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Abstract

In this paper, an improved method of model complexity selection for nonnative speech recognition is proposed by using
maximum a posteriori (MAP) estimation of bias distributions. An algorithm is described for estimating hyper-parameters
of the priors of the bias distributions, and an automatic accent classification algorithm is also proposed for integration with
dynamic model selection and adaptation. Experiments were performed on the WSJ1 task with American English speech,
British accented speech, and mandarin Chinese accented speech. Results show that the use of prior knowledge of accents
enabled more reliable estimation of bias distributions with very small amounts of adaptation speech, or without adaptation
speech. Recognition results show that the new approach is superior to the previous maximum expected likelihood (MEL)
method, especially when adaptation data are very limited.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

American English speech recognition systems are commonly trained from speech data of native American
English speakers. For native American English speakers, these systems may work very well within constrained
task domains, but for speakers with heavy foreign accents, the performances deteriorate dramatically in gen-
eral. The difficulty in foreign accented speech can be largely attributed to confusions of vowels, especially those
not in a speaker’s mother tongue (Compernolle, 2001; Wijngaarden, 2001), and such phone variation and sub-
stitution change greatly with different types and levels of foreign accents as well as phone contexts (Berkling,
2001). Although foreign accent dependent acoustic models may best capture properties of nonnative speech
0885-2308/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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and therefore are the most accurate for nonnative speech recognition, it remains difficult to train such models
since the required vast amounts of training data that cover different types and degrees of foreign accents do not
yet exist. It is therefore important to develop effective techniques to improve robustness of state-of-the-art
speech recognition systems for nonnative speech recognition.

Increased research activities on nonnative speech recognition have been reported in recent years. These
approaches include multilingual acoustic modeling, nonnative speech oriented lexicon modeling, acoustic
modeling, and decoding. Although speaker adaptation techniques such as Maximum Likelihood Linear
Regression (MLLR) (Leggetter and Woodland, 1995) or Maximum a posteriori (MAP) estimation (Gauvain
and Lee, 1994) are generally applicable to adapt speaker-independent models to foreign-accented speakers, it
is well recognized that a large amount of adaptation data is needed from a foreign-accented speaker to achieve
an acceptable level of recognition accuracy (Zavaliakos et al., 1995; Zavaliakos, 1996). In multilingual acoustic
modeling, phone sets of several languages are mapped to a universal phone set and speech data of these lan-
guages are pooled to train an acoustic model (Uelber and Boros, 1999; Fischer et al., 2001; Kohler, 1996;
Weng et al., 1997; Schultz and Waibel, 1998; Byrne et al., 2000). In the reported studies, multilingual models
were limited to small tasks. Compared with using acoustic models trained from native speech alone, multilin-
gual models improved nonnative speech recognition at the expense of degrading native speech recognition. In
Witt and Young (1999), acoustic models of both native English and native foreign language were built based
on known target foreign accent, and phone-state mappings between acoustic models of the two languages were
learned for recognition of Spanish and Japanese accented English. In Tomokiyo (2000), data-driven lexical
modeling of Japanese-accented English was made by generating pronunciation variants of English words from
a large amount of Japanese accented English. In Matsunaga et al. (2003), decoding of Japanese-accented Eng-
lish was performed by using a ‘‘bilingual’’ English pronunciation lexicon and using both English and Japanese
acoustic models, where each English word has separate transcriptions in English phonemes and Japanese pho-
nemes. In Minematsu et al. (2002), acoustic models were trained from an English speech corpus of Japanese
talkers and English speaking proficiency was estimated for each talker to dynamically select proficiency-level
appropriate regression trees for MLLR adaptation. The above methods improved performance of nonnative
speech recognition to different degrees. However, the scopes of their applications are limited since in these
methods, target accent needs to be known a priori and large amounts of target accent speech data are required.

The authors of the current paper proposed a model selection based technique of nonnative speaker adap-
tation (He and Zhao, 2001; He and Zhao, 2003) that overcomes difficulties of the above discussed methods,
i.e., it works for arbitrary type of accented speech, and it requires only a moderate amount of adaptation data
from a speaker. This technique was evaluated on the Wall Street Journal task and showed significant word
error reductions for a wide variety of foreign accented speakers. This technique was motivated from an empir-
ical observation that between native American English and nonnative speakers, the curves of model complex-
ity versus recognition accuracy, and hence the optimum model complexities, were significantly different,
indicating that adaptive selection of model complexity would be desirable for foreign accented talkers, and
an effective model complexity selection method is needed.

Although information theoretic criteria, such as BIC, MDL and AIC, are widely used for model complexity
selection, these criteria are commonly applied at the stage of model training to counterbalance over-fitted like-
lihood scores by penalizing on the large number of free parameters of the complex model, where in the training
stage, the same data set is used for both model parameter estimation and model selection (Schwarz, 1978; Ris-
sanen, 1984; and Akaike, 1974). For the task of recognizing nonnative speech with acoustic model trained
from native American English speech data, the adaptation data used for adaptive model selection is indepen-
dent of the training data used for model parameter estimation. Therefore, the above discussed information
theoretic criteria cannot be directly applied. On the other hand, the well known Kullback–Leibler measure
(Kullback, 1959) characterizes distribution mismatch and can therefore be used for model selection. However,
there is no known closed-form expression of Kullback–Leibler measure between two Gaussian mixture den-
sities. Moreover, for the current task of adaptive model complexity selection, the amount of adaptation data is
too limited to estimate adaptation data distributions for many triphone states, making the Kullback–Leibler
measure for these states infeasible.

In He and Zhao (2003), model selection by using a small amount of adaptation speech was accomplished by
a maximum expected likelihood (MEL) algorithm (details are described in Section 2). The expected likelihood
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score is a function of the second moment of biases that describe mismatches between nonnative adaptation
speech data and native-speech trained acoustic model at individual nodes of phonetic decision trees. There-
fore, the key to the MEL algorithm lies in the estimation of distributions of biases, referred to as bias distri-
butions, which directly impacts the selection of model complexity and thus the accuracy of nonnative speech
recognition. When adaptation data is sparse, bias distribution estimation may be unreliable. While reliability
can be improved by distribution sharing, details are in general compromised as the cost (He and Zhao, 2003).

The current work aims at enhancing the MEL based model selection technique by further improving the esti-
mation of bias distributions in data sparse conditions. A novel method of integrating prior knowledge of foreign
accents into bias distribution estimation is proposed within the framework of maximum a posteriori estimation.
When the amount of adaptation data is small, estimation of bias distributions can depend more on prior knowl-
edge than data so that a fine-level sharing of bias distributions is maintained without sacrificing reliability. To
apply accent-specific prior knowledge automatically for each speaker, an accent classification algorithm is fur-
ther developed. The proposed new approach, called P-MEL, has been implemented and evaluated on the WSJ
task with speech data of American English speakers, British English speakers and mandarin Chinese accented
English speakers. For each of the three ‘‘accents,’’ a small set of speech data was used to estimate the priors of the
bias distributions. Recognition evaluation test was performed on the 5000-word WSJ task. Experimental results
verified that the P-MEL approach is superior to the MEL approach in model complexity selection that leads to
reduced recognition word error rate when the amount of adaptation data is very small.

This paper is organized as follows. In Section 2, the MEL based model selection technique is provided as
background material. In Section 3, the proposed methods of prior knowledge based estimation of bias distri-
butions and automatic classification of foreign accents are developed. Experimental results are presented in
Section 4, and a conclusion is drawn in Section 5.

2. Background of MEL based model complexity selection

To facilitate understanding of the proposed P-MEL technique, the MEL technique as described in He and
Zhao (2003) is summarized in this section, including the concepts and implementation procedures of MEL
based model selection and adaptation.

2.1. Model complexity selection and expected likelihood

In state-of-the-art hidden Markov modeling (HMM) of speech, very sharp distributions are commonly
employed to describe narrowly defined acoustic units. Although these models work well for recognition of
native speech, less detailed models that are more robust to accent-induced phone variations are better suited
for nonnative speech. Optimal model complexity that corresponds to minimum word error rate is very differ-
ent for native and nonnative speakers (a quantitative evaluation is shown in Fig. 6 of Section 4). Moreover,
optimal model complexity may also be different for individual speakers. It is therefore desirable to adaptively
determine model complexity for each speaker by using a small amount of adaptation data.

The selection of model complexity can be addressed from the perspective of state tying in phonetic decision
trees (PDT). In a PDT, each tree node represents an allophone cluster with data distribution of allophones tied
in that node; the collection of distributions over the nodes in a tree cut constitutes an acoustic model for the
phone unit state that the PDT represents. As illustrated in Fig. 1, a high-level tree cut corresponds to a less
A high-level tree cut

A low-level tree cut 

Fig. 1. Model selection in a phonetic decision tree.
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detailed model, and a low-level tree cut corresponds to a more detailed model, given fixed distribution com-
plexity at each node (a Gaussian mixture density). A proper tree cut, or equivalently model complexity, should
then be selected for each phone state of the acoustic model of a nonnative speaker.

In general, tree cut selection can be based on the likelihood criterion that measures the fit between acoustic
model and adaptation data. In speaker adaptation, however, the amount of adaptation data is often limited
such that only a small number of PDT nodes may have adaptation data, making the likelihood method unre-
liable. In order to facilitate model selection with a limited amount of adaptation data, an expected likelihood
criterion was proposed in He and Zhao (2003) to convert the problem of computing likelihood of observation
data at each tree node into computing expected statistic of data-model mismatch bias. Through a hierarchical
sharing of bias distributions, expected bias statistic can be computed for tree nodes with insufficient adapta-
tion data.

Assume that a PDT node is associated with a Gaussian mixture density k of size K and an adaptation data
set X = {x1,x2, . . .,xN}, where xj is a D dimensional vector. The log-likelihood of X given the model k is then
LðX jkÞ ¼

PN
i¼1 ln

PK
k¼1wkNðxi; lk;RkÞ

� �
, where wk, lk and Rk ¼ diagðr2

k;1; . . . ; r2
k;DÞ are the weight, mean vector

and covariance matrix of the kth Gaussian component (GC) density, respectively. By applying dominant
Gaussian component approximation, i.e,

PK
k¼1wkNðxi; lk;RkÞ � maxkwkNðxi; lk;RkÞ, the log-likelihood of X

can be approximated as
LðX jkÞ � � 1

2
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XD

d¼1

N k lnð2pr2
k;dÞ þ

1

r2
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j2Sk
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þ
XK
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Nk lnðwkÞ; ð1Þ
where the set Sk, with size jSkj = Nk, consists of the indices of data vectors that have the kth GC as the dom-
inant component, and

PK
k¼1Nk ¼ N .

The log likelihood of the data set X can be expressed as a function of data-model mismatch bias. In the dth
data dimension, define bk;d ¼ �xk;d � lk;d as the mismatch bias in the kth GC, where �xk;d is the data sample mean
in Sk, and denote the data sample variance in Sk by v2

k;d . The log likelihood function can then be expressed as
LðX jkÞ � � 1

2
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N k
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þ
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Further define the average log likelihood per data sample to be ALðX jkÞ ¼ 1
N LðX jkÞ. The expectation of

AL(Xjk) over the distribution of bk,d is obtained below upon making the mild assumptions of Nk = N · wk

and v2
k;d ¼ constd � r2

k;d (He and Zhao, 2003):
E½ALðX jkÞ� ¼ � 1

2

XK

k¼1

wk

XD

d¼1

Eðb2
k;dÞ

r2
k;d

" #
þ CðkÞ; ð2Þ
where C(k) absorbs all the terms independent of the bk,d’s. The bias bk,d is assumed to be a Gaussian random
variable, and the distribution parameters of bk,d need to be estimated for each PDT node in order to compute
Eðb2

k;dÞ for each tree node. Due to the sharing of bias distributions, the expected log likelihood (EL) can be
computed for tree nodes without sufficient adaptation data.

2.2. Modeling of bias distributions

As indicated in Eq. (2), the performance of MEL-based model selection depends on the quality of the esti-
mated bias distributions. Estimation of bias distributions and hence model selection could be unreliable when
data are very limited. In He and Zhao (2003), a clustering scheme is employed to group similar Gaussian com-
ponents into allophone clusters with one cluster corresponding to one tree node. In order to reliably estimate
bias distributions, a bias distribution is estimated for a tree node only when sufficient samples of bias are accu-
mulated under the tree node, where a bias sample is defined to be a data-model mismatch bias computed with
respect to a Gaussian component in a leaf node. As the result, certain tree nodes have bias distributions while
others not, and a node without a bias distribution will then use the one from its closest parent node. It is clear
that when data is very sparse, only a few large clusters might be generated, and a large cluster may include
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GCs with very different properties. In the extreme case, all GCs would be grouped into a single cluster and
share a global bias distribution. Since for a foreign accented talker, the degree of data-model mismatch is
highly dependent on phones or phone-classes, the accent characteristics could not be adequately modeled
by a few, or a global, bias distributions. There is an obvious need for striking a balance between details of
the bias distributions and reliability of their parameter estimates in order to achieve good performance in
model selection.

2.3. Basic procedure of MEL based model selection

The basic MEL based model selection procedure are summarized in the following three steps. In the first step,
an acoustic model as implemented by phonetic decision trees (PDT) for triphone HMMs is trained from native
American English speech, where a Gaussian mixture density (GMD) is estimated for each node of a PDT,
including tree internal nodes. In the second step, Viterbi alignment is performed on adaptation data and each
feature vector is assigned to a dominant Gaussian component density (GC) of a tree leaf node, and for each GC
of a tree leaf node having adaptation data, a bias is calculated between the data sample mean and the model
mean. For each tree node, the distribution parameters of the biases are estimated based on the assumption that
the biases under the node are i.i.d. Gaussian random variables. The expected log-likelihood is then computed for
the adaptation data. In the third step, the optimal tree cut, or model complexity, is determined to maximize the
expected log-likelihood (EL) over tree cuts by using a bottom-up pruning method similar to Wang and Zhao
(2001).

The bottom-up tree pruning algorithm is illustrated in Fig. 2 for an internal tree node p. To determine
whether the node p should be made a leaf node (pruning away its children nodes or subtrees) or be kept as
an internal node (without pruning), the difference between EL of node p and the weighted sum of its two chil-
dren’s MELs is computed as DEL(p, l, r) = [Tl Æ MELl + Tr Æ MELr � Tp Æ ELp], where Ti is the number of leaf
nodes under the node i and Tp = Tl + Tr. If DEL(p, l, r) 6 0, then the children nodes of the node p are pruned,
otherwise they are kept. The MEL value of the node p is updated as:
MELp ¼
1

T p
ðT l �MELl þ T r �MELrÞ; if DELðp; l; rÞ > 0;

ELp; if p is a terminal node; or DELðp; l; rÞ 6 0:

(

2.4. Dynamic procedure of MEL model selection and MLLR model adaptation

MEL-based model selection is essentially a method of model complexity adaptation. It can be combined
with conventional model parameter adaptation, such as MLLR, to achieve a better performance than either
method alone.

Given an amount of adaptation data from a speaker, acoustic model parameters can be first adapted to
reduce mismatch between the speaker’s speech and the model. As the amount of adaptation data increases,
model parameters are better adapted and the mismatch biases become smaller. Consequently, the optimal
model structure should change with the amount of adaptation data. To dynamically select the optimal model
complexity, it is desirable to perform model selection after an initial model adaptation, and to avoid over-fit-
ting, initial model adaptation and model selection are performed by using separate subsets of adaptation data
unless the amount of data is too small to split. Once model selection is performed, the entire set of adaptation
data can be used to perform model adaptation on the selected model, and the adapted model is then used by a
p

l r

p

if  EL (p, l, r)   ≤   0 

Fig. 2. MEL based tree pruning.



Divide available adaptation data set X into
two sets X1and  X2. Perform Viterbi forced
alignment on adaptation data.

Perform initial MLLR on GMD of each
terminal tree node with data set X1.

Calculate bias samples at terminal GCs with
data set X2. 

Training data 

Build a broad phonetic tree, and 
train a GMD model at each node.

Adaptation data

Final model
adaptation

Model 
selection 

Initial model 
adaptation

Model
training

Estimate bias distributions at internal nodes 

Compute EL for each node, and 
perform MEL based model selection.

Perform final MLLR on selected GMDs by
the adaptation data set X.

Fig. 3. Procedure of MEL based dynamic model selection and adaptation.
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recognizer for recognition of the speaker’s speech. The MEL-based dynamic model selection and adaptation
procedure is summarized in the flow chart in Fig. 3 that consists of ‘‘Model training’’, ‘‘Initial model adapta-
tion’’, ‘‘Model selection’’, and ‘‘Final model adaptation.’’ In the flow chart, MLLR is shown as the model
adaptation method. As will be discussed in Section 4, a cascade MLLR method (Digalakis et al., 1999) is fur-
ther employed as an alternative model adaptation method to evaluate the effectiveness of the MEL and P-
MEL based model selection methods when integrating with different techniques of model parameter
adaptation.

3. MAP estimation of bias distributions and accent classification

The proposed enhancements to the MEL-based model selection and adaptation method are covered in this
section. The representation of prior knowledge of each accent in the form of prior distributions of bias distri-
bution parameters is described together with the basics of MAP estimation. An accent classification algorithm
is developed that enables automatic selection of accent-specific priors of bias distribution parameters for each
speaker. The integration of the proposed enhancement technique into the dynamic model selection and adap-
tation procedure of MEL is discussed last.

3.1. MAP based parameter estimation

An effective approach to acoustic model adaptation with the guide of prior knowledge is maximum a pos-

teriori (MAP) estimation (Gauvain and Lee, 1994; Huo et al., 1995; Lee et al., 1991; Zhao, 1996). Given a data
set X, while maximum likelihood (ML) estimation obtains an optimal model through
KML ¼ arg max
K

f ðX jKÞ; ð3Þ
MAP estimation gives the optimal model by
KMAP ¼ arg max
K

f ðX jKÞgðKÞ; ð4Þ
where the prior distribution g(K) characterizes knowledge about the model parameter set K. ML and MAP
estimations are related through the Bayes’ theorem with the posterior distribution p(KjX) / f(XjK)g(K). When
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the size of X is small, g(K) dominates (4) and the optimal parameter set is estimated mainly base on the prior
knowledge; when the size of X is large, f(XjK) dominates (4) and the optimal parameter set is estimated mainly
from the observed data. In MAP estimation, the hyper-parameters of the prior distribution g(K) need to be
obtained in advance.

For the task of modeling a foreign accent, a set of prior distributions can be defined. MAP estimation of K
for a bias distribution as defined in the MEL method can be solved in different ways, depending on assump-
tions of g(K). In the current work, conjugate priors are utilized due to their mathematical property that the
posterior and the prior distributions belong to the same distribution family (DeGroot, 1970).

Assume a Gaussian pdf for a bias distribution with the parameters K = {l,h}, where h = 1/r2 is the preci-
sion parameter, and assume that both mean and variance are random variables. The joint conjugate prior
g(l,h) is then a normal-c distribution (DeGroot, 1970), where the conditional distribution of l given h is a
normal distribution with mean m and variance 1/sh, and the marginal distribution of h is a c distribution with
parameters a > 0 and b > 0, i.e.,
gðl; hÞ ¼
ffiffiffiffiffi
sh
p
ffiffiffiffiffiffi
2p
p exp � sh

2
ðl� mÞ2

� �
ba

CðaÞ h
a�1 expð�bhÞ: ð5Þ
Therefore, the joint posterior distribution of {l,h} is also a normal-c distribution (DeGroot, 1970).
By setting a ¼ sþ1

2
, b ¼ s

2
s2, the joint MAP estimate of l and r2 given a set of n sample biases {bi} is solved

as (DeGroot, 1970)
l̂MAP ¼
n

sþ n
� �bþ s

sþ n
� m; ð6Þ

r̂2
MAP ¼

ss2 þ nS2 þ snð�b�vÞ2
sþn

sþ n
; ð7Þ
where �b and S2 are the sample mean and sample variance of the set, and s, m and s2 are the hyper-parameters of
g(l,h).

3.2. Estimation of prior distribution

A proper representation of prior knowledge is important in MAP-based model estimation. For the current
task, modeling the priors of bias distributions at the level of phone units appears to be a good choice since
phoneme is the basic unit of pronunciation. Although a clustering of allophones at the sub-phone level
may characterize more detailed properties of accents, estimating the priors reliably at such a level would
require a significant amount of accent-specific training data.

Given speech data of K speakers with a specific accent, hyperparameters of the prior of bias distribution in
phone q are estimated by the procedure shown in Fig. 4. The obtained hyper-parameters vq and s2

q (corre-
Loop over speakers k = 1 ~ K:

Compute the samples of bias {bi,k} in the phone q;
Compute the mean and variance of the sample set, where 

, ,
1

1 kN

q k i k
ik

v b
N =

= , 2 2
, , ,

1

1
( )

kN

q k i k q k
ik

s b e
N =

= − , and kN  is the size of {bi,k};

END Loop 

Compute average mean and variance for phone q

,
1

1 K

q q k
k

v v
K =

= and 2 2
,

1

1 K

q q k
k

s s
K =

= .

Set the hyper-parameter set of the prior for phone q as vq =vq, sq
2 = sq

2.

Fig. 4. Procedure for estimating hyper-parameters of prior distribution in a phone unit q.
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sponding to m and s2 in Eqs. (6) and (spseqn7)) serve as the prior knowledge of the data-model mismatch con-
dition in phone unit q. The hyper-parameter s is determined empirically to be 15 as in MAP model adaptation
(Gauvain and Lee, 1994).

In the current task, 42 English phonemes are defined. Due to limited training data as well as their unbal-
anced sizes over phones, the priors of certain phones cannot be properly estimated. Therefore, for phone units
with inadequate training data, prior distribution sharing is employed at the level of phonetic classes as shown
in Table 1, where the class definition is based on Rabiner and Juang (1993). In the experimental data sets,
about 20 phone units have insufficient data and their prior distributions were backed off to phonetic classes.
In Table 2, a listing of the data-deficient phones together with their corresponding phonetic classes is shown
for the Chinese accented speech data set (to be described in Section 4.1), where many of the listed phones are
seen to be consonants or semi-vowels.

3.3. Automatic accent detection

For different foreign accents, the priors of bias distribution parameters are likely quite different. This
requires knowing the accent of each talker in order to use the proper priors in estimating the posterior bias
distributions. On the other hand, due to the influence of mother tongue, speakers with the same foreign accent
may consistently pronounce certain phonemes well and certain other phonemes poorly. This accent-specific
pronunciation pattern of phonemes is reflected in the data-model mismatch over the defined phoneme set
and it can be utilized for automatic accent detection. Although other methods were previously proposed in
the literature for accent classification, such as Gaussian Mixture Model (GMM) or Hidden Markov Model
(HMM) based accent detection using conventional speech features employed in speech recognition (Chen
Table 1
Definition of phonetic classes for prior distribution sharing

Phonetic class Phonemes

Front vowel iy ih ae eh
Low-back vowel aa ax ao ah
High-back vowel er uh uw
Front diphthong ey ay
Back diphthong ow aw oy
Liquid semi-vowel w wh l
Glide semi-vowel r y
Voiced stop b d g
Unvoiced stop p t k
Voiced fricative v z dh zh jh
Unvoiced fricative hh f th s sh ch
Nasal m n en nx

Table 2
Listing of phones that were backed off to phonetic classes, where the list was generated from the Chinese accented speech data set CH1
with 122 utterances

Phonetic class Phonemes

Low-back vowel ao
High-back vowel uh uw
Back diphthong aw oy
Liquid semi-vowel w wh
Glide semi-vowel y
Voiced stop b g
Voiced fricative v dh zh jh
Unvoiced fricative hh th sh ch
Nasal en nx
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et al., 2001; Teixeira et al., 1996), utilizing bias distributions for accent classification comes as a natural choice
in the current work since bias distributions are estimated in P-MEL for model complexity selection. A statis-
tical accent classification algorithm is therefore designed based on this rational to enable automatic selection
of priors for each speaker.

The accent models are estimated in a similar way as the priors of bias distributions shown in Fig. 4. The
Gaussian densities of triphone states belonging to the same center phone are clustered together. Assuming that
biases within a cluster are i.i.d. Gaussian random variables, then for each accent H and each phone q, a Gauss-
ian distribution NðvH;q; s2

H;qÞ is estimated, and the set of Gaussian distributions over the phone set are taken as
the accent model. Once more, for any phone that has insufficient samples of biases, its bias distribution is
backed off to that of its phonetic class.

In the testing stage, a set of biases B = {bi} is first computed from adaptation data. The average log-like-
lihood of B given an accent H is then obtained as:
LðBjHÞ ¼ 1

N

XQ

q¼1

XNq

j¼1

log½Nðbq;jjvH;q; s2
H;qÞ�; ð8Þ
where Q is the number of phones, N is the total number of bias samples, Nq is the number of bias samples in
phone q, bq,j is the jth bias sample in phone q. The decision rule for accent classification is
H� ¼ arg max
H
½LðBjHÞ þ RðHÞ�; ð9Þ
where
RðHÞ ¼
Cnat if H ¼ Hnat

0 otherwise
:

�
ð10Þ
where Hnat denotes native American English speaker and Cnat > 0 is a constant. The incorporation of R(H)
into the otherwise maximum likelihood decision rule serves the purpose of reducing the risk of classifying a
native American English speaker to a foreign accent speaker, which is motivated by the experimental obser-
vation that applying an accent-mismatched prior to a native speaker caused severer error than to a nonnative
speaker (see Section 4.2 and Table 7).
Data of accent n
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Fig. 5. Procedure of P-MEL based dynamic model selection and adaptation.
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3.4. P-MEL based dynamic model selection and adaptation

Fig. 5 shows the overall procedure of the P-MEL based model selection and adaptation method. The prior
knowledge related components as proposed in the current work are shown as modules of ‘‘Estimate prior dis-
tributions’’ and ‘‘Accent classification and Prior selection.’’ The estimated accent-specific priors are first used
as accent models in accent classification. From input adaptation data of a speaker, a bias set B is computed
and used for classification of the speaker’s accent. The set of priors that best match the speaker’s accent is
selected, and the set of priors is then used as the prior knowledge for MAP estimation of bias distributions.
The flow chart consisting of ‘‘Model training’’, ‘‘Initial model adaptation’’, ‘‘Model selection’’ and ‘‘Final
model adaptation’’ that lies in the left hand side of Fig. 5 is discussed in Section 2.4.

4. Experimental results

Joint MAP estimation of mean and variance of bias distributions as well as accent classification were imple-
mented and evaluated. In order to evaluate stackable gains of MEL and P-MEL based model complexity
adaptation on top of model parameter adaptation, two alternative methods of model parameter adaptation,
MLLR (Leggetter and Woodland, 1995) and cascade MLLR (Digalakis et al., 1999), were used in the model
adaptation steps in Figs. 3 and 5. The cascade MLLR accomplishes model transformation in two stages. In the
first stage, a small number of MLLR transformation matrices (full or diagonal) are employed to perform
model transformation in a somewhat global manner, since each transform matrix covers many states of PDTs.
In the second stage, a large number of bias transforms are employed to perform transformations in a some-
what local manner on models that have been transformed in the first stage, since each transform vector covers
fewer states of PDTs. The cascade MLLR method was shown previously to be superior to MLLR. Here it is
expected that the overall performance of combined model complexity selection with model parameter adap-
tation will improve with better method of model parameter adaptation.

4.1. Experimental condition

The baseline acoustic model was the same as used in He and Zhao (2003) and was trained from the entire
set of speaker-independent short-term training data (SI_TR_S, 200 speakers) of WSJ1, where within-word tri-
phone HMM model each had three emitting states (except for a ‘‘short-pause’’ model, which had a single
state), and each state had a mixture of 16 Gaussian densities. Speech features consisted of 39 components
of 12 MFCCs, energy, and their delta and acceleration derivatives. Cepstral mean normalization as imple-
mented in HTK was applied to both training and test data. In testing, the standard 5K-vocabulary bigram
language model provided by WSJ1 was used, and the decoder was provided by HTK v2.2 (Young et al.,
1999). The acoustic model complexity was optimized to have 6473 tied states for recognition of native speech
(He and Zhao, 2003). In testing, the language model score scale and word insertion penalty were tuned for
recognizing native American English speech.

Given the native American English speech trained acoustic model, recognition word errors versus model
complexity (measured in number of Gaussian densities) were first evaluated on the 5K Wall Street Journal
standard data sets ET-H2 and ET-S3, where the former consisted of 10 native American English speakers
and the latter consisted of 10 nonnative English speakers with different mother tongues. The curves for the
two sets of data are shown in Fig. 6. It is seen that while on ET-H2 the lowest word error rate was achieved
at the Gaussian density count of over 100 K, on ET-S3 the lowest word error rate was achieved at the Gauss-
ian density count below 20 K. The optimal Gaussian density count, or model complexity, for the trained
acoustic model is indeed significantly different for native and nonnative American English speakers.

For estimating the priors of the bias distributions and performing recognition tests, speech data sets of
native American English speech, British accented speech and Chinese accented speech were used. Native
American English speech data consisted of WSJ1 set SI_DT_05, referred to as NT1, and WSJ1 set SI_ET_H2,
referred to as NT2. NT1 included 10 speakers, named as 4k0–4k4 and 4k6–4ka, with each speaker providing
about 90 utterances. NT2 also included 10 speakers, 4oa–4oj, with each speaker providing about 60 utter-
ances. The British accented speech data came from WSJCAM0 (www.ldc.upenn.edu), where 20 speakers were

http://www.ldc.upenn.edu
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included in the experiments, each providing about 85 utterances. The speakers were divided into two groups,
BR1 and BR2, shown in Table 3. The Chinese accented speech data set CH1 included six talkers, with three
males and three females. The speech data were collected locally under a similar acoustic condition (micro-
phone and SNR) and with the same prompting texts as WSJ1, with each talker providing about 120 utter-
ances. In Table 4, the baseline recognition performance on the five groups of speakers is provided. The
Chinese accent speaker group was the most difficult, with an average word error rate of 64.55%. The British
speaker group also had significant difficulties, with more than 20% higher word error rate (in absolute) in com-
parison with the native American English speaker group. Further details for the Chinese accent group is
shown for individual speakers in Table 5, with high word error rates observed across the board.

In the experimental evaluation of the P-MEL method, NT1 and BR1 were used to estimate the hyper-
parameters of the priors of the native speakers and British accent speakers, respectively, and NT2 and BR2
Table 3
Definition of two groups of British accent English speakers

Group Speaker list

BR1 C31, C34, C35, C38,C3C, C3D, C3F, C3J, C3K, C3L
BR2 C32, C37, C39, C3B, C3O, C3R, C3Y, C46, C48, C4A



Table 4
Baseline recognition word error rates on the five data sets: NT1, NT2, BR1, BR2, CH1

Speaker ID Baseline word error rate (%)

NT1 10.86
NT2 9.67
BR1 31.41
BR2 35.62
CH1 64.55

Table 5
Word error rates of the six speakers in the Chinese accent speech data set CH1

Speaker WER by baseline model (%) Gender

ch1 71.97 Male
ch2 62.14 Male
ch3 63.87 Male
ch4 51.16 Female
ch5 73.99 Female
ch6 64.16 Female
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were used as the testing sets of native speakers and British accent speakers, respectively. Due to the small num-
ber of speakers in CH1, the leave-one-out scheme was deployed. In each round, one of the six speakers in CH1
was held out as the test speaker and the speech data of the rest five speakers were used to estimate the priors.
This procedure looped over the six speakers so that each speaker was used as the held-out test speaker once,
and the average result of the six test speakers was taken as the result of the CH1 set. The experiments
employed several empirically chosen parameters, where system performances were found not very sensitive
to these parameters. In estimating the hyper-parameters, the lower bound on the number of feature frames
for estimating a bias sample was set to be 35, and at least 30 samples of biases were used to estimate a prior
distribution, where the concern was on obtaining reliable and proper number of bias distributions.

4.2. Analysis of prior distributions

The estimated hyper-parameters of the prior distributions, vq and s2
q, for native American English speech,

British accented speech and Chinese accented speech were compared. In Table 6, the components of vq and s2
q

that correspond to the first MFCC coefficient, i.e., vq1 and s2
q1, are shown.
Table 6
Comparison of the hyper-parameters in the priors of the native American English speech, Chinese accented speech, and British accented
speech, where vq1 and s2

q1 are averaged within each phonetic class and correspond to the first MFCC coefficient

Phonetic class Average s2
q1 Average mq1

NT CH BR NT CH BR

Front vowel 1.66 4.36 2.49 0.20 0.90 0.01
Low-back vowel 1.99 3.99 6.77 0.30 �0.28 1.02
High-back vowel 1.80 3.86 4.51 �0.17 0.51 1.27
Front diphthong 1.67 3.77 3.63 0.29 0.82 0.37
Back diphthong 1.98 7.45 5.27 0.62 0.74 0.40
Liquid semi-vowel 1.56 6.39 4.97 0.31 �1.17 �0.58
Glide semi-vowel 1.73 3.29 7.45 �0.25 0.94 0.53
Voiced stop 1.46 4.70 3.46 0.02 0.00 �0.06
Unvoiced stop 1.43 4.00 4.23 �0.06 �0.08 0.01
Voiced fricative 2.21 4.34 2.19 0.19 �0.21 �0.72
Unvoiced fricative 2.38 4.09 3.18 0.00 0.17 �1.17
Nasal 1.24 2.41 2.04 �0.58 0.43 0.00
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It is observed that the parameter s2
q is better than vq in representing data-model mismatch in phone classes,

since in computing vq, biases are averaged in each phonetic class such that positive and negative biases neu-
tralize. For British and Chinese accented speech, the s2

q’s are in general much larger than that of native Amer-
ican English speech, verifying that the level of data-model mismatch is much higher in foreign accented
speakers than native speakers. Moreover, the dynamic range of s2

q across the phonetic classes of the foreign
accented speakers is much larger than that of native speakers, where the largest s2

q is about three to four times
of the smallest s2

q for British and Chinese accented speakers, compared with a factor of less than two for native
speakers. This result indicates that for British and Chinese speakers, certain phones are pronounced better
than others, and the pronunciation accuracy varies largely across the phone classes. For example, British
speakers tend to have a large s2

q1 in the low-back vowels, while the Chinese speakers tend to have large
s2

q1’s in the back-diphthongs and liquid semi-vowels. The latter case is interesting since back-diphthongs do
not exist in Mandarin Chinese, and liquid semi-vowels of ‘‘wh’’ and syllable-ending ‘‘l’’ are nonexistent in Chi-
nese either.

Evaluations were also made on model selection by using priors alone and the effect of model selection on
recognition accuracy. Nine cases were studied, which were generated by combinations of the three test speaker
groups and the three sets of priors as described in Section 4.1. Recognition results of the nine cases are sum-
marized in Table 7, and the selected model complexity resulting from using the accent-matched priors are
shown in Table 8.

Compared with the baseline word error rates in Table 4, there were large performance improvements to Brit-
ish and Chinese accented speech BR2 and CH1 due to accent-matched priors, and only slight performance deg-
radation was observed for the native American English speaker set NT2. As shown in Table 4, the baseline
word error rate of NT2 was smaller than that of NT1, indicating that the priors estimated from NT1 might have
led to somewhat coarse model selection for NT2. It can also be observed from Table 7 that applying accent-
mismatched priors to native American English speakers caused a significant performance degradation, whereas
performance improvements were achieved for the British and Chinese accented speakers even with mismatched
priors. This result motivated the use of R(H) in Eq. (9). By encouraging the accent classifier to classify talkers as
native speakers the risk of increasing word error rate due to a mismatch in priors would be reduced.

4.3. Accent classification

Based on the estimated priors of phones and phonetic classes, the proposed method of automatic accent
detection as described in Section 3.3 was evaluated on the test sets NT2, BR2, and CH1. Each speaker pro-
vided 40 adaptation utterances. For each test speaker, the first N utterances were selected from his or her
adaptation data set for use in accent classification, where the number N was set to be 1, 3, 5, 10, 20, and
40, respectively. In the cases of N > 1, the lower bound on the number of feature frames for computing a bias
Table 7
Recognition word error rates (%) after P-MEL model selection, where the selection was made by using the prior distributions only

Test set Prior

CH1 NAT1 BR1

CH1 54.05 57.75 54.19
NAT2 11.15 10.40 11.51
BR2 32.34 32.66 32.07

Table 8
Selected model complexity by P-MEL using accent-matched priors

Speaker set # states after model selection

CH1 1752
NAT1 3525
BR1 1776



Table 9
Error counts in accent detection

# utterances 1 3 5 10 20 40

BR 0 0 0 0 0 0
CH 1 1 0 0 0 0
NT 1 0 0 0 0 0
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sample was set to be 35, and in the case of N = 1 the bound was set to 25. The constant Cnat in (10) was set to
be 2.5. This value was empirically determined based on the development sets NT1 and BR1. It was chosen to
reduce the risk of classifying a native American English speaker to a foreign accent speaker. The classification
error counts as a function of the used number of utterances is shown in Table 9.

It is observed that the accent classifier worked very well when more than three utterances were used. The
errors in CH1 were from confusion with the native American English speaker group, while the error in NT2
was confusion with the Chinese accented speaker group.

4.4. Prior knowledge guided dynamic model selection and adaptation

Recognition experiments were conducted on the proposed P-MEL based method of dynamic model selec-
tion and adaptation (as described in Fig 5). In order to avoid unreliable hyper-parameter S2 in Eq. (7) of pri-
ors, it was determined that at least six samples of biases be accumulated in each phone or phonetic class, or
else the bias distribution be estimated directly from the prior knowledge, i.e., set n = 0 in Eq. (7). The MEL
method as proposed in He and Zhao (2003) was also implemented under a similar condition, with the thresh-
old on the number of biases for a full node set as 25, and the threshold on the number of data frames for a full
terminal GC set as 30. A clustered phonetic decision tree similar to the one in He and Zhao (2003) was used
and the bias distributions were tied to have 42 clusters that corresponded to the 42 phone units.

For each test speaker, N utterances were selected from the adaptation data set for model adaptation and
selection, where N was set to be 1, 3, 5, 10, 20, and 40, respectively. The partition of the selected N adaptation
utterances into two subsets, one for initial model adaptation and one for mode selection, was empirically
determined for different N. When the adaptation data were 20 utterances or more, two disjoint subsets were
generated, each had half the number of utterances. When the adaptation data were less than 20 utterances, all
utterances were used in model selection, and a subset of them was used in initial model adaptation. In Table
10, the assignment of data for initial model adaptation and the chosen forms of transformations for MLLR
and cascade MLLR are summarized for different values of N’s.

Recognition results on the three speaker groups CH1, BR2, and NT2 are shown in Figs. 7 and 8. In Fig. 7,
three curves are drawn for each type of accent: MLLR alone, MEL combined with MLLR, and P-MEL com-
bined with MLLR. In Fig. 8, again three curves are drawn for each type of accent: cascade MLLR alone, MEL
combined with cascade MLLR, and P-MEL combined with cascade MLLR. The following observations can be
made from the two figures: (1) both MEL + MLLR and P-MEL + MLLR outperformed MLLR alone, and
similarly both MEL + cascade MLLR and P-MEL + cascade MLLR outperformed the cascade MLLR alone;
Table 10
Detailed account of data assignment for initial model adaptation and choice of transforms for MLLR and cascade MLLR, where in the
case of N = 20 or 40, the threshold for a full transform was set as 500 samples, and the threshold for a bias transform was set as 100

N Number of sentences for
initial model adaptation

Transforms in MLLR Transforms in cascade MLLR

1 0 NA NA
3 1 One global bias transform One global bias transform and multiple bias transforms

(if any based on the threshold setting)
5 3 One global diagonal transform One global diagonal transform and multiple bias transforms

10 5 One global full transform One global full transform and multiple bias transforms
20 10 Multiple full transforms Multiple full transforms and multiple bias transforms
40 20 Multiple full transforms Multiple full transforms and multiple bias transforms
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(2) P-MEL + MLLR outperformed the MEL + MLLR; (3) generally, cascade MLLR performed better than
MLLR, and the advantage of cascade MLLR was maintained in the combined model selection and adaptation
methods and a better overall performance was resulted. It is worth noting that if by certain means the accent
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Fig. 7. Recognition word error rate vs. amount of adaptation data for the Chinese accented speaker set CH1, the British accented speaker
set BR2, and the native speaker set NT2. The baseline is MLLR.
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types of the foreign accent speakers were given, then the word error rate of the P-MEL method would be sig-
nificantly reduced at N = 0, as given in Table 7 for the matched prior cases, since then the bias distributions can
be estimated based on the accent-matched priors without waiting for adaptation data.
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Word error rates shown in Figs. 7 and 8 are results of combined model selection and model adaptation.
To further identify the effect of model selection, word error rates for the case of using model selection alone
are given in Fig. 9. It is clear that for nonnative speakers, model selection alone improved speech recogni-
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Fig. 9. Recognition word error rate vs. amount of speech data used for model selection for the Chinese accented speaker set CH1, the
British accented speaker set BR2, and the native speaker set NT2. The baseline is SI model, and for MEL and P-MEL, parameter
adaptation (i.e., MLLR) was skipped after model selection.
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tion accuracy significantly, and PMEL outperformed MEL when the numbers of adaptation utterances were
very small.
5. Summary

The method of MEL based model complexity selection as proposed in He and Zhao (2003) is effective when
a proper amount of adaptation data is available, where recognition accuracy of nonnative English speech can
be significantly improved without performance degradations on native speakers. However, when adaptation
data is very limited, the distributions of data-model mismatch biases cannot be reliably estimated at a suffi-
cient level of details, making reliable model selection a difficult task.

In the current work, a more robust method for selecting model complexity in the case of sparse data is pro-
posed by utilizing knowledge of foreign accents. Knowledge of different accents is represented as accent-spe-
cific priors for bias distributions that model data-model mismatch so that maximum a posteriori estimation
that is more robust than maximum likelihood when data is sparse is performed for bias distributions. Algo-
rithms are developed for estimating hyper-parameters of the prior distributions and for automatic classifica-
tion of accents so that priors that match a speaker’s accent can be applied. Experiments were performed on
three types of speech data, including American English speech, British accented speech, and the mandarin Chi-
nese accented speech. Results show that the estimated prior distributions reflected meaningful data-model mis-
match condition for each set of speakers. With the priors serving as knowledge of each accent, more reliable
estimation of bias distributions was made in the case of very small amount of adaptation speech, or even with-
out any adaptation speech. Experimental results show that the proposed P-MEL method is superior to the
previous MEL method for model selection, especially when adaptation data are extremely limited. Experimen-
tal results on combining P-MEL and MEL with MLLR and cascade MLLR also indicate that the P-MEL or
MEL based methods scale well with model parameter adaptation methods, where overall recognition accuracy
improves with the quality of model parameter adaptation method. As such, the proposed methods of model
complexity selection can be combined with varieties of model parameter adaptation techniques, for example,
the multi-scale based cascade MLLR method (Kannan and Ostendorf, 1997) and the MLLR + MAP method
(Digalakis and Neumeyer, 1996).

A practically important issue is how to handle nonnative speakers without priors trained for their accents.
It is therefore desirable to devise a prior modeling method that allows clustered modeling of foreign accents so
as to cover those accents that do not have trained priors. A flexible framework for such a purpose is mixture
modeling, where available foreign accented speech data can be used to train a mixture prior model, and for a
speech utterance with an unknown foreign accent, the mixture prior can be adapted to the speaker by replac-
ing a priori mixture weights with the a posteriori probabilities of mixture components that are computed from
online speech. The adapted mixture prior can then be used for knowledge guided model selection and adap-
tation. It is noted that a Gaussian mixture prior of conventional acoustic model parameters was previously
proposed for acoustic model training from mixed cellular and wire line speech datasets with different regional
dialects of American English (Buhrke and Liu, 2000), where mixture weights were fixed empirically. In con-
trast, adaptive prior approach will utilize posterior mixture weights that are more suitable for untrained for-
eign accented speech. Our preliminary experiment on this approach showed a promising result. This approach
will be fully investigated in a future work, including the design of dataset with a good coverage of represen-
tative nonnative speech characteristics, as well as dynamical estimation of phone dependent mixture-prior
weights. The proposed methods of prior modeling of bias distributions and accent classification will be eval-
uated on more varieties of foreign accents, and a further analysis will be made on the phone-class dependent
properties of hyper-parameters in representing data-model mismatch of different foreign accents.
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