
Drive Smartly as a Taxi Driver 

Yu Zheng, Jing Yuan, Wenlei Xie, Xing Xie 

Microsoft Research Aisa, 4F Sigma Building, Haidian 

District, Beijing 100190, China 

{yuzheng, v-jinyua, xingx}@microsoft.com 

Guangzhong Sun 

University of Science and Technology of China,  

Hefei, China 

gzsun@ustc.edu.cn

 

 
Abstract—GPS-equipped taxis are mobile sensors probing the 

traffic flow on road surfaces, and taxi drivers are experienced 

drivers who can usually find out the fastest path to a 

destination based on their knowledge. In this demo, we provide 

a user with the practically fastest path to a destination at a 

given departure time in terms of taxi drivers’ intelligence 

mined from historical GPS trajectories of taxis. We build our 

system, called T-Drive, by using a real trajectory dataset 

generated by over 33,000 taxis in a period of 3 months, and 

conduct both synthetic experiments and in-the-field 

evaluations. As a result, our method outperforms the real-time-

traffic-based (RT) and the speed-constraint-based (SC) 

approaches in both efficiency and effectiveness. 

Keywords- Path finding, driving directions, T-Drive, GPS 

trajectory, landmark graph. 

I.  INTRODUCTION 

A fast driving path saves not only the time of a driver but 
also energy consumption (as most gas was wasted in traffic 
jams). In practice, big cities with serious traffic problem 
usually have a large number of taxis traversing on road 
surfaces. For the sake of management and security, these 
taxis have already been embedded with a GPS sensor, which 
enables a taxi to report on its present location to a data center 
in a certain frequency. Thus, a large number of time-stamped 
GPS trajectories of taxis have been accumulated and easy to 
obtain. 

Intuitively, taxi drivers are experienced drivers who can 
usually find out the fastest path to send passengers to a 
destination based on their knowledge [6] (we believe most 
taxi drivers are honest although a few of them might give 
passengers a roundabout trip). When selecting driving 
directions, besides the distance of a route, they also consider 
other factors, such as the time-variant traffic flows on road 
surfaces, traffic signals and direction turns contained in a 
route, as well as the probability of accidents. These factors 
can be learned by experienced drivers but are too subtle and 
difficult to incorporate into the existing routing engines. The 
Therefore, these historical taxi trajectories, which imply the 
intelligences of experience drivers, provide us a valuable 
resource to learn practically fast driving directions. 

In this paper, we propose to mine smart driving 
directions from real-world historical GPS trajectories of taxis. 
This is a real application (termed T-Drive) that follows the 
strategy of “Mobile”+“Cloud”, which has been regarded as 
the new trend of Internet Services. As shown in Figure 1, 
GPS trajectories are generated by (Mobile) taxis and 
aggregated in the Cloud where we can mine taxi drivers’ 

intelligence from the trajectories. Then, the Cloud is able to 
leverage the intelligence to answer the queries from ordinary 
drivers using Mobile devices or other Internet users. Given a 
start and destination, our method can suggest the practically 
fastest path according to a user’s departure time (refer to 
Figure 2)). Moreover, the Cloud can guarantee the suggested 
fastest route is the state-of-the-art by updating the data 
timely. 
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Figure 1. Application scenario of T-Drive 

 
Figure 2. A web-based user interface of T-Drive 

The contribution of this work lies in the following three 

aspects: 

 We perform “sensor data  driving direction” instead 

of “sensor data  traffic information  driving 

direction”, i.e., we do not need to explicitly build speed 

estimation models (for each road) that may introduce 

errors to routing processes. 

 We propose the notion of landmark graph that can well 

model human knowledge of taxi drivers based on the 

real taxi trajectories and improve the online 

computation of path-finding.  



 We build our system by using a real-world trajectory 

dataset, and evaluate the system by conducting both 

synthetic experiments and in-the-field evaluations. 

II. ARCHITECTURE 

As shown in Figure 3, the architecture of our system 
consists of three major components: Trajectory 
Preprocessing, Landmark Graph Construction, and Route 
Computing. The first two components operate offline and the 
third is running online. 
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Figure 3. System overview 

Trajectory Preprocessing: This component first segments 

GPS trajectories into effective trips, then matches each trip 

against the road network. 1) In practice, a GPS log may 

record a taxi's movement of several days, in which the taxi 

could send multiple passengers to a variety of destinations. 

Therefore, we partition a GPS log into some taxi trajectories 

representing individual trips according to the taximeter's 

transaction records. 2) Map matching: We employ our 

IVMM algorithm [5], which has a better performance than 

existing map-matching algorithms when dealing with the 

low-sampling-rate trajectories [7], to map each GPS point of 

a trip to the corresponding road segment where the point 

was recorded. As a result, a taxi trajectory is converted to a 

sequence of road segments. 
Landmark Graph Construction: We separate the weekday 
trajectories from the weekend ones, and build a landmark 
graph for weekdays and weekends respectively. When 
building the graph, we first select the top-k road segments 
with relatively more projections (i.e., being frequently 
traversed by taxis) as the landmarks. Then, we connect two 
landmarks with a landmark edge if there are at least m 
trajectories passing these two landmarks. Later, we estimate 
the distribution of travel time of each landmark edge by 
using the VE-clustering algorithm. Now, a time-dependent 
landmark graph is ready for the online computation. Figure 4 
illustrates an example of building a landmark graph. In this 
case, we set k = 4 and m=1. 
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Figure 4. An example of building a landmark graph 

Route Computing: Given a query (qs, qd, td), we carry out a 
two-stage routing algorithm to find out the fastest route. In 
the first stage, we perform a rough routing that search the 
time-dependent landmark graph for the fastest rough route 
represented by a sequence of landmarks. In the second stage, 
we conduct a refined routing algorithm, which computes a 
detailed route in the real road network to sequentially 
connect the landmarks in the rough route. Figure 5 
demonstrates the routing concept. 
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Figure 5. A demonstration of the routing process of T-Drive 

III. EVALUATION 

We evaluated our approach by using a real trajectory 

dataset created by over 33,000 taxis in Beijing in a period of 

three months. Both simulation experiments and in-the-field 

study have been carried out. When conducting the in-the-

field study, we utilize some GPS trajectories (from GeoLife 

project [11]) recording real users’ driving histories in the 

real world to test the effectiveness of our method. The 

dataset has been released to the public [1], and can be used 

freely for research purpose. During the evaluation, we 

compare our method with the real-time traffic-based (RT) 

and the speed-constraint-based (SC) approaches. 

Figure 6 visualizes two landmark graphs when k = 500 

and k = 4000. The red points represent landmarks and blue 

lines denote landmark edges. Generally, the graphs well 

covers Beijing city, and its distribution follows our 

commonsense knowledge. 

 
A) k=500                                             B) k=4000 

Figure 6. Landmark graphs (k=500 and 4000) 



Figure 7 shows the results of the synthetic evaluation, 
where FR1 represents how many routes suggested by our 
method are faster than that of baseline, and FR2 reflects to 
what extents our routes are faster than the baseline's. Here, 
both our method and the RT approach use the SC method as 
a baseline. As depicted in Figure 7 A), over 60% of our 
routes are faster than that of the SC approach, and about 20% 
routes share the same results. Meanwhile, FR1 is being 
enhanced with the increase of k when k < 9000, and becomes 
stable when k >9000. That is, it is not necessary to keep on 
expanding the scale of a landmark graph to achieve a better 
performance. Figure 7 B) plots the FR2 of ours and RT. For 
example, when k = 9000, over 50% routes suggested by our 
method are at least 20% faster than the SC approach. This 
clearly outperforms the RT approach, which only has 5% 
routes WITH the same FR2. 

   
A) FR1 and SR                                   B) FR2 

Figure 7 Synthetic evaluation result 

In Table 1, the symbol Δ stands for the difference 
value of distance or duration. R1 represents the ratio of our 
routes outperforming the baseline (Google Map), and R2 
denotes to what extent our routes are beyond that of the 
baseline. For example, 80.8% of the routes suggested by our 
T-Drive system are faster than that of Google Map and on 
average our routes saves 11.9% time (T-test: p < 0.001). 

Table 1: In-the-field evaluation 

 

IV. RELATED WORK 

Zheng et al. [8, 9, 10] propose several novel approaches 

to learn the transportation modes from GPS data. Paper [2, 4] 

presents a probabilistic based method to predict a driver's 

destination and route based on historical GPS trajectories. 

Although paper [2] also uses GPS trajectories generated by 

25 taxis, this work aims to predict a driver's destination 

instead of providing the fastest route that a user can follow. 

Paper [3] computes the fastest route by taking into account 

the driving and speed patterns learned from historical GPS 

trajectories. Our method differs from this work in the 

following aspects. First, we do not explicitly detect speed 

and driving patterns from the taxi trajectories. Instead, we 

use the concept of landmarks to summarize the intelligence 

of taxi drivers. The notion of landmarks follows people's 

natural thinking patterns, and can improve efficiency of route 

finding. Second, our approach is driven by the real dataset 

while paper [3] is based on the assumption of synthetic data. 

Actually, the real data causes some challenges, e.g., low 

sampling rate and sparseness of trajectories. Moreover, we 

consider the time-variant and location-dependent properties 

of real-world traffic flows. 

V. CONCLUSION 

This demo shows an approach that finds out the 

practically fastest path to a destination at a given departure 

time based on taxi drivers’ intelligence learned from the 

historical taxi trajectories. The results show that our method 

significantly outperforms both the speed-constraint-based 

and the real-time-traffic-based method in the aspects of 

effectiveness and efficiency. More than 60% of our routes 

are faster than that of the speed-constraint-based approach, 

and 50% of these routes are at least 20% faster than the 

latter. On average, our method can save about 16% time of a 

trip, i.e., 5 minutes per 30-minutes driving. 
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