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ABSTRACT 

 
A new trend is emerging in the semiconductor industry that 
future computation speedups will likely come more from 
parallelism than from having faster individual computing 
elements. Most algorithm designers for the current, HMM-
based speech recognition systems, which have the 
recognition performance significantly lower than that of 
human, have not embraced this trend. This is partly 
attributed to the state-of-the-art sequential algorithms that 
have involved extremely clever schemes to speed up single-
processor performance developed and matured over many 
years.  This invited presentation advances two arguments. 
First, much more powerful speech systems in the future 
generations will likely approach human performance with 
new architectures that integrate rich knowledge sources and 
overcome the reasonably well understood limitations of the 
current HMM-based systems. Second, the success of the 
above endeavor will require complete rethinking of 
computation issues, likely disposing of the traditional 
thinking of HMM-centric sequential processing and 
embracing parallel computing in the new architectures 
mimicking key aspects of the human speech processing 
system. Four case studies are provided in this paper 
extracted from some recent influential work that may shape 
the foundation of this potentially active research area. 
 

Index Terms — computation, parallelism, speech 
recognition, speech understanding, decoding, knowledge 
integration. 
 

1. INTRODUCTION 
 
Moore’s law has been a reliable predictor of the increased 
capability for computation and storage in computational 
systems for decades, creating enormous impact on the 
historical development of automatic speech recognition 
(ASR) and understanding systems. Larger and larger speech 
databases and recognition systems have been developed, 
along with more and more detailed models (such as complex 
hidden Markov model, or HMM) of speech and human 
language. Much of the planned future research in the ASR 
field has implicitly relied on a continued advance in 
computational capabilities (Baker et. al., 2009a, 2009b). 
However, the fundamentals of the progression based on 

Moore’s law have recently changed. The power density on 
microprocessors has increased to the point that higher clock 
rates would begin to melt the silicon. Consequently, at this 
point industry development is now focused on implementing 
microprocessors on multiple cores. The new road maps for 
the semiconductor industry reflect this trend, and future 
speedups will come more from parallelism than from having 
faster individual computing elements. For the most part, 
algorithm designers for speech systems have ignored 
investigation of such parallelism, since the advance of scalar 
capabilities has been so reliable. Building future generation 
ASR systems, as discussed in (Baker et. al., 2009a, 2009b; 
Deng and Huang, 2004), will require significantly more 
computation, and consequently researchers concerned with 
implementation will need to consider parallelism explicitly 
in their designs.  

The rest of the paper is organized as follows. In Section 
2, we provide an overview of the current, HMM-based ASR 
system design, with a focus on their computation 
architecture.  We will discuss in Section 3 some new trends 
in ASR research aimed to develop future-generation high-
performance ASR systems going beyond HMMs as the 
architectural basis, and analyze in which areas of ASR 
research parallelism in computing may be needed. In 
Section 4, we use four case studies to illustrate some recent 
work that are representative of such trends. 

 
2. OVERVIEW OF COMPUTATION 

ARCHITECURE IN CURRENT ASR SYSTEMS 
 

Current ASR systems have been built invariably based on 
statistical principles, as pioneered by the work of (Baker, 
1975; Jelinek, 1976). A source-channel mathematical model 
or a type of generative statistical model proposed therein is 
often used to formulate speech recognition problems. 
Briefly, the speaker’s mind decides the source word 
sequence W that is delivered through his/her text generator. 
The source is passed through a noisy communication 
channel that consists of the speaker’s vocal apparatus to 
produce the speech waveform and the speech signal 
processing component of the speech recognizer. Finally, the 
speech decoder aims to decode the acoustic signal X into a 
word sequence Ŵ , which is in ideal cases close to the 
original word sequence W. 
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The “fundamental equation” of speech recognition 
follows the following Bayes rule (Huang et. al., 2001; Deng 
and O'Shaughnessy, 2003): 
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where ( )P W and ( | )P X W constitute the probabilistic 
quantities computed by the language modeling and acoustic 
modeling components, respectively. The acoustic model is 
typically represented by an HMM, and language model by 
an N-gram model. As epitomized in the fundamental 
equation above, the decoding process in a speech 
recognizer’s operation is to find a sequence of words whose 
corresponding acoustic and language models best match the 
input feature vector sequence. Therefore, the process of such 
a decoding process with trained acoustic and language 
models is often referred to as a search process. This process 
determines the computation architecture in an ASR system. 

Speech recognition search is usually carried out with 
the Viterbi decoder, which is a sequential algorithm based 
on dynamic programming (DP). The reasons for choosing 
the Viterbi decoder involve arguments that point to speech 
as a left to right process and the efficiencies afforded by a 
time-synchronous process. One obvious (and brute-force) 
way is to search all possible word sequences and select the 
one with best posterior probability score. This, however, is 
not practically feasible. 

The Viterbi search can be executed efficiently via the 
trellis framework. It is a time-synchronous search algorithm 
that completely processes time t before going on to time 
t+1. For time t, each state is updated by the best score 
(instead of the sum of all incoming paths) from all states in 
at time t-1. When one update occurs, it also records the 
backtracking pointer to remember the most probable 
incoming state. At the end of the search, the most probable 
state sequence can be recovered by tracing back these 
backtracking pointers. Viterbi algorithm provides an optimal 
solution for handling nonlinear time warping between 
HMMs and the acoustic observation, word boundary 
detection and word identification in continuous speech 
recognition. This unified Viterbi search algorithm serves as 
the fundamental technique for most search algorithms in use 
in continuous speech recognition. 

Time-synchronous Viterbi search can be considered as 
a breadth first search with DP. Instead of performing a tree 
search algorithm, the DP principle helps create a search 
graph where multiple paths leading to the same search state 
are merged by keeping the best path. The Viterbi trellis is a 
representation of the search graph. Therefore, all efficient 
techniques for graph search algorithms can be applied to 
time-synchronous Viterbi search. Note that it is not 
necessary for the entire search space to be explored before 
the optimal path can be found. When the search space 
contains an enormous number of states in the HMM, it 
becomes impractical to pre-compile the composite HMM 
entirely and store it in the memory. It is preferable to 

dynamically build and allocate portions of the search space 
which is sufficient to search the promising paths. By using 
the graph search algorithm, only part of the entire Viterbi 
trellis is generated explicitly. By constructing the search 
space dynamically, the computation cost of the search is 
proportional only to the number of active hypotheses that is 
independent of the overall size of the potential search space. 
Therefore, dynamically generated trellis is a key to heuristic 
Viterbi search for efficient large-vocabulary continuous 
speech recognition. 

Unfortunately, the core computation in current ASR 
systems, DP- based decoding algorithms, has been based on 
intrinsically sequential algorithms described above. These 
algorithms have exploited extremely clever schemes to 
speed up single-processor performance (e.g., Huang et. al. 
2001; Jelinek, 1997).  Recent work has appeared on using 
vector architectures with parallelism to implement the 
decoder, with the finding that the traditional HMM-based 
decoding algorithm is difficult to vectorize as the 
vocabulary grows (Janin, 2004).  More recent work (Chong 
et. al., 2008) successfully parallelized the HMM-based 
decoding algorithm for a large vocabulary system (50,000 
words and one million states). These works, however, are 
confined with the conventional HMM framework and are 
thus difficult to break the fundamental limitations imposed 
by the framework. 

 
3. COMPUTATION ARCHITECTURE FOR FUTURE-

GENERATION, KNOWLEDGE-RICH ASR 
 
There have been strong consensus in the research 
community that the future-generation ASR will  need to 
overcome fundamental limitations of the current HMM 
framework and that more powerful speech systems in the 
future will likely approach human performance with new 
architectures that integrate rich knowledge sources (e.g., 
Baker et. al., 2009a, 2009b; Lee, 2003). This provides 
opportunities to rethink many of the computation issues in 
ASR. HMM-bound sequential processing may not need to 
dominate the computation. The multi-stream analysis for 
ASR as discussed in (Baker et. al., 2009a, 2009b) may 
require heterogeneous parallelism in both the algorithms and 
the computational architecture.  
       While the incorporation of new types of multiple 
knowledge sources has been on the research agenda for 
decades for ASR, we are coming into a period where the 
resources are available to support this strategy in a much 
more significant way. For instance, it is now possible to 
incorporate both larger sound units than the typical phone or 
sub-phone elements even for large vocabulary recognition, 
while still preserving the advantage of the smaller units. 
Further, more fundamental units such as articulatory 
features can be considered (Sun and Deng, 2002). At the 
level of the signal processing “front end”, we no longer need 
to settle on the single best representation, as multiple 
representations have been shown to be helpful (e.g., Morgan 
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et. al. 2005). Such multiple representations or streams of 
information can be even more heterogeneous, e.g., coming 
from different modalities such as bone-conducted vibration, 
cameras, or low-power radar. In all of these cases, new 
computation architectures are required that can aggregate all 
of the modules’ responses, quite different from the current 
HMM systems which typically use singe-stream 
information. Various approaches for this have been tried for 
some time, but we are only now beginning to tackle the task 
of integrating so many different kinds of sources, due to the 
emerging availability of the kind of resources required to 
learn how to best do the integration. 

 
4. CASE STUDIES 

 
In this section, we further discuss some new trends in 

ASR research that are characterized by integrating rich, 
multi-stream knowledge sources and the associated 
computation issues involving parallel computing. In 
particular, we use four case studies to illustrate some recent 
work that are representative of such trends. 
 
4.1. Parallel detectors and detection-based ASR 
 
In the research direction proposed in (Lee, 2003) and 
reported in (Bromberg, et. al., 2007; Lee et. al., 2007), the 
authors argued that although we have learned a great deal 
about how to build practical HMM-based ASR systems for 
almost any spoken language without the need of a detailed 
understanding of the language, the existing technology is 
fragile in that careful designs have to be rigorously practiced 
to overcome technology deficiencies. Furthermore, the 
accuracy often declines dramatically in adverse conditions 
to an extent that the ASR system becomes unusable. When 
compared with human speech recognition, the state-of-the-
art ASR systems usually give much larger error rates even 
for rather simple tasks. They note that human beings 
perform speech recognition by integrating multiple 
knowledge sources from bottom up and that a human 
determines the linguistic identity of a sound based on 
detected evidences that exist at various levels of the speech 
knowledge hierarchy. A human listener detects acoustic and 
auditory evidences, weigh them and combine them to form 
cognitive hypotheses, and then validate the hypotheses until 
consistent decisions are reached. The above human-based 
model of speech processing motivated the authors to 
develop a candidate framework for developing future- 
generation ASR technology that has the potential to go 
beyond the current limitations.  
     In this detection-based framework, rich knowledge 
sources are exploited, including a set of fundamental 
acoustic attributes of speech sounds and their linguistic 
interpretations, a speaker profile that encompasses gender, 
accent and other speaker characteristics, the speaking 
environment. Instead of the conventional top-down, HMM-
and DP-based decoding for ASR which we reviewed in 

Section 2, they developed a bottom-up, event detection and 
evidence combination paradigm for future-generation ASR, 
where a large set of acoustic events are detected in parallel 
before being combined for detecting word sequences. The 
computation architecture associated with this paradigm can 
make much more effective use of parallelism than the 
conventional HMM-based sequential processing paradigm. 
 
4.2. Integrating speech recognition and understanding 
One recent trend in ASR research is to use its results as an 
intermediate step to achieve the ultimate goal of speech 
understanding.  This provides the opportunity to redesign 
ASR systems so that it is not the word error rate but the 
speech understanding error rate which is subject to 
minimization. Traditional methods of speech understanding 
adopt two independently trained phases. First, an ASR 
module returns the most likely sentence for the observed 
acoustic signal. Second, a semantic classifier transforms the 
resulting sentence into the most likely semantic class. Since 
the two phases are isolated from each other, such traditional 
systems are suboptimal. In the work described in (Yaman et. 
al., 2008), a novel integrative and discriminative learning 
technique for a speech understanding system was developed 
to alleviate this problem, and thereby, reduces the semantic 
classification error rate. The new approach makes effective 
use of the N-best lists, which are processed in parallel, 
generated by the ASR module to reduce semantic 
classification errors.  
 
4.3. Structured speech modeling and transformations 
 
There has been a long tradition of research on overcoming 
one fundamental, incorrect assumption of the HMM and 
associated limitations --- conditional independence 
assumption for the input sequence (Ostendorf et. al., 1996, 
Deng et. al., 1993, 1994).  Recent work in this direction 
embeds substantial knowledge related to speech articulation 
and constraints therein to explicitly provide the temporal 
correlation in the observed speech sequences (Deng et. al., 
2006). The resulting structured speech model has a few 
more “hidden” layers than the HMM, and has greater 
computation cost while gaining higher recognition 
performance than the HMM system.  
     Like the HMM, the decoding algorithm developed for the 
structured speech model is also sequential in nature, making 
the model difficult to use in practice due to its huge 
computation cost. The future direction in this work is to 
flatten out the previous deep structure in the speech model 
into a large set of parallel transformations. The latter may 
then enable efficient parallel computing for model learning 
and decoding. 
 
4.4. ASR system combination via ensemble learning 
Another recent trend in ASR is to effectively combine the 
outputs from a set of different systems so as to achieve 
higher recognition performance than each of the individual 
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systems can achieve (Breslin and Gales, 2009). Currently, 
many large vocabulary ASR systems use a combination of 
multiple systems to obtain the final hypothesis. These 
complementary systems are typically found either in an ad-hoc 
manner, or by the use of ensemble learning methods.  
     Different from the commonly adopted approach of 
optimizing a single classifier, ensemble learning methods 
achieve pattern discrimination through synergistically 
combining many classifiers that are complementary in 
nature. In ASR applications, combining output word 
hypotheses from multiple speech recognition systems is 
being increasingly used for boosting the accuracy 
performance. The complexity of speech sound distributions 
also warrants the exploration of using ensemble methods to 
build robust and accurate acoustic models. For example, the 
component models of an ensemble can be combined in 
computing the acoustic scores during decoding search at the 
speech frame level.  Recently, some innovative progresses 
have been made in this direction, producing promising 
results and revealing attractive properties of ensemble 
acoustic models (Chen and Zhao, 2009).   
    Using multiple systems and model components in either 
speech decoding or acoustic model construction provides a 
rich opportunity for parallel computing.  
 

5. SUMMARY AND CONCLUSION 
 
In this paper, I argue that the current ASR system design is 
limited by the use of the structure-poor and knowledge-
ignorant HMMs in performance and by the sequential 
Viterbi-like decoding algorithms in computation. More 
powerful, future-generation ASR systems will need new 
paradigms that integrate rich knowledge sources. This will 
provide ample opportunities for new computation 
architectures, such as island-driven decoding vs. the current 
sequential decoding, where parallel processing will likely 
play an important role in implementing the new paradigms. 
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