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Abstract. We study the feasibility of leveraging the sensors embedded on mo-
bile devices to enable a user authentication mechanism that is easy for users to
perform, but hard for attackers to bypass. The proposed approach lies on the fact
that users perform gestures in a unique way that depends on how they hold the
phone, and on their hand’s geometry, size, and flexibility. Based on this obser-
vation, we introduce two new unlock gestures that have been designed to enable
the phone’s embedded sensors to properly capture the geometry and biokinetics
of the user’s hand during the gesture. The touch sensor extracts the geometry and
timing of the user hand, while the accelerometer and gyro sensors record the dis-
placement and rotation of the mobile device during the gesture. When combined,
a sensor fingerprint for the user is generated. In this approach, potential attackers
need to simultaneously reproduce the touch, accelerometer, and gyro sensor sig-
natures to falsely authenticate. Using 5000 gestures recorded over two user stud-
ies involving a total of 70 subjects, our results indicate that sensor fingerprints
can accurately differentiate users while achieving less than 2.5% false accept and
false reject rates. Attackers that directly observe the true user authenticating on a
device, can successfully bypass authentication only 3% of the time.

1 Introduction

As sensitive information, in the form of messages, photos, bank accounts, and more,
finds its place on mobile devices, the need to properly secure them becomes a necessity.
Traditional user authentication mechanisms, such as lengthy passwords that include
combinations of letters, numbers and symbols, are not suited for mobile devices due to
the small on-screen keyboards. Given that users need to authenticate on their mobile
devices tens or even hundreds of times throughout the day, the traditional password
authentication technique becomes a real bottleneck.

To simplify the authentication process, users tend to leave their mobile devices com-
pletely unprotected, or they leverage simple authentication techniques such as 4-digit
pins, picture passwords (Windows 8), or unlock gestures (Android). Even though these
techniques allow easy and intuitive user authentication, they compromise the security
of the device, as they are susceptible to simple shoulder-surfing attacks [14]. Pins, pic-
ture passwords, and unlock gestures can be easily retrieved by simply observing a user
authenticating on his/her device once.

Ideally, the user authentication process should be easy and fast for users to perform,
and at the same time difficult for an attacker to accurately reproduce even by directly
observing the user authenticating on the device.
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Fig. 1. Proposed unlock gestures for capturing the biokinetics of the user’s hand. Users can per-
form the gesture anywhere on the screen, and at the speed they feel comfortable with. (a) 2-hand
gesture: the user sequentially taps his four fingers on the touch screen starting from the pinky
finger, and ending with the index finger. (b) 1-hand gesture: the user uses his/her thumb to touch
each of the rest four fingertips through the touch screen starting with the index finger, and ending
with the pinky finger. The 1-hand gesture was designed to avoid the need to use both hands at the
expense of more noisy sensor data. A video demonstrating both gestures can be seen in [1, 2]

Towards this goal, Android devices recently brought face recognition to the masses
by enabling user authentication through the front-facing camera. Even though intuitive
and fast, this type of authentication suffers from typical computer vision limitations.
The face recognition performance degrades under poor or different lighting conditions
than the ones used during training. Given that mobile devices constantly follow their
users, such fluctuations on the environmental conditions are common.

More recently, iPhone enabled users to easily and securely unlock their devices
by embedding a fingerprint sensor in the home button. Even though this approach ad-
dresses both the usability and security requirements of the authentication process, it is
fundamentally limited to devices with large physical buttons on the front, such as the
home button on iPhone, where such a sensor can be fitted. However, as phone manufac-
turers push for devices with large edge-to-edge displays, physical buttons are quickly
replaced by capacitive buttons that can be easily embedded into the touch screen, elim-
inating the real-estate required by a fingerprint sensor. Embedding fingerprint sensors
into touch screens behind gorilla glass is challenging, and has not been demonstrated.

In this paper, we study the feasibility of enabling user authentication based solely
on generic sensor data. The main idea behind our approach is that different users per-
form the same gesture differently depending on the way they hold the phone, and on
their hand’s geometry, size, and flexibility. These subtle differences can be picked up
by the device’s embedded sensors (i.e., touch, accelerometer, and gyro), enabling user
authentication based on sensor fingerprints. With this in mind, we introduce two new
unlock gestures, shown in Figure 1, that have been designed to maximize the unique
user information we can extract through the device’s embedded sensors.

While the user performs the gesture, we leverage the touch screen sensor to extract
rich information about the geometry and the size of the user’s hand (size, pressure,
timing and distance of finger taps). We also leverage the embedded accelerometer and
gyro sensors to record the phone’s displacement and rotation during the gesture. To
avoid the impact of gravity, we use linear acceleration provided by Android API.
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Fig. 2. Raw data from the touch, accelerometer, and gyro sensors. Dots and asterisks on the sen-
sor plots correspond to the moments of pressing and releasing.Touch screen data enables the
extraction of: distances between every pair of fingertips, angles defined by any combination of
3 fingertips, and the exact timing of each fingertip. Acceleration and gyro data capture the dis-
placement of the device in user’s hand during the gesture.

When combined, the information from touch, accelerometer, and gyro sensors pro-
vides a detailed view into how the individual user performs the gesture, and, as we
show in this work, it can be used as a sensor fingerprint to authenticate the user. At-
tackers willing to bypass this authentication mechanism, face a much harder task as
they have to simultaneously reproduce the timing, placement, size, and pressure of each
finger tap, as well as the accelerometer and gyro sensor signatures. Even though faking
each of this information individually might be easy, simultaneously reproducing all this
information is quite challenging even when the attacker has the opportunity to closely
observe the actual user performing the unlock gesture.

In summary, this work makes three contributions. First, we propose two new unlock
gestures that were designed to enable a device’s sensors to extract as much information
as possible about the user’s hand biokinetics. Second, we collect 3000 sensor finger-
prints across 50 users, and show that different users indeed perform the same gestures
differently, and in a way that embedded sensor’s can accurately capture and differen-
tiate. In particular, we demonstrate false accept and false reject rates lower than 2.5%,
when only a small number of training gestures per user is used. Third, we simulate real-
istic attack scenarios, by showing videos of real users authenticating on their devices to
attackers, and then asking the attackers to reproduce the unlock gestures. Experimental
results from 2000 attacks from 20 different attackers show that the proposed approach
can achieve success attack rates that are lower than 3%.

2 Motivation and Challenges
To better illustrate how the biokinetics of the user’s hand are captured by the proposed
gestures shown in Figure 1, Figure 2 shows the raw data recorded by the touch, ac-
celerometer, and gyro sensors when a user performs each of the gestures.

In both cases, four finger taps are recorded through the touch screen in the form
of pixel coordinates. Since each of the recorded touch points directly (2-hand gesture)
or indirectly (1-hand gesture) corresponds to a fingertip, the touch screen captures the
geometry of the user’s hand. In particular, the distance between every pair of fingertips,
and the angles defined by any combination of 3 fingertips, can be used to characterize
the size and geometry of the user’s hand. At the same time, the timestamps of the finger
taps highlight the speed at which the user is able to flex his fingers to perform the



required gesture. The duration of each finger tap, as well as the timing between pairs of
finger taps varies across users depending on the size and flexibility of the user’s hand.

The touch screen on most smartphones is also able to record the pressure and size of
each finger tap. Both of these values depend on the size and weight of the user’s hand,
on how much pressure the user applies on the display, as well as on the angle at which
the user holds the device while performing the gesture.

The accelerometer and gyro sensors complement the touch sensor by indirectly cap-
turing additional information about user’s hand biokinetics. Every time a user performs
one of the unlock gestures, the device is slightly displaced and rotated. As shown in Fig-
ure 2, the displacement and rotation of the device is clearly reflected in the accelerom-
eter and gyro sensor data.

When combined, the information from touch, accelerometer, and gyro sensors forms
a sensor fingerprint that captures the geometry and biokinetics of the user’s hand.

2.1 Challenges and Contributions

The use of sensor data for user authentication poses several challenges. First, the recorded
sensor data can vary across different gesture instances depending on how the actual
user performs the gesture or holds the device. Even worse, this variability can be user-
specific. For instance, some users can be very accurate in reproducing the exact timing
or distance between the finger taps, but fail to accurately reproduce other parts of the
sensor data, such as the pressure or angle signatures, and vice versa. An authentication
mechanism should be automatically tailored to the capabilities of each user.

To enable direct comparison of the sensor fingerprints across users and gesture in-
stances, we introduce personalized dissimilarity metrics for quantifying the difference
of any pair of sensor fingerprints in both the touch and sensor domain. The person-
alized dissimilarity metrics are designed to emphasize more on those features of the
sensor data that exhibit the least variability across gesture instances, and thus are the
most descriptive of user’s gesture input behavior.

Second, mobile devices support high sensor sampling rates (up to 200Hz). At this
sampling rate large amounts of data is generated creating a processing bottleneck that
can slow down the device unlock process, and render the proposed technique unusable.
To address this problem, we exploit the tradeoff between sensor downsampling and
overall accuracy, and show that by properly downsampling sensor data, we can achieve
device unlock times of 200ms without sacrificing recognition accuracy.

3 Architecture
Figure 3 provides an overview of the sensor-based authentication system. During the
user enrollment phase, the true user repeatedly performs the unlock gesture on the
touch-enabled device. For each gesture, the touch sensor is used to record finger taps
and extract information about the timing, distance, angle, pressure, and size of finger
taps. At the same time, the accelerometer and gyro sensors are continuously sampled to
capture the displacement and rotation of the device during the unlock gesture. The data
extracted from the finger taps, along with the raw accelerometer, and gyro data becomes
the actual sensor fingerprint for the user. In that way, multiple sensor fingerprints across
different gesture instances are collected. This collection of fingerprints represents the
identity of the user in the sensor domain.
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Fig. 3. Overview of the sensor-based authentication process. The processing pipeline is identical
for the 2-hand and 1-hand gestures: 4 finger taps are recorded and processed in the same way.

To determine if a random sensor fingerprint belongs to the true user or not, a way to
quantify the difference of two sensor fingerprints is required. We introduce a dissimi-
larity metric that takes into account the unique gestural behavior of the user to quantify
how close two sensor fingerprints are. Given this dissimilarity metric, we analyze the
variability of the recorded sensor fingerprints for a given user, and based on this vari-
ability we derive a threshold for admitting or rejecting an unknown sensor fingerprint.
For those users with low variability, a stricter threshold should be enforced, while for
users with high variability, a more lenient threshold should be adopted to properly bal-
ance false positives and false negatives.

At run time, when a user performs the unlock gesture, a new sensor fingerprint
is recorded. The distance of this fingerprint to the true user is computed as the aver-
age dissimilarity between the recorded fingerprint and every single fingerprint recorded
in the user enrollment phase. If the average dissimilarity is below the personalization
threshold, the user is successfully authenticated, otherwise the device remains locked.

The next sections describe in detail the composition of sensor fingerprints, the dis-
similarity metric, and the personalized threshold computation.

3.1 Sensor Fingerprints

Touch, accelerometer, and gyro sensor data are combined to form the sensor fingerprint.
In the case of accelerometer and gyro sensors, the process is straightforward as the raw
sensor data is directly used as part of the sensor fingerprint.

The touch sensor reports three distinct types of information for each finger tap: pixel
location, pressure, and size. As shown in Figure 2, both pressure and size are continu-
ously reported for as long as the finger touches the screen. Given that the variation of
pressure and size is quite small for each finger tap, we average all the reported pressure
and size values, and use them as two distinct features. Given the four finger taps, 4
pressure and 4 size values are generated (Table 1).

The majority of the touch-based features are extracted directly from the pixel loca-
tions of the 4 finger taps. First, the distances in the pixel location space are computed
for every pair of finger taps. In that way, 6 feature values are computed (Table 1). At



Feature Type Features Num. of Features
Distance D1,2, D1,3, D1,4, D2,3, D2,4, D3,4 6

Angle A1,2,3, A1,2,4, A1,3,4, A2,3,4 4
Size S1, S2, S3, S4 4

Pressure P1, P2, P3, P4 4
Duration Dur1, Dur2, Dur3, Dur4 4

Start Time Difference STD1,2, STD1,3, STD1,4, STD2,3, STD2,4, STD3,4 6
End Time Difference ETD1,2, ETD1,3, ETD1,4, ETD2,3, ETD2,4, ETD3,4 6

Distance Ratio D1,2

D2,3
,
D1,2

D3,4
,
D2,3

D3,4
3

Size Ratio S1
S2

, S1
S3

, S1
S4

, S2
S3

, S2
S4

, S3
S4

6
Pressure Ratio P1

P2
, P1
P3

, P1
P4

, P2
P3

, P2
P4

, P3
P4

6
Duration Ratio Dur1

Dur2
, Dur1
Dur3

, Dur1
Dur4

, Dur2
Dur3

, Dur2
Dur4

, Dur3
Dur4

6
Total number of touch features 55

Table 1. Features extracted from the 4 finger taps’ touch information. All features depend on the
relative, and not absolute, locations of the finger taps. This enables users to perform the gesture
anywhere on the screen. Indices 1, 2, 3, and 4 correspond to each finger tap as shown in Figure 1.

the same time, every combination of 3 finger taps uniquely defines an angle (Figure 2).
We consider all possible angles defined by a set of three finger taps, and generate an
additional 4 features (Table 1).

The touch sensor also reports a start and end timestamp for every finger tap, indi-
cating the time the finger initially touched the screen and the time it lost contact. Using
these timestamps, we compute the total duration of each finger tap, as well as as the time
that elapses between the start and end time between every pair of fingerprints. In that
way, the timing of each finger tap, as well as the timing across finger taps is captured.
As shown in Table 1, 16 temporal features are computed.

To better capture the spatial and temporal signature of the user’s hand during the
gesture, we compute an additional set of meta-features that focus on capturing the dy-
namics across the individual features described above. In particular, we compute the
ratio of every pair of distance, pressure, size, and duration features. As shown in Ta-
ble 1, 21 additional features are computed.

Overall, 55 features are computed based on the touch screen data (Table 1).

3.2 Comparing Sensor Fingerprints

When comparing sensor fingerprints across gestures, different techniques are used to
quantify the difference of the touch features and that of the sensor patterns.

Touch Features Let F 1 and F 2 be the set of the 55 touch features recorded across two
gesture instances. We quantify the difference Dtouch between these feature sets as the
weighted average difference across all features:

Dtouch =

55∑
i=1

WiDF 1(i),F 2(i) (1)

where Wi is the weight for feature i, and DF 1(i),F 2(i) is the difference between the
values recorded for feature i at the two gesture instances.

The distance between feature values F 1(i) and F 2(i) is defined by their normalized
numerical difference:
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Fig. 4. Difference scores computed across 50 users. Each user performed the 2-hand gesture 30
times, for a total of 1500 gestures. Each small block corresponds to a pair of a test user and
a true user, and contains the score between 30 test user gesture instances and the true user’s
gesture instances. Ideally, all the scores across the diagonal should be much lower (darker color)
compared to the rest, indicating that gesture instances from the same user differ significantly less
than gesture instances across users. True users are on the x-axis, and test users are on the y-axis.

DF 1(i),F 2(i) = min{ |F
1(i)− F 2(i)|
|F 1(i)|

, 2} (2)

When the two feature values are identical, the difference score becomes 0. In gen-
eral, the higher the difference of the feature values across the gesture instances, the
higher the distance for that feature will be. However, to prevent a single feature from
biasing the result of Equation 1, we limit the maximum value of the distance to 2. This
can be particularly useful when most feature values across two gesture instances match
closely, but one of them is significantly off (i.e., outlier or faulty measurement). Even
though the two gesture instances are almost identical, when an upper bound is not used,
this feature can significantly bias the distance score computed in Equation 1.

The weight Wi of the feature i represents the importance of the feature for a given
user. In general when users repeat gestures, they can accurately repeat feature values
with varying degrees of success. The role of the weight is to emphasize on those features
that a specific user can accurately reproduce across gesture instances. Given a set of
enrolled gestures from a user, the weight for feature i is defined as:

Wi = exp{−
σF (i)

µF (i)
} (3)

where σFi and µFi is the variance and mean of the values for feature i across all the
enrolled gestures from the true user. When the deviation σFi

for feature i is 0, the weight
takes the maximum value of 1, indicating that this feature is accurately repeatable across
gesture instances. Otherwise, a positive weight less than 1 is assigned to the feature that
is determined by the ratio of σFi

and µFi
.

Figure 4(a) shows the distance scores computed by Equation 1 between every pair
of 2-hand gestures recorded from 50 different subjects. Note that the scores recorded
along the diagonal are much lower than the rest. This means that gestures from the same
user differ less than gestures across users, indicating that touch features have enough
discriminating power to differentiate users.

Sensor Patterns Each sensor fingerprint is comprised of 6 time series signals, each
representing the acceleration and rotation of the device across the x, y, and z dimen-
sions (Saccelx , Saccely , Saccelz , Sgyrox , Sgyroy , Sgyroz ). Even though a straightforward



approach to comparing these signals across gestures would be to simply compute the
distance between them, such a method fails due to the noise in the sensor data. For
instance, the total time to perform a gesture and the exact timing between finger taps
inherently varies across gesture instances even for the same user. These variations can
artificially increase the distance between the recorded traces.

Instead, we quantify the difference of these signals across gestures by combining
two well known techniques for comparing time series data: dynamic time warping
and cross-correlation. Instead of comparing each corresponding sample between the
recorded signals, the two signals are slightly shifted to enable the best possible match.
This allows us to take into account variations across gesture instances.

Before comparing two signals, each signal is normalized to zero mean and one
energy to avoid favoring low energy over high energy signal pairs. Then, each signal
is further normalized by its length to avoid favoring short signals over long signals. In
particular, each time-series data S(i) in the sensor fingerprint is normalized as follows:

S(i) =
S(i)− µS∑L

i=1(S(i)− µS)2L
(4)

where L is the length of the signal, and µS is the mean value of all signal samples.

Dynamic Time Warping
Let S1

accelx
and S2

accelx
be the normalized accelerometer signals over the x axis

that were recorded across two different gesture instances. Since they are recorded at
different times, they might have different lengths, say L1

accelx
and L2

accelx
. To compare

these two signals, we first compute the direct distance between every pair of samples
in S1

accelx
and S2

accelx
. In that way, a distance matrix Daccelx with L1

accelx
rows and

L2
accelx

columns is computed, where each element takes the following values:

Dij
accelx

= |S1
accelx(i)− S

2
accelx(j)|, 1 ≤ i ≤ L

1
accelx , 1 ≤ j ≤ L

2
accelx (5)

In a similar way, distance matrices Daccely and Daccelz are computed and then
added together to form a single distance matrix Daccel.

Note that even though the range of acceleration values across different axis might
differ, this addition is meaningful given the normalization of all sensor signals according
to Equation 4. The exact same process is applied to the gyro data to generate a single
distance matrix Dgyro that encodes the difference in the gyro sensor data across the x,
y, and z dimensions. At the end, accelerometer and gyro distance matrices are added to
form a single distance matrix D = Daccel +Dgyro:

Note that the number of samples in the accelerometer and gyro streams might be
different depending on the sampling rates the hardware supports for these sensors. As
a result, matrices Daccel and Dgyro might have different dimensions. In this case, we
up-sample the lower frequency signal to ensure that both Daccel and Dgyro have the
same dimensions and can be properly added.

Simply adding up the diagonal elements in matrix D, corresponds to the direct
distance between the sensor fingerprints across the two gestures. In order to address
the variability in the way users perform the gesture (slightly different timing etc.), we
define a search space across the diagonal defined by CDTW :

Dij =∞ (|i− j| ≥ CDTW ) (6)



where CDTW is the Dynamic Time Warping constraint.By setting distances to in-
finity, we limit the search space along the diagonal, therefore limiting how much each
signal is shifted. The distance between the two signals is now defined as the shortest
warping path between the two diagonal points in matrix D:

DDTW = argmin
p

∑
(i,j)∈p

Dij (7)

where p is a warping path between the two diagonal points in the matrix.
When CDTW is equal to 1, the direct distance is calculated as the sum of all the

diagonal elements in matrix D. As the value of CDTW increases, more shifting of the
two signals is allowed. In Section 4, we study the effect of the CDTW value.

Cross-correlation
Similarly to Dynamic Time Warping, we combine the accelerometer and gyro data

across the x, y, and z dimensions to compute a single cross-correlation value as:

Corr = argmax
n∈[−CCorr,CCorr]

P∑
k=1

min{L1k−n,L2k}∑
m=max{−n+1,1}

S1k(m+ n)S2k(m) (8)

where CCorr is a constraint on the permitted shift amount of the signals.
The scores produced by the Dynamic Time Warping and Cross-correlation tech-

niques are combined together to quantify the overall distance between gestures in the
sensor pattern domain:

Dsensor = DDTW ∗ (1− Corr) (9)
Figure 4(b) shows the score computed by Equation 9 between every pair of gestures

recorded from 50 different subjects. Sensor pattern information appears to be stable
across different gesture instances from a given user. All scores across the diagonal (ges-
tures corresponding to the same users) have consistently low distance scores. When
compared to Figure 4(a), sensor pattern information appears to have more discrimina-
tive power with respect to the touch features.

Combining Touch Features and Sensor Patterns We combine touch features and
sensor patterns by multiplying the corresponding difference scores:

Dcombined = Dtouch ∗Dsensor (10)
Figure 4(c) shows the score computed by Equation 10 between every pair of ges-

tures recorded from 50 different subjects. When compared to Figure 4(a), and Fig-
ure 4(b), it is clear that the combination of sensor and touch data helps to better distin-
guish users. The distance score matrix contains low values (black lines in Figure 4(c))
primarily for gesture instances that belong to the same user.

3.3 Personalized Threshold
Equation 10 quantifies the difference between any pair of gesture instances, but it is not
enough to make a decision whether or not a gesture belongs to the same user. Some
users can very accurately reproduce the touch and sensor fingerprints across gesture
instances, while others might exhibit higher variability. As a result, a low or high score
from Equation 10 can be interpreted differently across users.

We deal with this variability by defining a personalized threshold PTh for deciding
when the difference between gestures is low enough to assume they belong to the same
user. Given N enrolled gestures from a user, we define PTh for this user as:
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Fig. 5. The computed threshold values for 50 users (2-hand gesture). Values can differ by an order
of magnitude indicating the need for a personalized threshold.

PTh = µDij
combined

+ 3σDij
combined

, 1 ≤ i, j ≤ N, i 6= j (11)

where the first term represents the median distance (Equation 10) of all pairs of gestures
that belong to the user, and the second term represents the standard deviation of these
distances. These two values quantify the variability in the sensor fingerprints across
gesture instances for a user. The threshold value for users that accurately reproduce
sensor fingerprints across gesture instances will have a low PTh value, and vice versa.

Note that the personalized threshold value PTh (Equation 11) is computed based on
positive only data from the true user. This is highly desirable given the lack of negative
data on each user’s device. As we show in Section 4.1, even a small number of gestures
(≈10) from the true user is sufficient to generate a reliable PTh value.

Figure 5 shows the PTh values for 50 different users. The range of threshold values
is quite large. Even though there are several users that can accurately reproduce their
gestures across multiple instances and hence have low threshold values (i.e., value 5 for
User 8), there are also many users for which the threshold values are an order of magni-
tude higher (i.e., value 70 for User 16). This indicates the need for properly computing
different thresholds across users.

4 Evaluation

To evaluate the proposed approach we conducted two separate user studies. First, we
asked 50 users (12 females and 38 males) to perform each of the proposed unlock ges-
tures 30 times. All users were volunteers and were not compensated for this study. We
first explained and demonstrated the proposed gestures to the users, and then allowed
them to perform the gesture several times until they became comfortable with it. Each
user then repeated each of the two gestures 30 times.

During data collection, several measures were taken to avoid biasing the dataset
and artificially increasing the accuracy results. First, all users performed the gesture
while standing up. In that way repeatability across gesture instances was not biased
by the users’ having their arms supported by a desk or a chair. Second, each user had
to “reset” the position of his arms in between gesture instances, and pause for several
seconds. In that way, data collection was able to capture the variations of how the user
holds the device and taps the finger across gesture instances. In this experiment, a total
of 3000 gesture instances were collected across all users and gestures. We leverage this
dataset to study how different the sensor fingerprints across users are, and what parts of
the sensor fingerprints have the most discriminative power.
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Fig. 6. User classification accuracy for the 50-subject user study when the 2-hand gesture is used.
Each block corresponds to a pair of a true user and a test user, containing the classification result
for 30 gesture instances from the test user. The black color indicates that the gesture instance is
classified as the true user, and the white color the opposite. Ideally only the diagonal boxes should
be black. The true users are on the x-axis, and the test users are on the y-axis.

The second user study focused on simulating an actual attack scenario. A separate
set of 20 users (5 females, 15 males) posed as attackers aiming to falsely authenticate
as the true user. For each attacker we randomly chose 5 users from the initial 50-subject
user study, and gave the opportunity to the attacker to attack each of the 5 users 10 times.
Overall, 2000 attack gestures were collected, 1000 for each of the proposed gestures.
Right before the attackers attempted to falsely authenticate, they were shown a closeup
video of the true user they were attacking. In this video, the attackers could observe, for
as much time as they wanted, the true user repeatedly authenticating on the device. In
addition, we allowed the attackers to spend as much time as they wanted to perfectly
recreate the exact holding position of the device from the true user. Note that in practice,
an attacker will rarely, if ever, be able to closely observe all this information, and then
try to immediately attack the authentication mechanism.

In all cases, we use False Accept Rate (FAR) and False Reject Rate (FRR) to quan-
tify the effectiveness of the proposed approach. The former represents the percentage
of gesture instances that belong to users other than the true user, but are erroneously
classified as belonging to the true user. The latter represents the percentage of gesture
instances that belong to the true user, but are erroneously classified as belonging to a
different user.

During both user studies, a single mobile device was used by all users. Specifically,
a Google Nexus 4 device running Android 4.3 and a custom data collection application
we built, was used to collect the touch, accelerometer and gyro data.

4.1 Differentiating Users

In this section, we leverage the data collected from the 50-subject user study to under-
stand the discriminative power of the proposed unlock gestures in differentiating users.
Using the 30 gesture instances from each user, we calculated the personalized thresh-
old for each user. We then used this threshold to classify every single gesture instance
recorded across all users as belonging or not to the user. The classification results for
the 2-hand gesture are shown in Figure 6.

Ideally, only the diagonal of the classification matrices in Figure 6 should be black,
indicating that only the true gesture instances are classified as belonging to the user.
When touch data is only used, the classification matrix appears to be noisy. Even though



Mode
2-hand Gesture 1-hand Gesture Pin
FRR FAR FRR FAR FRR

Touch 2.40% 5.28% 1.8% 8.93% 10%
Sensor 2.48% 3.49% 2.61% 18.85 10%
Both 2.48% 0.41% 2.34% 2.40% 10%

Table 2. False accept and reject rates for the 2-hand and 1-hand gestures when different sensor
data is used. We also report the FRR of the 4-digit pin as measured in [7].

the true user’s gesture instances are always classified correctly, there are specific users
that are hard to differentiate solely based on the touch fingerprints. When sensor pat-
terns are only used for classification, the classification matrix is noticeably cleaner (only
a few users are now hard to differentiate), indicating that the discriminative power of
the sensor patterns is superior to that of touch sensor data. However, the combination of
touch, accelerometer, and gyro data provides almost perfect classification accuracy, in-
dicating the complementary nature of the different sensors in the classification process.

Table 2 shows the FAR and FRR values achieved by the 2-hand gesture. Overall,
approximately 2.5% of the gesture instances that belong to the true user are falsely
rejected. Note that even in the case of traditional 4-digit pins, FRR values as high as 10%
have been reported [7]. As users try to quickly enter their 4-digit pin, they accidentally
mistype it 1 in 10 times [7]. As a result, the achieved FRR rate of 2.5% is on par with the
current pin-based authentication techniques. Depending on the data used in the sensor
fingerprint, FAR rates are anywhere between 0.41% and 5.28%.

In the case of the 1-hand gesture, the classification accuracy degrades when touch
or sensor data is only used. This is expected as the 1-hand gesture was designed to
allow single-hand handling of the mobile device at the expense of quality in the data
recorded. However, when touch data and sensor data is combined, the classification
accuracy increases, indicating that the 1-hand gesture can be a viable unlock gesture.

Feature Sensitivity Analysis To understand the importance of individual features in
the user authentication process we performed an exhaustive analysis by recomputing
the classification matrices shown in Figure 6 for every possible combination of fea-
tures. In addition to the 57 features available (55 touch features and 2 sensor patterns),
we also experimented with two important parameters: the feature weight introduced in
Equation 3, and the permitted shift amount of the raw sensor patterns as described in
Equations 6, and 8. Specifically, we examined permitted shift amounts of the raw sen-
sor patterns ranging from 0% all the way to 100% at increments of 10%. In the case
of feature weights, we exploited the case where feature weights are computed using
Equation 3, and when no weights are used (all the weights for all features are set to 1).

Table 3 shows the feature combinations that achieve the best results for both ges-
tures. Consistently, across all combinations and gestures, the feature sets that achieve
the best FAR and FRR results leverage feature weights. This verifies our initial intuition
that individual users can accurately reproduce different parts of the sensor fingerprint
across gesture instances. Feature weights are able to account for the user’s variability
across gesture instances, and improve the overall accuracy.

In the case of the 2-hand gesture, both accelerometer and gyro sensor patterns ap-
pear to be important for ensuring successful authentication. However, for the 1-hand
gesture, the value of acceleration data seems to be less important.



Mode
2-hand Gesture 1-hand Gesture

Features FRR FAR Features FRR FAR

Touch
Distance, Angle, Size, Pressure,
Duration,Distance/Pressure Ratio,
Feature Weights: Yes

2.40% 5.28%
Distance, Angle, Size,
Pressure, Duration
Feature Weights: Yes

1.8% 8.93%

Sensor
gyroxyz , accelxyz
Shift: 40%

2.48% 3.49%
gyroxyz
Shift: 30%

2.61% 18.85%

Both
Distance, Angle, Size, Pressure
Feature Weights: Yes
gyroxyz , accelxyz , Shift: 40%

2.48% 0.41%
Distance, Angle, Size, Pressure
Feature Weights: Yes
gyroxyz , Shift: 50%

2.34% 2.40%

Table 3. Feature combinations and parameter values achieving the best FAR and FRR values.
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Fig. 7. Accuracy as a function of the number of available gestures per user in the case of the
2-hand gesture. Trends are similar for the 1-hand gesture.

For both gestures, though, sensor patterns need to be properly shifted to enable
accurate comparison across gesture instances. According to Table 3, accelerometer and
gyro patterns provide the best results when shifted anywhere between 30% and 50%
depending on the gesture used.

Size of Training Data So far, all 30 gesture instances for each user were used in the
authentication process. Figure 7 shows the impact of the number of gesture instances
used on both the false accept, and false reject rates achieved. Intuitively, FAR and FRR
are reduced as the number of gesture instances increases, but they quickly saturate,
eliminating the need for 30 gestures. Anywhere between 10 and 15 gesture instances
are enough to achieve FAR and FRR values that are within 0.5% of the values achieved
when all 30 gesture instances are used.

4.2 Resilience to Attacks
In this section, we leverage the dataset collected by 20 subjects posing as attackers to
study the resilience of the proposed authentication mechanism to an actual attack. To
study the resilience of the sensor fingerprints to attacks, we compared all of attacker’s
sensor fingerprints to the ones of the true users and classified them as belonging to the
true user or not in the same way as before. During this process, we leveraged the feature
set that achieved the best FAR and FRR values in the previous section.

Table 4 shows the FAR and FRR values for the attacker sensor fingerprints. When
compared to the results in Table 3, FAR values are significantly higher when touch or
sensor patterns are only used as the sensor fingerprint. This is expected as the attacker
was able to directly observe the true user authenticating on the mobile device, and
attempted to closely resemble the process. However, when touch and sensor patterns are
combined into a single sensor fingerprint, the false accept and reject rates only slightly
increase and remain well below 3%. This is surprisingly low given that the attacker was
able to closely monitor the true user authentication process right before the attack. In



Mode
2-hand Gesture 1-hand Gesture

FAR (FRR+FAR)/2 FAR (FRR+FAR)/2
Touch 12.99% 7.69% 15.9% 8.85%
Sensor 11.2% 6.87% 20.8% 11.71%
Both 2.86% 2.67% 5.9% 4.12%

Table 4. FAR and FRR values for the attack scenarios and for both 2-hand and 1-hand gestures.

contrast, an attacker that was able to closely observe the true user entering a 4-digit pin,
would be able to get 100% false accept rates.

In the case of the single hand gesture, the trends are similar, but now the FAR value
increases to reach 6% when both touch and sensor patterns are combined. However,
even in this case, the FAR and FRR values remain well below 6% indicating that the
1-hand gesture can still provide reasonable protection from attackers.

4.3 Computation Overhead
On a Google Nexus 4 device running Android 4.3, processing the touch data takes only
6.7ms. However, processing the accelerometer and gyro data on the same device takes
3.1 seconds. Such a delay is prohibitive for any realistic use of the proposed approach.

This 3 second delay is mainly caused by two factors. First, every candidate sen-
sor fingerprint is currently compared to all 30 enrolled gestures from the true user.
Second, for each comparison between a candidate sensor fingerprint and an enrolled
sensor fingerprint, the cross-correlation and dynamic time wrap is computed for both
the accelerometer and gyro data. This operation is time consuming when the sensors
are sampled at very high data rates such as 200Hz.

Figure 8(a) and Figure 8(b) show the processing time as a function of the number of
enrolled gestures per user, and the sensor down-sampling rate. Simply down-sampling
accelerometer and gyro data by a factor of 2, reduces the processing time to approx-
imately half a second. In addition, when only 15 enrolled gestures are used per user,
the overall processing time becomes approximately 200ms. This delay is practically
unnoticeable by the user, resulting into an instant authentication user experience. The
small processing time also implies a low energy overhead, preventing our method from
draining the battery.

As Figure 8(c) and Figure 8(d) show, when sensor data is down-sampled by a factor
of 2, and the number of enrolled gestures is 15, the mean FAR and FRR values re-
main practically unchanged. As a result, the proposed technique can provide an instant
authentication experience without sacrificing accuracy and robustness to attacks.

5 Related Work
To address the susceptibility of current authentication techniques to shoulder surfing
attacks [14], researchers have already proposed to understand how a user performs the
gesture, and to leverage this information to strengthen the authentication process while
maintaining its simplicity [9, 3–5, 10, 12, 8, 13].

Specifically, the work in [3] expanded the typical gesture unlock techniques em-
ployed by Android devices, to incorporate the timing of the user’s gesture. The work
in [9] expanded on this idea by incorporating additional information such as pressure,
and size of the finger taps during the gesture. In contrast, our work focuses on designing
new unlock gestures with the goal of capturing the geometry of the user hand through
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Fig. 8. Processing time ((a),(b)) and accuracy ((c),(d)) as a function of the number of enrolled
gestures per user, and the sensor down-sampling rate.

the touch screen, and the embedded accelerometer and gyro sensors. Even though valu-
able, timing, size and pressure information does not provide enough discriminating
power to accurately differentiate users, resulting into 2-3 times higher false accept and
false reject values compared to the approach presented in this paper.

More recently, Shahzad et al. [12] studied various touch screen gestures to under-
stand the feasibility of combining touch screen data with accelerometer signatures to
authenticate users. Even though the same sensing modalities were used, the gestures
proposed and analyzed in [12] do not focus on, and were not designed to, capture the ge-
ometry of the user’s hand. Instead, they mainly focus on capturing the velocity at which
finger taps take place. However, capturing the geometry of the user’s hand through the
unlock gesture is a key parameter in terms of accuracy. Evident of this, is the fact that
the work in [12] achieves the same FAR and FRR values as the 2-hand gesture proposed
in this paper, only when the user performs 3 different 2-hand gestures sequentially. Ask-
ing users to perform 3 different gestures in a row increases the cognitive overhead for
the user and the time it takes to unlock the device, raising usability concerns. The work
in [13] proposed to design user-generated free-form gestures for authentication. How-
ever, it was only evaluated on tablets and the effectiveness of the method on devices
with smaller screens such as smartphones was not demonstrated.

The closest to our work is the one proposed by Sae-Bae et al. [10] where new multi-
touch gestures were proposed to capture the geometry of the user’s hand to enable reli-
able user authentication. In particular, multiple 5-finger gestures were proposed target-
ing devices with large screens such as tablets. In their approach, only touch sensor data
were used to differentiate users. Even though 5-finger gestures can provide even richer
information about the user’s hand geometry, they can only be applied on tablet-like de-
vices. Not only do smaller devices, such as phones, lack the physical space required by
these gestures, but they can only support up to 4 simultaneous touch points.

User authentication techniques have also been proposed outside the context of touch
screens, accelerometer and gyro sensors. For instance, Jain et al. [6] proposed to extract
a detailed description of the user’s hand geometry by taking a picture of the user’s hand.
Even though this is a more accurate way to capture the hand geometry, asking users
to properly place their hands in front of the phone’s camera can be awkward, time-
consuming, and also susceptible to environmental lighting conditions. Sato et al. [11]
proposed a capacitive fingerprinting approach where a small electric current is injected
into the user’s body through the touch screen, enabling the measurement of user’s bio-
impedance. However, bio-impedance measurements are inherently noisy due to ground-
ing issues, and variability in the body’s fat and water throughout the day.



6 Discussion and Limitations
Our experimental evaluation shows that carefully designed gestures can enable sensor
fingerprints to accurately differentiate users and protect against attackers. Note that the
goal of this work is not to achieve recognition rates that are similar to fingerprint sen-
sors, nor to replace them. Instead, our goal is to propose an alternative authentication
mechanism for mobile devices that is both intuitive and easy for users to perform, and at
the same time hard for attackers to bypass. Sensor fingerprints can be significantly more
secure compared to pins, picture passwords, and simple unlock gestures, but definitely
not as accurate as fingerprint sensors. However, as physical buttons on mobile devices
are eliminated in favor of edge-to-edge displays, and given the lack of technology to
properly embed fingerprint sensors into touch screen displays, the use of fingerprint
sensors becomes challenging. With this in mind, we believe that sensor fingerprints can
be a viable alternative to user authentication on mobile devices.

In practice, the use of sensor fingerprints can be rather tricky. When the user is
actively moving (i.e., walking, driving, etc.), the accelerometer and gyro recordings will
capture the user’s motion rather than the displacement of the phone due to the gesture.
However, mobile devices already enable continuous sampling of sensors to recognize
higher level activities such as sitting, walking, and driving. When these activities are
detected, the acceleration and gyro data could be removed from the sensor fingerprint
(or the device could fall back to the 4-digit pin). As Table 2 shows, even when only
touch data is used, the FAR achieved is still reasonable.
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