
j replaced by w′

j ) is at least −ξ ′
i for all i ∈ [m]. Once again using

strong duality, we have that the value of (8) (with w�
j replaced by w′

j ) is at least −ξ ′
i for all

i ∈ [m]. Moreover, let α′
i and λ′

i denote the optimizers of (8) for all i ∈ [m]. We conclude
that (w′, b′, ξ ′,λ′,α′

1, . . . ,α
′
m) is a feasible point of (4). This contradicts our assumption that∑m

i=1 ξ�
i is minimal over the feasible set of (4).

Finally, we prove claim (c) of the theorem. Let (w′, b′, ξ ′) be an optimal solution to the
exponential optimization problem in (3) and recall that (w�, b�, ξ �,λ�,α�

1, . . . ,α
�
m) denotes

the optimal solution to (4). We have already proven that
∑m

i=1 ξ ′
i ≤ ∑m

i=1 ξ�
i , and our current

focus is on bounding the difference between these two sums.
Let (ξ̄ , λ̄, ᾱ1, . . . , ᾱm) be the optimal solution to (4) with the additional constraints w =

w′ and b = b′. Note that (4) with these additional constraints still has a non-empty feasible
set, for instance by setting each λ̄j to zero, setting ᾱi,j so as to satisfy the second constraint
in (4), and finally setting ξ̄ to satisfy the first constraint in (4). These additional constraints
decrease the feasible region of (4), and therefore

∑m

i=1 ξ�
i ≤ ∑m

i=1 ξ̄i . It now suffices to prove
an upper bound on

∑m

i=1 ξ̄i − ∑m

i=1 ξ ′
i .

We define I to be the set {i ∈ [m] : ξ̄i > ξ ′
i } and note that

m∑

i=1

ξ̄i −
m∑

i=1

ξ ′
i ≤

∑

i∈I

(ξ̄i − ξ ′
i ).
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For every i ∈ I , we have that 0 ≤ ξ ′
i < ξ̄i , namely, ξ̄i is strictly greater than zero. Therefore,

we know that the first constraint in (4) is binding, and

−ξ̄i = P λ̄i −
n∑

j=1

ᾱi,j + yib
′.

Recall that the objective of (4) is to minimize ξ̄i , which is equivalent to maximizing P λ̄i −∑n

j=1 ᾱi,j + yib
′ subject to the other constraints of (4). In other words, −ξ̄i equals the value

of (8) (with (w�, b�) replaced by (w′, b′)). Using strong duality, this value equals the value
of (9) (with (w�, b�) replaced by (w′, b′)). Letting τ ′ denote the optimal solution to (9) (with
(w�, b�) replaced by (w′, b′)), we have that

−ξ̄i = yib
′ +

n∑

j=1

τ ′
j

(

yiw
′
j xi,j − vj

P

)

.

Using claim (b) of Lemma 1, we may assume, without loss of generality, that τ ′
2, . . . , τ

′
n are

all integers. We can therefore write

−ξ̄i = yib
′ +

n∑

j=1

�τ ′
j�

(

yiw
′
j xi,j − vj

P

)

− (1 − τ ′
1)

(

yiw
′
1xi,1 − v1

P

)

.

As previously discussed, −ξ ′
i is the value of the integer program in (6), with w replaced

by w′ and b replaced by b′. Since �τ ′
1�, . . . , �τ ′

n� is contained in the feasible set of (6), we
conclude that

−ξ̄i ≥ −ξ ′
i − (1 − τ ′

1)

(

yiw
′
1xi,1 − v1

P

)

.

Rearranging terms above, we get

ξ̄i − ξ ′
i ≤ (1 − τ ′

1)

(

yiw
′
1xi,1 − v1

P

)

.

Upper-bounding (1 − τ ′
1) ≤ 1, yiw

′
1xi,1 ≤ C, and − v1

P
≤ 0 gives ξ̄i − ξ ′

i ≤ C.
Overall, we have shown that

∑
i∈I ξ̄i −ξ ′

i ≤ mC. Recalling the beginning of our proof, we
have that

∑m

i=1 ξ�
i − ∑m

i=1 ξ ′
i ≤ mC. Dividing both sides of this inequality by m concludes

our proof. �

We have established that the linear program in (4) is an adequate approximation, and
sometimes even an exact reformulation, of the exponential linear program in (3). However,
the linear program in (4) can still be very large for practical classification problems, as both
the number of variables and number of constraints scales with mn. Nevertheless, this linear
program has a very special structure that can be exploited to obtain an efficient solution. In
the next section, we show that the practical complexity of solving this linear program, using
a customized interior-point method, is O(mn2), with storage requirement O(mn).

2.3 Solving the linear program efficiently by exploiting its structure

The linear program in (4) has a special structure than should be exploited when calculating
the optimal solution. We turn to primal-dual interior-point methods to solve our problem.
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A detailed description of interior-point optimization algorithms exceeds the scope of our
paper, and we refer the interested reader to Wright (1997) and Boyd and Vandenberghe
(2004). In this subsection, we assume a general familiarity with interior-point methods, and
discuss only the details that are specific to our problem. We note that a customized LP
solver is required because generic LP solvers, even ones that exploit sparsity, do not solve
our problem efficiently.

First, we put the linear program in (4) in standard form. The primal and dual formulations
of a standard linear program are

Primal: minimize cT p Dual: maximize bT q

subject to Ap = b, p ≥ 0 subject to AT q ≤ c
(10)

where p is the vector of primal variables and q is the vector of dual variables. Our linear
program can be conveniently put into the dual standard form with variables

q = [qT
1 · · ·qT

m wT b]T where ∀i ∈ [m] qi = [αi1 · · ·αin ξi λi]T .

Correspondingly, the coefficient matrix A is given by

A =

⎡

⎢
⎢
⎢
⎣

A1 −In+2

. . .
. . .

Am −In+2

B1 · · · Bm E −E

⎤

⎥
⎥
⎥
⎦

, (11)

where

Ai =
⎡

⎢
⎣

−In 1n

−1

vT −P

⎤

⎥
⎦ , Bi = −yi

[
diag(xi )

1

]

, E =
[

In

0T
n

]

, (12)

In+2 is the (n + 2)-dimensional identity matrix, 1n is the n-dimensional all-ones column
vector, 0n is the n-dimensional all-zeros column vector, and diag(xi ) is a diagonal matrix
with the vector xi on its diagonal. We note that the Ai ’s are identical and have an arrow
structure, namely, the only non-zero elements in Ai are on its main diagonal, its last row,
and its last column.

The vectors b and c are given by

b = [
bT

1 · · ·bT
m 0T

n+1

]T
where ∀i ∈ [m] bi =

[

0T
n

−1

m
0

]T

,

c = [
cT

1 · · · cT
m0T

m(n+2)C1T
2n

]T
where ∀i ∈ [m] ci =

[−1

P
vT 0

]T

.

In the dual standard form, the number of variables and the number of inequality con-
straints are, respectively,

Nvar = m(n + 2) + n + 1, Ncon = m(2n + 3) + 2n.

The matrix A is of size Nvar × Ncon, and the number of non-zero elements in the matrix
A is m(5n + 5) + 2n. Therefore, A is an extremely sparse matrix. Moreover, the non-zero
elements in A form a special block structure, with many of the blocks identical.
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Primal-dual interior-point methods iterate simultaneously over the variables (p,q, s),
where s is the dual slack variable defined as s = c − AT q. They follow the simple outline:

given starting point (p,q, s), which may be infeasible, but must satisfy (p, s) > 0.
repeat:

1. Compute the primal-dual search direction (	p,	q,	s).
2. Choose step length η and update: (p,q, s) := (p,q, s) + η(	p,	q,	s).

until solution precision is reached.

In step 1, we compute the search direction by solving the normal equation

ADAT 	q = r (13)

for 	q and then obtaining (	p,	s) by simple substitutions. Here, D is a diagonal matrix
with pi/si as its ith diagonal element. The right-hand side vector r is generated based on the
current values of (p,q, s). The specific definition of r varies between different interior-point
variants. Our method of exploiting the problem structure in solving the normal equation
(explained below) is independent of the right-hand side vector r, thus it applies to all variants
of primal-dual interior-point methods.

In order to solve a linear program to sufficient accuracy, the best theoretical bound on
the number of iterations required for primal-dual interior-point methods is O(

√
Ncon) (see

for example Wright 1997). In practice, however, the number of iterations required hardly
grows with the problem size. It is fairly safe to say that a reasonable constant, say 100,
would be enough to bound the number of iterations required for most problems we are able
to solve today. Therefore, the practical complexity of solving our linear program is on the
same order as the number of floating-point operations (flops) performed on each iteration,
which in our case is dominated by the flop count for solving the normal equation (13).

The matrix ADAT in (13) has a block-arrow structure. To see this, we partition the diag-
onal matrix D into smaller diagonal matrices D1, . . . ,D2m+2, corresponding to the blocks of
columns in A (see (11)), and we have

ADAT =

⎡

⎢
⎢
⎢
⎣

A1D1AT
1 + Dm+1 A1D1B1

. . .
...

AmDmAT
m + D2m AmDmBm

B1D1AT
1 · · · BmDmAT

m DS

⎤

⎥
⎥
⎥
⎦

(14)

where

DS =
m∑

i=1

BiDiBi + E(D2m+1 + D2m+2)ET .

We solve the normal equation (13) via block elimination (see Boyd and Vanden-
berghe 2004, Chap. 4). We first partition the vector r into r1, . . . , rm, rS , and 	q into
	q1, . . . ,	qm,	qS , corresponding to the block structure of ADAT . There are four steps
in the block elimination approach:

1. Solve the following m sets of linear equations for z1, . . . , zm

∀i ∈ [m] (AiDiAT
i + Dm+i )zi = ri . (15)
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2. Form the Schur complement matrix S

S = DS −
m∑

i=1

BiDiAT
i (AiDiAT

i + Dm+i )
−1AiDiBi . (16)

3. Solve the following linear system for 	qS

S	qS = rS −
m∑

i=1

BiDiAT
i zi . (17)

4. Obtain 	q1, . . . ,	qm through substitutions

∀i ∈ [m] 	qi = zi − (AiDiAT
i + Dm+i )

−1	qS. (18)

Without exploiting further structure, the overall flop count for the block elimination ap-
proach is O(mn3), with corresponding storage requirement O(mn2) (see Appendix B for
details). Luckily, there is additional structure in the problem that allows further reduction in
both time and space complexities.

Recall that the matrices Ai have an arrow structure. In particular, each Ai has only one
dense column. Because of this, the matrices AiDiAT

i +Dm+i , although dense, have an arrow-
plus-rank-one structure. More precisely,

AiDiAT
i + Dm+i = Wi + uiuT

i , (19)

where Wi is a sparse arrow matrix (similar in structure to Ai ), and ui is a scaled version of
the last column in Ai . With this structure, each of the linear systems in (15) can be written
as

(Wi + uiuT
i )zi = ri .

The efficient way for solving such linear systems is to first solve two sparse linear systems

Wi z̄i = ri , Wi ūi = ui , (20)

and then apply the Sherman-Woodbury-Morrison formula (see, e.g., Boyd and Vanden-
berghe 2004, Appendix C.4.3):

zi = z̄i − uT
i z̄i

1 + uT
i ūi

ūi . (21)

By exploiting the arrow-plus-rank-one structure as above in solving the linear systems
in (15), (16) and (18), the overall flop count for solving the normal equation is reduced to
O(mn2), with storage requirement O(mn). The details of the complexity analysis are given
in Appendix B.

2.4 Generalization bounds

Next, we formally analyze the generalization performance of the classifier learned in our
framework. Our analysis builds on the PAC-Bayesian theorem, given in McAllester (2003).
Throughout, we assume that ‖x‖∞ ≤ 1 with probability 1 over D. For simplicity, we assume
that the bias term b is 0, and that vj > 0 for all j . These assumptions can be relaxed at
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the cost of a somewhat more complicated analysis. Given a classifier w, define the γ -loss
attained on the example (x, y) as

�γ (w;x, y) =
[[

min
J :V ([n]\J )≤N

y
∑

j∈J

wjxj <
γV (J )

P

]]

, (22)

where [[·]] denotes the indicator function. Note that �0(w;x, y) simply indicates the occur-
rence of a classification mistake on example (x, y) in our adversarial feature deletion setting.
Therefore, E[�0(w;x, y)] = R(w,0), where R is the risk defined in (1). Overloading our no-
tation, we define the empirical γ -loss attained on a sample S as

�γ (w;S) = 1

m

m∑

i=1

�γ (w;xi , yi).

We now state the main technical theorem of this section.

Theorem 2 Let S = {(xi , yi)}m
i=1 be a sample of size m drawn i.i.d. from D. For any γ ≥ 0,

κ > 0 and for any δ > 0, with probability at least 1 − δ, it holds for all w ∈ R
n with

‖w‖∞ ≤ C that

E[�γ (w;x, y)] ≤ sup

{

ε : KL(�γ+κ(w;S)‖ε) ≤ β(m, δ, κ)

m − 1

}

,

where

β(m, δ, κ) = ln

(
m

δ

)

+
n∑

j=1

ln

(

max

{
4PC

κvj

,1

})

and KL is the Kullback-Leibler divergence. The above implies the weaker bound

E[�γ (w;x, y)] ≤ �γ+κ(w;S) +
√

2�γ+κ (w;S)β(m, δ, κ)

m − 1
+ 2β(m, δ, κ)

m − 1
.

Plugging in γ = 0, and using the weaker bound for simplicity, we get the following
corollary:

Corollary 1 Under the conditions of Theorem 2, for any κ > 0, it holds with probability at
least 1 − δ that the expected risk of any w ∈ R

n (with ‖w‖∞ ≤ C) is at most

�κ(w;S) +
√

2�κ(w;S)β(m, δ, κ)

m − 1
+ 2β(m, δ, κ)

m − 1
.

The proof of the theorem follows along similar lines to the PAC-Bayesian bound for
linear classifiers in McAllester (2003), while carefully working around the problems that
arise from our non-standard definition of the γ -loss in (22). Our proof relies on the following
lemma.

Lemma 2 Let w ∈ R
n, x ∈ [−1,1]n, y ∈ {±1} and κ > 0 be such that �κ(w;x, y) = 0. Let

w′ ∈ R
n and κ ′ ∈ [0, κ] be such that for all j ∈ [n] it holds that |wj − w′

j | ≤ κ ′vj

P
. Then it

holds that �κ−κ ′(w′;x, y) = 0.
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Proof If �κ(w;x, y) = 0, it holds that

∀J : V ([n] \ J ) ≤ N y
∑

j∈J

wjxj ≥ κV (J )

P
. (23)

The conditions on x, y, w′, and κ ′ imply that |ywjxj − yw′
j xj | ≤ κ ′vj

P
, and particularly

∀J : V ([n] \ J ) ≤ N y
∑

j∈J

wjxj − y
∑

j∈J

w′
j xj ≤ κ ′V (J )

P
. (24)

Subtracting both sides of the inequality in (24) from the respective sides of (23) proves the
lemma. �

Proof of Theorem 2 To facilitate the proof, we introduce some additional notation. Given a
distribution Q over the space of linear classifiers [−C,C]n, define

�γ (Q;S) = Ew∼Q[�γ (w;S)].

Furthermore, denote

�γ (Q; D) = Ew∼Q,(x,y)∼D[�γ (w;x, y)].
Let B ⊆ R

n be an axis-aligned box, defined as

B =
n∏

j=1

[

max

{

wj − κvj

2P
,−C

}

, min

{

wj + κvj

2P
,C

}]

,

and let Q be the uniform distribution over B . For any w′ ∈ B and for all j ∈ [n] it holds that

|wj − w′
j | ≤

κvj

2P
.

Combining the above inequality with Lemma 2, for any example (xi , yi) in our sample S,
we have that �γ+κ(w;xi , yi) = 0 implies �γ+κ/2(w′;xi , yi) = 0, and that in turn implies
�γ (w;xi , yi) = 0. Overall, we have �γ (w;S) ≤ �γ+κ/2(w′;S) ≤ �γ+κ(w;S). These inequal-
ities also hold if we take the expectation over w′ sampled from Q, namely,

�γ (w;S) ≤ �γ+κ/2(Q;S) ≤ �γ+κ (w;S). (25)

The inequalities above continue to hold if we take expectation over S sampled i.i.d. accord-
ing to D, giving

�γ (w; D) ≤ �γ+κ/2(Q; D) ≤ �γ+κ(w; D). (26)

Now let P be the uniform distribution over the box [−C,C]n, which defines the set of
all possible classifiers. Using the PAC-Bayesian theorem (McAllester 2003), we have that,
with probability at least 1 − δ,

�γ+κ/2(Q; D) ≤ sup

{

ε : KL(�γ+κ/2(Q;S)‖ε) ≤ KL(Q‖P) + ln m
δ

m − 1

}

.
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From this, it follows that

�γ (w; D) ≤ sup

{

ε : KL(�γ+κ(w;S)‖ε) ≤ KL(Q‖P) + ln m
δ

m − 1

}

. (27)

This is a straightforward consequence of (25), (26) and the convexity of the KL function.
Since Q and P are uniform, KL(Q‖P) is simply the logarithm of the volume ratio be-

tween [−C,C]n and B , which is upper-bounded by

KL(Q‖P) ≤
n∑

j=1

ln

(

max

{
4PC

κvj

,1

})

.
�

It is interesting to note that L∞ regularization emerges as the most natural one in this
setting, since it induces the most convenient type of margin for relating the �γ , �γ+κ/2, �γ+κ

loss functions as described above. This lends theoretical support to our choice of the L∞
norm in our algorithms.

2.5 Feature corrupting noise

We now shift our attention to the case where a subset of the features is corrupted with
random noise, and show that the same LP approach used to handle missing features can also
deal with corrupted features if one can attain a reasonably large margin. For simplicity, we
shall assume that all features are supported on [−1,1] with zero mean. Unlike the feature
deleting noise, we now assume that each feature selected by the adversary is replaced with
noise sampled from some distribution, also supported on [−1,1] and having zero mean. The
following theorem relates the risk of a classifier in the above setting, to its expected γ -loss
(defined in (22)) in the feature deletion setting. The expected γ -loss, E[�γ (w;x, y)], can
then be bounded using Theorem 2.

Theorem 3 Let ε, C, and N be arbitrary positives, and let γ be at least C
√

2N ln(1/ε).
Assume that we solve (4) with parameters C, N and with vj = 1 for all j ∈ [n]. Let w be the
resulting linear classifier, and assume for simplicity that the bias term b is zero. Let f be a
random vector-valued function on X , such that for every x ∈ X , f (x) is the instance x after
the feature corruption scheme described above. Then, using �γ as defined in (22), for (x, y)

drawn randomly from D, we have:

Pr
(
y〈w, f (x)〉 ≤ 0

) ≤ E
[
�γ (w;x, y)

] + ε.

Proof Let (x, y) be an example and let J denote the feature subset that remains uncor-
rupted by the adversary. Using Hoeffding’s bound and our assumption on γ , we have that
Pr(y

∑
j /∈J wjfj (x) ≤ −γ ) is upper bounded by ε. Therefore, with probability at least 1 − ε

over the randomness of f , it holds that

y〈w, f (x)〉 = y
∑

j∈J

wjxj + y
∑

j /∈J

wjfj (x) > y
∑

j∈J

wjxj − γ. (28)
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Let A denote the event that Hoeffding’s bound holds (note that this event depends just on
the randomness of the noise, not on (x, y) or the features selected by the adversary). Thus,
with probability at least 1 − ε over the randomness of f ,

Pr(y〈w, f (x)〉 < 0|A) ≤ Pr

(

y
∑

j∈J

wjxj ≤ γ

∣
∣
∣
∣A

)

≤ E[�γ (w;x, y)|A].

With probability at most ε, A does not hold, and we have just the trivial bound
Pr(y〈w, f (x)〉 < 0|¬A) ≤ 1. Using the law of total probability, the theorem follows. �

We conclude with an important observation. In the feature corruption setting, making
a correct prediction boils down to achieving a sufficiently large margin on the uncorrupted
features. Let r ∈ (0,1) be a fixed ratio between N and n, and let n grow to infinity. Assuming
a reasonable degree of feature redundancy, the term y

∑
j∈J wjxj grows as �(n). On the

other hand, Hoeffding’s bound tells us that y
∑

j �∈J wjxj grows only as O(
√

N). Therefore,
for large enough n, the first sum in (28) dominates the second one. This holds for r arbitrarily
close to 1. Namely, for problems with enough features and a reasonable feature redundancy
assumption, our approach’s ability to withstand feature corruption matches its ability to
withstand feature deletion.

3 Solving the problem with the perceptron

We now turn to our second learning algorithm, taking a radically different angle on the
problem. We momentarily forget about the original statistical learning problem and instead
define a related online prediction problem. In online learning there is no distinction be-
tween the training phase and the classification phase, so we cannot perfectly replicate the
classification-time noise scenario discussed above. Instead, we assume that an adversary re-
moves features from every instance that is presented to the algorithm. We address this online
problem with a modified version of the Perceptron algorithm (Rosenblatt 1958) and use an
online-to-batch conversion technique to convert the online algorithm back into a statistical
learning algorithm. The detour through online learning gives us efficiency while the online-
to-batch technique provides us with the statistical generalization properties we are interested
in.

3.1 Perceptron with projections onto the cube

We start with a modified version of the well-known Perceptron algorithm (Rosenblatt 1958),
which observes a sequence of examples ((xi , yi))

m
i=1, one example at a time, and incremen-

tally builds a sequence ((wi , bi))
m
i=1 of linear margin-based classifiers, while constraining

them to a hyper-cube. Before processing example i, the algorithm has the vector wi and the
bias term bi stored in its memory. An adversary takes the instance xi and reveals only a sub-
set Ji of its features to the algorithm, attempting to cause the online algorithm to make a pre-
diction mistake. In choosing Ji , the adversary is restricted by the constraint V ([n] \J ) ≤ N .
Next, the algorithm predicts the label associated with xi to be

sign

(

bi +
∑

j∈Ji

wi,j xi,j

)

.



Mach Learn

After the prediction is made, the correct label yi is revealed and the algorithms suffers a
hinge-loss

ξ(w, b;x, y) =
[

max
J :V ([n]\J )≤N

V (J )

P
− y

(

b +
∑

j∈J

wjxj

)]

+
, (29)

where P = V ([n])−N and [α]+ denotes the hinge function, max{α,0}. Note that the hinge
loss ξ(wi , bi;xi , yi) upper-bounds the indicator of a prediction mistake on the current ex-
ample, for any choice of Ji made by the adversary. We choose to denote the loss by ξ to
emphasize the close relation between ξ(wi , bi;xi , yi) and ξi in (3). Due to our choice of loss
function, we can assume that the adversary chooses the subset Ji that inflicts the greatest
loss.

The algorithm now uses the correct label yi to construct the pair (wi+1, bi+1), which is
used to make the next prediction. If ξ(w, b;x, y) = 0, the algorithm defines wi+1 = wi and
bi+1 = bi . Otherwise, the algorithm defines wi+1 using the following coordinate-wise update

j ∈ [n] wi+1,j =
{

[wi,j + yiτxi,j ]±C if j ∈ Ji,

wi,j otherwise,

and bi+1 = [bi + yiτ ]±C , where τ = C
√

n + 1/2m and [α]±C abbreviates the function
max{min{α,C},−C}. This update is nothing more than the standard Perceptron update with
constant learning rate τ , with an added projection step onto the hyper-cube of radius C. The
specific value of τ used above is the value that optimizes the cumulative loss bound below.
As in the previous section, restricting the online classifier to the hyper-cube helps us control
its complexity, while promoting dense classifiers. It also comes in handy in the next stage,
when we convert the online algorithm into a statistical learning algorithm.

Using a rather straightforward adaptation of standard Perceptron loss bounds, to the case
where the hypothesis is confined to the hyper-cube, leads us to the following theorem, which
compares the cumulative loss suffered by the algorithm with the cumulative loss suffered by
any fixed hypothesis in the hyper-cube of radius C.

Theorem 4 Choose any C > 0 and let w� ∈ R
n and b� ∈ R be such that ‖w�‖∞ ≤ C and

|b�| ≤ C. Let ((xi , yi))
m
i=1 be an arbitrary sequence of examples, with ‖xi‖1 ≤ 1 for all i.

Assume that this sequence is presented to our modified Perceptron, and let ξ(wi , bi;xi , yi)

be as defined in (29). Then it holds that 1
m

∑m

i=1 ξ(wi , bi;xi , yi) is upper-bounded by

1

m

m∑

i=1

ξ(w�, b�;xi , yi) + C

√
2(n + 1)

m
.

Proof Define 	i = ‖wi − w�‖2
2 + (bi − b�)2 − ‖wi+1 − w�‖2

2 − (bi+1 − b�)2. We prove the
theorem by bounding

∑m

i=1 	i from above and from below. First, we note that
∑m

i=1 	i is a
telescopic sum that collapses to

m∑

i=1

	i = ‖w1 − w�‖2
2 + (b1 − b�)2 − ‖wm+1 − w�‖2

2 − (bm+1 − b�)2.
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Using the facts that w1 is the zero vector, b1 = 0, and ‖wm+1 − w�‖2
2 + (bm+1 − b�)2 ≥ 0, we

obtain the upper bound

m∑

i=1

	i ≤ ‖w�‖2
2 + (b�)2 ≤ (n + 1)C2. (30)

Next, we lower bound each 	i individually. Let i be the index of a round on which a positive
loss is incurred, namely, ξ(wi , bi;xi , yi) > 0. Let x′ be the vector defined by

∀j ∈ {1, . . . , n} x ′
j =

{
xi,j if j ∈ Ji,

0 otherwise,

and define w′ = wi + yiτx′ and b′ = yiτ . Note that wi+1,j = [w′
j ]±C for all j , and that

bi+1 = [b′]±C . We can rewrite 	i as

	i = (‖wi − w�‖2 + (bi − b�)2 − ‖w′ − w�‖2 − (b′ − b�)2
)

+ (‖w′ − w�‖2 + (b′ − b�)2 − ‖wi+1 − w�‖2 − (bi+1 − b�)2
)
, (31)

denoting the first term on the right-hand side above by α and the second term by β . Using
the definitions of w′ and b′, α can be rewritten as

‖wi − w�‖2 + (bi − b�)2 − ‖wi + yiτx′ − w�‖2 − (bi + yiτ − b�)2.

Using the facts that ‖wi − w� + yiτx′‖2 = ‖wi − w�‖2 + 2yiτ 〈x′,wi − w�〉 + τ 2‖x′‖2 and
(bi − b� + yiτ )2 = (bi − b�)2 + 2yiτ (bi − b�) + τ 2, we can rewrite α as

−2yiτ 〈x′,wi − w′〉 − 2yiτ (bi − b�) − τ 2
(‖x′‖2 + 1

)
.

By definition, ξ(wi , bi;xi , yi) = V (Ji )

P
− yibi − yi〈wi ,xi〉 and ξ(w�, b�;xi , yi) ≥ V (Ji )

P
−

yib
� − yi〈w�,xi〉. We also know that ‖xi‖2

2 ≤ ‖xi‖2
1 ≤ 1. We use these facts to obtain the

following lower bound,

α ≥ 2τ
(
ξ(wi , bi;xi , yi) − ξ(w�, b�;xi , yi)

) − 2τ 2.

Moving onto the second term on the right-hand side of (31), note that if |b′| ≤ C then
(b′ − b�)2 − (bi+1 − b�)2 = 0. Otherwise, assuming w.l.o.g. that b′ ≥ 0, we have

(bi+1 − b�)2 = (C − b�)2 < (C − b� + |b′ − C|)2 = (b′ − b�)2.

Therefore, (b′ − b�)2 − (bi+1 − b�)2 is always non-negative. The same argument applies to
(w′

j − w�
j )

2 − (wi+1,j − w�
j )

2 for all j . Overall, we have that β ≥ 0, and that

	i ≥ α ≥ 2τ(ξ(wi , bi;xi , yi) − ξ(w�, b�;xi , yi)) − 2τ 2. (32)

Recall that the above holds for all rounds on which ξ(wi , bi;xi , yi) > 0. On rounds on which
ξ(wi , bi;xi , yi) = 0, the above holds trivially, since the left hand side equals zero while the
right hand side is non-positive. We conclude that (32) holds for all i. Summing (32) over all
i in 1, . . . ,m, we get

m∑

i=1

	i ≥ 2τ

m∑

i=1

(
ξ(wi , bi;xi , yi) − ξ(w�, b�;xi , yi)

) − 2mτ 2.
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Comparing the above to the upper bound in (30) and rearranging terms, we get

1

m

m∑

i=1

ξ(wi , bi;xi , yi) ≤ 1

m

m∑

i=1

ξ(w�, b�;xi , yi) ≤ (n + 1)C2

2τm
+ τ.

Plugging in the definition of τ proves the bound. �

We now have an online learning algorithm for our problem, and the next step is to convert
it into a statistical learning algorithm, with a risk bound.

3.2 Converting online to batch

To obtain a statistical learning algorithm, with risk guarantees, we assume that the sequence
of examples presented to the modified Perceptron algorithm is a training set sampled i.i.d.
from the underlying distribution D. We turn to the simple averaging technique presented
in Cesa-Bianchi et al. (2004) and define w̄ = 1

m

∑m

i=1 wi−1 and b̄ = 1
m

∑m

i=1 bi−1. (w̄, b̄) is
called the average hypothesis, and defines our robust classifier. We use the derivation in
Cesa-Bianchi et al. (2004) to prove that the average classifier provides an adequate solution
to our original problem.

Note that the loss function we use, defined in (29), is bounded and convex in its first two
arguments. Using Corollary 2 of Cesa-Bianchi et al. (2004), we have that for any δ > 0,
with probability at least 1 − δ

2 over the random sampling of S, the average hypothesis (w̄, b̄)

satisfies

E(x,y)∼D
[
ξ(w̄, b̄,x, y)

] ≤ 1

m

m∑

i=1

ξ(wi , bi;xi , yi) + (2C + φ)

√
ln( 2

δ
)

2m
. (33)

Setting

(w�, b�) = arg min
(w,b)

E(x,y)∼D
[
ξ(w, b;x, y)

]
s.t. ‖w‖∞ ≤ C and |b| ≤ C,

we use Hoeffding’s bound to get, for any δ > 0, with probability at least 1 − δ
2 over the

random sampling of S, that

1

m

m∑

i=1

ξ(w�, b�;xi , yi) ≤ E(x,y)∼D
[
ξ(w�, b�;x, y)

] + (2C + φ)

√
ln( 2

δ
)

2m
. (34)

Finally, using the union bound, (33) and (34) hold simultaneously with probability at least
1 − δ. Combining (33) and (34) with the inequality in Theorem 4 proves the following
corollary.

Corollary 2 For any δ > 0, with probability at least 1 − δ over the random sampling of S,
our algorithm constructs (w̄, b̄) such that E(x,y)∼D[ξ(w̄, b̄,x, y)] is at most

min
(w,b)∈H

E[ξ(w, b;x, y)] + (3C + φ)

√
2(n + 1 + ln( 2

δ
))

m
,

where φ = maxJ :V ([n]\J )≤N(V (J )/P ), and H is the set of all pairs (w, b) such that
‖w‖∞ ≤ C and |b| ≤ C.
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Using the fact that the hinge loss upper-bounds the indicator function of a prediction
mistake, regardless of the adversary’s choice of the feature set, we have that the expected
hinge loss upper-bounds R(w̄, b̄).

4 Experiments

In this section, we experimentally investigate the efficacy of our two proposed algorithms
in the face of feature-deleting and feature-corrupting adversaries. We use LP when referring
to our linear programming based approach and O2B when referring to our online-to-batch
based approach. We compare the performance of these algorithms with the performances of
the following two algorithms:

SVM A linear L2 support vector machine using SVMlight (Joachims 1998), which is trained
without regard to feature deletion/corruption in the test set. This algorithm allows us to
study the effect an adversary might have on a generic learning algorithm that is not tailored
to this setting.

TGRS0 The robust learning algorithm presented in Globerson and Roweis (2006). Con-
cretely, we implemented the efficient version of this algorithm, using a stochastic gradient-
descent algorithm, as described in Teo et al. (2008). As far as we know, this algorithm
represents the current state-of-the-art for the setting considered in this paper.

In all of our experiments, we simulated the adversary by greedily choosing the most
valuable features for each example, until the limit of N is reached. Specifically, the adversary
sorts the features in descending order by ywjxj/vj , and considers them one by one. He
chooses to remove/corrupt feature j if ywjxj > 0, and the noise limit N is still respected
after the removal. These chosen features are then either replaced with zeros, or replaced with
random Gaussian noise with the same mean and variance as the original feature.

4.1 Illustrative synthetic experiments

We begin with two illustrative synthetic experiments, which are meant to cleanly demon-
strate the importance of robust classification when one is faced with missing and corrupted
features. The first experiment is as follows: We generated a synthetic dataset of 1000 linearly
separable instances in R

20 and added label noise by flipping each label with probability 0.2.
Then, we added two copies of the actual label as additional features to each instance, for a
total of 22 features. We randomly split the data into equally sized training and test sets, and
trained an SVM classifier on the training set. We set vj = 1 for j ∈ [20] and v21 = v22 = 10,
expressing our prior knowledge that the last two features are more valuable. Using these fea-
ture values, we applied our LP-based algorithm with different values of the parameter N . We
removed one or both of the high-value features from the test set and evaluated the classifiers.
With only one feature removed both SVM and our approach attained a test error of zero.
With two features removed, the test error of the SVM classifier jumped to 0.477 ± 0.004
(over 100 random repetitions of the experiment), indicating that it essentially put all of its
weight on the two perfect features. With the noise parameter set to N = 20, our approach
attained a test error of only 0.22 ± 0.002. This is only marginally above the best possible
error rate for this setting.

Our second synthetic experiment focused on the way our approach utilizes feature re-
dundancy. The datasets for this experiment was created as follows: We started by creating
a linearly separable sample {(ui , yi)}200

i=1, where each ui is a column vector in R
3. This was
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Fig. 1 Results of the synthetic experiment based on feature redundancy. For each value of N , we report
average results over the 10-fold cross validation, as well as standard deviation. The left figure displays the
results for the feature deletion scenario, whereas the right figure displays the results for the feature corruption
scenario

done by sampling points from a standard Gaussian distribution in R
n, choosing a random

hyperplane in R
n and using it to label the points, and finally removing points whose distance

from the hyperplane was less than 1. Next, we generated a random matrix A of size 40 × 3
and set xi = Aui for all i. The result is a set of instances in R

40 with a large amount of
feature redundancy. Formally, any 3 features out of the 40 suffice to linearly separate the
sample, with probability 1. We then added random Gaussian noise to each feature, where
the noise distribution used for feature j was N (0,0.15j). In other words, the magnitude
of noise increased with the feature index, making the quality of the various features less
homogeneous.

We trained classifiers using the LP algorithm, the TGRS algorithm, and the SVM al-
gorithm, on 10 random train-test splits, with different values of the noise parameter N .
Parameter tuning, using logarithmic grid search, was done based on a held-out validation set
taken from the training data. We simulated the adversary with the appropriate level of N for
each classifier, and the results of this experiment are displayed in Fig. 1.

It is readily seen that our LP algorithm produces a classifier considerably more robust
than SVM. SVM put a significant portion of its weight on a small number of highly in-
formative features, and did not take full advantage of the feature redundancy of the data.
Compared to the TGRS algorithm, we achieve similar results in the feature deletion sce-
nario, and superior results in the feature corruption scenario.

4.2 Main experimental results

Our main set of experiments were conducted using the following publicly available
datasets:

breast : The Breast Cancer Wisconsin (Diagnostic) Dataset from the UCI repository
(Asuncion and Newman 2007). This dataset specifies characteristics of cell nuclei, and
the goal is to characterize a tumor as either malignant or benign. The datasets contains 569
instances, of which 357 are benign and 212 are malignant, with 10 features each.
spam : The Spambase Dataset from the UCI repository (Asuncion and Newman 2007),

which contain e-mails (described mostly by word counts) classified as either spam or non-
spam. The dataset contains 4601 instances, with 57 features each.
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usps : The training set of the USPS dataset of handwritten digits (Hastie et al. 2001),
which contains 9298 images, each assigned one of ten possible labels. Each image is rep-
resented by a 16×16 gray-scale pixel-map, for a total of 256 features. Since our algorithms
are designed to deal with binary classification problems, we constructed a binary dataset
from each pair of labels, for a total of

(10
2

) = 45 different problems.
mnist : The MNIST dataset of handwritten digits (LeCun et al. 1998), which contains

70,000 images. Each image is represented by a 26 × 26 gray-scale pixel-map, for a total
of 784 features. As with the previous dataset, we used this dataset to generate 45 different
binary classification problems.

We deliberately chose datasets of various sizes and with different levels of feature redun-
dancy. As a rule of thumb, it should be expected that high-dimensional datasets, those con-
taining many features, will have more feature redundancy. Thus, even if the same fraction
of features is deleted or corrupted, better results are expected on high-dimensional datasets.
This intuition is substantiated in the results reported below. We tested both feature deletion
and feature corruption scenarios with all datasets.

The summary of our empirical results is as follows. Our algorithms significantly outper-
form SVM in all but one experiment, which involved feature corruption with the breast
dataset. In this one case, all of the tested algorithms performed equally well. On the breast
and spam datasets, where feature redundancy is not especially high, the performance of our
algorithms is indistinguishable from the state-of-the-art TGRS algorithm. In other words,
the moderate level of feature redundancy in these datasets leaves little room to improve over
the TGRS classifier. However, on the usps and mnist datasets, where feature redundancy
is higher, our algorithms significantly outperform TGRS in both feature deletion and feature
corruption scenarios. In the remainder of this section, we present these results in detail.

An important decision we had to make when conducting these experiments is how to
choose the value vi associated with each feature. Recall that these values represent the im-
portance of the respective features to our classification problem, and that the adversary uses
these values to determine how much damage he is allowed to inflict. The simplistic choice
of setting all of these values to 1 is unsuitable for some of the datasets considered here. For
example, when our features represent pixels in an image, the corner pixels are much less in-
formative than the features in the center of the image. We used a heuristic, based on mutual
information, to set these values. Formally, we set vj to be

vj = 1

Z
max
c∈R

I
([[Xj > c]];Y )

,

where (Xj ,Y ) are random variables jointly distributed according to the uniform distribu-
tion over the set {(xi,j , yi)}m

i=1, and where Z is set such that
∑

vj = n. Roughly speaking,
our heuristic calculates the information contained in the optimal linear threshold function
applied to each individual feature.

On some datasets, such as spam, we observe that most of the features are equally im-
portant, and setting vj using this heuristic is not different than setting vj = 1 for all j . On
other datasets, such as mnist, setting vj = 1 for all j enables the adversary to completely
devastate our classifiers, as well as the classifiers trained using SVM and TGRS, even with
small values of N . It is reasonable to assume that prior knowledge on the importance of each
feature could be used to make important features less susceptible to malicious corruption.
In the image recognition example given above, we could conceivably use a more fault toler-
ant sensor on the important pixels. In our formulation of the learning problem, the varying
importance of different features is precisely captured by our non-uniform choice of vj .



Mach Learn

Fig. 2 Results of the breast dataset, for different values of N , with standard error. The left figure dis-
plays the results for the feature deletion scenario, whereas the right figure displays the results for the feature
corruption scenario

Fig. 3 Averaged results over 10 train-test splits of the spam dataset, for different values of N , with standard
error. The left figure displays the results for the feature deletion scenario, whereas the right figure displays
the results for the feature corruption scenario

We tested robustness to both feature deletion and feature corruption on ten different train-
test splits. We performed parameter tuning over a logarithmic grid of candidate parameters,
using a held-out validation set taken from the training data. The first dataset tested was the
relatively small breast dataset, with the results displayed in Fig. 2. In the feature deletion
scenario, all noise-robust algorithms perform approximately the same, and better than the
standard SVM. Once more, this shows the importance of robustness to feature deletion at
test time. In the feature corruption scenario, however, the results are noisy, without a sig-
nificant difference in the performance of the algorithms. This should not come as too much
of a surprise, due to the low dimension of this dataset. In this setting, it is very difficult to
overcome random Gaussian noise even when it is applied to a small number of features. In
the larger spam dataset, the results are better than the breast dataset (see Fig. 3). In both
the feature deletion and feature corruption scenario, our algorithm outperforms SVM, but
still achieve approximately the same accuracy as TGRS.

For the digit datasets, usps and mnist, we performed an all-pairs experiment, namely,
we tested the performance of the algorithms on the binary classification problem defined by
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Fig. 4 Averaged results over 10 train-test splits on the usps dataset for different values of N , with standard
error. The results displayed here are averaged over all 45 digit pairs. The left figure displays the results for the
feature deletion scenario, whereas the right figure displays the results for the feature corruption scenario

Fig. 5 Averaged results over 10 train-test splits on the usps dataset in the feature deletion scenario, for
different values of N , with standard error. Plot in row i and column j represent classification results on a
dataset composed of digits i and j
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Fig. 6 Averaged results over 10 train-test splits on the mnist dataset for different values of N , with standard
error. The results displayed here are averaged over all 45 digit pairs. The left figure displays the results for the
feature deletion scenario, whereas the right figure displays the results for the feature corruption scenario

Fig. 7 Averaged results over 10 train-test splits on the mnist dataset in the feature deletion scenario, for
different values of N , with standard error. Plot in row i and column j represent classification results on a
dataset composed of digits i and j

every possible digit pair (45 pairs in all). We present the average results over all digit pairs
for both feature deletion and feature corruption in Fig. 4 and Fig. 6. We also present the
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results for each individual digit pair in the feature deletion scenario in Fig. 5 and Fig. 7. In
all cases considered, our proposed algorithm clearly achieved better results than both SVM
and TGRS.

5 Discussion

We presented two learning algorithms that anticipate adversarial feature deletion and feature
corruption at classification time. A common idea behind both algorithms is that they simu-
late the actions of the adversary on the training data, and use L∞ regularization to promote
classifier density. Both algorithms come with statistical risk bounds, despite the fact that the
algorithms encounter different distributions at training time and at classification time. Our
experiments demonstrate a significant improvement over SVM across the board, and a sig-
nificant improvement over the current state-of-the-art technique on problems with sufficient
feature redundancy.

Our two algorithms come with similar theoretical guarantees and perform comparably
well in practice. The LP approach seems to have better accuracy when features are deleted,
while the O2B algorithm performs better in the feature corruption scenario. A main techni-
cal difference between the two algorithms is their use of memory: our interior point solu-
tion keeps the entire linear program in memory while the online-to-batch algorithm streams
through the data and has a constant-size memory footprint. For example, applying our im-
plementation of the interior point LP solver to the MNIST dataset required a server with a
16 GB memory. Additionally, the online-to-batch solution is simpler and easier to imple-
ment. These advantages make the online-to-batch approach a more practical solution. On
the other hand, in the feature deletion scenario, the LP approach seems to be more accurate.

This work focuses on static adversaries, which do not evolve and improve with time.
An interesting extension of this work would be to deal with adaptive adversaries, which
corrupt features one by one over time. Our online-to-batch approach could serve as a useful
starting-point for this research direction, as it uses an online learning algorithm as its main
building block. Although time is not an explicit component in our model, our algorithms can
still be useful when the adversary adapts. Concretely, consider the spam filtering example
described in the introduction, and assume that the spammer corrupts features one by one.
After enough time goes by and enough features become permanently damaged, our only
option is to design new features and to retrain a new classifier. This is inevitable in any
“arms-race” with an adversary. However, a robust classifier is able to survive for a longer
period of time before it must be replaced. By deliberately hedging our bets across many
features, we are able to slow down the arms-race cycle and to give ourselves more time to
respond to new attacks.

On a more general note, our work seems to have an interesting duality with a recent
trend in machine learning research, which is to develop sparse classifiers supported on a
small subset of the features. In our setting, we are interested in the exact opposite, and the
efficacy of using the L∞ norm is clearly demonstrated in our theory and in our empirical
evaluation. The trade-off between robustness and sparsity provides fertile ground for future
research.

Acknowledgements We thank the anonymous reviewers of this paper for helpful comments and sugges-
tions.
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Appendix A: Proof of Lemma 1

We prove claim (a) by proving its counter-positive, namely, we assume that there exists
a feature subset J with V ([n] \ J ) ≤ N for which (5) does not hold, and we prove that
θ < −ξi . Set τ ′

j = 1 for all j ∈ J and τ ′
j = 0 for all j ∈ ([n] \ J ). We now have that,

θ ≤ yib +
n∑

j=1

τ ′
j

(

yiwjxi,j − vj

P

)

< −ξi,

where the first inequality follows from the fact that the vector (τ ′
1, . . . , τ

′
n) is a feasible point

of (7), and the second inequality follows from the assumption that J violates (5) and from∑n

j=1 τ ′
j vj = V (J ).

Moving on to claim (b), let τ be a minimizer of (7) and let s be the number of elements
of τ in (0,1). If s ≤ 1 then there is nothing to prove, so we assume that s ≥ 2. We prove
claim (b) by showing we can find another minimizer of (7), which we denote by τ ′, with at
most s − 1 elements in (0,1).

First, we deal with some very simple cases. If τj ∈ (0,1) and wjxi,j = 0, then set τ ′
j = 1,

and set the remaining elements of τ ′ equal to the respective elements in τ . The new vector
τ ′ clearly satisfies the constraints of (7), while obtaining an objective function less than or
equal to that of τ . We conclude that τ ′ is a minimizer of (7) with at most s − 1 non-integer
elements. If wjxi,j �= 0 but vj = 0 then define

τ ′
j =

{
1 if yiwjxi,j < 0,

0 otherwise,

and set the remaining elements of τ ′ equal to the respective elements in τ . Again, we have
found a minimizer of (7) with at most s − 1 non-integer elements. Having dealt with these
simple cases first, we can now assume that wjxi,j �= 0 and that but vj > 0.

If s ≥ 2, assume without loss of generality that 0 < τ1 < 1 and 0 < τ2 < 1. Using our
assumption that v1 > 0 and v2 > 0, we assume without loss of generality that

yiw1xi,1

v1
≤ yiw2xi,2

v2
. (35)

We deal with two separate cases. First, if τ1 + (τ2v2/v1) ≤ 1 then define τ ′
1 = τ1 +

(τ2v2/v1), τ ′
2 = 0, and τ ′

j = τj for all j ∈ {3, . . . , n}. We now have that
∑n

j=1 τ ′
j vj =

∑n

j=1 τj vj , so τ ′ is a feasible point of (7). On the other hand, using the assumption in (35),
we also have that (τ2v2/v1)yiw1xi,1 ≤ τ2yiw2xi,2, and therefore

yi

n∑

j=1

τ ′
jwjxi,j ≤ yi

n∑

j=1

τjwjxi,j .

Once again, using the fact that
∑n

j=1 τ ′
j vj = ∑n

j=1 τj vj , we conclude that

yib +
n∑

j=1

τ ′
j

(

yiwjxi,j − vj

P

)

≤ yib +
n∑

j=1

τ ′
j

(

yiwjxi,j − vj

P

)

,

and therefore τ ′ is a minimizer of (7) with at most s − 1 elements in (0,1).
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The second case is where τ1 + (τ2v2/v1) > 1. In this case, set τ ′
1 = 1, τ ′

2 = τ2 − (1 −
τ1)v1/v2, and once again, τ ′

j = τj for all j ∈ {3, . . . , n}. Our assumptions imply that τ2 >

τ ′
2 > 0, and by definition we have

∑n

j=1 τ ′
j vj = ∑n

j=1 τj vj . Therefore, τ ′ is a feasible point
of (7). We can rewrite

yi

n∑

j=1

τ ′
jwjxi,j = yi

n∑

j=1

τjwjxi,j +
(

(1 − τ1)yiw1xi,1 − v1

v2
(1 − τ1)yiw2xi,2

)

.

Using (35), we know that the term in brackets above is non-positive. We conclude that the
value of the objective function obtained by τ ′ is smaller or equal to the value obtained by τ .
Again, we conclude that τ ′ is a minimizer of (7) with only s − 1 elements in (0,1). This
concludes the proof of claim (b).

Finally, we turn to proving claim (c). We assume that vj ∈ {0,1} for all j ∈ [n] and that
N is an integer. One direction of the claim follows from claim (a), so we focus on the other
direction, namely, we assume that (5) holds for all J with V ([n] \ J ) ≤ N , and we prove
θ ≥ −ξi . As we have just shown, there exists a minimizer of (7), which we now denote by τ ,
that has at most one element in (0,1). If all of the elements of τ are integers then τ is also
a solution to (6). As we have previously seen, checking that the value of (6) upper bounds
−ξi is equivalent to verifying that (5) holds for all J with V ([n] \ J ) ≤ N . Therefore, we
assume without loss of generality that 0 < τ1 < 1, and that τj ∈ {0,1} for all j ∈ {2, . . . , n}.
It must be the case that

yiw1xi,1 − v1

P
≥ 0, (36)

since otherwise we could decrease the objective function by increasing τ1, without violating
any of the constraints in (7). That would be in contradiction to our assumption that τ attains
a global minimum. Now define τ ′

1 = 0 and τ ′
j = τj for all j ∈ {2, . . . , n}. We know that∑n

j=1 τj vj ≥ P and we assumed that P is an integer. Therefore,

⌊
n∑

j=1

τjvj

⌋

≥ P.

Now note that the left-hand side above equals
∑n

j=1 τ ′
j vj , and therefore τ ′ is a feasible point

of (7). Using (36), we have that

yib +
n∑

j=1

τ ′
j

(

yiwjxi,j − vj

P

)

≤ yib +
n∑

j=1

τ ′
j

(

yiwjxi,j − vj

P

)

,

and τ ′ is a minimizer of (7) whose elements all have values in {0,1}. If θ < −yib − ξi then
define J = {j : τ ′

j = 1}, and

yib +
∑

j∈J

(

yiwjxi,j − vj

P

)

= yib +
n∑

j=1

τ ′
j

(

yiwjxi,j − vj

P

)

= θ < −ξi .

Rearranging terms above gives

yi

(

b +
∑

j∈J

wjxi,j

)

<
V (J )

P
− ξi .

This concludes our proof.
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Appendix B: Flop counts for solving the normal equation

In this appendix we give detailed analysis of the flop counts for solving the normal equa-
tion (13). We first go through the four steps of the block-elimination approach:

1. We solve the linear equations (15) using the factor-solve approach (e.g., Boyd and Van-
denberghe 2004, Appendix C.2). First we conduct the Cholesky factorization

AiDiAT
i + Dm+i = LiLT

i

where Li is a lower-triangular matrix. Then we do forward and backward substitutions
(the solve step):

Li z̃i = ri , LT
i zi = z̃i .

Let f be the flop count for the factorization and s be the flop count for the solve step
(two substitutions). The total flop count for this step is m(f + s).

2. To form the Schur complement in (16), we first compute the matrices (AiDiAT
i +

Dm+i )
−1AiDiBi by solving a linear system like (15) for each column of AiDiBi . Since

the factors Li have been pre-computed in step 1, we only need n + 1 solve steps, which
lead to a flop count of (n + 1)s for each i. Multiplication by the sparse matrix BiDiAT

i

(which has the same sparsity as AT
i ) takes 5(n + 1)2 flops. Together with the m matrix

additions, each with a cost (n + 1)2, the total flop count for forming the matrix S is
m((n + 1)s + 6(n + 1)2).

3. Forming the right-hand side vector in (17) takes 6m(n + 1) flops. The Cholesky factor-
ization of S takes (1/3)(n + 1)3 flops, and the two triangular solves take 2(n + 1)2 flops.
So the dominant flop count for this step is 6m(n + 1) + (1/3)(n + 1)3.

4. In the substitution step, we first compute the second term on the right-hand side of (18).
For each i, this takes s flops using a solve step with pre-computed factors Li . The vector
subtraction takes (n+2) flops for each i. The total flop count for this step is m(s +n+2).

The overall flop count for the block elimination approach is dominated by

m
(
f + (n + 3)s + 6(n + 1)2

) + (1/3)(n + 1)3. (37)

Now let’s take a closer look at the flop counts f and s for solving the linear systems
in (15). The matrices AiDiAT

i + Dm+i are all dense with size n + 2 by n + 2. Without
exploiting further structure, we have the factorization cost f = (1/3)(n + 2)3, and the solve
step costs s = 2(n + 2)2 (see, e.g., Trefethen and Bau 1997). Thus the overall flop count
in (37) is dominated by (7/3)m(n+2)3, or O(mn3). The corresponding storage requirement
would be O(mn2).

By further exploiting the arrow-plus-rank-one structure, instead of solving the dense lin-
ear systems in (15) directly, we solve the two sparse linear systems in (20) and then use the
rank-one update formula (21). To solve the two sparse linear systems, we need one factor-
ization step and two solve steps. Cholesky factor of Wi has the same sparsity as the lower
triangular part of Wi (no fill-in), and it only costs 3(n + 2) flops to compute. Each solve
step costs 6(n + 2) flops. The rank-one update in (21) also costs 6(n + 2) flops. The cor-
responding values for f and s in (37) are f = 3(n + 2) and s = 18(n + 2). Therefore, the
dominating terms in the complexity analysis is 24m(n + 2)2 + (1/3)(n + 1)3, or simply
O(mn2) (under the assumption m > n). It is easy to check that, by only storing the sparse
matrices Wi and vectors ui instead of the dense matrices AiDiAT

i + Dm+i , the storage cost
is reduced to O(mn).
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