

Li Deng
Area Editor, Feature Articles
deng@microsoft.com
www.ee.Columbia.edu/spm

Expanding the Scope of Signal Processing

This special section in this issue of *IEEE Signal Processing Magazine* is dedicated to the theme of spoken language technology, exploring “signal” processing techniques for both speech and language. The articles in this issue cover “language” and/or “understanding” aspects of “signal” processing, beyond the conventional scope of speech processing. This forms a stark contrast to the special section in the September 2005, speech technology in human-machine communication, where only half of the articles dealt with language processing while the focus was on the more traditional tasks of speech

analysis and recognition with the trend towards speech understanding.

This change represents a significant new development in our field of signal processing, where the conventional way of thinking about the signal as low-level, numerical-valued information is transcended to a new perspective concerning the importance of high-level, symbolic-valued informational sources (e.g., language or text) that embed their underlying semantic contents. The IEEE Signal Processing Society's Constitution reads: “... The Field of Interest of the Society shall be the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals by digital or analog

devices or techniques. The term ‘signal’ includes audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and other signals...” (article II) While reviewing this, I would naturally classify “language” into one of the nontraditional “other signals” (albeit its prominence as witnessed by the articles in this special section).

Article II of our constitution also lists a range of signal/information processing tasks or application areas, each associated with a particular type of signal. Language as a signal is intimately related to the task of understanding (i.e., discovering the underlying meaning or semantics embedded in the signal), which has not appeared in the traditional list of tasks. Hence, if we expand the traditional

Digital Object Identifier 10.1109/MSP.2008.920380

IEEE SIGNAL PROCESSING MAGAZINE

Shih-Fu Chang, Editor-in-Chief — Columbia University

AREA EDITORS

Li Deng, Feature Articles — Microsoft
Adriana Dumitras, Columns and Forums — Apple Inc.
Doug Williams, Special Sections — Georgia Institute of Technology
Min Wu, e-Newsletter — University of Maryland

EDITORIAL BOARD

Alex Acero — Microsoft
John G. Apostolopoulos — Hewlett-Packard Laboratories
Philip A. Chou — Microsoft Research
Ingemar Cox — University College London
Sadaoki Furui — Tokyo Institute of Technology, Japan
Alex Gershman — Darmstadt University of Technology, Germany
Yingbo Hua — University of California, Riverside
Alex Kot — Nanyang Technological University, Singapore
Bede Liu — Princeton University
B.S. Manjunath — University of California, Santa-Barbara
Nasir Memon — Polytechnic University
Antonio Ortega — University of Southern California
Thrasos Pappas — Northwestern University
Soo-Chang Pei — National Taiwan University, Taiwan
Michael Picheny — IBM T.J. Watson Research Center
Vincent Poor — Princeton University
Jose C. Principe — University of Florida

Majid Rabbani — Eastman Kodak Company

Todd Reed — University of Hawaii
Phillip A. Regalia — Catholic University of America
Hideaki Sakai — Kyoto University, Japan
Dan Scholfeld — University of Illinois at Chicago
Peter Stoica — Uppsala University, Sweden
Lee Swindlehurst — Brigham Young University
Murat Tekalp — Koc University, Turkey
Ahmed Tewfik — University of Minnesota
Isabel Trancoso — INESC, Portugal
Xiaodong Wang — Columbia University
Rabab Ward — University of British Columbia, Canada

ASSOCIATE EDITORS—COLUMNS AND FORUM

Ghassan AlRegib — Georgia Institute of Technology
Alen Docef — Virginia Commonwealth University
Dan Ellis — Columbia University
Berna Erol — Ricoh California Research Center
Konstantinos Konstantinides — Hewlett-Packard
Rick Lyons — Besser Associates
Aleksandra Mojsilovic — IBM T.J. Watson Research Center
George Moschytz — Bar-Ilan University, Israel
Shrikanth Narayanan — University of Southern California
Fernando Pereira — Instituto Superior Técnico, Portugal
C. Britton Rorabaugh — DRS C3 Systems Co.
Greg Slabaugh — Medicsight PLC, U.K.
Hari Sundaram — Arizona State University
Wade Trappe — Rutgers University
Stephen T.C. Wong — Methodist Hospital-Cornell

ASSOCIATE EDITORS—e-NEWSLETTER

Nitin Chandrachoodan — India Institute of Technologies
Huaiyu Dai — North Carolina State University
Pascal Frossard — EPFL, Switzerland
Alessandro Piva — University of Florence, Italy
Mihuela van der Schaaf — University of California, Los Angeles

IEEE PERIODICALS MAGAZINES DEPARTMENT

Geraldine Krolin-Taylor — Senior Managing Editor
Susan Schneiderman — Business Development Manager
+1 732 562 3946 Fax: +1 732 981 1855
Dawn M. Melley — Editorial Director
Peter M. Tuohy — Production Director
Felicia Spagnoli — Advertising Production Mgr.
Janet Duder — Art Director
Gail A. Schnitzer — Assistant Art Director
Fran Zappulla — Staff Director, Publishing Operations

IEEE SIGNAL PROCESSING SOCIETY

José M.F. Moura — President
Mos Kaveh — President-Elect
Michael D. Zoltowski — Vice President, Awards and Membership
Athina Petropulu — Vice President, Conferences
Petar Djurić — Vice President, Finance
K.J. Ray Liu — Vice President, Publications
Alex Acero — Vice President, Technical Directions
Merry Kowalczyk — Executive Director and Associate Editor

signals to include language, then we also would expand the traditional signal processing tasks to include understanding.

When we associate each signal type with the full range of the processing tasks, a matrix can be established in which each entry in the matrix represents a specific subfield in signal processing. For example, the row in the matrix for the task of synthesis applies to all types of signals. And for each entry in this row, we would have computer music (for the audio/music signal), speech synthesis (for the speech signal), and computer graphics (for the image signal). After expanding the traditional signals to include language, we will have another entry called natural language generation, a well-established research and application area in computational linguistics and artificial intelligence. Similarly, after expanding the traditional signal processing tasks to include understanding, then we expand the traditional matrix with one new row. For example, the entries in the matrix

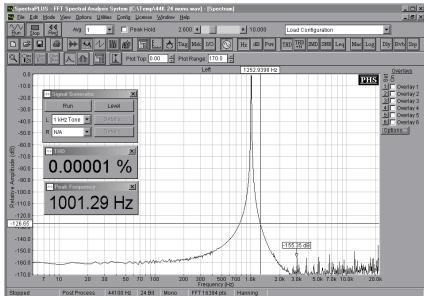
corresponding to the speech column would contain not only the traditional elements of speech coding, speech transmission, speech analysis, speech enhancement, speech synthesis, and speech recognition but also a new element of speech understanding (or spoken language understanding), which is the focus of the issue in your hands now.

To extrapolate the above idea further, I can propose new expansion of the signal processing tasks to include that of retrieval/mining (a simpler task than understanding). Then, the new row of this further expanded matrix will contain the new elements of music retrieval, spoken document retrieval, image retrieval, video search, and text search (information retrieval). Other possible expansions would include the new task of security and new bioinformatic/genomic signals. These are not traditional signal processing and as was elegantly pointed out by Prof. Ray Liu earlier, information processing is our destiny beyond the tradi-

tional scope of signal processing (see the editorials written in the January and September 2004 issues of this magazine).

Some of the new column elements in the expanded matrix after including language/text in the scope of signal processing are: document summarization (for the task of coding), text parsing (for analysis), spelling/grammar correction (for enhancement), natural language generation (for synthesis), natural language understanding (for understanding), and Web search (for retrieval).

What are practical benefits of constructing the signal/task matrix just discussed? First, we would see a natural expansion of the scope of signal processing with regard to the treatment of language/text as the signal and treatment of understanding and retrieval as the processing tasks, which I outlined above. This would be viewed as the extension of the matrix size in both the row (processing task) and column (signal). Indeed, language adds a new dimension in the signal set with its essential task of content understanding, an ultimate goal of human intelligence. Second, successful machine learning techniques developed for one particular signal type may be more naturally welcomed and examined by researchers working on other signals. Such critical examination would facilitate the potential unification of signal processing methodologies, enhancing the appreciation of and knowledge about the similarities and differences in processing techniques across different signal types. This would be viewed as cross-column propagation from the perspective of matrix construction. Third, we can also benefit from cross-row propagation. For example, while extension from the recognition task to the understanding task is becoming well established for the speech signal (as clearly demonstrated in this special section), are there and should there be similar trends on task expansion for other types of signals?


These are some of my thoughts about this special section. Enjoy reading it. **SP**

High Performance Real-time Spectrum Analyzer

Features

- 2 ch, 24bit, 192kHz
- FFT to 1048576 pts
- 1/1 to 1/96 Octave
- Waveform Analysis
- Spectrogram Plot
- 3-D Surface Plot
- Transfer Functions
- Cross Spectrum
- Signal Generator
- Data Logging
- Test Automation

A cost effective portable signal analysis solution using your sound card for data acquisition. High performance USB sound cards are widely available – see website for details.

SpectraPLUS 5.0

FFT Spectral Analysis System

Download 30 day FREE trial!

www.spectraplus.com

PHS

Pioneer Hill Software 360 697-3472 voice
 24460 Mason Rd 360 697-7717 fax
 Poulsbo WA 98370 pioneer@spectraplus.com