
Relations, Cards, and Search Templates:
User-Guided Web Data Integration and Layout

Mira Dontcheva1 Steven M. Drucker3 David Salesin1,2 Michael F. Cohen4

1Computer Science & Engineering
University of Washington
Seattle, WA 98105-4615

{mirad, salesin}@cs.washington.edu

2Adobe Systems
801 N. 34th Street
Seattle, WA 98103
salesin@adobe.com

3Microsoft LiveLabs, 4Microsoft Research
One Microsoft Way

Redmond, WA 98052-6399
{sdrucker, mcohen}@microsoft.com

ABSTRACT
We present three new interaction techniques for aiding users
in collecting and organizing Web content. First, we demon-
strate an interface for creating associations between websites,
which facilitate the automatic retrieval of related content.
Second, we present an authoring interface that allows users
to quickly merge content from many different websites into
a uniform and personalized representation, which we call
a card. Finally, we introduce a novel search paradigm that
leverages the relationships in a card to direct search queries
to extract relevant content from multiple Web sources and fill
a new series of cards instead of just returning a list of web-
page URLs. Preliminary feedback from users is positive and
validates our design.

ACM Classification H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General Terms Design, Human Factors, Algorithms

Keywords: Web content extraction, template-based repre-
sentation, personalized Web search, view and layout editing

INTRODUCTION
For many people today, the World Wide Web is a major
source of information. One may go to the Web to make travel
plans, shop, read news or favorite blogs, learn about a new
place or topic, or even watch a favorite TV show. As more in-
formation becomes available, it becomes more difficult to not
only find the appropriate information but also to collect, or-
ganize and understand that information. Our work focuses on
helping people interact and gather Web content. Our goal is
to lower the effort necessary for collecting, organizing, man-
aging, and sharing that content.

Previously, we developed the summaries framework [7],
which provides interactive techniques that help users collect
and organize content semi-automatically. In that work we
showed that users can interactively create webpage extrac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’07, October 7–10, 2007, Newport, Rhode Island, USA..
Copyright 2007 ACM 978-1-59593-679-2/07/0010 ...$5.00.

tion patterns that can then be used to automatically collect
similar types of Web content. We also demonstrated a vari-
ety of representations for the collected content presented as
rich visual summaries through the use of layout templates. In
this paper we describe our ongoing research to make the pro-
cess of collecting and organizing Web content even easier.
We present three new techniques that build on the existing
summaries framework and interaction paradigms.

First, we propose an interaction technique that allows users
to specify relations between websites and use these relations
to automatically collect data from multiple websites. When
the user relates content collected from one website with an-
other website, he is implicitly defining search queries that are
used to collect additional content. For example, a user may be
interested in collecting restaurants from one website and re-
views for the restaurants from another website. By associat-
ing information about the same restaurant, the user specifies
a relation between the two websites. Now, when the user col-
lects information about a new restaurant, the relations trigger
the automatic retrieval of the reviews for that restaurant from
the review website.

Second, we present an interface for merging content from
multiple websites and organizing it visually. With our card
designer the user can easily create a new card that displays
any amount of information from related websites in a uni-
form and coherent form. A card specifies the information that
should be displayed and its visual layout. For example, when
collecting information about restaurants, the user can create
a card that shows only the name, price, and reviews for a
restaurant or one that shows the address and hours as well.
Cards can be designed for any size or purpose and can be
stored or shared with others.

Finally, we introduce a novel search paradigm for collecting
content from the Web with search templates. A search tem-
plate narrows the search space available to the user through
general search engines to create a personalized view of avail-
able Web content. A search template most often begins from
a card that defines a set of source websites and relations be-
tween those websites. We demonstrate a simple editor for
creating search templates from already created cards. With
this paradigm the user can simply select a search template
and type a keyword query. The system searches these sites
and presents the search results not just as a list of a hyper-
links but as a uniform and organized collection of cards.

Our three key contributions work in unison: an interface for
establishing relations between websites, a methodology to
merge content from many websites into cards, and a new
search paradigm based on the card structure that returns cards
filled with content rather than a list of URLs. We also report
on an informal pilot study showing that users are receptive
to these new techniques for collecting and organizing Web
content and want to use them for their own tasks.

RELATED WORK
Some of the early systems for managing Web content in-
clude WebBook [5], Data Mountain [26], and TopicShop [1],
which present various mechanisms for presenting and orga-
nizing collections of webpages. More recent systems such as
Hunter Gatherer [28] and Internet Scrapbook [29] let users
collect pieces of webpages and place them together into doc-
uments. The Semantic Web community has been address-
ing this problem with systems like Piggy Bank [14] and
Thresher [13], which collect structured content from the Web
and store it in databases for later retrieval. With the sum-
maries framework [7] we showed how interactive tools can
be used to extract structured content from the Web and how
this content can be organized into rich visual summaries. In
this work we give the user interactive tools for specifying
relations between disparate data sources. We then use these
relations to extract structured content from multiple sources
simultaneously. To the best of our knowledge, our work is
the first interactive system of this kind.

Collecting content using relations
In the last ten years database researchers have explored a
number of techniques for data integration [12]. Data integra-
tion is the problem of combining data residing in different
sources and providing the user with a unified view of these
data. The difficulty in data integration lies in forming map-
pings between heterogeneous data sources that may include
different types of data and defining one single query inter-
face for all of the sources. This problem emerges in a vari-
ety of situations both commercial (when two similar com-
panies need to merge their databases) and scientific (com-
bining research results from different bioinformatics repos-
itories). With the growth of the Web, database researchers
have shifted their focus towards data integration of unstruc-
tured Web content and its applications to Web search [24].
Our work is complementary to database research in that it
offers interactive techniques for data integration on a per-
sonal scale. We provide an interface that allows users to spec-
ify mappings between different data sources, i.e. websites,
and then use these mappings to automatically extract con-
tent from the Web. If one were to treat the World Wide Web
as a set of databases, then our mappings could be translated
into SQL queries. For example, the relations we describe are
analogous to a JOIN operation over multiple websites.

Another related area of research is end-user programming
for the Web. Chickenfoot [4] is a system that allows users
to write scripts that customize webpage appearance and au-
tomate repetitive Web tasks. RecipeSheet [23] is a general-
purpose framework for applying data flow operations typi-
cally found in spreadsheets to other types of content, such
as text, webpages, or XML. C3W [10] is one application of

the RecipeSheet framework that allows users to interactively
build customized Web interfaces by clipping and connecting
pieces of webpages. Marmite [33] and Yahoo Pipes [34] are
recent graphical tools that also use a data-flow architecture
but focus specifically on creating Web-based mashups. Our
work is related to all of these systems in that it provides a
simple graphical interface for mixing content from different
sources together; however, our intended audience includes
essentially all Web users and not just programmers. While
previous systems let users graphically create scripts, our goal
is to let users more easily perform the task of collecting and
organizing Web content. As a result, we do not expose the
underlying programming model and allow the user to manip-
ulate the content directly.

Interactive layout editing

Interactive layout editors have been around for a long time
and are used in many commercial packages. Some of the
earliest work [30] allowed users to interactively draw and
specify constraints. Subsequent work has looked at inferring
layout constraints from layout snapshots [21] or user inter-
action [19]. Our interactive authoring tool follows some of
the same ideas and allows users to position layout contain-
ers interactively. Our card designer is similar to commercial
HTML editors in that it generates HTML templates; how-
ever, it is designed for a novice user, and thus it attempts to
automate layout as much as possible. Furthermore, our in-
teractive editor is designed around a metaphor for merging
content from different websites together. Thus, in addition
to specifying layout parameters, it also includes information
about the type of content it can display. When merging con-
tent from different websites the original design present in the
websites no longer applies. With our card designer the user
can reintroduce aesthetics and design and view all of the col-
lected content in the same context.

To the best of our knowledge, we are the first to add an inter-
active layout editor to a system for collecting and organizing
Web content. Typically, information management systems,
such as PiggyBank [14] and TopicShop [1], focus on provid-
ing filtering and sorting functionality. With our system users
can create personalized, uniform, and aesthetic presentations
of Web content. We view this as an important aspect of col-
lecting and organizing Web information.

Formatting search results

Most search engines today do not format search results. They
merely provide the user with a list of hyperlinks and snip-
pets. Stuff I’ve Seen [8] personalizes this list of hyperlinks
by reordering the list using recent user actions. Clusty [32]
goes one step further and clusters the search results accord-
ing to topic, and Grokker [11] provides a visual interface for
displaying the clusters as interactive graphical elements. Our
work goes beyond clustering and reorganizing URLs. First, it
extracts content from the search results. Then, it reorganizes
the extracted content so that the entire collection appears uni-
form despite the fact that it may originate from multiple web-
sites.We propose template-based search as a new approach to
Web search personalization.

THE SUMMARIES FRAMEWORK
The new interaction techniques we describe in this paper
were built on top of the summaries framework we presented
previously [7], and thus we first provide a brief description of
this framework to give the reader context for the remainder
of the paper.

The summaries framework provides an interface for interac-
tively creating extraction patterns for webpages. The user can
create patterns for any of the content included in a webpage
and assign it semantic meaning through tags. Once a pat-
tern has been created, it can be used to collect content from
similar webpages automatically. Because the extraction pat-
terns create structured content from unstructured webpages,
the user can view his collection of content with pre-defined
layout templates. The framework is implemented as an ex-
tension to the Firefox browser and is presented to the user
through a toolbar. The toolbar opens a window where the
user can collect Web content and also includes buttons for
creating extraction patterns and saving content. In this work
we continue to use the extension platform and provide func-
tionality to the user through a toolbar and collection window.
The entire system is implemented as a browser extension and
is written in Javascript and XUL.

The extraction patterns that are part of the summaries frame-
work use the structure of the webpage to collect content.
However, there are other approaches for extracting struc-
tured content from webpages such as conditional random
fields [20], context free grammars [31], or specialized ex-
traction languages [16]. In this work, we use the extraction
techniques that are already part of the summaries framework
and focus on new applications for the extracted content.

EXAMPLE SCENARIO
We present our three new interaction techniques in the con-
text of an example, which shows the steps taken by a user as
he looks for a restaurant for a night out in Seattle. Figures 1
and 2 outline the process graphically.

Relations
The user begins by visiting nwsource.com and collecting
information about the restaurant Brasa. He collects the name,
address, price range, and neighborhood for Brasa. He then
visits yelp.com, a favorite review website, finds reviews
about Brasa and adds them to his collection. Since the con-
tent extracted from nwsource.com and yelp.com refers
to the same restaurant, the user can relate them together. To
create a relation, he draws a line from the name, “Brasa,” col-
lected from nwsource.com to the name, “Brasa Restau-
rant,” collected from yelp.com (Figure 2a). The system re-
sponds by visually joining the extracted content and display-
ing “Connecting nwsource.com to yelp.com.” Now, when the
user adds a new restaurant from nwsource.com to his col-
lection, the corresponding review from yelp.com is auto-
matically extracted and added to the collection. He can also
collect hyperlinks pointing to potentially interesting restau-
rants, and the reviews for those restaurants will be automati-
cally collected from yelp.com (Figure 2b).

Upon inspecting his collection of restaurants, the user de-
cides that he might need to take the bus to his dinner desti-

nation. He visits the website metrokc.gov and finds bus
information for the downtown area. He adds the bus infor-
mation to his collection and interactively connects the neigh-
borhood of Brasa — “downtown” — to the bus schedule
(Figure 2a). Now when he collects a new restaurant, the sys-
tem will automatically collect reviews for the restaurant from
yelp.com and bus schedules from metrokc.gov. To re-
trieve the bus schedules for all the restaurants he has already
collected, the user clicks on the “Update All” button, and the
corresponding bus schedules are collected automatically.

Cards

As the user collects more content, his collection space quickly
fills up. The user can address the growing clutter by creating
a specialized card that displays only the information of in-
terest. To create a card, the user clicks on the “New Card”
button and opens a canvas for card design. He first draws the
outline of the card and then draws containers inside of the
card. He places content from his collection directly into the
containers. The user can resize and reposition the contain-
ers until he is satisfied. He clicks “Done,” names the card,
and can now view all the related collected content as person-
alized cards (see Figure 2c). Cards can be designed for any
size or purpose and can contain information from any num-
ber of source webpages. They also include hyperlinks to the
original webpages so that the user can at any time return to
the original content.

Search templates

In addition to collecting content by visiting actual websites,
the user can also collect content through keyword queries
and a search template. Thus, a user can go directly from a
query term, such as ”seafood,” to a series of cards filled with
content from multiple sources (see Figure 2d). The system
collects seafood restaurants and any related content. Search
results are considered only temporary and are not part of the
user’s collection. Thus, they are displayed separately, below
the existing collection. The user can promote any search re-
sult to the actual collection by clicking on the “+” button in
the upper left corner. He can also delete a card with the “x”
button. This way the user can quickly scan through many
restaurants and identify good options.

A search template is defined implicitly by a user-defined
card. To create a search template, the user clicks on the “New
Search Template” button, selects a card, and can optionally
add additional websites or relations to be part of the tem-
plate. A search template allows the user to package all of
the work he has already done in collecting and associating
content and use it to find new content more efficiently. Fig-
ure 3 shows a query for “chocolate cake” with the “recipes”
search template, which retrieves and reformats recipes from
allrecipes.com and cooking.com. Figure 4 shows
several queries for different types of cars. Each card includes
car specifications and reviews from autos.msn.com and
edmunds.com.

Next we give a system overview and then describe each part
of the system in detail.

nwsource.com

yelp.com
metrokc.gov

Andaluca

nwsource.com
nwsource.com

BelltownNeighborhood:

Address:

Image:

Name:

Image:

Name: Brasa Brasa Restaurant

Downtown

nwsource.com

yelp.com
metrokc.gov

Neighborhood:

Address:

Image:

Name: Name:

Rating:

Review:

Bus:

Route:

Seattle Downtown Bus Routes

Bus #: 256Bus#:

2137 2nd Ave,
Seattle, WA
98121 1100 5th Ave,

Seattle, WA
98121

(a) (b)

Figure 1: Previously, we developed the summaries framework [7], which allows users to semi-automatically extract content
from webpages. (a) The user interactively selects and tags webpage elements to collect Web content and create extraction
patterns. (b) He can define extraction patterns for any website and collect related information into one collection.

Seattle Downtown Bus Routes
Brasa Brasa Restaurant

Downtown

nwsource.com

yelp.com metrokc.gov

Brasa Brasa Restaurant

Downtown

nwsource.com

Seattle Downtown Bus Routes

Nishino’s Nishino’s

Downtown

Madison Park Bus Routes

nwsource.com
yelp.com
zagat.com
citysearch.comseafood

SEARCH

Bus #: 256 Bus #: 256

Bus #: 256 Bus #: 256

Bus #: 256

Bus #: 25 Bus #: 12

Bus #: 18Bus #: 132

Seattle Downtown Bus Routes

Nishino’s Nishino’s

Madison Park

Madison Park Bus Routes

Bus #: 84

Etta’s Etta’s Seafood

Downtown

Seattle Downtown Bus Routes

Bus #: 12

zoe zoe cafe

Belltown

Seattle Belltown Bus Routes

Bus #: 35

(a)

(b)

(c)

(d)

1100 5th Ave,
Seattle, WA
98121

1100 5th Ave,
Seattle, WA
98121

Figure 2: (a) The user draws lines between webpage elements, thereby creating directional relations from
nwsource.com to yelp.com and metrokc.gov. (b) The user can collect more restaurants by selecting hyperlinks
that point to interesting restaurants. Each new restaurant triggers the system to automatically collect related content
through the user-defined relations. (c) To display the restaurants more concisely and uniformly, the user designs a card
and assigns content to each card container. (d) Search templates are defined using a card. They include a set of websites
and relations. With a search template, the user can type a keyword and retrieve a series of restaurant cards.

SYSTEM OVERVIEW
The system includes a data repository, a set of user-defined
cards, and a set of search templates. The data repository
holds all of the content collected by the user according to
the source webpage and semantic tags of the webpage el-
ements. We refer to each piece of content collected by the
user as a webpage element. Each webpage element is associ-
ated with a semantic tag, such as name, address, date, time,
etc. All webpage elements collected on the same webpage
form a record in the data repository. The data repository also
holds relations, which specify relationships between tags in
different records. Records that are related in this way form a
relation tree.

The user can view collected Web content through cards. A
card defines which webpage elements within a relation tree
should be displayed and their visual arrangement.

The user can collect data by visiting webpages or through
search templates. A search template includes a set of web-
sites and possibly relations for those websites. When the
user types a keyword query, the search template queries each
of the websites with the keyword, extracts content from the
search results with extraction patterns, triggers the collection
of related content, and displays them as a series of cards.

RETRIEVAL USING RELATIONSHIPS
All of the content collected by the user is associated with se-
mantic metadata or tags. The summaries framework provides
these tags, but any other extraction algorithm would also pro-
vide this semantic information. When the user connects con-
tent collected from different webpages, he creates a relation.
We define a relation as a directed connection from tagi from
websiteA to tagj from websiteB . For example, when the
user draws a line between the names of the restaurants, he
creates a relation from the “name” tag on Northwest Source
to the “name” tag on Yelp. When the user connects restau-
rants and buses, he creates a relation from the “area” tag to
the “route” tag. All relations are stored in the data repository
and are available to the user at any time. Webpage elements
that are associated through relations form a relation tree.

When the user collects content from a new webpage, the sys-
tem checks for relations that connect any of the collected
webpage elements to other websites. When such relations ex-
ist, the system uses them to generate new search queries and
limits the search results to the website specified in the rela-
tion. For example, when the user collects information about
the restaurant “Nell’s,” the system generates two queries.
To collect restaurant reviews it generates a query using the
“name” tag, i.e. “Nell’s,” and limits the search results to
yelp.com. To collect bus schedules the system generates
a query using the “area” tag, i.e. “Green Lake,” and limits
the search results to the bus website, metrokc.gov.

To define this process more formally, the execution of a rela-
tion can be expressed as a database query. For a given relation
r, where r = websiteA.tagi → websiteB .tagj , we can ex-
press the process of automatically collecting content for any
new data record from websiteA for tagi as a JOIN operation
or the following SQL pseudo-query:

Figure 3: With the recipe search template, the
user collects recipes from cooking.com and
allrecipes.com. Here the user has a collection of
five cards and has made two queries, one for “cookies”
and and another for “brownies”. The system automati-
cally collects, extracts, and displays relevant recipes.

SELECT * FROM websiteB

WHERE websiteB .tagj = websiteA.tagi

Since the Web is not made up of a set of uniform databases,
we use a number of different techniques to make this query
feasible. We use the Google Search AJAX API to find web-
pages within websiteB that are relevant. To extract content
from each of the search results, we employ the extraction
patterns we developed previously [7]. Finally, we designed a
number of heuristics to compute a similarity metric and rank
the extracted search results. The system displays only the
highest ranked extracted search result to the user but makes
the remaining search results available.

The search process introduces ambiguity at two levels, the
query level and the search result level. The system must be
able to formulate a good query so that it can retrieve the rel-
evant content. It must also be able to find the correct result
among potentially many that may all appear similar. Both of
these forms of ambiguity pose considerable challenges and
are active areas of research. Liu et al. [22] pose the query
formulation problem as a graph partitioning problem. Dong
et al. [6] propose propagating information across relations to
better inform similarity computation. Next, we describe how
we address these two types of ambiguity.

Query formulation
To formulate the keyword query, we typically use only the
extracted text content. We find that this type of query is usu-
ally sufficient and returns the appropriate result within the
top eight search results. Sometimes, however, the query may
include too many keywords, and the search results are irrele-
vant or cannot be extracted. In such cases, we reformulate the
query using heuristics. If characters such as ‘/’,‘-’,’+’, or ’:’
appear in the text, we split the string whenever they appear
and issue several queries using the partial strings. We found
this approach particularly effective for situations in which

something is described in multiple ways or is part of multiple
categories. For example, a yoga pose has a Sanskrit name and
an English name. Querying for either name returns results,
but querying for both does not, as the query becomes too
specific. Other approaches for reformulating queries include
using the semantic tag associated with the webpage element
or using additional webpage elements, such as the address, to
make the query more or less specific. With an interactive sys-
tem, processing a large number of queries can be prohibitive
due to the delay caused by the search and extraction process.
We focus on finding good heuristics that quickly retrieve re-
sults that are close to the desired content. If the system fails
to find a good search result, the user can always go to the
website and collect the content interactively.

Search result comparison
For each query we extract the first eight search results and
rank the extracted content according to similarity to the web-
page content that triggered the query. To compute similar-
ity we compare the extracted webpage elements using the
correspondence specified in the relation that triggered the
search. For example when collecting content for the “Am-
brosia” restaurant from nwsource.com, the system issues
the query “Ambrosia” limiting the results to the yelp.com
domain. The search results include reviews for the follow-
ing establishments: “Ambrosia Bakery” (in San Francisco),
“Cafe Ambrosia” (in Long Beach), “Cafe Ambrosia” (in
Evanston), “Ambrosia Cafe” (in Chicago), “Ambrosia on
Huntington” (in Boston), “Ambrosia Cafe” (in Seattle), and
“Caffe Ambrosia” (in San Francisco). Because the relation
between nwsource.com and yelp.com links the names
of the restaurants, we compare the name “Ambrosia” to all
the names of the extracted restaurants. We compare the strings
by calculating the longest common substring. We give more
weight to any strings that match exactly. For all seven restau-
rants in this example, the longest common substring is of
length eight; thus, they receive equal weight. Next, we com-
pare any additional extracted elements. We again compute
the longest common substring for corresponding webpage
elements. In this example, we compare the addresses of the
extracted restaurants and compute the longest common sub-
string for each pair of addresses, resulting in a ranking that
places the Seattle restaurant “Ambrosia Cafe” as the best
match to the original content. We display the highest ranked
extracted content but provide all of the extracted content to
the user so that he can correct any errors. The highest ranked
content is marked as confident when multiple webpage ele-
ments match between websites.

Limitations
In the current implementation, we extract content from only
eight search results because the Google AJAX Search API
limits the search results to a maximum of eight. For our pur-
poses using eight results has been sufficient and limits the
delay in collecting information. For very common keywords,
however, collecting eight search results is not sufficient. For
example, searching for “Chili’s” will yield many instances
of the restaurant chain. For those types of queries narrowing
the search through one of the approaches mentioned above
would be necessary.

Figure 4: The user is shopping for cars and using a car
search template to find new cars. He has three cards in
his collection and has made two queries: “mazda 2007”
and “honda 2007.” Each card includes car reviews from
autos.msn.com and edmunds.com.

Our approach for collecting related content is limited to web-
sites that are indexed by general search engines. There are
many websites, such as many travel websites, that are not
indexed by search engines because they create webpages
dynamically in response to user input. To handle these dy-
namic webpages, in subsequent work we hope to leverage
research into macro recording systems such as WebVCR [2],
Turquoise [25], Web Macros [27], TrIAs [3], PLOW [18],
and Creo [9]. These systems allow users to record a series of
interactions, store them as scripts, and replay them at any
time to retrieve dynamic pages. Madhavan et al. [24] are
developing information retrieval approaches to this problem
that do not require user intervention.

Finally, in the current implementation we allow the user to
specify only one-to-one relations. In some situations a one-
to-many relation is more appropriate; for example, if the user
is interested in collecting academic papers and wants to col-
lect all of the papers written by each of the authors for any
given publication. The system can actually query for all of
the papers by a given author but it is not designed to let the
user view all elements of the collection as relevant. In future
work, we plan to explore other types of relations and also
introduce transformations into the relations.

AUTHORING CARDS
The user can view his collection of Web content through
cards. A card imposes a uniform design on content that may
come from many different websites and may initially appear
very different. It defines which content should be displayed
and how the content should be organized visually. Recall
that the user’s content collection is stored in the data reposi-
tory and is accessible through relation trees. It is the relation
trees that specify which records in the data repository are re-
lated. In database terminology, a card can also be described
as defining a view on the relation trees in the data repository
— i.e., it lists the tags for the data that should be displayed
in the card. For example, a card can include the name and
address of a restaurant. Or it can also include pricing, rating,
and images. Our system includes a default card, which dis-

Figure 5: To design a new card, the user opens a can-
vas and begins drawing. He first draws the outline of
the card and then draws containers. To place content
in the containers, the user draws a line from the web-
page element to the container. Here, the user adds an
image to the card.

plays all records and webpage elements in the relation tree ir-
respective of the tags associated with the webpage elements.
The user can use our interactive editing tool to create new
cards at any time. Cards are persistent, can be reused, and
shared with others.

To create a new card the user clicks on the “New Card” but-
ton, which opens a canvas directly in his collection of Web
content (see Figure 5). The card designer is tightly integrated
with the collection space so that the user can quickly and eas-
ily merge content from different websites without switching
windows or views. The user first draws the outline of the card
and then proceeds to create containers that hold the webpage
elements. To assign data to a container, the user clicks on
a webpage element and drags a line to the container. The
data is automatically resized to fit the size of the container.
Each container is associated with the tag of the webpage ele-
ment it contains and the element website. If the element was
not marked as confident during the ranking process, it is ren-
dered semi-transparent to alert the user that they may want to
confirm the information by clicking on it to go to the source
webpage. When the user is finished creating containers and
assigning data, he clicks on the “Done” button, and the sys-
tem transforms his drawing into a template for organizing
and displaying Web content, a card. The user can at any time
edit the card and add or remove content. Currently, the cards
are presented in a grid, but they could also be manually orga-
nized into piles or arranged visually on a map or calendar.

Cards can be interactive in nature, encoding interactions spe-
cific to the type of data that is collected. Our authoring tool
does not currently provide capabilities for specifying interac-
tions. We could combine our authoring framework with the
Exibit API [15] and offer automatic filtering and sorting. Ad-
ditionally, we could expose a scripting interface and allow the
user to specify any type of card interactions.

TEMPLATE-BASED SEARCH
Our third contribution involves the use of search templates
that combine search directly with the structure of the user de-

Figure 6: The user relates upcoming.org to
myspace.com to automatically collect music sam-
ples for upcoming shows.

signed cards and underlying relations. The user can thus by-
pass visiting webpages directly and collect content through
a search template. Figure 7 shows a visual description of the
gathering process. For example, if the user wants to find veg-
etarian restaurants but does not know where to start, he can
simply query with the word “vegetarian” directed towards the
data underlying the restaurant card. More formally, a search
template includes a set of websites and any associated rela-
tions. When a user types a query to the search template (Fig-
ure 7a), the system sends the query to a general search engine
(Figure 7b), in this case through the Google Search AJAX
API, limiting the search results to the list of websites defined
in the template. For each search result, the system extracts
content using predefined extraction patterns (Figure 7c) and
triggers any relations that are in the template to collect addi-
tional content (Figure 7d-e). Due to limitations on the num-
ber of search results provided by the Google Search AJAX
API, for each query/website pair, the system processes only
eight search results. The user can also modify the search tem-
plate by adding additional websites to be queried and rela-
tions to be triggered. Extracted search results are presented to
the user as a set of cards (Figure 7f). These are initially con-
sidered temporary, indicated by being displayed below the
main collection of cards. The user can promote a search re-
sult to the actual collection or he can delete all of the search
results for a given query.

Figure 6 shows a collection of upcoming shows. In this ex-
ample the user has related concerts from upcoming.org
with band webpages at myspace.com. Whenever the user
adds a new concert to his collection, the system automatically
collects music samples. The music samples are embedded in
a music player and because the player is just another HTML
object, a Flash object, we can extract it just as we extract any
other webpage element. The music player retains full func-
tionality, and the user can press the play button on the control
to listen to the music.

The success of template-based search lies in the ability to
extract semantic information from webpages. Although se-
mantic extraction is only in its infancy, we believe that it will

vegetarian

restaurant

nwsource.com

nwsource.com

yelp.com

yelp.com

yelp.com

yelp.com
vegetarian

(a) (b) (c) (d) (e) (f)
Figure 7: (a) The user types the query “vegetarian” into the restaurant search template to collect vegetarian restaurants.
This search template includes two websites and a relation. The nwsource.com website is considered primary because
information from yelp.com is collected through a relation. (b) The system issues the query “vegetarian” to a general
search engine and limits the results to nwsource.com. (c) Each search result is processed with an extraction pattern
to extract relevant content. (d) The extracted content triggers relations, which issue further queries. (e) The subsequent
search results are extracted, ranked, and added to the content that triggered the additional retrieval. (f) Finally, the user
sees the extracted content as a series of cards.

only grow in the coming years and template-based search is
an example of the powerful new applications that will take
advantage of machine-readable webpages.

EXPLORATORY USER STUDY
We conducted an exploratory study to solicit feedback on our
system. We interviewed six participants, three women and
three men. Four of the participants were graduate students
and the remaining two were staff in the university. All of the
participants were active Web researchers and reported using
the Web for both personal and professional research often,
from a few times a week to several times a month. Two of the
participants had extensive bookmark collections, and the re-
maining four participants reported saving and organizing in-
formation infrequently. The primary organization techniques
were using email and adding information to documents.

We performed the study on a WindowsXP laptop with 2GB
RAM and 2 Ghz processor. The laptop was connected to
the Internet via a wireless connection. Our extension was in-
stalled on Firefox v1.5. The participants had individual ses-
sions, and each session lasted approximately one hour. Each
session included a background questionnaire (10 minutes), a
tutorial of the system (15 minutes), three tasks (20 minutes),
and a debriefing session (15 minutes). During the tutorial the
participants were shown how to use the system to collect
and organize information related to purchasing a car. Con-
tent was collected from two websites, autos.msn.com
and edmunds.com. The participants were shown how to
create a relation between the two websites, how to create a
new card for cars, and how to create a search template and
use it to find new cars.

The three tasks were framed as part of the same scenario,
which was “finding a restaurant for a night out.” In the first
task, the participants were directed to nwsource.com and
asked to pick a restaurant and add it to their collection. Then,
they were asked to go to yelp.com, find a review for the
restaurant, and add it to their collection. To add Web con-
tent to their collection, users had to only click a button. The

participants were then asked to use the relation interface to
associate the content together and then collect several more
restaurants. In the second task, the users were instructed to
design a card for the restaurants in their collection. For the
last task, the participants created a restaurant search template
and made several queries.

Observations and feedback
Overall, the participants were very positive about the tool.
They expressed that it would make Web research a more ef-
ficient process and let them easily return to tasks over time.
One user mentioned, “I think you would save me a ton of
time,” while another said, “There is some startup cost but I
think this [tool] is easy to learn.”

Although overall impressions were positive, all of the partic-
ipants suggested improvements to the interface for specify-
ing relations and placing content in cards. Instead of draw-
ing lines between webpage elements, the participants wanted
to drag and drop pieces of content. Our system can easily
be extended to include drag-and-drop interactions. It is only
through iterations with potential users that we can uncover
such user preferences and refine the interface.

Relations. All participants were able to create relations.
One of the participants said, “It’s pretty obvious what the
links should be. I can’t think of a situation when the UI would
not be adequate for what I want.” In the interest of time and
keeping the tasks simple, we had the participants collect con-
tent from only two websites, thus requiring only one relation
instantiation. We believe that this will be representative of
many tasks, which will require information from a few web-
sites. However, a more complex scenario may uncover addi-
tional usability problems with the interface for creating re-
lations. We are now exploring exposing possible relations to
the user as he collects new content.

Cards. Four of the six participants listed the ability to cre-
ate their own card as one of their favorite aspects of the sys-
tem. And when asked which card they preferred, the default

Figure 8: The cards designed by the study participants.

or the one they had just created, five of the six participants
said they preferred their own. The one participant who did
not prefer her own card thought it was not as pretty as the
default, as she did not consider herself able to create artistic
cards. One user mentioned, “I really liked the ability to syn-
thesize a new page or card from multiple sources. In compar-
ison shopping activities I frequently look at multiple pages
about a good service and it would be great to organize them
quickly.” The participants quickly learned how to use the card
designer and were all able to create their own cards. Fig-
ure 8 shows cards created by the participants. While most
users were happy to draw containers, several users requested
a more lightweight authoring tool through default templates.
One participant mentioned, “The layout design tool is a bit
too fine grained for me. I kind of want to just throw a few
items onto the card and maybe shuffle their arrangement, but
I don’t necessarily need to draw out their exact layout.” The
card designer was inspired by design tools such as Adobe
Illustrator, but this interaction paradigm may not be appro-
priate for novices or users who are interested in completing
their task as quickly as possible. A good card designer should
make it possible to create cards quickly but also give the user
control. This could be accomplished through good defaults
and more automated layout that adapts the containers as the
content changes, as was shown by Jacobs et al. [17].

Search Templates. When asked about their favorite aspect
of the system, two of the six participants picked template-
based search. One user mentioned, “Google is good when I
am searching for one thing. If searching for a bunch of stuff,
I would prefer to see the actual content and be able to ma-
nipulate it by saving and deleting.” When asked about the lag
in retrieving search results when using a search template, an-
other participant said, “A little lag time is a much better use
of my time than going through zillions of search results. I can
check stuff I have already gotten back while other things are
coming in. After all, it’s getting me what I asked for.”

While most of the participants were able to use the search
templates effectively and made queries such as “Italian” and
“Chinese” to retrieve new restaurants, two of the six partic-
ipants were confused about the source of the search results
and the types of queries that would yield restaurant cards.
For example, one user made the query “Tom Douglas,” a fa-

mous chef and restaurant owner, thinking that it would return
cards for each restaurant owned by Tom Douglas. Unfortu-
nately, this query did not return any search results because a
query for “Tom Douglas” at nwsource.com returns arti-
cles about Tom Douglas and not listings of his restaurants
in the top eight search results. Because we use a general
search engine to retrieve relevant search results, there will
be situations in which the results are not appropriate for the
search template. In such situations, users could quickly try
out new queries, or the system could help them by suggest-
ing possible ways to augment the search query. Currently,
the search templates do not return results if they are unable
to find appropriate content. This gives the user little intuition
as to how to modify the query to achieve better results. The
system could be extended to give the user feedback about the
available search results, even if they do not fit the expected
data representation.

CONCLUSIONS AND FUTURE WORK
In this paper we present three new interaction techniques for
helping users with collecting and organizing Web content.
We apply these techniques to a variety of tasks including
comparison shopping, event planning, and data collecting.
Our results and user feedback lead us to the firm conclusion
that these techniques are useful and welcomed by users. Our
work combines content extraction and Web search to provide
services and tools that are much needed and can help users
with challenging information tasks.

Our work has strong ties to the vision of the Semantic Web,
in which not only can computers understand all of the infor-
mation embedded in a webpage but they can also understand
relationships and concepts. While we wait for the promise of
the Semantic Web, we have built interactive tools that give
people enough value that they might effectively build com-
ponents of the Semantic Web without any help from content
providers. With our tools, users specify relations between
websites to accomplish their own tasks. These relations are
persistent and can be shared with others. We plan to create a
public repository of such relations, and this repository can be
the beginning of the web of relationships that the Semantic
Web envisions. Such a web of relationships can enable a new
shift in Web applications and bring about a World Wide Web
that is both more personal and collaborative.

We asked our study participants whether they would use a
public repository of relations, cards, and search templates,
and they were very positive about using such a repository.
Most of them suspected that they would be consumers rather
than producers of such community artifacts. As with any
task, there are users who will try to accomplish their work
as quickly as possible and others who will take the time to
create exactly what they need. To this end, we plan to con-
tinue evolving the card designer to provide light-weight card
authoring for the novice, while including more advanced fea-
tures such as automated reflowing and layout.

Our search templates present a new interface to Web search.
We plan to explore approaches for providing more feedback
so that the user can understand search results and quickly and
easily iterate through queries.

Finally, we hope to release the system and study users as they
carry out their own tasks. We want to explore which websites
people relate together, how often they create new cards, and
how well they can use search templates.

ACKNOWLEDGEMENTS
We thank our study participants for spending time with our
system and providing useful feedback on future improve-
ments. We thank Gregg Wilensky and Ty Lettau for their
helpful discussions and designs. Funding and research facil-
ities were provided by Microsoft Research, Adobe Systems,
and the University of Washington GRAIL lab.

REFERENCES
1. B. Amento, L. Terveen, and W. Hill. Experiments in

social data mining: The TopicShop system. ACM Trans.
on Computer-Human Interaction, pp. 54–85, 2003.

2. V. Anupam, J. Freire, B. Kumar, and D. Lieuwen. Au-
tomating Web navigation with the WebVCR. In Proc. of
the WWW conference on Computer networks, pp. 503–
517, 2000.

3. M. Bauer, D. Dengler, and G. Paul. Instructible infor-
mation agents for Web mining. In Proc. of IUI, pp.
21–28, 2000.

4. M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C.
Miller. Automation and customization of rendered web
pages. In Proc. of UIST, pp. 163–172, 2005.

5. S. Card, G. Roberston, and W. York. The WebBook
and the Web Forager: An information workspace for
the World-Wide Web. In Proc. of SIGCHI, pp. 111-117,
1996.

6. X. Dong, A. Halevy, and J. Madhavan. Reference rec-
onciliation in complex information spaces. In Proc. of
SIGMOD, pp. 85–96, 2005.

7. M. Dontcheva, S. M. Drucker, G. Wade, D. Salesin, and
M. F. Cohen. Summarizing personal Web browsing ses-
sions. In Proc. of UIST, pp. 115–124, 2006.

8. S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and
D. C. Robbins. Stuff I’ve seen: a system for personal
information retrieval and re-use. In Proc. of SIGIR, pp.
72–79, 2003.

9. A. Faaborg and H. Lieberman. A goal-oriented Web
browser. In Proc. of SIGCHI, pp. 751–760, 2006.

10. J. Fujima, A. Lunzer, K. Hornbæk, and Y. Tanaka.
Clip, connect, clone: combining application elements
to build custom interfaces for information access. In
Proc. of UIST, pp. 175–184, 2004.

11. Groxis. Grokker, 2005. http://www.grokker.com/.
12. A. Y. Halevy, A. Rajaraman, and J. J. Ordille. Data

integration: The teenage years. In Proc. of VLDB, pp.
9–16, 2006.

13. A. Hogue and D. Karger. Thresher: automating the
unwrapping of semantic content from the World Wide
Web. In Proc. of WWW, pp. 86–95, 2005.

14. D. Huynh, S. Mazzocchi, and D. Karger. Piggy Bank:
Experience the semantic web inside your Web browser.
In Proc. of ISWC, pp. 413-430, 2005.

15. D. Huynh, R. Miller, and D. Karger. Exhibit:
Lightweight structured data publishing. In Proc. of
WWW, pp. 737-746, 2007.

16. U. Irmak and T. Suel. Interactive wrapper generation
with minimal user effort. In Proc. of WWW, pp. 553–
563, 2006.

17. C. Jacobs, W. Li, E. Schrier, D. Bargeron, and
D. Salesin. Adaptive document layout. Communica-
tions of the ACM, 47:60 – 66, 2004.

18. H. Jung, J. Allen, N. Chambers, L. Galescu, M. Swift,
and W. Taysom. One-shot procedure learning from in-
struction and observation. In Proc. of FLAIRS, pp. 676-
681, 2006.

19. S. Karsenty, C. Weikart, and J. A. Landay. Inferring
graphical constraints with rockit. In Proc. of SIGCHI,
page 531, 1993.

20. T. Kristjansson, A. Culotta, P. Viola, and A. McCal-
lum. Interactive information extraction with con-
strained conditional random fields. In Proc. of AAAI,
pp. 412–418, 2004.

21. D. Kurlander and S. Feiner. Inferring constraints
from multiple snapshots. ACM Trans. on Graphics,
12(4):277–304, 1993.

22. J. Liu, X. Dong, and A. Y. Halevy. Answering struc-
tured queries on unstructured data. In Proc. of WebDB,
2006.

23. A. Lunzer and K. Hornbæk. RecipeSheet: creating,
combining and controlling information processors. In
Proc. of UIST, pp. 145–154, 2006.

24. J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy, S. R.
Jeffery, D. Ko, and C. Yu. Web-scale data integration:
You can afford to pay as you go. In Proc. of CIDR, pp.
342–350, 2007.

25. R. Miller and B. Myers. Creating dynamic World Wide
Web pages by demonstration. Carnegie Mellon Uni-
versity School of Computer Science, Technical Report
CMU-CS-97-131, 1997.

26. G. Robertson, M. Czerwinski, K. Larson, D. Robbins,
D. Thiel, and M. van Dantzich. Data mountain: using
spatial memory for document management. In Proc. of
UIST, pp. 153–162, 1998.

27. A. Safonov. Web macros by example: users managing
the WWW of applications. In SIGCHI Extended Ab-
stracts, pp. 71–72, 1999.

28. m. schraefel, Y. Zhu, D. Modjeska, D. Wigdor, and
S. Zhao. Hunter Gatherer: interaction support for the
creation and management of within-web-page collec-
tions. In In Proc. of WWW, pp. 172–181, 2002.

29. A. Sugiura and Y. Koseki. Internet Scrapbook: automat-
ing Web browsing tasks by demonstration. In Proc. of
UIST, pp. 9–18, 1998.

30. I. E. Sutherland. Sketch Pad a man-machine graphical
communication system. In Proc. of AFIPS, volume 23,
pp. 323–328, 1963.

31. P. Viola and M. Narasimhan. Learning to extract infor-
mation from semi-structured text using a discriminative
context free grammar. In Proc. of SIGIR, pp. 330–337,
2005.

32. Vivisimo. Clusty, 2004. http://www.clusty.com/.
33. J. Wong and J. I. Hong. Making mashups with Marmite:

towards end-user programming for the Web. In Proc. of
CHI, pp. 1435–1444, 2007.

34. Yahoo! Inc. http://pipes.yahoo.com/.

