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Abstract

In this paper, a study is made on selecting existing
acoustic models that are trained from native English
speech for improving recognition of nonnative English
talkers’ speech. The problem is addressed from the
perspective that foreign accents prevent detailed tri-
phone models that are commonly used in high-
performance speech recognition systems to match well
with these talkers’ speech, and therefore an appropriate
level of context-dependent acoustic modeling is needed
for foreign accent speakers. In this work, model
complexity selection is accomplished by empirically
choosing a set of model tying thresholds and by using
the principle of MDL. An experiment was performed on
the Wall Street Journal task on three nonnative English
talkers with Chinese accent (276 sentences). Compared
to the result obtained from using the models optimized
to native English speakers, the best model tying
threshold and MDL yielded similar and significant
reduction to recognition word errors by 23%.

1. Introduction

Current English speech recognition systems are
commonly trained from speech data of native English
speakers. Although these systems can work very well for
native English speakers, their performances drop
dramatically for nonnative speakers. In general, it is
difficult to train speech models for each foreign accent
due to wide varieties of accent, different proficiency
levels of English and limited amounts of available data.

Many efforts were made in improving recognition
accuracy of foreign-accent speech. One way is to use
general speaker adaptation techniques to adapt speaker-
independent (SI) models to the characteristics of a
foreign-accent speaker, for example, Using Maximum
Likelihood Linear Regression (MLLR) and Maximum a
posteriori (MAP) estimation. It has been recognized that
although speaker adaptation can improve recognition
accuracy for both native and nonnative English speakers,
a much larger amount of adaptation speech data is
needed for a foreign-accent speaker than for a native
English speaker [1]. Boulis et al. [2] investigated the
problem of adaptation to dialect speakers, where speech
data of prototype speakers from a target dialect region
were used to generate a set of basis linear
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transformations and a small amount of new speaker’s
speech was used to estimate the transform combination
weights. In their experiments of Swedish dialect speaker
adaptation, the adaptation performance exceeded that of
MLLR greatly when the amount of adaptation data was
very small. However, a large number of prototype
speakers were needed to form a set of powerful
transformation basis.

In the current work, we investigate a different
problem in recognition of foreign or dialect accent
speech, i.e., fitting an existing native English acoustic
model to foreign accent speech by choosing an
appropriate level of model complexity. The basic idea is
that due to foreign accents, new speakers’ speech may
not fit well with the detailed acoustic models of English.
On the other hand, a certain level of context-dependent
modeling is still necessary for capturing contextual
effect on phone classification. These two aspects can be
addressed simultaneously by model tying, i.e., an
intermediate level of acoustic model complexity may
best fit a foreign accent speaker, with mono-phone
models representing the lower end of the complexity and
tri-phone models representing the higher end of the
complexity.

Our current focus is on Chinese-accent speakers.
Chinese is a monosyllabic language. Each syllable can
be divided into two parts, initial and final, where the
initial part consists of consonants and the final part
consists of vowels. In [3], different context-dependent
acoustic models for Chinese speech recognition were
compared. The experimental results indicated that
although the acoustic realization of initial and final parts
were influenced by both left and right contexts, the
influence from right context is significantly stronger than
that of left context. Since a speaker’s native language
has a large effect on his/her pronunciation in a second
language, for a nonnative speaker, not only the
parameters of model, but also the model structure, such
as context-dependency structure and model-tying
property, may be different from the requirement in
native English speech models. In this work, we
investigate the problem of finding a proper model
complexity from existing acoustic models of native
English for nonnative English speakers with Chinese
accent, using both empirically chosen model-tying
thresholds and the automatic model selection method of



Minimum Description Length (MDL). In section 2 the
MDL method is described. In section 3, experimental
results are provided. A conclusion is made in section 4.

2. MDL-based Model Selection for Nonnative
Speakers

Minimum Description Length (MDL) [4] is an
information criterion that has been proven effective in
the selection of optimal model complexity based on a
certain amount of observation data. Several MDL based
speaker adaptation techniques were proposed previously
[5, 6]. Unlike these efforts in which MDL was used to
determine model transformation complexity, we use
MDL to optimize model complexity by selecting a set
of properly tied models from tri-phone models. The
procedure of model selection based on MDL is
described as the following three steps.

In the first step, a single context-dependent state-
tying tree is built for each emitting state of each phone
unit HMM. As shown in figure 1, each terminal node of
a tree corresponds to a tri-phone state that is modeled
by a single Gaussian density. Each internal node, which
is also modeled by a single Gaussian density,
corresponds to a state that is tied from all the terminal
nodes in its sub-tree, where tying is jointly determined
by data volume and phone model similarity [7]. In
figure 1, the black nodes correspond to the tied states
for a given tying threshold, and these nodes become
new terminal nodes after tying, and the corresponding
states are referred to as preliminary tied states. The
resulting trees are referred to as pruned state-tying trees.
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Figure 1. Illustration of a state-tying tree

In the second step, corresponding to each pruned
state-tying tree, a tree copy is constructed. Each of the
tree copy nodes is designated a Gaussian mixture
density (GMD) model and the parameters are estimated.
The resulting trees are referred to as the GMD trees.

In the third step, using speech data from foreign
accent speakers, MDL-based tree pruning is applied to

the pruned state-tying tree. The procedure is illustrated
in figure 2. For a single Gaussian model, its description
length (DL) for a given set of data X is computed as:

N
DL(X, 1,5) = =3 log(N(x,: 11, 5)) + glog(zv)
i=1

where X ={x,,x,,...,x, } is the feature set assigned to
this node, g andX are the parameters of the Gaussian

density and D is the number of free parameters of the
Gaussian density.
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Figure 2. MDL-based tree pruning

For each internal node, if its DL is smaller than the
sum of the MDLs of its two children nodes, the two
children nodes are pruned off, otherwise, the MDL of
this node is assigned as the sum of the MDLs of its two
children. This procedure is carried out bottom-up
recursively. In the end, the surviving terminal nodes
form a cut of the tree that represents an optimum state-
tying structure for the foreign accent speakers, and the
Gaussian mixture density models in the GMD trees that
correspond to these terminal nodes are selected as the
acoustic model for these speakers.

In implementing the MDL step, unsupervised
decoding is first applied to speech utterances of
nonnative speakers to align speech data to each phone
unit. Then the phone-labeled speech data are clustered
to the terminal nodes of the corresponding pruned state-
tying trees.

3. Experiment Result

3.1. Experimental condition

Speech data were taken from the native American
English part of WSJ 1.0. The entire set of speaker
independent short-term training data was used for
acoustic model training by HTK 2.2. The acoustic
models were continuous density HMMs. Each model
had three emitting states (except for a “short-pause”
model, which had a single state), and each state had a
mixture of 16 Gaussian densities. The features consisted
of 39 components of 12 MFCCs, energy, and their delta
and acceleration derivatives. In addition, speech data
were collected from three speakers with Chinese-accent
and a native English speaker (KEM). In order to match
the acoustic environment of WSJ data, the speech data
were collected in a quiet office using a close-talking
sennheiser microphone. A 92-sentence transcript was



selected from WSJ, and each speaker read the transcript
once. To further eliminate environment mismatch,
Cepstral Mean Normalization (CMN) as implemented in
HTK was applied to both training and test data. To
verify that a match of acoustic conditions was achieved,
the acoustic model trained from WSJ data was applied to
the WSIJ test set (si_dt 05) and the KEM’s speech data
and recognition word accuracies of 90.64% and 91.74%
were attained, respectively. The similar level of
recognition accuracy on the two sets of speech data
indicated that environment mismatch between WSJ and
our collection condition was basically eliminated.

3.2. Results

3.2.1.  Performance versus model complexity.

To investigate the effect of model complexity on
acoustic modeling for nonnative speakers, several sets of
tied tri-phone models with different model complexities
were built from the tri-phone models by controlling the
state-tying thresholds. In addition, a context-independent
mono-phone model set was built that consisted of a total
of 130 states. In Table 1, the recognition accuracies of
these models are compared for KEM and the nonnative
English speech test set, where TP denotes tri-phone and
model complexity is measured by the number of states
remained after state tying.

Table 1. Word accuracy (%) vs. model complexity

Model set states | Native speaker | Nonnative
(KEM) speakers
Baseline TP 8673 91.74 57.22
Very Low tied TP | 3160 91.72 62.16
Low tied TP 2082 91.61 61.97
High tied TP 1172 91.34 63.12
Very high tied TP | 809 90.20 64.01
Mono-Phone 130 82.01 58.31

The results indicated that for the native English
speaker KEM, the more detailed the model was, the
better the performance, but the performance was not
very sensitive to the degree of state tying. However, for
nonnative speakers, a tri-phone model with an
intermediate complexity level appeared to be optimal,
and recognition performance degraded significantly
when the models were too detailed or too simple.

3.2.2.  Performance versus context dependency.

Another experiment was conducted to investigate the
influence of a speaker’s foreign accent on the
requirement of context-dependency structure in acoustic
modeling. In Table 2, the recognition performances of
three acoustic models with different context-
dependency structure are compared for the native
English talker KEM and the nonnative English
speakers. To eliminate the effect of state-tying degree

variation on recognition performance, the three models
were made to have approximately the same number of
states, i.e., 1172, 1181 and 1179 for HTP, HLDP and
HRDP, respectively. As expected, for the native English
speaker, tri-phone model had the best performance,
followed by left and right context-dependent di-phone
models, with the latter two having approximately the
same recognition accuracy. However, for Chinese
accent speakers, the best result was obtained by left
context-dependent di-phone model, and it was followed
first by the tri-phone model, and then by the right
context-dependent di-phone model.

Table 2. Word accuracy (%) vs. context dependency

structure
Model | Context dependency Native | Nonnative
set speaker | speakers
HTP Tri-phone 91.34 63.12

HLDP | left dependent di-phone 90.27 66.24

HRDP | right dependent di-phone | 89.66 61.67

In order to verify the statistical significance of the
results on nonnative English speakers in Table 2, a
statistical hypothesis test was made. The difference
between the percentages of word accuracy per sentence
obtained using model(1) and model(2) is denoted by c,
and is assumed to be a Gaussian random variable with
an unknown variance. The null hypothesis H, postulated
insignificant superiority of model (1) over model (2),
i.e., E[c] = 0, and the alternative hypothesis H; asserted
a positive difference, i.e., E[c] > 0. The test statistic was
g=c/(s/+n), with a t-distribution and n-1 degrees of

freedom, where EZ%ZLQ and Sz:%ZL(C,-—E)Z’
with 7 indexing the sentences and n = 276 [8]. Among
the model pairs formed from the three models,
HLDP/HTP and HLDP/HRDP led to the rejection of
null hypotheses H, with the type-I error ¢ < 0.005.
Therefore, we can state that for Chinese-accent English
speakers, the highly tied left context-dependent di-
phone models are better than highly tied tri-phone
models and highly tied right context-dependent di-
phone models.

One possible explanation for the superiority of the
highly tied left context-dependent models is that within
a CV syllable, left context represents the co-articulation
effect of the consonant over the vowel and ignores the
effect of the vowel over the consonant, and the Chinese
accent speakers may not be able to pronounce the
consonant parts as accurately as the vowel parts and
hence the left context-dependent model fit well with
their pronuniciations. We hope to verify this hypothesis
in a later work by studying a large amount Chinese-
accented English speech data.



3.2.3.  MDL based model selection

By using HTK, 126 state-tying trees for 42 non-silence
phones with 3 states each were first built from the WSJ
training data and the total number of preliminary tied-
state nodes was 8673. The Gaussian mixture density
models were then estimated for the GMD trees, with
each density have 16 mixture components. A total of
276 sentences from nonnative English speakers were
used in MDL-based Gaussian tree pruning, and a total
of 987 terminal nodes survived the pruning. Among the
126 MDL-pruned state-tying trees, 23 trees were pruned
to have only a single root node. The acoustic models
corresponding to the pruned state-tying trees and the
models selected by MDL were used for recognition of
the same set of nonnative speakers’ speech, and a
recognition accuracy improvement from 57.22% to
66.90% was obtained, corresponding to an error rate
reduction of 23%.

4. Discussion

In this work, we investigated the problem of fitting
existing acoustic models that are trained from native
English speech to nonnative English talkers’ speech
without adaptation data. Recognition accuracies versus
model complexity and model context dependency
structure were studied for nonnative English speech. It
was found that for nonnative English speakers, a not-so-
detailed acoustic model, which is tolerant of large
mismatches in pronunciation while still providing a
certain degree of context-dependency information,
produced the best result.

We also investigated the problem of unsupervised
model complexity selection based on the MDL principle.
The result obtained by MDL matches that of the best
threshold in state tying, indicating the effectiveness of
MDL as a model complexity control method.

An interesting phenomenon we observed from the
study is that for speakers with Chinese accent, the best
context-dependency structure turned out to be left
context-dependent di-phone model. We plan to collect
more data from Chinese accent English speakers to
analyze in more details this context-dependency
phenomenon.

In this study, the acoustic model parameters that
were trained from native English speech were not
adapted to new speakers. We plan to further investigate
the problem of speaker adaptation for nonnative English
talkers in conjunction with model complexity
optimization.
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