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ABSTRACT
The detection of outliers in spatio-temporal traffic data is an
important research problem in the data mining and knowl-
edge discovery community. However to the best of our knowl-
edge, the discovery of relationships, especially causal inter-
actions, among detected traffic outliers has not been inves-
tigated before. In this paper we propose algorithms which
construct outlier causality trees based on temporal and spa-
tial properties of detected outliers. Frequent substructures
of these causality trees reveal not only recurring interac-
tions among spatio-temporal outliers, but potential flaws in
the design of existing traffic networks. The effectiveness and
strength of our algorithms are validated by experiments on
a very large volume of real taxi trajectories in an urban road
network.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

General Terms
Algorithms

Keywords
Spatio-temporal outliers; outlier causalities; frequent sub-
structures; urban computing and planning;

1. INTRODUCTION
The increasing availability of location-acquisition tech-

nologies including GPS and WIFI have resulted in huge
volumes of spatio-temporal data, especially in the form of
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trajectories [2, 5, 7, 15, 14, 19, 17]. Unusual patterns of mov-
ing objects’ trajectories generally reflect abnormal traffic
streams on road networks, which could be caused by aperi-
odic events including celebrations, parades, large-scale busi-
ness promotions, protests, traffic control and traffic jams.
Therefore, the detection of outliers/anomalies from trajec-
tory data can help in sensing abnormal events and plan for
their impact on the smooth flow of traffic. In this study,
we treat both known (planned) and unknown (unplanned)
events that behave differently from daily network traffics as
anomalies.

Challenges and Contributions
In order to successfully detect outliers and causal interac-
tions among them, the following challenges need to be ad-
dressed: (i) Heterogeneous traffic patterns: the traffic pat-
terns on roads vary across days of a week and hours of a day.
Different road segments have often distinct time-variant traf-
fic patterns. It is difficult to use one model to detect outliers
across the road network at different time periods. (ii) Data
sparseness and distribution skewness: even though we could
have a large number of sensors (taxis) probing the traffic on
roads, there are many roads that have only a small number
of samples given a large size of road networks in a major city.
Moreover, a few road segments are traveled by thousands of
vehicles in a few hours, while some segments may be only
driven on a few times in a day. These two properties to-
gether result in unique challenges in detecting outliers from
traffic data. (iii) Causality among outliers: we not only need
to discover outliers from the traffic, but also infer causal re-
lationships and interactions among them, especially given
the large number of outliers that could be identified. So a
challenge is how to detect the appearance, growth, disap-
pearance and transformation of outliers by time (e.g., prop-
agation of a traffic jam).

In this paper we design several steps to address the above
challenges and propose solutions to the problem of detect-
ing spatio-temporal outliers and causal relationships among
them from traffic data streams. We use contexts of road
networks in this study, however, algorithms proposed in this
paper can be generally applied to domains of networking [12,



Figure 1: An example using traffic networks in the city of Beijing. Based on major roads in the traffic network, the entire city
(subfigure (a)) is partitioned into regions (subfigure (b)). Trajectories of moving objects (such as a moving taxi shown by a
blue trajectory in subfigure (c)) connect neighboring regions, based on which we create the notion of links (subfigure (d)).

13] and climate change [18, 23, 8] etc. More specifically, the
contributions we make in this paper are:

1. City-wide traffic modeling : we partition the urban area
of a city into regions using the framework of the city’s
road network. Then we build a region graph where a
node is a region and a link captures the traffic flow
among two regions. We formulate the outlier detec-
tion problem as identifying the most outlying “links”
from the region graph in terms of the spatio-temporal
properties of a link.

2. Outlier tree construction: we propose the STOTree al-
gorithm based on both spatial and temporal properties
of detected outliers (which are certain “links” in a time
frame) to construct outlier trees, which uncover causal
relationships among these outliers.

3. Frequent outlier subtree discovery : we propose the fre-
qentSubtree algorithm, inspired by association rule
mining, which generates the most frequent sub-structure
(subtree) from all discovered outlier trees. These fre-
quent subtrees reveal recurrent abnormalities in the
data and suggest inherent problems in existing road
networks.

The rest of the paper is structured as follows. In Section
3 we introduce the overall framework of our model, includ-
ing preliminary concepts and notations that we use in this
paper. In Section 4 we propose algorithms for discovering
spatio-temporal outliers and causal relationships. Exper-
iments and their analysis are reported in Section 5. We
conclude in Section 6 with directions for future work.

2. RELATED WORK
To the best of our knowledge this is the first paper that

proposes the problem of discovering casual relationships among
spatio-temporal outliers. However, there have been a num-
ber of efforts on detecting only outliers from spatially and
temporally distributed data. For example, principle compo-
nent analysis (PCA) has been used for network-wide anomaly
detection [13, 26, 20, 1]. However, PCA results (as we will
show) cannot capture volume heterogeneity and are also very
sensitive to parameter settings which are highly data depen-
dent. Under certain circumstances, large anomalies in turn
can effect the PCA computation leading to both false posi-
tives and false negatives [20].

The problem of outlier monitoring has also been studied
in [2] which builds local clusters on trajectory streams and
monitors outliers that are defined by a “trajectory” (instead
of a spatial link as ours). Another method is Sun et al. [22]
where a measure, spatial local outlier measure (SLOM), is
proposed to capture the local behavior of datum in their spa-
tial neighborhood. This measure takes into account the local
stability around a data point and suppresses the reporting
of outliers in highly unstable areas. A generalized local sta-
tistical (GLS) framework is proposed in [6] which studies the
performance of local based methods on detecting outliers in
geo-statistical data with either linear or nonlinear trends,
and compares them against global based methods. Wu et
al. [23] design algorithms detecting the most abnormal dis-
crepancy regions in precipitation data, where they use four
sweep lines to form grids which are treated as regions. How-
ever, none of these approaches model and capture tempo-
ral relations (causalities) among detected outlying regions.
Lee et al. [15, 14] have designed a “partition-and-group”
framework for clustering and detecting trajectory outliers.
In their approach, they first partition the trajectories into
small segments and then use both distance and density to
detect abnormal sub-trajectories. This is different from our
work as we detect abnormal regions and links of the entire
traffic network (instead of objects moving in the network).

Moving objects are usually associated with periodic be-
havioral patterns, and there have been several methods pro-
posed to address the problem of detecting such periodic
movements [3, 4, 10, 9, 16]. Cao et al. [3, 4] proposed abbre-
viated list tables (ALT) to find subsequences that appear
periodically and frequently in data sequences, but the pe-
riodic patterns they detect are very sensitive to parameter
settings. Similarly, Elfeky et. al. [9] have proposed specific
definitions of periodicities and algorithms for identifying the
periodic patterns.

3. OVERVIEW
In this section, we introduce our notations, definitions and

the main structure of the proposed model.

3.1 Preliminary Concepts
The overall traffic map is partitioned into regions (Rgn)

bounded by high level (i.e. major) roads, each of which may
consist of a number of road segments. Figure 1(a) and 1(b)
demonstrate an example of region formations.

Definition 1. Trajectory: A trajectory Tr is a trace cre-



Figure 2: The overall structure of our model for detecting
spatio-temporal outliers and their inter-causalities.

ated by a moving object in geographical space. A Tr is rep-
resented by of a set of time-ordered points, e.g. Tr : p1 →
p2 → ... → pn, where each point consists of a geospatial co-
ordinate set and a timestamp, i.e. p = (longitude, latitude,
timestamp).

Definition 2. Transition: Given a trajectory Tr : p1 →
p2 → ... → pn, there exists a transition S between Rgn1 and
Rgn2, if there exists adjacent points pi and pi+1 (1 ≤ i ≤
n + 1) such that pi is in Rgn1 and pi+1 is in Rgn2, and
Rgn1 is not the same to Rgn2. A transition is associated
with a leaving time (timestamp of pi) and an arriving time
(timestamp of pi+1).

Definition 3. Link: A link (Lnk) is comprised of a pair
of regions (<Rgno, Rgnd>) indicating a virtual spatial con-
nection between the origin region and the destination re-
gion. There exists a link from one region (Rgno) to another
(Rgnd) if and only if there exists at least one object moving
from Rgno at timestamp tsi to Rgnd at tsi+1. Figure 1(c)
and 1(d) give examples of links.

Definition 4. Time frame: A time frame (tf) is a set of
consecutive time intervals1. Figure 3(a) shows an example
of a time frame.

Definition 5. Spatio-temporal outlier: A spatio- tem-
poral outlier (STO) is a link whose non-spatial and non-
temporal attribute values are very different from the values
of its spatio-temporal neighbors. Spatio-temporal neighbors
of a link Lnki are the links whose locations and timestamps
are close to those of Lnki.

Definition 6. Outlier causality: STO2 (with a region
pair <Rgno

2, Rgnd
2> and a time frame tf2) is caused by

STO1 (containing a region pair <Rgno
1, Rgnd

1> and a time
frame tf1) if and only if the following conditions hold true:
( i) The destination of STO1 is the same as the origin of
STO2 (i.e. Rgnd

1 = Rgno
2); ( ii)Time frames tf1 and tf2

are consecutive to each other and tf1 is ahead of tf2.

During the construction of an outlier tree, an outlier STOi

is a a child of another outlier STOj if STOi is caused by
STOj .

3.2 Framework
The main structure of our model is illustrated in Figure 2.

The three main steps are preprocessing traffic data to build
a region graph, detecting outliers and finally discover causal

1We call a“time interval”a“timebin”in the rest of the paper.

relationships between the discovered outliers. The second
and the third step have three and two sub-steps respectively.
Details of these (sub-)steps are described in the following
section.

4. METHODOLOGY
In this section, we provide details of our model as shown in

Figure 2. Specifically, we focus on the detection of spatio-
temporal outliers based on each link’s “distort”, construct
outlier causality trees based on these outliers, and discover
the most frequent causal trees which are indicative of recur-
rent traffic abnormalities.

4.1 Building the Graph of Regions
In our study, we assume the map of traffic network, the set

of major roads, and the trajectories of objects are all known.
Although it is more straightforward to apply a simple“n×m”
grid on maps to define regions, cells of a grid are equal-sized
and do not reflect natural differences of regions in a traffic
network. So instead of using equal-sized grids, we define
regions of a traffic network by road segments as illustrated
in Figure 1. In detail, we build a graph of regions according
to the following three steps.

1. Region Partitioning : As shown in Figure 1(a) and Fig-
ure 1(b), we partition a city into dis-jointed regions
using the major roads of the city. Here we employ
Connected Components Labeling (an image segment
method) [21] to partition a map into regions effectively
and efficiently, since the problem of subdivisions in a
polygonal region is known to be NP-complete [11].

2. Formulating transitions: By scanning the trajectory
data set, we transfer each trajectory into a sequence
of transitions between pairs of regions in terms of defi-
nition 2. As demonstrated in Figure 1(c), a trajectory
passing three regions a, b, and c results in two transi-
tions: a ⇒ b, and b ⇒ c.

3. Generating links: If there is a transition generated be-
tween two regions, we connect the two regions with a
link (refer to Definition 3). In timebin j, a link i (Lnki
= <Rgno, Rgnd>) is associated with a feature vector

of three properties f⃗i,j ≡ <#Obj, Pcto, Pctd>:

(a) #Obj : Total number of objects on the links (i.e.
objects moving from Rgno to Rgnd in this time-
bin);

(b) Pcto: The proportion of #Obj among all objects
moving out of Rgno in this timebin;

(c) Pctd: The proportion of #Obj among all objects
moving into Rgnd in this timebin;

Then, using Figure 1(d) as an example (where the
number shown on each link is the number of transitions
pertaining to the link), the property of link a ⇒ b is

f⃗i,j = <#Obj=2, Pcto=
2

2+3
=0.4, Pctd = 2

2+6
=0.25>.

4.2 Detecting Outliers from Graph Links
Assume each time frame is comprised of a fixed number of

q timebins. Given a time frame tfj , we denote the sequence
of feature values of a link Lnki in this time frame by:

Fi,j =< f⃗i,j−q+1, f⃗i,j−q+2, ..., f⃗i,j > . (1)
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(a) An example of time frame defined by the segment
between two vertical (green) lines.
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(b) Time frames to be compared with the one in (a)

Figure 3: An example of the number of taxis on a certain
link in four adjacent days. Gaps between green vertical lines
represent time frames, each of which is comprised of sev-
eral timebins. One unit of timebin in x-axis represents 30
minutes (i.e. 48 timebins comprise a day). The value of
minDistort of the time frame in subfigure (a) is obtained by
calculating the smallest difference between the time frame
in (a) and the ones at the same time in adjacent days as
shown in subfigure (b).

For each link (Lnki) in each time frame tfj , we calculate the
distortion between two time frames (denoted byminDistorti,j)
by searching for the minimum difference between tfj and the
same time frames of the same days on consecutive weeks.
With this approach minDistort is capable of capturing the
special pattern of traffic data that similar behaviors are ob-
served during the same time of different days or the same
day of different weeks etc.
Algorithm 1 shows the procedure of calculating distorts.

In line 7 of the algorithm, we obtain the difference between
two time frames of a link by computing their Euclidean dis-
tance:

Distance(tfj , tft, Lnki) =

√√√√q−1∑
k=0

∥f⃗i,j−k − f⃗i,t−k∥2 (2)

We use minDistorti,j obtained from Algorithm 1 as the
“non-spatial and non-temporal attributes” (see Definition 5)
of each link in each time frame. Extreme values among
minDistort of all links are identified as temporal outliers.
By subtracting the min and dividing by the max the feature
values of the links are in the range of [0,1]. The normal-
ization removes the effect of different regions and volume
sizes. Another advantage of using minDistort is that it
prevents the examination of many repeating patterns (where
minDistort ≈ 0).
Then for each time frame, there is a corresponding three

dimensional vector (formed by features<#Obj, Pcto, Pctd>)
shown in Figure 4. As each point represents a link, we iden-
tify the most extreme points as outliers in that time frame.
To normalize the effect of variances along different direc-
tions, we use the Mahalanobis distance (instead of Euclidean
distance) to measure the the extremeness of data points. We

Algorithm 1 minDistort: calculating minimum distort of
time sequences

Input: Lnki: a link; tfj : a time frame; t: number of adjacent
weeks to check
Output: minDistorti,j : the degree of distort for link Lnki in
time frame tfj
——————————————–

1: minDist ← +Infinity;
2: T ← tfj±u weeks, u ∈ {−t, ..., t}
3: for All time frames tft in T do
4: if tft overlap with tfj then
5: Continue;
6: end if
7: currentDist ← Distance(tfj , tft, Lnki);
8: if currentDist < minDist then
9: minDist ← currentDist ;
10: end if
11: end for
12: Return minDist ;

Figure 4: An illustration of the three-dimensional unit cube
formed by three features <#Obj, Pcto, Pctd> before nor-
malization for computing the Mahalanobis distance. We la-
bel the most “extreme” points among all points as outliers.
For example, outlier points are the ones whose distance are
the farthest to the center of the data cluster.

use the Mahalanobis distance here in order to normalize the
distance by the variance in different directions.

In this way, the outliers detected are links whose
features have the largest difference from both their
temporal neighbors (for using“minDistort”) and spa-
tial neighbors (for being detected “among all links”)
– so they are spatio-temporal outliers (STOs). Another ad-
vantage of identifying “extreme points” as outliers is that it
can detect abnormal links with either too low volumes or
too high volumes since extremeness of points are based on
their Mahalanobis distances.

Now each STO is a spatial link associated with a time
frame. We represent a STO by its link Lnki (containing an
original region and a destination region) and its time frame
tfj , i.e., STOi,j = < Rgni,o, Rgni,d, tfj >.

4.3 Constructing Outlier Trees
We propose an algorithm named STOTree that finds out-

lier dependencies by looking at the relationship of outliers
from the earliest time frame through the last. The main
insight of STOTree is that an outlier STO1 is a par-
ent of another outlier STO2 if STO1 occurred before



Algorithm 2 STOTree: constructing all outlier trees

Input: STOutlier: a set of spatial-temporal outliers of size t×k
where t is the number of time frames, and k is the number of
outliers to examine in a time frame.
Output: STOTrees: a list of roots of spatial-temporal trees.
——————————————–

1: STOTrees← an empty set {};
2: for Each time frame i (i ∈ (1, ..., t)) do
3: for Each outlier j (j ∈ (1, ..., k)) in time frame i do
4: STORooti,j ← FindAllChildren(STOutlieri,j , i);
5: STOTrees← STOTrees ∪ STORooti,j ;
6: end for
7: end for
8: Return STOTrees;

——————————————–
Subroutine: FindAllChildren(STOutlieri,j , i)

9: if Time frame i is the last time frame then
10: Return STOutlieri,j ;
11: end if
12: STOutlieri,j .subnodes← an empty set{};
13: for Each outlier u (u ∈ (1, ..., k)) in time frame i+ 1 do
14: if STOTrees contains STOutlieri+1,u then
15: continue;
16: end if
17: if STOutlieri,j .Rgnd == STOutlieri+1,u.Rgno then
18: STOutlieri,j .subnodes ← STOutlieri,j .subnodes ∪

FindAllChildren(STOutlieri+1,u, i+ 1);
19: end if
20: end for
21: Return STOutlieri,j ;

STO2 in time and they are spatially correlated. Al-
gorithm 2 demonstrates the process of constructing outlier
trees from discovered outliers. Note the algorithm results
in a collection of trees (a forest). The subroutine (Line 9
to 21) is a recursive function used to retrieve all possible
descendants of a node. For each time frame, this recursive
function is called on each outlier of the current time frame
to compare with each outlier of next time frame, unless the
“current” outlier tree already contains outliers of next time
frame (Line 14 to 16). So the overall time complexity of the
outlier tree construction process on each time frame is upper
bounded by O(k2), where k is the number of outliers in a
time frame.
We do not place a restriction on the maximum size of

outlier trees in the STOTree algorithm, under the assump-
tion that abnormal events caused by one single accident are
not expected to last for a long time and the size outlier
trees should not grow infinitely. In Section 5.3 we provide
empirical evidence that confirms the maximum size of trees
is usually small.
Now we give an example by using Figure 5 to demonstrate

the process of Algorithm 2 for building outlier trees. Fig-
ure 5 uses top 3 outliers in three consecutive time frames, so
the input parameters in Algorithm 2 in this case are k = 3
and t = 3. The algorithm starts from time frame 1 (Line 2
of Algorithm 2), and for each of the top three outlying links
(Line 3 to 6), i.e., A ⇒ B, C ⇒ D and E ⇒ F , the algo-
rithm searches in time frame 2 (Line 13 to 20) and checks
whether there is any following link that can be a child of a
previous link (Line 17 to 19). This allows the algorithm to
find outlying links B ⇒ G and B ⇒ E as children of A ⇒ B;
and similarly it identifies link H ⇒ K in time frame 3 as a
child of J ⇒ H in time frame 2. Therefore two outlier trees
are built up as shown in the right side of Figure 5. In this

Figure 5: A synthetic example for demonstrating the process
of building a forest of two outlier trees. The subfigure on
the left illustrates top 3 outlying links in three consecutive
time frames, and the one on the right shows two outlier trees
obtained from these time frames.

way, Algorithm 2 scans through all time frames of traffic
data we have, and builds a forest of various outlier trees.

4.4 Causal Outlier Detection
Denote by T the forest containing all outlier trees. The

most significant and recurring causal relationships corre-
spond to the most frequent subtrees of T . The mechanism
of discovering frequent subtrees from all outlier trees is in-
spired by the process of mining frequent item sets, except
that we design our own strategy to generate frequent subtree
candidates (through node insertion on trees).

The process of discovering frequent substructures from
constructed outlier trees is shown in Algorithm 3. Given a
predefined support threshold ϵ, we first find all single nodes
whose supports exceed ϵ (Line 3 of the algorithm), then we
use this set of frequent single nodes to form candidates of
frequent subtrees. The “while” iteration (Line 6 to 30) first
generates candidates of subtrees (Line 9 to 15), and then
checks the support of each candidate and performs filtering
(Line 18 to 29) according to ϵ.

When generating subtree candidates, new subtrees (whose
sizes are increased by one) are created by inserting a frequent
single node into previous frequent subtrees. This node in-
sertion process is given in Algorithm 4. The single node to
be inserted is first compared with the root of the tree, and is
inserted as a subnode of the root (Line 1 to 3 of Algorithm 4)
if the root can be a parent of the single node and its existing
children do not contain the single node. Otherwise, the sin-
gle node is compared and checked whether it can be inserted
into branches below the root (i.e. a recursive process shown
in Line 8 to 12). When counting the support of a candidate
subtree, we increase the frequency of the candidate by one if
all nodes (with their immediate subnodes) of the candidate
have an exact match with a discovered outlier tree (Line 21
to 23).

The effectiveness and strengths of our algorithms, STOTree
and frequentSubtree, are evaluated in the next section.

5. EXPERIMENTS AND ANALYSIS
In this section we report on the experiments carried out

on taxi trajectory data on the road network of Beijing city.



Algorithm 3 frequentSubtree: discovering frequent sub-
trees from STOutlier trees
Input: STOTrees: a list of roots of spatial-temporal trees; ϵ: a
support threshold for frequent substructure selection.
Output: freqentSubtrees: a list of roots of frequent spatial-
temporal subtrees.
——————————————–

1: // Form a list of frequent nodes (i.e. frequent trees of size 1).
2: numTrees← number of roots in STOTrees;
3: frequentNodes ← unique nodes appearing at least

numTrees× ϵ times in STOTrees.
4: mergeTarget← frequentNodes
5: freqentSubtrees← an empty set{};
6: while size(mergeTarge) > 0 do
7: // Form candidates of frequent subtrees;
8: subtreeCandidates← an empty set {};
9: for Each node singletoni in mergeTarge do
10: for Each root rootj in mergeTarget do
11: if nodeInsertion(rootj , singletoni) then
12: subtreeCandidates← subtreeCandidates ∪ rootj ;
13: end if
14: end for
15: end for
16: // Filer subtree candidates by threshold of support ϵ;
17: Clear mergeTarget;
18: for Each candidate candidatei in subtreeCandidates do
19: count← 0;
20: for Each root rootj in mergeTarget do
21: if rootj contains candidatei then
22: count← count + 1;
23: end if
24: end for
25: if count > ϵ× numTrees then
26: freqentSubtrees← freqentTrees ∪ candidatei;
27: mergeTarget← mergeTarget ∪ candidatei;
28: end if
29: end for
30: end while
31: Return freqentSubtrees;

Table 1: Statistics of regions and links in the graph built
from road network traffics.

#Regions #Links Avg. #Obj Avg. Pcto Avg. Pctd

396 10109 742.48 27.07 27.7702

Our experiments are conducted on a 64 bit server with 3.2
GHz CPU and 8 GB memory. We note that although we are
using road traffic data, our methods and algorithms can be
easily adapted into other domains such as finding anomalies
in the internet traffic data and even climate data.

5.1 Data and Parameters
Data: We test our algorithms based on a real GPS tra-

jectory dataset generated by 33,000 taxis in a period of 6
months (from 01/03/2009 to 31/08/2009) [25, 24] . The to-
tal distance traveled by the taxis is more than 800 million
kilometers and the total number of GPS points is nearly 1.5
billion. The average sampling interval and average distance
of between two consecutive points are around 3.1 minutes
and 300 meters respectively.
We define ten minutes as a timebin, and six timebins as a

time frame (hence one time frame represents an hour). We
check two adjacent weeks in minDistort calculations (i.e.
the parameter t in Algorithm 1).
Road Network: We perform evaluations based on the road

Algorithm 4 nodeInsertion: inserting a node to an outlier
tree
Input: Root: a root of an outlier tree; Singleton: a node to be
inserted.
Output: true/false: whether or not the node insertion is suc-
cessful.
——————————————–

1: if Root.Rgnd equals singlton.Rngo && Root.subnodes does
not contain singlton then

2: Root.subnodes← Root.subnodes ∪ singlton;
3: Return true;
4: else
5: if size(Root.subnodes) == 0) then
6: Return false;
7: else
8: for Root of each subnode subRoot in Root.subnodes do
9: if InsertNode(subRoot, Singleton) then
10: Return true;
11: end if
12: end for
13: end if
14: end if
15: Return false;
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Figure 6: Histograms of the three features (i.e. <#Obj,
Pcto, Pctd>) of all links in the region graph we obtained.

network of Beijing, which contains 106,579 road nodes and
141,380 road segments.

5.2 Results from Building Graphs
The statistics (e.g. number of regions and links) of the

graph built are presented in Table 1. We note that in our
evaluations, the number of links built by using 1 month, 2
months, ..., until all 6 months of taxi trajectories remains
constant at 10109. This observation implies that although
the links are dynamic2 (dependent of traffic data), the model
we have built does not miss any links even if one uses only
a small fraction of taxi trajectories to build the underlying
traffic graph. The distribution of the three features of links
are presented in Figure 6.

5.3 Evaluations on Outlier Trees
In this experiment, we bound the value of k (i.e. number

of outliers to be identified in each time frame) between 1
and 99, and report its effects on constructing outlier trees
(shown as in Figure 7 and 8).

We set the minimum size of a tree (i.e. total number of
nodes) to 2, and hence ignore singles nodes (trees of size
1) in counting final outlier trees. What we observe from
Figure 7 is that, although the total number of trees con-
structed by detected outliers increase substantially when k
increases (left subfigure), the maximum size of all trees has

2By contrast, regions are always static (independent of traf-
fic data).
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Figure 7: Total number of outlier trees and the maximum
size of trees under different settings of k (the number of
outliers in a time frame to construct outlier trees). “TF”
in the label of x -axis is short for “time frame”. While the
number of trees increases dramatically when k increases, the
maximum size of trees grows relatively smoothly.
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Figure 8: Average time (in seconds) used for constructing
outlier trees under different settings of k (the number of
outliers in a time frame to construct outlier trees). When k
increases, the average time grows almost linearly.

a smoothly increasing trend (right subfigure). This observa-
tion validates our earlier belief that abnormal events caused
by one single accident normally do not last very long, and
that the maximum size of trees is usually small.
In Section 4.3 we have explained that the time complexity

of our outlier tree construction algorithm STOTree is in the
worst case (i.e. upper bounded by) O(k2). Here we present
empirical results that illustrate STOTree runs much faster
than O(k2) in practice. From Figure 8 we can observe that
the average time used for building trees in a time frame
increases almost linearly (instead of quadratically) with k.
This indicates STOTree can potentially be used in an online
setting, and can detect outlier causalities on the fly.
Moreover, the spatio-temporal outliers and their causal

interactions detected by our algorithms all coincide with
known abnormal events. The following are two prominent
examples of known events:
Known event 1. The Bejing–HongKong highway was

under traffic control for building viaducts of a Beijing light
rail (i.e. the light rail of Fangshan line3) at midnight of the
May 5th, 2009;
Known event 2. The entry fee into Olympic sports cen-

ter was waived during day time on 7th August, 2009.
By using our model, the above two known outliers are

successfully detected as shown in Figure 9(a) and 9(b) re-
spectively. However, they are not detected by PCA based
techniques as in [13]. As Figure 10 shows, the links of these
two known abnormal events are among other points and are

3http://en.wikipedia.org/wiki/Fangshan_Line,
_Beijing_Subway

(a) An outlier tree besides Beijing–HongKong (Jing-
Gang-Ao) highway between 4th and 5th ring road in
time frames of 1:00am to 4:00am, on May 5th, 2009.

(b) An outlier tree around Olympic sports center
of time frames from 10:00am to 2:30pm, on August
07, 2009. Note that there exists a loop in this tree,
where region a firstly showed up as an origin of
an outlying link a ⇒ b, and then later became a
destination of another outlying link d ⇒ a.

Figure 9: Examples of two outlier trees. These outlier trees
coincide with the events that (a) Bejing–HongKong highway
was under traffic control for constructing viaducts in the
midnight of May 5th, 2009; (b) the Olympic sports center
was free of charge to visit at August 7th, 2009.

undistinguishable in the coordinate framework formed by
the first two principle components from PCA.

A major reason for the failure of PCA is that the first
known outlier (event 1 ) occurred in the off-peak hour of
most links, and the second known outlier (event 2 ) hap-
pened in the peak hour of most links – in other words, they
are captured by the smallest principle components (PC s)
and the largest PC s respectively. The difficulty of choosing
appropriate PC s makes it hard to use PCA to detect both
of these two traffic events.

5.4 Evaluations on Frequent Subtrees
In this experiment, we control the value of support thresh-

old ϵ, and report its effects on discovering frequent outlier
subtrees in terms of the number of subtrees passing through
ϵ and their maximum support. We test the properties of fre-
quent subtrees on five sets of support threshold: ϵ ∈ {0.01,
0.05, 0.1, 0.15, 0.2}. We ignore values of ϵ higher than 0.2,
since the total number of frequent subtrees is already consid-
erably small when ϵ = 0.2 (as shown in Figure 11(a)). How-
ever, as long as the number of subtrees is higher than zero,
the freqentSubtree algorithm can still identify the most
frequent subtree that has the highest support (as shown in
Figure 11(b) on ϵ = 0.15). This observation illustrates the
completeness of the frequent subtrees generated by the fre-
qentSubtree algorithm.

Recall that regions indicated by the most frequent (i.e.
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Figure 10: Data points in terms of links in the coordinate
formed by top two principle components from PCA. The two
known abnormal events detected by our model can not be
identified by PCA approaches.
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Figure 11: Total number of frequent subtrees and the highest
support among them under different settings of k and sup-
port threshold ϵ. The number of discovered trees becomes
significantly small when the support threshold is high (e.g.
ϵ = 0.2 in subfigure (a)). However, as long as the number of
subtrees is higher than zero, the frequent subtrees that have
the highest support can still be identified by our algorithms
(e.g. ϵ = 0.15 in subfigure (b)).

with highest support) subtrees are the ones that have strate-
gic design drawbacks from the perspective of urban road
network planning. For example, when k = 7, the top two fre-
quent subtrees fall in the suburb of“Wangjing”and“Laoshan”
respectively, shown in Figure 12. These subtrees indicate
that both of the two suburbs are much more frequently
overloaded with vehicles than other suburbs, and are in
need of public transportation systems (e.g. subways) pass-
ing through them to reduce the need of commutations on
ground. Such indications coincide with the future subway
construction plan4 of Beijing city: (i) New subway lines of
Line 14 and Line 15 will be launched to travel through the
suburb of“Wangjing”in year 2011 and 2013 respectively; (ii)
Subway Line 10 (second construction stage) to be put into
use by year 2012 will be centered at the suburb of“Laoshan”.
These relationships between the official subway construc-

tion plans and our frequent subtrees validate the correctness
of the frequentSubtree algorithm, and demonstrate the ca-

4http://en.wikipedia.org/wiki/Beijing_Subway

(a) The most frequent subtree with support 12.5% covering
the suburb of “Wangjing”. Note that there are several loops
appearing in this tree, which indicates circular causalities
among certain regions.

(b) The second most frequent subtree with sup-
port 11.3% covering the suburb of “Laoshan”.

Figure 12: Top two frequent substrees and suburbs they
cover (“Wangjing” and “Laoshan”) when k = 7. These two
subtrees suggest that there are potential design flaws in the
current road networks spanning the two suburbs. These
results coincide with (and hence are validated by) future
construction plan of Beijing subways.

pability of our model in detecting design flaws in existing
road networks.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have studied the problem of detecting

spatio-temporal outlier and their causal interactions from
traffic data streams. We have proposed STOTree, an algo-
rithm for discovering spatio-temporal outliers and causal re-
lationships between them. While the worst-case time com-
plexity of STOTree is quadratic (in the number of outliers in
each time frame), empirical evidence strongly suggests that
the complexity is closer to linear time.

We have also proposed a frequentSubtree algorithm which
can be used to reveal recurrent anomalies in the road net-
work. Based on the STOTree and frequentSubtree algo-
rithm we were able to identify real and valid instances of
anomalies in Beijing traffic data. This suggests that our
approach has the potential of contributing to a new data
driven approach towards road traffic analysis.

In future our plan is to apply and extend the use of our
algorithms in the domain of internet traffics etc.
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