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Abstract

In many economic settings, like spectrum and real-estate auctions, geometric figures
on the plane are for sale. Each bidder bids for his desired figure, and the auction-
eer has to choose a set of disjoint figures that maximizes the social welfare. In
this work, we design mechanisms that are both incentive compatible and computa-
tionally feasible for these environments. Since the underlying algorithmic problem is
computationally hard, these mechanisms cannot always achieve the optimal welfare;
Nevertheless, they do guarantee a fraction of the optimal solution. We differentiate
between two information models - when both the desired figures and their values
are unknown to the auctioneer or when only the agents’ values are private data.
We guarantee different fractions of the optimal welfare for each information model
and for different families of figures (e.g., arbitrary convex figures or axis-aligned
rectangles). We suggest using a measure on the geometric diversity of the figures
for expressing the quality of the approximations that our mechanisms provide.
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1 Introduction

In many environments, individuals have preferences over bundles of items.
Combinatorial Auctions take into account such preferences, and auction bun-
dles instead of auctioning each item separately. In some of these environments,
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the preferences of the bidders are structured in a very particular way: the bid-
ders desire areas on the plane, i.e., the bidders bid for geometric figures and
the auctioneer determines a set of disjoint winning figures and the monetary
transfers. Prominent examples for such auctions are the FCC spectrum auc-
tions, in which the bidders compete for geographical broadcasting areas. These
multi-billion dollar auctions involve thousands of distinct combinations of li-
censes. Many mechanisms were suggested for these spectrum auctions, and
these mechanisms encounter severe economic and computational difficulties
(see survey in Cramton et al. (2006)). Other important recent examples are the
Adwords auctions run by Google, in which firms should specify the geograph-
ical area in which they would like to bid for a particular word (for example,
one could bid for having his advertisment appear whenever the word “taxi” is
queried from California). Similarly, selling the right to advertise as a banner
in popular websites also takes into account the georgarphical location of the
viewers. Other examples for settings in which the bidders bid for geometric
figures may be auctions for real-estate lots, selling licenses for location-based
services (e.g., selling advertising space in a big city) or selling advertisements
in newspapers. In these settings, agents may have different preferences about
the properties of their desired figures: the size of the figure, its location on the
page, whether the figures are rectangular, square, or elliptic etc.

The design of such mechanisms involves both game-theoretic and compu-
tational difficulties, and these must by addressed together, when designing
dominant-strategy incentive-compatible mechanisms that are also computa-
tionally feasible (that is, run in polynomial time). Due to the revelation prin-
ctple, we can limit our search to direct-revelation mechanisms - where bidders
are asked to submit their private data to the auctioneer. Thus, in an incentive-
compatible mechanism, a dominant strategy of each agent is to report her
true secret data. A general scheme for achieving welfare-maximizing incentive-
compatible mechanisms is the family of Vickrey-Clarke-Groves (VCG) mech-
anisms (see Vickrey (1961); Clarke (1971); Groves (1973)). However, for im-
plementing such mechanisms the goods must be allocated optimally (other-
wise the mechanisms would not necessarily be truthful, see Nisan and Ronen
(2001)). As the underlying optimization problem of finding the optimal wel-
fare is computationally hard (“NP-hard” even for the simple case where all
the figures are 2 x 2 squares, Rothkopf et al. (1998)), it is infeasible to build
mechanisms that are based on exactly solving the optimization problem.?

To overcome the computational hardness, the theory of computer science
suggests looking for computationally-feasible algorithms that guarantee some
fraction of the optimal solution (an “approximation”).? In this paper we sug-

I Note that the running time of the “brute-force” algorithm for these problems,
which enumerates on all possible choices of subsets, clearly grows exponentially
with the number of bidders.

2 Under the standard computational conventions, an algorithm is considered com-



gest exploiting some specific geometric characteristics of the bids, to better
handle the challenges in such complex environments. Under reasonable geo-
metric assumptions on the structure and the diversity of the bids (e.g., that the
desired figures are convex), we aim to construct dominant-strategy incentive-
compatible approximation mechanisms, and to characterize the worst-case
fraction of the welfare they achieve. Our main goal in this paper:

Design mechanisms for selling figures on the plane that achieve a “good”
approximation for the social welfare, and that are both computationally feasible
and incentive compatible.

As we use algorithms that do not solve the optimization problem exactly,
our incentive-compatible mechanisms are non-VCG. Almost all the incentive-
compatible non-VCG mechanisms currently known are for models where the
agents hold one-dimensional private values (single-parameter models). A clas-
sic paper by Roberts (1979) and a recent work by Lavi et al. (2003), show that
in many reasonable settings, essentially no incentive-compatible mechanisms
exist for general multi-parameter models, except the family of VCG mech-
anisms. As mentioned, the VCG mechanisms are computationally infeasible
in many important settings. Indeed, we hardly know of non-trivial dominant-
strategy implementations for multi-parameter domains (one rare example is in
Bartal et al. (2003)). On the other hand, a multitude of non-VCG incentive-
compatible mechanisms exist for single-parameter models (e.g., Feigenbaum
et al. (2001); Archer and Tardos (2002), see more details below.), The impor-
tance of constructing non-VCG mechanisms was observed in Nisan and Ronen
(2001), who were the first to consider mechanism-design problems involving a
computational perspective.

1.1 Single-Minded Bidders

In light of the impossibilities above, we assume that each agent is interested
in a single figure. Lehmann et al. (2002) initiated the study of the Single-
Minded Bidders model for combinatorial auctions. Each single-minded bidder
desires one specific bundle, and has the same positive value for all its supersets.
Subsequent papers further studied combinatorial auctions with single-minded
bidders (Mua’lem and Nisan (2002)), and extended the model to combinatorial
auctions with duplicates (Archer et al. (2004)) and for the auctions in the
supply chain (Babaioff and Nisan (2004); Babaioff and Walsh (2005)). We

putationally feasible if it runs for a number of steps that is bounded by some polyno-
mial function of the parameters of the problems (e.g., number of players or number
of items). If the worst-case running time of an algorithm grows exponentially with
these parameters, then it is considered computationally infeasible. It is commonly
believed that every problem that is “NP-hard” cannot be solved by a polynomial-
time algorithm. See Cormen et al. (2001) for an introduction for computational
analysis of algorithms.



also studied single-minded combinatorial auctions, but for geometric figures
on the plane (rather than for discrete set of goods, as in the previous papers).
Note that we actually auction an infinite, even uncountable, number of goods.

In our model, the plane (R?) is for sale. Each agent has a private value for
a single compact figure and for any figure that contains it (he has a zero value
for any other figure). We study several restrictions on the figures desired by
the agents, e.g., convex figures, rectangles, and axis-aligned rectangles. Each
agent submits a bid for his desired figure (e.g., an advertiser may want the
bottom half of the first page in a newspaper). After receiving all bids, the
auctioneer determines the set of winning agents and the payment that each
winner should pay. Note that the agents demand figures in fixed locations in
the plane, and the figures cannot be rotated of translated.

In this paper, we differentiate between two information models (as was
previously done in, e.g., Mua’lem and Nisan (2002); Archer et al. (2003);
Babaioff and Walsh (2005)). In the Known Single-Minded (KSM) model, the
auctioneer knows which figure each agent wants, but does not know how much
this agent is willing to pay for this figure. In the Unknown Single Minded
(USM) model, both the figures and the values are private information. In other
words, in the KSM model we should motivate an agent to truthfully declare
his true value, where in the USM model an agent might submit untruthful bid
both for his desired figure and his value. The USM model is therefore “almost”
a single parameter model — the only private information of an agent, except of
the value, is the identity of his desired figure. Nevertheless, as we later see, the
additional private information seems to make the mechanism design problem
harder to solve, and we get different results for the two models. Like previous
papers that presented different results for the KSM and the USM models, we
have not been able to prove that such a difference really exists, and this is still
an interesting open question. In some cases, our results for the two models
differ significantly - even by an exponential factor.

The characterization of incentive compatibility in the KSM model is well
known: a necessary and sufficient condition is that the allocation function will
hold the bid-monotonicity property, i.e., if a winning agent raised his bid when
all other bids are fixed, he would still win his figure. Then, the necessary pay-
ments for incentive compatibility are uniquely defined (for normalized models,
with losers paying 0) — each agent pays exactly the minimal bid for which he
would still win. Achieving incentive compatibility in the USM model, however,
is harder, since a bidder may also bid for a superset of his desired bundle and it
is possible that such bid decreases his payment. Therefore, bid-monotonicity
alone is not sufficient in the USM model. Lehmann et al. (2002) presented
a characterization of incentive-compatible mechanisms for the USM model. 3

3 Babaioff et al. (2005) consider an abstract model with agents that have the same
value for all desire outcomes, and the set of desired outcomes is private information.
This model generalizes the USM model. The paper presents a characterization of



Basically, for a USM mechanism to be incentive compatible, the mechanism
must be monotonic and also make sure that by untruthful bidding for some
superset, of his desired bundle, an agent either becomes a loser or pay at least
what he would have paid for his desired bundle.

1.2 The Geometric Model

From the computational perspective, the welfare-maximization problems
in our model belong to a family of hard problems known as “packing” prob-
lems - problems in which optimal subsets (with maximal sum of weights)
of non-conflicting elements should be chosen. Approximation algorithms for
“weighted-packing” problems of geometric shapes on the plane were previ-
ously studied, mainly for axis-aligned squares and rectangles. Hochbaum and
Maass (1985) and Hochbaum (1997) studied the packing of equi-sized squares,
and generalizations for arbitrary squares appear in, e.g., Erlebacj et al. (2001)
and Chan (2003). Khanna et al. (1998) used similar methods in a model where
axis-aligned rectangles lie in a nxn grid, and they presented a polynomial time
algorithm that achieves an O(log(n))-approximation for the optimal welfare 4
and similar problems were also studied in Berman et al. (2001) and Agarwal
et al. (1998). We are not aware of any previous approximation schemes for
packing arbitrary convex figures (or even rectangles that are not necessarily
axis-aligned).

Unlike the previous work, our results allow a large range of figures, without
being restricted to axis-aligned squares and rectangles. In our basic model,
each agent is interested in some arbitrary compact convex figure in R?. In all the
real-life settings presented above, bidders typically bid for sufficiently- “thick”
figures - e.g., building a house on a long and winding area is impractical. In
many of these settings, a typical figure will even be convex (or without “holes”
inside it), but our general results only require that the area of the figures will
capture a constant fraction of the area of their convex hull. We call such figures
massive figures, and in particular, convex figures are massive. In other words,
we allow the figures to exhibit non-convexity as long as it is not extreme (e.g.,
a very narrow banana-shaped figure).

The quality of the approximation ratio that we achieve is closely related
to two geometric parameters of the figures demanded by the agents: to the
maximal number of disjoint figures that a figure can intersect, and to the ratio
between the area of a figure and the total area of the figures that intersect it.
For convex (or massive) figures, we are able to bound the parameters above and
to use these bounds to attain the approximation results. For these bounds, we

incentive compatibility in such domains, that generalize the USM model described
above.

4 That is, they achieved at least a
constant ¢ > 0.

c
logn

fraction of the optimal result, for some



suggest using a measure R on the diversity of the figures. We define the aspect
ratio R of some family of figures, to be the ratio between the maximal diameter
of a figure in the family, and the minimal width of a figure in the family.® In
all our mechanisms, as the diversity of the figures’ dimensions increases (i.e.,
R grows), the approximation ratio we guarantee degrades. Given that all the
figures have diameters and widths with similar sizes, all our mechanisms always
achieve a constant fraction of the optimal welfare (that does not depend, for
example, on the number of figures).

1.3  Our Contribution

We study different families of figures, and for each family we construct
incentive-compatible mechanisms that guarantee some fraction of the social
welfare as a function of the aspect ratio R. We give different results for the
KSM model and for the USM model, all attained with dominant-strategy equi-
libria and admit ex-post individual rationality. Note that unlike Bayesian mod-
els, and in the spirit of Wilson’s doctrine (Wilson (1987)), we use the strong
dominant-strategy equilibrium concept, with no distributional assumptions.

All our results for the USM model are corollaries of a general parameterized
theorem presented in Section 4, that holds for any family of compact figures.
This general theorem characterizes the approximation ratio attained by a wide
range of variants of the “greedy” algorithm (introduced in Lehmann et al.
(2002)), according to few geometric parameters of the figures. For each family
of figures (e.g., convex figures or rectangles), we find the appropriate geometric
parameters and then apply the general result to derive the approximation
achieved for the specific family.

We present mechanisms for the following three families of figures. As men-
tioned, we use a standard computer-science notation and say that a mecha-
nism achieves a c-approximation if it runs in polynomial time and guarantees
at least % of the optimal social welfare.

e Massive figures and arbitrary convex figures: For massive figures, and
in particular for convex figures, we present an O(R*3)-approximation in a
mechanism that is incentive-compatible in the USM model. In the KSM
model, we achieve a better O(R)-approximation — for which we develop a
novel algorithm for “packing” arbitrary convex bundles. As far as we know,
this is the first treatment for this computational problem.

e Arbitrary rectangles: We present an O(R)-approximation for the USM
model. (We do not have an improved approximation for the KSM model.)

® The diameter of a compact figure is the maximal Euclidean distance between two
points in the figure. The width of a figure is the distance between a closest pair of
parallel lines bounding the figure.



o Axis-aligned rectangles: We observe that a mechanism, based on an
algorithm by Khanna et al. (1998) (with few modifications), achieves an
O(log R)-approximation for the optimal welfare. Since their algorithm is
“bid-monotonic”, this mechanism is incentive-compatible in the KSM model.
For the USM model, we do not know how to improved upon the mechanism
for arbitrary rectangles. Thus, for axis-aligned rectangles, the gap between
the approximation ratio that we achieve in the KSM model and in the USM
model is exponential.

From an algorithmic perspective, most of our mechanisms use the family
of greedy algorithms presented by Lehmann et al. (2002) as building blocks.
They presented an incentive-compatible approximation mechanism for com-
binatorial auction with m items where the bidders are single minded. Their
mechanism chooses the figure with the highest normalized value to be a win-
ner, removes all the figures that are in conflict with it, and proceeds until no
figures are left. For taking into account the size of each bundle, in addition
to each value, they normalized each value by [S|*, where |S| is the number
of items in the bundle S and « is some real constant. Lehmann et al. (2002)

1

showed that choosing a = 5 guarantees the best approximation ratio that is

achievable in polynomial time (a fraction of \/—% of the optimal welfare, where
m is the number of goods m) for combinatorial auctions.® We use similar al-
gorithms that normalize the values by the geometric area of the figures, that
is, given a € R we assign a normalize value of -+ to a bid with a value of v
for a figure with a geometric area of a. We show that, somewhat surprisingly,
for compact convex figures the optimal value of « is %

We also treat a discrete model, in which the plane contains predefined
atomic building blocks (or tiles), and each agent bids for a set of building
blocks. For example, in a spectrum auction, each state or county might be
considered as a basic tile that cannot be partitioned. The resolution of the
building blocks plays an important role in our analysis: if the ratio between
the minimal width of a figure and the dimensions of the tiles (this ratio is

denoted by @) is smaller than the aspect ratio R, we can achieve an ap-
log(R)

2log(R)+log(Q)

over the O(R*?)-approximation achieved for the continuous model. A con-

clusion from our result in the discrete model is that if the items in specific
combinatorial-auction environments can be embedded on the plane (e.g., in
spectrum auctions), and if each agent bids for a set of items contained in
some convex figure, then our mechanism may improve the approximation ra-
tio achieved by Lehmann et al. (2002).

proximation of O(R - Q®"), where o* = This is an improvement

6 The algorithm of Lehmann et al. (2002) is optimal if “NP-hard” problems cannot
be solved on polynomial time, that is, if P # NP (Zuckerman (2005)). The “P =
N P?” question is probably the most important open question in Computer Science,
and it is widely believed that P # NP.



The paper is organized as follows: Section 2 presents the formal model.
Section 3 demonstrates our main techniques by presenting a mechanism for
selling convex figures in the USM model. Section 4 describes a general theorem
that quantifies the approximation achieved by greedy mechanisms in a general
setting. This general theorem is used in Section 5 for proving our approxima-
tion results for different families of figures in the USM model. In Section 6 we
present improved mechanisms that are incentive-compatible only in the KSM
model. We conclude with a list of open questions in Section 7.

2 Model

Let B denote the family (set) of bids (figure-value pairs) of the set of
agents N,” that is B = {(s;,v;)|i € N}. Let I denote the family of agents
figures, i.e., F' = {s;|i € N}. Given a family of bids B, we aim to maximize the
soctial welfare, i.e., find a collection of non-conflicting bids (bids for disjoint
figures) that maximizes the sum of valuations. For a subset C' C N of agents
with disjoint figures, denote the value of C' by V(C) = ;. v;. The maximal
social welfare, V(OPT), is the welfare achieved by the family OPT, which
satisfies

V(OPT) = max V(C)
CCN| Vi,jeC s;Ns;=0

A mechanism decides on the set of winners and the payments. A winners

receives his reported figure, while a loser receives the empty set.

Definition 1 A mechanism consists of a pair of functions (G, P) where:

e (G is an allocation scheme which given a profile of bids B outputs a set
of winners G(B) C N, with disjoint figures. That it, for every i,j € G(B),
if i # j then s;Ns; = 0.

e P is a payment scheme, where for any profile of bids B, P(B) € R,
i.e., agent i pays P;(B).

All the payment schemes that we consider are normalized, that is, a losing
agent pays zero. We assume quasi-linear utilities and that the agents have
no externalities (the utility for each agent does not depend on the packages
received by the other agents), i.e., the utility u;(B) of agent i is 0 if he is a
loser, and v; — P;(B) if he is a winner. The agents are rational, so each agent
acts to maximize his utility. We use the notation v_; = (v1, ..., V;i_1, V11, -, Un)
to denote the values of all agents but ¢, and similarly, B_; is the family of all
bids except ¢’s bid.

A mechanism is incentive-compatible (1C) if declaring their true secret infor-

7 Since all the mechanisms we consider are incentive-compatible, we use the same
notation for the secret information and the declared information (bid), except of
the proofs of incentive compatibility.



mation is a dominant strategy for all the agents. Note that we do not assume
any prior distributions on the values, but rather use a stronger concept of
dominant-strategy incentive compatibility. In the KSM model, it means that
for any set of values reported by the other agents, each agent cannot achieve
a higher utility by reporting an untruthful value, i.e.,
Vi VB,Z VU; ui((si, UZ‘), sz) Z ui((si, U;), sz)

In the USM model, IC means that the best strategy of each agent is to report
both his figure and his value truthfully, regardless of the other agents’ reports,
ie.,

Vi VB_; Yu, s, wui((si,v;), B_;) > ui((s},v}), B_;)

Clearly, if a mechanism is truthful in the USM model, it is also truthful in the
KSM model. An incentive-compatible mechanism is also individually rational
(IR) if for any agent i, bidding truthfully ensures him a non-negative utility.
That is, Vi VB_; w;((si,v:), B_i) > 0. We use the term truthful mechanism
to describe an incentive-compatible and individually-rational mechanism.

2.1 Geometric Definitions

We state our approximation bounds as functions of a few geometric prop-
erties of the figures the agents bid for. We use standard definitions of diameter
and width of compact figures in R? (see Figure 1):

Definition 2 The diameter d, of a compact figure z is the maximal distance
between any two points in the figure, i.e., d, = max,, pe: ||P1 — p2|| (when
||p1—p2|| is the Euclidean distance between py, ps). The width w, of a compact
figure z is the minimal distance between a pair of parallel lines such that the
compact figure z lies between them® .

Definition 3 Given a family of compact figures I in R?, let L be the mazimal
diameter of a figure in F', and let W be the minimal width of a figure in F'.
The aspect ratio R of F' is the ratio between the mazximal diameter and the
minimal width. That 1s,

L
L =maxd,, W =minw,, R=—
zEF

zeF w

The aspect ratio describes how diverse is the family of figures with respect
to the figures’ diameters and widths. If W is much smaller than L it follows
that a “large” number of disjoint figures may intersect a single figure, and this
seems to make our problem harder to approximate. Note that L, W and R are
properties of F', but we omit the parameter F' to simplify the notation.

8 The width also equals the shortest projection of the figure on any direction.



Fig. 1. The width of a figure is the minimal distance between parallel lines bounding
the figure, and the diameter of a figure is the maximal distance between two points
in this figure. Assume that the left figure has diameter 10 and width 7, while the
right figure has diameter 6 and width 2, then the aspect ratio R of this family of
two figures is % =5.

Denote the geometric area of a compact figure z by ¢(z), and denote its
perimeter by p, (by a slight abuse of notation we use p, both for the set of
points in the perimeter and the perimeter length).

A computational remark: in our analysis, we assume that the geometric
data can be easily accessed: we assume that the diameter, width and area of
any agent’s figure are computable in polynomial time and also that given any
two figures, we can decide in polynomial-time if the two figures are disjoint. °

2.2 The Greedy Mechanism

The work of Lehmann et al. (2002) have presented a family of greedy mech-
anisms for (discrete) combinatorial auctions. This greedy framework, with
small changes to fit the geometric setting, is the framework we use to design
our mechanisms for the USM model.

The greedy algorithm:

e Input: A profile of bids for non-empty figures B and some function f on
the figures, such that f assigns a positive value to any figure.
e Output: An allocation (set of winners) ALG.
e The greedy allocation algorithm:
- Sort the bids from high to low according to their values normalized by f
(-6 70 2 T 2 -+ 2 Fom)/:

- While the list is not empty, choose a figure s; for which the normalized
value is the highest, among the bids that are still on the list (with a con-
sistent tie breaking). Add agent i to the allocation ALG and update the
list by removing all the bids for figures that intersect s;.

The actual algorithm that is used is determined by the choice of the norm

function f. Lehmann et al. suggested using the norm ‘;’ra for combinatorial

auctions, where |s| is the size of the package s and « is some non-negative
constant. We generalize this method for compact figures in R? and define the

Vz

a-greedy algorithm to use the norm PO where ¢(z) is the area of figure

9 Note that for polygons the above assumptions hold, and that any compact convex
figure can be approximated (as well as one wants) by a polygon.

10



2. 19 Using the monotonicity properties of this algorithm (see Section 6), we
can set up a payment scheme that creates an incentive-compatible mechanism:

Definition 4 The a-greedy mechanism uses the a-greedy algorithm as its
allocation scheme, with the following payment scheme: Assume that agent @
wins. Let 7 be the first agent to win, among all the agents whose figures inter-
sect agent i’s figure, when the greedy algorithm runs without i. If such j exists,

1 pays qff(is);fj , otherwise v pays 0. Losing agents pay 0.

The properties of the a-greedy mechanisms, proved in Lehmann et al.
(2002), also hold in our model:

Theorem 1 (essentially due to Lehmann et al. (2002)) For every «, the a-
greedy mechanism is a polynomial-time truthful mechanism for agents bidding
for compact figures in the USM model.

Throughout the paper, we use standard notations for asymptotic analysis
of approximation algorithms. Let f(R) be some non-negative real function
of R. A mechanism achieves an O(f(R))-approximation, if for some constant
¢ > 0 and for any large enough ' R, the mechanism achieves at least a ﬁ—
fraction of the optimal welfare for any family of bids with an aspect ratio R.
For example, if we design a mechanism that for any given family of figures
with R > 3 always achieves a social welfare of at least blg—OR -V(OPT), we say
that this algorithm achieves an O(log R)-approximation.

3 Unknown Single-Minded Model for Convex Figures

In Section 4, we describe a parameterized approximation result for the max-
imal welfare in a general model, and in Section 5 we use this result to construct
several approximation mechanisms for different families of figures in the USM
model. But first, in this section, we would like to demonstrate the outline of
the proof of the general result, by explicitly proving an O(R%)—approximation
for unrestricted convex figures. This approximation will be formally proved in
Section 5, but the sketch of the proof given in this section should illustrate
the intuition for the more abstract arguments presented in Section 4. Later in
this section, we also show that no other greedy algorithm can achieve better
than this O(Rg )-approximation; the proofs shed some light on the nature of
the problems study in this paper.

To prove the approximation result, we use a few elementary geometric prop-
erties of compact convex figures. First, for any compact convex figure z, the

10 For example, the 0-greedy algorithm sorts the figures according to their values,
and disregards the area. The 1-greedy algorithm sorts the figures according to their
value per unit of area, giving priority to small area figures.

' That is, there exist some Ry such that the approximation holds for any family of
figures with aspect ratio R > Ry.

11



area of z is of the same order as the product of its diameter and width, d, - w.,.
Additionally, the perimeter of z is continuous, and is of the same order as the
diameter of z These properties are sufficient for the approximation to hold.

Theorem 2 Assume that the agents bid for a family of compact convex fig-
ures in the USM model. Then, the % - greedy mechanism is a polynomial-time

truthful mechanism that achieves an O(Rg)—apprommation for the social wel-
fare. This is the best asymptotic approzimation ratio achievable by an a-greedy
mechanism (for any o).

Proof sketch: As mentioned, we only present a sketch of the proof to illustrate
our main techniques; for the full proof we refer the reader to Section 5.1. By
Theorem 1, any a-greedy mechanism is a polynomial-time truthful mecha-
nism. Next, we present the idea behind the proof of the O(R%)—approximation
ratio. Lemma 3 below shows that this is better than what any other a-greedy
mechanism can achieve.

By the definition of the a-greedy algorithm, any figure is either a winner
or intersects a winner. As we will show in the formal proof, it is sufficient to
prove the approximation bound for the case where no winner in the optimal
solution wins in the a-greedy mechanism (i.e., OPT N ALG = (). We map
each agent x € OPT to a winner z € ALG that intersects x. We then bound
the sum of values of any disjoint set of agents’ figures that intersects z: we
separately bound the total value of the figures that are contained in z and the
figures that are not.

Consider a set of disjoint figures C'(z) that are contained in z. We first note
that due to the definition of the aspect ration R, the size of this set of figures
is at most 2R?: the diameter of z is at most L, therefore its area is not larger
than L?. The width of any figure in C(z) is at least W, therefore its area is
at least 12 WTQ This implies that we cannot pack more than L?/ (WT2) = 2R?

figures inside z, hence, |C(2)| < 2R2.

Since z is a winner, by the properties of the %-greedy algorithm, for any
x € C(z) it holds that %2 < —%2+. Summing over all x € C(z) implies the

. ) q(@)3 — a(2)3
following leftmost inequality:

> v, < = > q(x) <

1 1
z€C(z) Q(Z)S z€C(z) Q(Z)3

.q(z)% 95 .R3 < 2RSS -u,

wlm
A\
<
w
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<
—~~
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N————
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Q
—
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The second leftmost inequality is a result of Holder inequality (Theorem 19).
The third inequality is due to the observation that |C(z)| < 2R? and the fact
that for a family C'(z) of disjoint figures contained in z, 3 cc() ¢(z) < q(2).

12 A formal statement of this simple fact is given in Proposition 15.4 in the appendix.
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Thus we have proved that the sum of values of any set of disjoint figures
that are contained in z is bounded by 2R3 times v,, which derives that the
%—greedy mechanism achieves QR%—approximation for the total value of any
disjoint set of figures that are contained in z.

The proof of the equivalent bound for any family of disjoint figures that
intersects z but are not contained in it is more involved. We partition these
figures to classes according to their diameters, in exponentially growing inter-
vals. We show that there are at most O(R) figures in each of these classes,
then we use Holder inequality and some algebra to derive the theorem. (The
full proof is given in Sections 4 and 5.) O

The obvious question is whether a mechanism that runs in polynomial time
and is also incentive-compatible in the USM model can achieve better than
O(R*3)-approximation. While we could not give a complete answer for this
question, we do show that no a-greedy mechanism achieves better than the
approximation ratio above. We even prove a stronger result (Lemma 14 in
Appendix A.1), showing that an approximation asymptotically better than
R3 cannot be achieved, even if we allow a to be chosen as a function of R
(as opposed to being fixed in advance).!® Here, we prove that any a-greedy
mechanism cannot do better than O(R*?)-approximation.

For proving this hardness results, we recognize two extreme fatal cases, in
which the a-greedy algorithm needs to handle. We give explicit constructions
of figures in the plane that form these hard scenarios; one is hard for a-
greedy algorithms with small a’s and the other is hard for large o’s. That is,
we show that for any «, the a-greedy algorithm cannot achieve better than
R?*(1-9) approximation in one case and R!T® approximation in the other case.
Since we use a worst-case approximation measure, any a-greedy algorithm will
achieve no better than max{R?1~%) R**} approximation. This expression is
minimized when o = %, implying a R3 lower bound for the approximation
achievable by a-greedy algorithms.

Each of the two lower bounds is achieved by a construction of figures and
values that can be built for any sufficiently-large R. The basic idea in both
examples is similar: there is one figure z that is chosen by the greedy mecha-
nism, while the socially optimal mechanism choses a family of disjoint figures
intersecting z. This is done by assigning a value to z such that its normalized
value (qéz)a) is a bit greater than 1, and the rest of the figures are assigned
normalized value of exactly 1. This way, the algorithm achieves the value of
the figure z, instead of the sum of values of the intersecting figures, and the
approximation lower bound follows.

The first hard instance (Figure 2, left) is composed of one large figure, which

13 In Section 5.3 we show that for the discrete model, this is not the case: chosing «
as a function of the figures diversity improve the asymptotic approximation in the
discrete model.
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Fig. 2. Approximation bounds for the a-greedy mechanism

contains many (the largest possible number, an order of R?) small figures. For
small o’s, the effect of normalizing the value by the geometric areas is small,
therefore the algorithm tends to pick large figures. For instance, if &« = 0 and
all the figures have a value of 1, their normalized values will also be 1, and
the algorithm achieves a fraction proportional to % of the optimal welfare.
For this construction, we show that the a-greedy algorithm cannot achieve
more than a fraction proportional to ﬁ of the optimal welfare, and we

also observe that the approximation improves as « increases.

The second instance (Figure 2, right) is composed of one small figure, in-
tersecting many (the largest possible number, an order of R) large figures.
For large a’s, the area of the shapes have significant effect on the normalized
values of the shapes, and therefore, small figures will be chosen more easily.
For this construction, we show that the a-greedy algorithm cannot achieve
more than a fraction proportional to ﬁ of the optimal welfare, and observe
that the approximation improves as a decreases.

The two constructions together form the lower bound. Next, we state and
formally prove the lower bound.

Lemma 3 Fgr compact convex figures, no a-greedy mechanism achieves better
than an O(R3)-approximation.

Proof: As explained, this result is a corollary of the two claims below.

Claim 1 For compact convex figures and for any fired o < 1, no a-greedy
mechanism achieves better than O(R*1=%))-approzimation.

Proof: The left part of Figure 2 illustrates the construction we use in our
proof. We consider a large square z of side-length %L that contains If—; small
squares of side-length W (assuming that L > 2W). Note that z’s area is %2
and the total area of the small squares is 11%_2 W2 = %. The small squares can
be separated by intervals of length W (% . ﬁ squares in each row or column,

see Figure 2). 14

Assume now that v, = (%)% + € for some € > 0, and each square x # z has

14 Note that z’s diameter is actually % < L, but we disregard the constants in this
analysis.
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a value of v, = W?2®. Then, for any o,
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We see that the normalized value of the large square z is greater than the
normalized values of the small squares Hence, only z will be picked by the
a-greedy allocation algorithm. The ratio between the optimal welfare and the
welfare achieved by the greedy algorithm is therefore:

V(OPT) {R*- W
V(ALG) (L)t

And this ratio approaches %32(1—@ as € goes to zero. We conclude that for

any o < 1, the a-greedy mechanism cannot achieve an approximation asymp-
totically better than %RQ(PQ), which is O(R*1=®), O

Claim 2 For compact convex figures and any fived o > 0, no a-greedy mech-
anism achieves better than O(R'®)-approzimation.

Proof: The right part of Figure 2 illustrates the construction we use in our
proof. In this proof we use polar coordinates, and denote by ((,r) the point
at angle § and distance r from (0,0).

We look at a disk z of radius W around (0,0). This disk intersects a set
of n disjoint isosceles triangles (n will be chosen such that the width of each
triangle at least W), each of which is contained and almost covers a wedge of
the disk with equal arc length (we shrink the wedges a little to make them
disjoint). Let € > 0 be some small real number. For triangle j € {0,...,n—1}
we define (3; to be j - 27” Triangle j’s vertices lie in the polar coordinates

(ﬁj + %2%76)7 (ﬁj + %7 %L) and (ﬁj + 2% - %’% )
We would like to set the height to the two equal sides of each triangle (that

equals the width of the triangle) to be . For this to happen, we need to

choose n such that sin 22 = &~ = 2 Since lim,_o =%~ = 1, it suffices to pick
n R sin(x)

DN |+
]

n such that n & 7 - R.

Disk 2’s area is ZW?, and we set 2’s value to be (W?)*+¢. Each triangle’s
area is iWL, and we set their values to be (iWL)a. Then, for any «a, z will
have higher normalized value than any triangle, and thus only z will be picked
by the a-greedy algorithm. The ratio between the optimal welfare and the
result of the a-greedy algorithm is therefore:

V(OPT) wR- (iWL)a

V(ALG)  (EW?)* +e€

And it approaches 7!~*R*® as € goes to zero. We conclude that for any o >
0, the a-greedy mechanism cannot achieve an approximation asymptotically
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better than 7!~ R which is O(R'™®). O

This concludes the proof of the lower bound on the approximation ratio
attained by a-greedy algorithms. O

4 Analysis of the a-Greedy Algorithm in a General Model

In this section, we present a general, somewhat sophisticated, parameter-
ized analysis of the performance of greedy algorithms for general families of
compact figures in the plane. The theorem presented in this section charac-
terizes the approximation ratio achieved by greedy mechanisms, as a function
of several geometric properties of the figures. This theorem is the basis for
all of our results for the USM model, described in Section 5. In Section 5 we
compute the specific values for these parameters for each family of figures, and
use the general theorem, presented in this section, to derive the approximation
ratio that the a-greedy achieved for each family of figures.

In the general setting, a figure may be any compact subset of R? (not
necessarily convex or even connected). The algorithm receives as an input a
finite family of compact figures and their weights, F' = {(s;,v;)}",, where
each v; is the weight of a compact figure s; C R? (we slightly abuse notation
and also denote the family of figures by Ia ). In Section 5 we will replace the
abstract family F' with several concrete families, each denoted by F.

The analysis of the a-greedy algorithm is based on the following technique.
The optimal welfare is achieved by a family of disjoint figures with a maximal
sum of values. In order to bound the result attained by the greedy algorithm
with the total value of the optimal solution, we partition the figures that
intersect each winning figure into two sets: those who are contained in the
convex hull of this winner, and those who are not. We bound the value that
can be achieved by each of these sets and, taken together, we derive the final
bound for the approximation achieved by the greedy algorithm.

The bound on the first family is based on the fact that the convex hull
of a figure cannot contain more than b disjoint figures, if each has at least b
fraction of the area of the convex hull. In this case we say that the family of
figures is b-balanced. Thus, b is the first geometric parameter in our analysis.
The bound on the second family is more involved. The figures that intersect a
winner are classified according to their diameters, with exponentially growing
intervals. Two parameters are now of interest: First, the maximal number of
figures in a class, which we denote by t(F ). Secondly, we will need to bound
the ratio between the area of the figure and the total area of the intersecting

family of figures. We use the notion of v(F') to denote the bound (see details
below).
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Fig. 3. A family of figures. The area of each figure is written inside it. The family
is b-balanced, since every figure that is contained in another figure x has at least

1/5 of the area of x. The family is also (64,8)-bounded (that is, it is y-bounded for
v = 64, and the maximal class size is 8).

4.1 Definitions and Notations

We first present some definitions and notations. As mentioned, we compare
the value of a single figure z to the total value of disjoint figures that intersect
it. As mentioned, it turns out to be useful to separately analyze such figures
that are fully contained in the convex hull of z (we denoted the convex hull of
z by CH(z)) and between those that are partially outside this convex hull:

Definition 5 Let I be a finite family of compact figures in R%. For any z € F,

e Cont(z) denotes the collection of families of disjoint figures in F, such that
each figure intersects z and is contained in the convex hull of z. That is, the
family of figures C(z) belongs to the collection Cont(z) if
Vo, x9 € C(2) 1 Naze =0 and

Clz)C{xeF | 2Nz#0 and © C CH(2)}

e [nter(z) denotes the collection of families of disjoint figures in F, such that
each figure intersects z but is not contained in z’s convex hull. That is, the
family of figures B(z) belongs to the collection Inter(z) if
Vo, x9 € B(2) 1Ny =10 and

B(z)C{zxeF | 2nz#0 and x\ CH(z) # 0}

The first parameter that we define considers figures that are contained in
the convex hull of other figures. A set of figures is b-balanced if a figure cannot
capture more than a % fraction of the area of the convex hull of a figure that
contains it:

Definition 6 Let F be a finite family of compact figures in R%. The family of
figures F is b-balanced if

V z,z€F, 1 CCH(z) = b-q(x) > q(CH(2))
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For example, the family of figures described in Figure 3 is 5-balanced, since
every figure that is contained in another figure (e.g., the figures contained in
the bottom-right rectangle), have at least 1/5 of the area of the containing
figure (the convex hull of every rectangle is the rectangle itself).

We now define parameters for figures that are not contained in the convex
hull of the figure that intersect them. For defining these parameters, we should
first define a classification of the figures according to their diameters, with
exponentially growing intervals.

Definition 7 Let F be a family of compact figures in R? with an aspect ratio
R. For any z € F and for any family of sets B(z) € Inter(z), the partition-
by-diameters of B(z) is a partition of B(z) to log(R)+ 1 classes, where for
each i € {0,...,log(R)},

Bi={z | x€B(z) and W-2'<d, < W-2"""}

For a figure z, the i-th class in the partition (B’) includes a disjoint set of
figures, each intersects z but is not contained in z’s convex hull, and each has
a diameter of at least W -2¢ and at most twice that length. Since for any figure
x we have that W < d, < W - R, this is indeed a partition to disjoint sets.

We are now able to formally define two parameters that help us bounding
the total value gained by such classes. The first parameter is the maximal
number t(ﬁ) of figures in a class, over all the figures z € F and all the sets
B(z) € Inter(z) (i.e., the sets of disjoint figures that intersect z but are not
contained in it).

Definition 8 The maximal-class-size of a family Fis defined to be

HF)= max |B!|
2€F, B(z)EInter(z), i€{0,...,log(R)}

For example, in the family of figures described in Figure 3, the maximal
class size is 8, since the 8 rectangles intersecting the central rectangle are
disjoint and will appear in the same class in the partition-by-diameters (they
all have the same diameter). Other classes will clearly have a smaller size.

The second parameter is a bound on the ratio between the area of a figure
and the total area of the figures that it intersects from every class defined

A

above. We use the notion of v(F) to denote the bound.

Definition 9 Let v be a functz’or} that assigns a real number to every family
of figures. We say that a family F' of figures is y-bounded if

V z e F VB(z) € Inter(z) Vie{0,...,log(R)}

~ R i Z$€Bi Q(x)
FFy> —. v, 222 T 2
1(F) 2 5 1B =
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A family of figures F is called (v,t)-bounded, if it is y-bounded and its maximal-
class-size t(F') is at most t.

For example, the family of figures described in Figure 3 is 64-bounded. We
can check this on the set of eight disjoint rectangles intersecting the central
rectangle. Their total area is 8-5 and the area of the central rectangle is 5, thus
clearly 64 > 1-8- %2 (since all these rectangles have the maximal diameter,

5

we clearly have £ = 1).

4.2 The Main General Result

We are now ready to prove the approximation achieved by the a-greedy
algorithm. This result is later used to approximate the optimal social welfare
in different families of figures (like convex figures and rectangles), by providing
the best possible bounds on the characteristic parameters of the family (i.e.,
providing v, ¢ and b for the family of figures). The remainder of this section
presents our general result and its proof.

Theorem 4 Let F be a finite family of compact figures in R?. Assume that
F is (v, t)-bounded and b-balanced. Then for any a € (0,3], the a-greedy
algorithm achieves a

2
20 —1

. ’Y(F)a . t(ﬁv)172a 4 ple

approximation to the maximal total value of any family of disjoint figures.

Proof: Let OPT be a family of disjoint figures with the maximal sum of values.
Let ALG be the family of disjoint figures picked by the a-greedy algorithm. We
first show that it is sufficient to prove the approximation when we disregard the
figures that are in both allocations (OPT and ALG). Let I = OPT N ALG,
opt = OPT \ I and alg = ALG \ I. Denote the value of a set S € F by
V(S) = Xses V- Then,

V(OPT) V(OPT\I)+V(I) _V(OPT\I) V(opt)

V(ALG) ~ V(ALG\1)+ V() ~ V(ALG\1)  V(alg)

The inequality holds since all the figures’ values are non-negative and V(O PT)

> V(ALG). We next turn to bound gggﬁ’;’g from above.

By the definition of the a-greedy algorithm, any figure x € F' is either a
winner or intersects a winner. Since opt N alg = (), this implies that there are
families of figures {C(2) }.cay and {B(2) }.eay (as defined in Definition 5) such
that opt C U,ecu,(C(2) U B(2)). Therefore, for these families of figures,

Viopt) = > 0. < D> (D vat D> )

z€opt z€alg zeC(z) z€B(z)
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We use the two lemmas below to bound each summand of 3=, cc.) Vot 0ep() Ve
for every figure z € alg. The theorem will follow from summing up these
bounds for all z € alg. We use the assumptions that family F'is (7, t)-bounded
and b-balanced.

Lemma 6 below shows that for a (7, t)-bounded family F', for any z € alg

and for any a € (0, %],

VB(Z) c ]nter(z) Z Uy < T ,Y(F)a . t(ﬁn)l_ga

Lemma 5 below shows that for a b-balanced family F, for any 2z € alg and for
any « € [0, 1],
VC(z) € Cont(z) >, v, <wv,-b"*
zeC(z)
Summing over all z € alg, we have that for every B(z) € Inter(z) and every
C(z) € Cont(z) we have that:

DY vt D v < (2a2i ovs N(EY - t(F)' 2 4w, - bla)

z€alg r€B(z) zeC(z) z€alg

= (G A E) HF) 2 6 )V (alg)

The above holds, in particular, for the families of figures {C'(2)},ca, and
{B(2)}:eatg such that opt € U,cu,(C(2) U B(z)). Thus,

(e

20 —1

V(opt) < ( A (E) (B bl—a) V(alg)

Note that this general theorem only holds for positive a which is not greater
than %, but this suffices for all our mechanisms (according to our lower bound,
other a’s are asymptotically worse). In the remainder of this section we prove
the two claims used in the proof of the above theorem.

Lemma 5 Let F be a finite b-balanced family of compact figures in R?. For
any « € [0, 1], if the a-greedy algorithm picks z € Fasa winner, then for any
C(z) € Cont(z) we have e Ve < ;- b7

Proof: We first show that for any C(z) € Cont(z), |C(z)] < b. For any
C(z) € Cont(z), let £ € C(z) be a figure with minimal area, that is ¢(z) =
mingec(z) ¢().



The leftmost inequality holds since Fis b-balanced, thus, for z € C(z) it
holds that z C C'H(z) and therefore b- q(z) > q(CH(z)). The next inequality
holds since C(z) is a set of disjoint figures, each contained in C'H(z), thus
q(CH(2)) > Ysec(x) q(z). The last inequality is due to the definition of 7 as
the figure with minimal area in C(z).

Since z is a winner, by the properties of the a-greedy algorithm, for any
z e C(2) i a < 5w (z) implies the
left inequality:

> va < (”;)a- > glx) < qz) (Z a(x ) |CEI

zeC(z)

. q(z)a . bl—a = v,- bl—a

where the second inequality is a result of Holder inequality (see Theorem 19 in
the Appendix). The third inequality is due to the observation that |C(z)| < b,
combined with the assumption that a € [0,1]. O

Lemma 6 Let F be a finite (v, t)-bounded family of compact figures in R2.
For any a € (0, 2] if an a-greedy algorithm picks z € Fasa winner, then

VB(z) € Inter(z) Y v, < 2a2_ v F(F)® - t(F)2e

z€B(2)

Proof: For any B(z) € Inter(z), since z is a winner, by the properties of the
a-greedy algorithm, for any € B(z) it holds that q&,ﬁ < qéﬁ. Summing

over all the figures in B(z), implies that

Yo <—— Y gla)" (1)

We use the fact that F is (v, t)-bounded to bound the expression Y ren(x) 4(T)

doa@) =3 (> a@)) =

Z Q([L')a X 11a>
z€B(z) =0 zeBl =0 \zeB}

log(R) o 1o log(R) : “
<5 (Zam) (Z;) > (rB;rla(Zm))

Again, the inequality is implied by Holder mequahty, and by the fact that
a € (0, 3]. Since Fis (v, t)-bounded, for i € {0,...,log(R)}, we have that

log(R) log(R) (
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S gle) < RjiBi‘q@) (F) @)

r€BL

Therefore, bounding 3, cpi q(z) in Inequality 2 yields (when a > 0):

> o <3 (12 (e -7<F>)Q) g

zE€B(z 1=0

) R log(R) /oi\ @
<oty 3 (%) )

1=0

where the last inequality is derived from 1 —2a > 0 (as a € (0, %]), and the

definition of ¢(F) which ensures that for all i € {0,..., log(R)}, |Bl| < t(F).
Since 2% > 1, we have:

log(R?) 91 @ log(R) ] (2a)log(R)+1 -1 DL
— — R—Oé 2¢ t_ R—a < 5
R s =

We now combine Equations 1, 3 and 5, and conclude the proof of this lemma:

v R ) log(R) /o6 @
O T CHSTIy I R o )

z€B(2) ~g(z)e i=0

- R log(R) 21 @ 9 A R
< v t(F)YR (B Y (E) S gaoq v HE) T ()"
=0

5 The Unknown Single-Minded model: Massive Figures, Rectan-
gles and Discrete Tiles

In this section we use the general result presents in the previous section, to
derive our results for three specific families of figures. We present a different
result for each family. For massive figures, and in particular for convex figures,
we prove an O(R§1 )-approximation; for rectangles, not necessarily axis parallel,
we prove an O(R)-approximation; and finally, for convex figures in the discrete
model (where the agents bid for sets of atomic figures), we improve the O(R3)-
approximation by a factor that depends on the resolution of the atomic figures.

5.1 Massive Figures

A family of compact figures will be called (-“massive”, if the area of each
compact figure z in the family is at least a (3 fraction of the area of its bounding
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Fig. 4. Our mechanism handles “massive” figures although they are not convex. A
“massive” figure captures a constant fraction of the area of its convex hull.

box, that is the product of its width w, and its diameter d, (as we later observe,
this means that the figure captures a constant fraction of the area of its convex
hull). In particular, we will show that any family of compact convex figures in
the plane is %—massive. Figure 4 illustrates massive figures that are not convex.

Definition 10 A family F' of compact figures in R? is 3-massive (for some
B> 0), if for every figure z in F, q(z) > (-d, - w,

We use Theorem 4, which was proved to general compact figures (not nec-
essarily massive nor convex), to determine the approximation achieved by the
%—greedy mechanism for massive figures (note that a skecth of the proof of
this theorem, in the special case of convex figures, was given in Section 3). We
show that the family of $-massive figures is %Q—balanced and (v, t)-bounded
with some v and ¢, which are sufficient to derive the approximation result.

Theorem 7 For a fived § > 0, assume that a set of agents are bidding for a [3-
massive family of figures in the USM model. Then, the é - greedy mechanism is

a polynomaial-time truthful mechanism that achieves an O(Rirf)—appmmmatz'on
for the social welfare.

Proof: By Theorem 1, the mechanism is truthful and it runs is polynomial time.
We are left to prove the welfare approximation. We first state, in the following
claim, few properties of any 3-massive family of compact figures in R%. The
proofs need some geometric calculations and can be found in Appendix A.2.

Claim 3 Let F be a ($-massive family of compact figures in R? that has an
aspect ratio R. Then:

o [ s %Q—balanced.

e For the mazimal-class-size of F' it holds that t(F) < 8m(m + 1)
o I isy-bounded with v(F) = 8m(m +1)5 - t(F) - R*.

,%], the a-greedy mechanism achieves a

5o -y (F)* - t(F)'~2* + b'~*}-approximation to the social welfare. We apply
the theorem with the properties stated in Claim 3. For a = % (the value
of a that make the two terms to be of the same order), we get that the
approximation is at least as good as what we wanted to prove:

1 1 1—-2

23 (8’/T(7T + 1)% . (8’/T(7T + 1)% . R) -R2)3 : (87r(7r + 1)% : R) * 4

23 -1

(lRZ)l_%— s(Z-)r(r+ 1)L+ 53) BE O
& a 23 1 B

1
5 R

By Theorem 4, for any a € (0
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A family F of compact convex figures in R? is %—massive (Proposition 4 in
Appendix A.2). Thus, we derive the following corollary. As shown in Section
3, the O(R%)-approximation is the best asymptotic approximation achieved
by any a-greedy algorithm.

Corollary 8 Assume that a set of agents are bidding for a family of com-

pact convex figures in the USM model. Then, the % - greedy mechanism s

a polynomaial-time truthful mechanism that achieves an O(R%)—appmximation
for the social welfare.

5.2 An Improved Mechanism for Rectangles

If agents are only interested in rectangles (not necessarily axis parallel),
then we can derive a stronger result of an O(R)-approximation for the so-
cial welfare. The difference from arbitrary convex figures can be illustrated
as follows: While the construction of a big rectangle containing 1—16R2 small
rectangles (as presented in Lemma 3) is still possible, the second construction
is not. That is, it is impossible for a small rectangle to intersect many disjoint
rectangles that are not contained in it. For a rectangle to intersect k disjoint
rectangle that are not contained in it, its area must be sufficiently large (at
least an order of kWW?) and we use this property to improve the bound. Tech-
nically, the improved approximation (over general compact convex figures) is
a result of a “better” v function.

Theorem 9 Assume that the agents bid for rectangles in the plane. Then the
% - greedy mechanism is a polynomial-time truthful mechanism, in the USM
model, that achieves an O(R)-approzimation for the social welfare.

Proof: By Theorem 1, the mechanism is truthful and it runs is polynomial time.
We are left to prove the welfare approximation. Again, the approximation
result is derived from Theorem 4. Lemma 20 in the Appendix presents an
improved bound on . It shows that there exists a constant C; > 0, such that
for any family F of rectangles in R?, family F' is y-bounded with v(F) = C;-R?.
We also use the properties from Claim 3 (in the proof of Theorem 7) for convex
figures which are %—massive. Thus, the approximation is at least as good as

1 1 _1
(for some Cy > 0): \/\E/i (C1R*)2-(167(r +1)- R)"*2+(2R%)'"2 = 4R
O

Next, we show that the %-greedy mechanism achieves the best approxima-
tion over all the a-greedy mechanisms. Actually, we prove a somewhat stronger
proposition. This proposition shows that an O(R)-approximation is the best
over all the greedy allocation algorithms that sort the bids according to a
function of the value and the area of the rectangles (not only by the specific
function qéz)a ). Note that this hardness result holds even for axis-parallel rec-
tangles (the O(log R) algorithm in Section 6.3 is indeed more sophisticated).
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Fig. 5. For this family of figures, any allocation scheme that is based only on the
areas and the values (e.g., greedy algorithms) achieves at most R-approximation.

Proposition 10 Let ALG be an allocation algorithm for rectangles, which
chooses rectangles greedily according to some function of the reported values
and the rectangles area. Assume that the function is strictly monotonic in the
reported value. Then, ALG achieves no better than an O(R)-approximation
for the social welfare.

Proof: For any big enough R, we present a construction for which no greedy
mechanism with the specified properties achieves a better approximation. Fig-
ure 5 illustrates the construction we use to prove this proposition. We look at
5R + 1 rectangles of dimensions W x (L — W) (each has a diameter smaller
than L): %R disjoint rectangles are perpendicular to the rectangle z, where
the area of each intersection is exactly W x W.

Assume that all the %R rectangles have the same value v, and z has slightly
higher value, that is v, = v+e€ for some € > 0. Any greedy allocation algorithm
based only on the area and the value (e.g., a-greedy mechanisms), will pick
z and not the other %R rectangles (all the rectangles have the same area).
For R > 4, the socially efficient mechanism would have picked the other %R
rectangles. Hence, the ratio between the efficient allocation and the algorithm’s

1
. (5R) .
result is (Qv +)€v, and it approaches % as € tends to zero. O

5.3  Convex Figures in the Discrete Model

In the discrete model, there is a set of atomic building blocks (we call tiles)
embedded in the plane. All the tiles are assumed to have similar dimensions,
or specifically, we assume that each tile contains a disk of a diameter W, and
its diameter is at most 2W;. ' Each agent bids for a set of tiles that are
fully contained in some convex figure. A winning agent receives all the tiles
that are contained in his reported figure, and only them. The allocation in
the discrete model allocates tiles to the agents, and it allocates each tile only

15 Since the width of a convex figure is at most 3 times its inradius, see Scott and
Awyong (2000), any tile that is a convex figure with a width of at least %WO and a
diameter of at most 21, has these desired properties.
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once. Therefore, two figures in this model are disjoint, if there is no tile which
is fully contained in both of them.

The resolution of the tiles is an important factor in our analysis of the
discrete model, and we give the approximation guarantee as a function of R
and @): for a given family of bids, we define the width-ratio Q = Wmo The
width-ratio gives an upper bound on the width of any figure, with respect to
the size of the tiles. Clearly, we can assume that @) > 1.

We present a mechanism that achieves an improved approximation over our
previous results in the “continuous” model. The improved approximation is
due to the fact that now, for a figure to intersect k disjoint figures that are
not contained in it, its area must be at least of an order of KWW . This was
not the case for “continuous” convex figures, for which a figure with area of
O(W?) could similarly intersect R disjoint figures (see Claim 2). Technically,
the improved approximation is a result of a “better” ~ function.

Our mechanism for the discrete model may choose the values of o as a
function of R and @.'% This comes as opposed to the the continuous model,
where we showed that allowing the mechanism to determine o* as a function
of R does not improve the asymptotic approximation ratio (see Lemma 14 in
Appendix A.1).

The Discrete-Model Greedy Mechanism:
Given bids for compact convex figures in the discrete model, do the following:

If Q > R then it runs the %—greedy mechanism, and if () < R then it runs the
log(R)

o - greedy mechanism for a* = 2log(R)+1og(Q) *

We are now ready to present the properties of the mechanism.

Theorem 11 Consider that the agents bid for compact convex figures in R?
in the discrete model, with an aspect-ratio R and a width-ratio (). Then, the
Discrete Model Greedy Mechanism achieves an O(R%)—approximation for the
social welfare. Moreover, when Q < R it achieves a better approrimation of
O(R - Q%"). The mechanism is asymptotically better than the a-greedy mech-
anism for any o. Additionally, the mechanism is truthful for the USM model,
and it runs in polynomaial time.

Proof: By Theorem 1, the mechanism is a polynomial-time truthful mecha-
nism. We are left to prove the welfare approximation.

If @ > R: Clearly, the O(R§1 )-approximation that the %-greedy mechanism
achieves for general compact convex figures (Theorem 8), holds for the discrete
model as well.

16 Note that an agent might try to manipulate the values of o by affecting R and Q.
Therefore, for truthfulness to hold, we need to assume that the mechanism knows
the true values of R and @), but the mechanism is not required to know the specific
figures demanded by each agent.
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If @ < R: Once again, the result is derived from our main parameterized
approximation result (Theorem 4). Lemma 21 in Appendix A.4 presents an
improved bound on ~. It shows that any family F' of compact convex figures
in R? in the discrete model, is y-bounded with v(F) = C5 - R? - Q (for some
constant C3). We use the improved bound on 7, together with the properties
presented in Claim 3 (in the proof of Theorem 7) and show that the approxi-
mation we get is at least as good as:

*

20[
20" — 1
Ci- (R Q% - (167 (r +1) - R)' > 4 RX1-7)

(
< G5 (R-Q¥ + R) =205 - RQ™

(G- R2-Q)™ H(F) T 4 (2R

IN

This holds for some constants C; > 0 and C > 0, and for any « € [3, 1]. Note
that Cy and C5 are independent of the value of a. The rightmost inequality
holds since for the given o* it is easy to see that R - Q" = R217") (this is
exactly the value of « that makes the two terms to be of the same order).
Note also that since () > 1, for any R and for any (), such that R > @, it
holds that o* € (%, %] — thus the approximation ratio in such cases is better

than O(RY3).

Next, we show that in the discrete model, the given mechanism achieves as-
ymptotically better approximation than any other a-greedy mechanism. Claim
1 (in the proof of Lemma 3) shows that for any o < o*, the approximation of
the a-greedy mechanism is asymptotically worse than the a*-greedy mecha-
nism. This claim constructed a set of figures and values for which the a-greedy
mechanism achieves no better than O(R*!~%))-approximation.!” The bound
presented in Claim 2 (also in the proof of Lemma 3) uses a construction with
a small disk intersecting an order of R triangles. This construction is possible
only if @) > R, otherwise the intersection between each triangle and the disk
is too small to contain a tile with W, diameter disk inside it. Thus, we should
use a different construction for cases where () < R. The basic idea behind
this construction (see Figure 6): The intersection between a narrow rectangle
z (with dimensions of order of W x RW) and each of R narrow trapezoids (of
dimensions of order W x L) contains a disk of diameter Wj. Thus, once the
rectangle is chosen by the greedy algorithm, no trapezoid can be picked. The
normalized value of the rectangle z can be set to be slightly more than 1, where
all the trapezoids have normalized values of 1. Therefore, the approximation
is asymptotically at least as bad as % = R-Q". It is not hard to build
the construction according to the outline above. Due to space limitations, we
omit the details of this construction.

17 The construction in that lemma also holds for the discrete model. Since W > W)
we can embed a Wy diameter disk in each of the small squares, and these disks are
the construction’s tiles
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Fig. 6. For this family of figures, any a-greedy mechanism achieves no better than
O(RQ%)-approximation in the discrete model.

From both bounds, we conclude that the approximation is asymptotically
at least as bad as maz{R?*~% RQ"} for any a. Thus, the best worst-case
asymptotic approximation ratio will be achieved when these terms are equal.
This yields the value o*. O

6 The Known Single-Minded Model

This section studies the KSM model in which the auctioneer knows the de-
sired figure of each agent, but does not know the value each agent is willing to
pay for her figure. We start by presenting an auction for general compact con-
vex figures; We achieve an O(R)-approximation for the social welfare, which
improves the O(R%)—approximation that we proved for the USM model. For
the case of axis-aligned rectangles, we present an exponential improvement,

from O(R) in the USM model, to O(log(R)) in the KSM model.
6.1 The Characterization of Incentive-Compatible Mechanisms

For environments with one-dimensional types for the players, the charac-
terization of dominant-strategy incentive compatibility is well known (for a
proof see, for example, Archer and Tardos (2001); Babaioff and Nisan (2004)).
Specifically, a necessary and sufficient condition for the implementability in
dominant strategy of an allocation algorithm is bid monotonicity, i.e., the
property that no winning agent becomes a loser by increasing his bid:

Definition 11 An allocation scheme S is bid monotonic if for any profile
of reported values v = (v;,v_;) and any agent i, if i wins according to S when
he reports v;, then he will also win when he reports v; > v; (when v_; is fived).

An equivalent property to bid monotonicity is the existence of a critical
value C; for each agent such that if 7 bids more than C; he wins, and if he bids
less than C; he loses (when v_; is fixed). Therefore, in our proof, we are able to
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prove the monotonicity of the allocation rule by presenting critical values for
the players. It is well known that these critical values are exactly the payments
that guarantee incentive compatibility: a (normalized) mechanism is incentive
compatible if and only if its allocation rule is bid monotonic and each trading
agent ¢ pays his critical value C;. Note that the payments above are identical to
the VCG payments only when the mechanism is socially efficient; mechanisms
that approximate the welfare, like all the mechanisms in this paper, are clearly
not VCG mechanisms.

6.2 A Mechanism for Convex Figures

Consider the mechanism called the “Classes-by-Area Greedy Mechanism”
(CBAG mechanism) presented in Figure 7. This mechanism divides the
bids of the agents to classes according to the figures’ geometric area (with
exponentially growing intervals), runs a 0O-greedy algorithm in each class, '8
and allocates the figures to agents in the class that achieved the highest result.
We show in the proof that this allocation scheme is bid-monotonic, and set
the payments to be the “critical values”. This implies that this mechanism is
incentive compatible in the KSM model. ! From an algorithmic aspect, our
algorithm is the first algorithm for “packing” weighted convex figures that we
know of. It achieves an O(R)-approximation, and whether there exists a better
approximation scheme is an open question.

We first observe that the CBAG mechanism is not incentive-compatible in
the USM model. The basic idea is that an agent in a losing class may bid for
a larger figure in order to join a winning class. For example, consider three
disjoint rectangles: one with an area of 1 and a value of 3, and two rectangles
with an area of 5 and a value of 2. When the agents bid truthfully, the two
large rectangles will be in the same class and win, while the small rectangle
loses. However, if the small rectangle untruthfully declared a larger rectangle
of area 5 that includes his original rectangle (this rectangle may intersect the
other rectangles), he would clearly become a winner.

The intuition behind the computation of the payments in the CBAG mech-
anism is as follows: to win the auction, each agent ¢ should be both a winner
in his class and his class should beat all other classes; Bidding above the value
z; in the mechanism’s description (in Figure 7), guarantees that agent ¢ wins
in his class. However, if agent ¢ bids below V2 — V1, and still wins in his class,
his class will definitely lose. Therefore, the critical value for agent ¢ should be
the maximum over these two values.

Theorem 12 When the agents bid for compact convex figures in R? with an

18 Actually any a-greedy allocation algorithm can be run instead.
9 Tn fact, the auctioneer only needs to know the area of each figure and not the
exact figure.
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The Classes-by-Area Greedy (CBAG ) mechanism:
Allocation:

Step 1: Divide the given input to m = 2log(R) classes according to
their area. A figure s belongs to class c if ¢(s) € [W?2-2¢, W?2 . 2¢+1)
(for c€{0,...,m —1}).

Step 2: Perform the 0-greedy algorithm per each class. Denote the
welfare achieved by class ¢ by V°.

Step 3: Output the allocation in the class ¢ for which the 0-greedy

Payments:
Denote the winning class as class 1, and the class with the second-
highest welfare as class 2. Let V1, = V! —v;, and let j be the figure
that intersects figure ¢ and wins, when we run the greedy algorithm

A winning agent i pays: P(i) = max{V?% — V1.

24 Zi}, and any losing
agent pays 0.

algorithm achieved the highest welfare, i.e., ¢ € argmaxée{ow,m_l}vé.

where agent i is removed. Let z; be v; if such j exists, and 0 otherwise.

Fig. 7. A mechanism for arbitrary convex figures that is incentive compatible in the

KSM model and achieves an O(R)-approximation for the social welfare.

aspect ratio R, the CBAG mechanism achieves an O(R)-approximation. This

mechanism s truthful for the KSM model, and runs in polynomial time.

Proof: Denote the sets of figures assigned to each of the m classes by Sy, ...,

Smfla

and let R. denote the aspect ratio of the set of figures S, (i.e. R, is the ratio
between the maximal diameter L. and the minimal width W, of the figures in

class S.). We start by proving the approximation ratio.

The area of each figure in class S, is in the range [W22¢, W?2¢t1) and due
to Proposition 4 in Appendix A.2 if a figure s is compact and convex then its
geometric area ¢(s) is approximately the product of its width and its diameter,

Le. q(s) € [deis
on the diameter and the width of each figure.

, dswg]. We use these properties to derive the following bounds

Since the widths of all figures is at least W, the diameter of any figure s in
S, is bounded as follows: d, < Qq(s) < QW;ECH W22, Since the diameter
of each figure is not greater than L the following holds for the width of every
figure s € Se: ws > % as) > W 2 Using the inequalities above, we bound each

R, by the following two upper bounds:

maXgeg, dsg L

maxgeg, ds < W2et2

Rc = . .
mingeg, ws ~ W mingeg, Wy (@)

=2"* R, = < < = R*2°°

We now show that each figure z € S, intersects O(R,) disjoint figures from
Se. The area of the figure with the diameter of L. is® at least LV thus,

20 Since L, is the maximal diameter of a figure in S, it must be the diameter of
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by the definition of the classes, the area of any other figure in S, is at least
%. Clearly, all the figures in S, that intersect z are contained in the shape
created by extending z with the union of all the disks with radius L. that
their center lies on the perimeter of z (the L.-extension of z - see Proposition
15.2 in Appendix A.2). Since the area of this extension, q(F(z, L)), is O(L?)
(see Proposition 3 in Appendix A.2), then there are O(LCLEV) = O(R,) disjoint
figures that intersect z.

Next, we show that the welfare alg. achieved by the 0-greedy algorithm in
class ¢ is an O(R.)-approximation for the optimal social welfare opt. in this
class. That is, for some constant b > 0:

Yu<Y Y 5<Y Y uw<ik Yo

yEoptc r€alge yEopte, yNx#D r€alge ycopte, yNz#£D z€alge

The leftmost inequality holds since every figure in opt. intersects some figure
in alg. (otherwise it would be chosen by alg.). The second leftmost inequality
holds since if a figure x is chosen by the algorithm, and figure y intersects it,
then v, > v,. The rightmost inequality holds since we proved that each figure
chosen by the greedy algorithm intersects O(R..) disjoint figures in its class
(i.e., less than b - R, figures for some constant b), and the figures in opt. are
clearly disjoint. We conclude that the 0-greedy algorithm achieves an O(R..)-
approximation for the welfare in each class ¢. An easy observation is that the
approximation ratio achieved by choosing the best class over a set of classes,
each with approximation ratio O(R,), is O(X"' R.).* Thus, by applying
one of the above upper bounds on R, for each half of the classes, the O(R)
approximation ratio follows:

m—1 log(R)—1 2log(R)—1
SSR.< Y 2724 Y R27°<4R+2R=6R
c=0 c=0 c=log(R)

Finally, we show that the given mechanism is incentive compatible. As men-
tioned, it suffices to show that the allocation scheme is bid monotonic and
the payments are by critical values (the mechanism is normalized by defin-
ition). Assume that agent i’s declaration is ;. We prove that the payments
P(i) = max{V? — (V! —v;), z;} are indeed the critical values for the agents: if
agent i bids v; < P(7) he loses, and if 0; > P(i) he wins (fixing the declarations
of the other agents). Due to Theorem 1, the value z; is the critical value for
agent ¢ in the 0-greedy mechanism in his class. Thus, if 0; < z; agent ¢ loses
in his class. if v; > z;, agent ¢ wins in his class, but his class might lose to

some figure in this class, and this figure’s width is at least W..

21 To see this, let OPT, be the value that each class ¢ contributes to the optimal
welfare. For each class the greedy algorithm achieves ALG,. > OP OPTe  Multiply-
ing by R, and summing over all classes, we get that )  ALG, R > >..OPT.,.
The algorithm’s result ALG is clearly no worse than any ALG,, and therefore
ALGY . R.>)..OPT, = OPT and the claim follows.
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another class. When v; < V2 — (V! — v;), then if agent 7 still wins, the other
winning figures in the greedy allocation will clearly stay the same. Thus, the
social welfare in class 1 will be (V! — v;) + 9; which is smaller than V2, thus
class 2 will be chosen and agent ¢ will lose. If 0; > V2 — (V! —v;), and agent
1 wins in his class, similar considerations derive that class 1 will be chosen,
thus agent ¢ wins. It follows that max{V?* — (V! —v;), z;} is indeed the critical
value for agent 1.

Since critical values exist, the mechanism is bid monotonic and it follows
that the given mechanism is incentive compatible. The greedy mechanism runs
in polynomial time (Theorem 1). We run this mechanism once for each class,
and one more time for each winning agent for calculating the payments. Thus,
the CBAG algorithm runs in polynomial-time. O

6.3 An Improved Mechanism for Axis-Aligned Rectangles

When we restrict our discussion to axis-aligned rectangles, then a signif-
icantly better approximation ratio of O(log R) can be achieved in the KSM
model. This mechanism is based on an algorithm by Khanna et al. (1998) with
some minor changes. Khanna et al. (1998) studied a model where axis-aligned
rectangles lie in an nxn array, and they presented an O(log(n))-approximation
algorithm for the weighted-packing problem. This approximation ratio is the
best polynomial-time approximation currently known for weighted packing of
axis-aligned rectangles, and it is unknown whether a better polynomial-time
approximation is possible. Their algorithm divides the figures to classes ac-
cording to their heights (that is, their projections on the y axis); For each class,
an allocation is chosen that achieves a constant-factor approximation for the
optimal result in this class, using a special dynamic programming procedure,
and again, the class that achieves the maximal values is chosen. In our model,
where figures can lie in arbitrary locations on the plane, a similar algorithm
can be easily shown to achieve an O(log(R))-approximation.

Theorem 13 (Essentially due to Khanna et al. (1998).) When the agents bid
axis-aligned rectangles with an aspect ratio R, there exists a polynomial-time
algorithm that achieves an O(log(R))-approximation for the social welfare.

The detailed description of this algorithm is tedious, and thus it is left out
of the scope of this paper. Our main contribution here is the observation that
this complex allocation algorithm is bid-monotonic, and hence it is incentive
compatible. The basic idea is to identify the “critical values” for the players
in this algorithm; the existence of these values implies the monotonicity of
the algorithm, and these values are exactly the payments of the winners that
ensures incentive compatibility. The characterization of these critical values
is not technically involved, but it closely depends on the subtle details of the
algorithm, and thus it remains out of the scope of this paper. This results in
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a mechanism that is incentive compatible in the KSM model and that attains
an O(log(R))-approximation for the social welfare.

7 Conclusion and Further Research

In this paper, we studied auctions in which the agents bid for convex fig-
ures on the plane. We presented incentive-compatible mechanisms that are
also computationally feasible. We suggested using the aspect ratio R, which
measures the diversity of the dimensions of the figures, for analyzing the eco-
nomic efficiency of the mechanisms.

We managed to construct incentive-compatible mechanisms (in the KSM
model) that achieve the best approximation results currently known to be
achievable in polynomial time. Whether the best polynomial-time approxi-
mation can always be implemented with dominant strategies is an important
open problem.

Our results indicate that a gap may exist between the approximation achiev-
able in the KSM model and in the USM model; For general convex figures,
the approximation we achieve in the KSM and the USM models are O(R) and
O(Rg), respectively; For axis-parallel rectangles, the gap in our results is even
exponential. This question is open for other settings as well.

Open Problem: [s there indeed a gap between the best approximation achiev-
able in the KSM and in the USM models?

The main algorithmic open question is how well can the the social wel-
fare be approximated by polynomial-time algorithms - even without incentive
considerations. In our paper, we present novel algorithms for packing convex
figures and rectangles. We have not been able to show that these results are
tight. This comes in addition to the existing open problem of whether a better
than O(log(R))-approximation exists for packing of axis-parallel rectangles.

Open Problem: Can one achieve better than O(R)-approximation for pack-
ing general conver figures, or even rectangles (not necessarily azis-parallel).

Finally, we note that the general theorem presented in Section 4 should be
useful in deriving approximation results for the problem of packing weighted
convex bodies in dimensions higher than two?? . In addition, there are results
for rectangle packing in higher dimensions (e.g., Berman et al. (2001)) that
could be used to build new mechanisms for these problems.
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A The Unknown Single-Minded Model
A.1 A Lower Bound for Compact Convex Figures

Lemma 14 Let € > 0. For any function « : [1,00) — R that chooses a as a
function of R (o = a(R)), the asymptotic approzimation of the a(R)-greedy
mechanism is not better than R3~¢. That is, if the approximation achieved by
the a(R)-greedy mechanism is f(R), then for a large enough R, f(R) > R3¢,

Proof: Assume that we combine both constructions of Claim 1 and Claim 2
to one construction, then the approximation ratio is as bad as :
LRU0) 4 plmaplte = B (4R 4 7 R(x LR)°.

By the first order condition, this function is minimized the following a(R):

In (R) — In (167) + In (%)

a(R) = 3In(R) — In (4m)

a(R) converges to % as R grows to infinity. Thus, for any fixed € > 0 and large
enough R, a better approximation than R5~¢is impossible. O

A.2  [(-massive Figures

Proof of Claim 3 from Section 5.1:

Proof: We prove the claim using the results proved below. Proposition 16 shows
that F is %Q—balanced and Lemma 18 shows that ¢(F) < (87r(7r+ 1)%) R.
Lemma 17 shows that F' is y-bounded with v(F') = 8w (7w + 1)% “t(F)-R?. O

Definition 12 For any compact figure = C R? the r-extension of z is the
union of disks of the extension radius r > 0 around all points of the perime-
ter of z, that is E(z,7) = Ue.ep. b(c,7) (where b(c,r) denotes the disk of radius
r > 0 around a center point ¢). We denote the area of the r-extension of z by

q(E(2,1)).

Proposition 15 (Geometric facts) For any compact convez figure z:

(2) For any compact figure x, if t Np, # 0 and d, < r then v C E(z,7).
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(3) If d. < D for some D >0, then for anyr < D, q(E(z,7)) <4m(m+1) -
r-D.
(4) %dz cw, < q(z) <d,-w, and 2d, < p, < wd,. In particular, any family
1

. 2 . 1 .
F of compact convez figures in R* is 5-massive.

Proof: (1). We look at two parallel lines of distance w, bounding z. There
are two parallel lines perpendicular to these lines that bound z, and they are
at most d, apart. So z is contained in the rectangle of area d. - w,, therefore
q(z) <d, - w,.

(2). Let P be a point in « N p,. Since z’s diameter is not greater than r,
x is contained is the disk of radius r around P, which is contained in the
r-extension of z.

(3). Since the perimeter of z is continuous, we can cover the r-extension of z
with [2=] disks of radius 2r. For compact convex figure it holds that 7p, > d.
(Scott and Awyong (2000)), thus:

o(B(zr) < [Z](r(2r)?) < 220

(47-r?) < dm-(m-d,+D)-r < dr(zw+1)-7-D

(4). For any compact convex figure z in R?, 2d, < p, < wd, (Scott and
Awyong (2000)). By Observation 15.1, ¢(z) < d. - w, for any compact figure
in R?. Next we show that ¢(z) > %dz -w,. Let P, and P, be two points in z
of distance d,. We look at the two parallel lines that are parallel to [Py, P
(the line passing through P, and P,). The distance between these two lines is
at least w,, and assume that they touch z at (); and )5. The two triangles
Q1P P, and Q2 P, P, are contained in z, have a base of length d, and sum of
their heights is at least w,, so q(z) > %dz cw,. O

Proposition 16 Let F' be a family of compact figures in R? that is 3-massive

. . 2 . .
and has an aspect ratio R. Then F' is %—balanced. with respect to the geometric
area function q.

Proof: By Observation 15.1, for any compact figures z, d, - w, > ¢(z). Since
F is B-massive, for all x € F, q(x) > - d, - w,. Therefore:

q(z)< d. - w, < d. - d. <1.L_2:R_2
-8 w2 B

A F
Z?'IE Q(x)_6d$w$_ﬁwa:w$

O

Lemma 17 Let F be a family of compact figures in R? that is $-massive and
has an aspect ratio R. Then F is y-bounded, with v(F) = 8n(7m+ 1)%t(F) -R%.

Proof: We prove that for any z € F, any B(z) € Inter(z) and any i €
{0,...,log(R)} we prove that

R BZ‘ Za:eBg Q(x)
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We first prove the following claim.

Claim 4 For any z € F,B(z) € Inter(z) and i € {0,...,log(R)} it holds
that 3 ,cpi q(x) <4dm(m41)- (W -2 - L

Proof: By Proposition 15.2, for any € B!, x C E(CH(z), W - 2T1) (CH(z)
is the convex hull of z, and any = € B’ intersects the perimeter of C'H(z)
and satisfies d, < W -27"1). Since B! is a family of disjoint sets, by the above
claim for each x € B! it holds that x C E(CH(z), W -2"t!), and ¢ is an area
function, thus 3, cpi q(z) < q(E(CH(z), W - 271)).

The diameter of z and the diameter of the convex hull of z are equal, that
is d. = dcmu(), it holds that dep.y < L. By Proposition 3 on CH(z) for
D=L>depe andr =W -2 <L =D (r =L for i =log(R)),

q(E(CH(2),W -2")) <dm(r +1)- (W -2 . L

Additionally, since F is S-massive, we have q(z) > §-d, -w, > - W?. We
conclude that Vz € F' VB(z) € Inter(z) Vi€ {0,...,log(R)},

M < Rt 4re(m + 1) (W2 L

R
— . |B? ,
2t |B:| q(z) - B2

= 8m(m + 1)%1&(}7) - R?

O

Lemma 18 Let ' be a family of compact figures in R? that is 3-massive
and has an aspect ratio R. Then, for the mazimal-class-size t(F') it holds that
t(F) < 8nm(m+ 1)% -R.

Proof: For any z € F, any B(z) € Inter(z) and any i € {0,...,log(R)} we
prove that |BL| < 8m(m +1)5 - R.

By Claim 4, for any z € F,B(z) € Inter(z) and i € {0,...,log(R)} it
holds that 3, cpi q(z) < 4n(m +1)- (W -2"*1) - L.

Additionally, F is B-massive, so for any z € B! | q(z) > - d, - w, >

(3-2°-W?, and since the figures are disjoint we conclude that Vz € F VB(z) €
Inter(z) Vi€ {0,...,log(R)}, the size of each class is as required:

m(r+1)- (W-2H) . L
G2 W2

1
<8r(r+1)=-R

L4
1Bl <
B

O

Theorem 19 (Hélder Inequality - a weak version) If p,q > 1 and
— —

% + % = 1, then for any two vectors of non-negative n real numbers X,Y ,

S Xp - Vi < (0 XD)YP (0, v Ve
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A.3  Rectangles in R?

Lemma 20 There exists a constant Cy > 0, such that for any family F' of
rectangles in R? with aspect ratio R, family F is y-bounded with y(F) = Cy-R?.

Proof: We use the same arguments of Lemma 17 with a tighter bounds on the
area of z. We show that for any B(z) € Inter(z), q(z) > g - |B(z)| - W?.

We look at the W-extension of z. By Proposition 4, §pz >d, > w, > W, we
can use Proposition 3 for D = %pz and r = W to conclude that ¢(E(z, W)) <
20m - W - %pz. If x intersects z but is not contained in it, it must intersect the
perimeter of z. This implies that the W-extension of z and x both contain at
least a i of the disk with a radius of W around the intersection point.

The total area of |B(z)| disjoint rectangles that intersect z but are not
contained in it is at least |B(2)| - 17 - W2, so

1
|B(2)] - 171' W2 < q(E(z,W)) < 20m - W - %pz

which means that p, > |B(z)| - 35W. Since by Proposition 4, ¢(z) > sd.w, >

5(E)w,, we conclude that

022 3 (70) w2 o (1BOI- W) w2 = 1BG) - W

We now use this tighter bound on the area of z (on B(z) = B!) , with the
arguments presented in Lemma 17 to get that, Vz € F' VB(z) € Inter(z) Vi €

{0,...,log(R)}

R o Laeni q(2) E 207r (W - 2”1) L
21

807r |BZ’

= 320072 - R*=C, - R?

IN

B2 -

A.4 The Discrete Model

Lemma 21 There exists a constant C3 > 0, such that for any family F' of
compact convex figures in R? in the discrete model, family F is ~v-bounded with
VF)=C3-R*-Q.

Proof: We use the same arguments of Lemma 17 with the tighter bounds on
the area of z. In Lemma 22, we show that in the discrete model, for any z € F
and any B(z) € Inter(z), it holds that q(z) > s - |B(2)| - W, - W. By the
same arguments of Lemma 17 we conclude that for C3 = 1200073 > 0, and
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Vz € B VB(z) € Inter(z) Vi€ {0,...,log(R)}

e 2 241 . L
SB Yacpid(z) _ R 1B O7r (W - 21+1)

B L < =C5-R*.Q
e sy P e T

O

Lemma 22 If F is a family of compact convex figures in R? in the discrete
model, then for any z € F and any B(z) € Inter(z), it holds that q(z) >
|B(2)| - Wo - W

Proof: For any z and any B(z) € [ nter( ) we first present a lower bound on
the perimeter of z. We show that p, > =—Wj - |B(2)|. Later on, we use this
to derive the a lower bound for the area.

Let P, be a point such that P, € z Np,. Let T(x,z) C x N z be a tile with
P, € T(x,z). Let ¢, be the center of the disk of diameter Wy in T'(x, 2)

We look at the %W—radius disk around c,. Since ¢, € x and w, > W, there
exist a point (), at the intersection of x and the disk circumference. Thus,
x contains a triangle with an area of at least £(5WW)W (the diameter of the
Wy-radius disk is the base of the triangle, and D(Qx, ¢;) is its height, where
D(p,q) denotes the FEuclidean distance between the points p and g¢.). Since
Py, cp € T(x,2) and dpg.) < 2Wy < 2W, then D(P,,c,) < 2W. Since the
triangle is contained in a disk of radius %W around c,, the triangle is contained
in the %W—extension of z.

_L
30072

B(z) is a set of disjoint figures, therefore the triangles (described above)
of the different figures are disjoint, and we conclude that ¢(E(z,2W)) >
|B(2)|(3WoW). Since by Proposition 4 $p. > d. > w, > W, we can use Propo-
sition 3 for D = 2p, and r = 2W to see that ¢(E(z, 2W)) < £27Wp.. We con-
clude that 1257Tsz > |B(z )|(iWoW), and it follows that p, > ——|B(2)|W,.

— 1507

We use the bound on the perimeter of z to bound the area of z. By Propo-

sition 4, ¢(z) > 3d.w. > $(2)w, and w, > W and our lemma follows:

1 1 1
>l<_z> Z>l_(_B . >Z>—.B . .
1(2) 2 5 ( pe ) we 2 5\ 5o 1 BON Wo ) we = 5505 - [B(2)] - Wo - W
O
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