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ABSTRACT

A new trend is emerging in the semiconductor industry that
future computation speedups will likely come more from
parallelism than from having faster individual computing
elements. Most algorithm designers for the current, HMM-
based speech recognition systems, which have the
recognition performance significantly lower than that of
human, have not embraced this trend. This is partly
attributed to the state-of-the-art sequential algorithms that
have involved extremely clever schemes to speed up single-
processor performance developed and matured over many
years. This invited presentation advances two arguments.
First, much more powerful speech systems in the future
generations will likely approach human performance with
new architectures that integrate rich knowledge sources and
overcome the reasonably well understood limitations of the
current HMM-based systems. Second, the success of the
above endeavor will require complete rethinking of
computation issues, likely disposing of the traditional
thinking of HMM-centric sequential processing and
embracing parallel computing in the new architectures
mimicking key aspects of the human speech processing
system. Four case studies are provided in this paper
extracted from some recent influential work that may shape
the foundation of this potentially active research area.

Index Terms — computation, parallelism, speech
recognition, speech understanding, decoding, knowledge
integration.

1. INTRODUCTION

Moore’s law has been a reliable predictor of the increased
capability for computation and storage in computational
systems for decades, creating enormous impact on the
historical development of automatic speech recognition
(ASR) and understanding systems. Larger and larger speech
databases and recognition systems have been developed,
along with more and more detailed models (such as complex
hidden Markov model, or HMM) of speech and human
language. Much of the planned future research in the ASR
field has implicitly relied on a continued advance in
computational capabilities (Baker et. al., 2009a, 2009D).
However, the fundamentals of the progression based on
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Moore’s law have recently changed. The power density on
microprocessors has increased to the point that higher clock
rates would begin to melt the silicon. Consequently, at this
point industry development is now focused on implementing
microprocessors on multiple cores. The new road maps for
the semiconductor industry reflect this trend, and future
speedups will come more from parallelism than from having
faster individual computing elements. For the most part,
algorithm designers for speech systems have ignored
investigation of such parallelism, since the advance of scalar
capabilities has been so reliable. Building future generation
ASR systems, as discussed in (Baker et. al., 2009a, 2009b;
Deng and Huang, 2004), will require significantly more
computation, and consequently researchers concerned with
implementation will need to consider parallelism explicitly
in their designs.

The rest of the paper is organized as follows. In Section
2, we provide an overview of the current, HMM-based ASR
system design, with a focus on their computation
architecture. We will discuss in Section 3 some new trends
in ASR research aimed to develop future-generation high-
performance ASR systems going beyond HMMs as the
architectural basis, and analyze in which areas of ASR
research parallelism in computing may be needed. In
Section 4, we use four case studies to illustrate some recent
work that are representative of such trends.

2. OVERVIEW OF COMPUTATION
ARCHITECURE IN CURRENT ASR SYSTEMS

Current ASR systems have been built invariably based on
statistical principles, as pioneered by the work of (Baker,
1975; Jelinek, 1976). A source-channel mathematical model
or a type of generative statistical model proposed therein is
often used to formulate speech recognition problems.
Briefly, the speaker’s mind decides the source word
sequence W that is delivered through his/her text generator.
The source is passed through a noisy communication
channel that consists of the speaker’s vocal apparatus to
produce the speech waveform and the speech signal
processing component of the speech recognizer. Finally, the
speech decoder aims to decode the acoustic signal X into a

word sequence W, which is in ideal cases close to the
original word sequence W.
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The “fundamental equation” of speech recognition
follows the following Bayes rule (Huang et. al., 2001; Deng
and O'Shaughnessy, 2003):

. P(W)P(X|W)
W = argmax P(W | X) = argmaxW = argmax P(W)P(X | W)
w w W
where P(W)and P(X| W) constitute the
quantities computed by the language modeling and acoustic
modeling components, respectively. The acoustic model is
typically represented by an HMM, and language model by
an N-gram model. As epitomized in the fundamental
equation above, the decoding process in a speech
recognizer’s operation is to find a sequence of words whose
corresponding acoustic and language models best match the
input feature vector sequence. Therefore, the process of such
a decoding process with trained acoustic and language
models is often referred to as a search process. This process
determines the computation architecture in an ASR system.

Speech recognition search is usually carried out with
the Viterbi decoder, which is a sequential algorithm based
on dynamic programming (DP). The reasons for choosing
the Viterbi decoder involve arguments that point to speech
as a left to right process and the efficiencies afforded by a
time-synchronous process. One obvious (and brute-force)
way is to search all possible word sequences and select the
one with best posterior probability score. This, however, is
not practically feasible.

The Viterbi search can be executed efficiently via the
trellis framework. It is a time-synchronous search algorithm
that completely processes time ¢ before going on to time
t+1. For time ¢, each state is updated by the best score
(instead of the sum of all incoming paths) from all states in
at time #-1. When one update occurs, it also records the
backtracking pointer to remember the most probable
incoming state. At the end of the search, the most probable
state sequence can be recovered by tracing back these
backtracking pointers. Viterbi algorithm provides an optimal
solution for handling nonlinear time warping between
HMMs and the acoustic observation, word boundary
detection and word identification in continuous speech
recognition. This unified Viterbi search algorithm serves as
the fundamental technique for most search algorithms in use
in continuous speech recognition.

Time-synchronous Viterbi search can be considered as
a breadth first search with DP. Instead of performing a tree
search algorithm, the DP principle helps create a search
graph where multiple paths leading to the same search state
are merged by keeping the best path. The Viterbi trellis is a
representation of the search graph. Therefore, all efficient
techniques for graph search algorithms can be applied to
time-synchronous Viterbi search. Note that it is not
necessary for the entire search space to be explored before
the optimal path can be found. When the search space
contains an enormous number of states in the HMM, it
becomes impractical to pre-compile the composite HMM
entirely and store it in the memory. It is preferable to
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dynamically build and allocate portions of the search space
which is sufficient to search the promising paths. By using
the graph search algorithm, only part of the entire Viterbi
trellis is generated explicitly. By constructing the search
space dynamically, the computation cost of the search is
proportional only to the number of active hypotheses that is
independent of the overall size of the potential search space.
Therefore, dynamically generated trellis is a key to heuristic
Viterbi search for efficient large-vocabulary continuous
speech recognition.

Unfortunately, the core computation in current ASR
systems, DP- based decoding algorithms, has been based on
intrinsically sequential algorithms described above. These
algorithms have exploited extremely clever schemes to
speed up single-processor performance (e.g., Huang et. al.
2001; Jelinek, 1997). Recent work has appeared on using
vector architectures with parallelism to implement the
decoder, with the finding that the traditional HMM-based
decoding algorithm is difficult to vectorize as the
vocabulary grows (Janin, 2004). More recent work (Chong
et. al,, 2008) successfully parallelized the HMM-based
decoding algorithm for a large vocabulary system (50,000
words and one million states). These works, however, are
confined with the conventional HMM framework and are
thus difficult to break the fundamental limitations imposed
by the framework.

3. COMPUTATION ARCHITECTURE FOR FUTURE-
GENERATION, KNOWLEDGE-RICH ASR

There have been strong consensus in the research
community that the future-generation ASR will need to
overcome fundamental limitations of the current HMM
framework and that more powerful speech systems in the
future will likely approach human performance with new
architectures that integrate rich knowledge sources (e.g.,
Baker et. al., 2009a, 2009b; Lee, 2003). This provides
opportunities to rethink many of the computation issues in
ASR. HMM-bound sequential processing may not need to
dominate the computation. The multi-stream analysis for
ASR as discussed in (Baker et. al., 2009a, 2009b) may
require heterogeneous parallelism in both the algorithms and
the computational architecture.

While the incorporation of new types of multiple
knowledge sources has been on the research agenda for
decades for ASR, we are coming into a period where the
resources are available to support this strategy in a much
more significant way. For instance, it is now possible to
incorporate both larger sound units than the typical phone or
sub-phone elements even for large vocabulary recognition,
while still preserving the advantage of the smaller units.
Further, more fundamental units such as articulatory
features can be considered (Sun and Deng, 2002). At the
level of the signal processing “front end”, we no longer need
to settle on the single best representation, as multiple
representations have been shown to be helpful (e.g., Morgan



et. al. 2005). Such multiple representations or streams of
information can be even more heterogeneous, €.g., coming
from different modalities such as bone-conducted vibration,
cameras, or low-power radar. In all of these cases, new
computation architectures are required that can aggregate all
of the modules’ responses, quite different from the current
HMM systems which typically use singe-stream
information. Various approaches for this have been tried for
some time, but we are only now beginning to tackle the task
of integrating so many different kinds of sources, due to the
emerging availability of the kind of resources required to
learn how to best do the integration.

4. CASE STUDIES

In this section, we further discuss some new trends in
ASR research that are characterized by integrating rich,
multi-stream knowledge sources and the associated
computation issues involving parallel computing. In
particular, we use four case studies to illustrate some recent
work that are representative of such trends.

4.1. Parallel detectors and detection-based ASR

In the research direction proposed in (Lee, 2003) and
reported in (Bromberg, et. al., 2007; Lee et. al., 2007), the
authors argued that although we have learned a great deal
about how to build practical HMM-based ASR systems for
almost any spoken language without the need of a detailed
understanding of the language, the existing technology is
fragile in that careful designs have to be rigorously practiced
to overcome technology deficiencies. Furthermore, the
accuracy often declines dramatically in adverse conditions
to an extent that the ASR system becomes unusable. When
compared with human speech recognition, the state-of-the-
art ASR systems usually give much larger error rates even
for rather simple tasks. They note that human beings
perform speech recognition by integrating multiple
knowledge sources from bottom up and that a human
determines the linguistic identity of a sound based on
detected evidences that exist at various levels of the speech
knowledge hierarchy. A human listener detects acoustic and
auditory evidences, weigh them and combine them to form
cognitive hypotheses, and then validate the hypotheses until
consistent decisions are reached. The above human-based
model of speech processing motivated the authors to
develop a candidate framework for developing future-
generation ASR technology that has the potential to go
beyond the current limitations.

In this detection-based framework, rich knowledge
sources are exploited, including a set of fundamental
acoustic attributes of speech sounds and their linguistic
interpretations, a speaker profile that encompasses gender,
accent and other speaker characteristics, the speaking
environment. Instead of the conventional top-down, HMM-
and DP-based decoding for ASR which we reviewed in
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Section 2, they developed a bottom-up, event detection and
evidence combination paradigm for future-generation ASR,
where a large set of acoustic events are detected in parallel
before being combined for detecting word sequences. The
computation architecture associated with this paradigm can
make much more effective use of parallelism than the
conventional HMM-based sequential processing paradigm.

4.2. Integrating speech recognition and understanding
One recent trend in ASR research is to use its results as an
intermediate step to achieve the ultimate goal of speech
understanding. This provides the opportunity to redesign
ASR systems so that it is not the word error rate but the
speech understanding error rate which is subject to
minimization. Traditional methods of speech understanding
adopt two independently trained phases. First, an ASR
module returns the most likely sentence for the observed
acoustic signal. Second, a semantic classifier transforms the
resulting sentence into the most likely semantic class. Since
the two phases are isolated from each other, such traditional
systems are suboptimal. In the work described in (Yaman et.
al., 2008), a novel integrative and discriminative learning
technique for a speech understanding system was developed
to alleviate this problem, and thereby, reduces the semantic
classification error rate. The new approach makes effective
use of the N-best lists, which are processed in parallel,
generated by the ASR module to reduce semantic
classification errors.

4.3. Structured speech modeling and transformations

There has been a long tradition of research on overcoming
one fundamental, incorrect assumption of the HMM and
associated limitations --- conditional independence
assumption for the input sequence (Ostendorf et. al., 1996,
Deng et. al., 1993, 1994). Recent work in this direction
embeds substantial knowledge related to speech articulation
and constraints therein to explicitly provide the temporal
correlation in the observed speech sequences (Deng et. al.,
2006). The resulting structured speech model has a few
more “hidden” layers than the HMM, and has greater
computation cost while gaining higher recognition
performance than the HMM system.

Like the HMM, the decoding algorithm developed for the
structured speech model is also sequential in nature, making
the model difficult to use in practice due to its huge
computation cost. The future direction in this work is to
flatten out the previous deep structure in the speech model
into a large set of parallel transformations. The latter may
then enable efficient parallel computing for model learning
and decoding.

4.4. ASR system combination via ensemble learning

Another recent trend in ASR is to effectively combine the
outputs from a set of different systems so as to achieve
higher recognition performance than each of the individual



systems can achieve (Breslin and Gales, 2009). Currently,
many large vocabulary ASR systems use a combination of
multiple systems to obtain the final hypothesis. These
complementary systems are typically found either in an ad-hoc
manner, or by the use of ensemble learning methods.

Different from the commonly adopted approach of
optimizing a single classifier, ensemble learning methods
achieve pattern discrimination through synergistically
combining many classifiers that are complementary in
nature. In ASR applications, combining output word
hypotheses from multiple speech recognition systems is
being increasingly used for boosting the accuracy
performance. The complexity of speech sound distributions
also warrants the exploration of using ensemble methods to
build robust and accurate acoustic models. For example, the
component models of an ensemble can be combined in
computing the acoustic scores during decoding search at the
speech frame level. Recently, some innovative progresses
have been made in this direction, producing promising
results and revealing attractive properties of ensemble
acoustic models (Chen and Zhao, 2009).

Using multiple systems and model components in either
speech decoding or acoustic model construction provides a
rich opportunity for parallel computing.

5. SUMMARY AND CONCLUSION

In this paper, I argue that the current ASR system design is
limited by the use of the structure-poor and knowledge-
ignorant HMMs in performance and by the sequential
Viterbi-like decoding algorithms in computation. More
powerful, future-generation ASR systems will need new
paradigms that integrate rich knowledge sources. This will
provide ample opportunities for new computation
architectures, such as island-driven decoding vs. the current
sequential decoding, where parallel processing will likely
play an important role in implementing the new paradigms.
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