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Abstract 
Mismanagement of the persistent state of a system—all the executable files, configuration settings and other data 

that govern how a system functions—causes reliability problems, security vulnerabilities, and drives up operation 
costs.  Recent research traces persistent state interactions—how state is read, modified, etc.—to help 
troubleshooting, change management and malware mitigation, but has been limited by the difficulty of collecting, 
storing, and analyzing the 10s to 100s of millions of daily events that occur on a single machine, much less the 
1000s or more machines in many computing environments. 

We present the Flight Data Recorder (FDR) that enables always-on tracing, storage and analysis of persistent 
state interactions.  FDR uses a domain-specific log format, tailored to observed file system workloads and common 
systems management queries.  Our lossless log format compresses logs to only 0.5-0.9 bytes per interaction.  In this 
log format, 1000 machine-days of logs—over 25 billion events—can be analyzed in less than 30 minutes.  We report 
on our deployment of FDR to 207 production machines at MSN, and show that a single centralized collection 
machine can potentially scale to collecting and analyzing the complete records of persistent state interactions from 
4000+ machines. Furthermore, our tracing technology is shipping as part of the Windows Vista OS. 

 

1. Introduction 
Misconfigurations and other persistent state (PS) 

problems are among the primary causes of failures and 
security vulnerabilities across a wide variety of 
systems, from individual desktop machines to large-
scale Internet services.  MSN, a large Internet service, 
finds that, in one of their services running a 7000 
machine system, 70% of problems not solved by 
rebooting were related to PS corruptions, while only 
30% were hardware failures.  In [24], Oppenheimer et 
al. find that configuration errors are the largest category 
of operator mistakes that lead to downtime in Internet 
services.  Studies of wide-area networks show that 
misconfigurations cause 3 out of 4 BGP routing 
announcements, and are also a significant cause of extra 
load on DNS root servers [4,22]. Our own analysis of 
call logs from a large software company’s internal help 
desk, responsible for managing corporate desktops, 
found that a plurality of their calls (28%) were PS 
related.1  Furthermore, most reported security 
compromises are against known vulnerabilities—
administrators are wary of patching their systems 
because they do not know the state of their systems and 
cannot predict the impact of a change [1,26,34]. 

PS management is the process of maintaining the 
“correctness” of critical program files and settings to 
avoid the misconfigurations and inconsistencies that 
cause these reliability and security problems.  Recent 

                                                           
1 The other calls were related to hardware problems (17%), 

software bugs (15%), design problems (6%), “how to” calls 
(9%) and unclassified calls (12%). 19% not classified. 

work has shown that selectively logging how processes 
running on a system interact with PS (e.g., read, write, 
create, delete) can be an important tool for quickly 
troubleshooting configuration problems, managing the 
impact of software patches, analyzing hacker break-ins,  
and detecting malicious websites exploiting web 
browsers [17,35-37].  Unfortunately, each of these 
techniques is limited by the current infeasibility of 
collecting and analyzing the complete logs of 10s to 
100s of millions of events generated by a single 
machine, much less the 1000s of machines in even a 
medium-sized computing and IT environments. 

There are three desired attributes in a tracing and 
analysis infrastructure.  First is low performance 
overhead on the monitored client, such that it is feasible 
to always be collecting complete information for use by 
systems management tools.  The second desired 
attribute is an efficient method to store data, so that we 
can collect logs from many machines over an extended 
period to provide a breadth and historical depth of data 
when managing systems.  Finally, the analysis of these 
large volumes of data has to be scalable, so that we can 
monitor, analyze and manage today’s large computing 
environments.  Unfortunately, while many tracers have 
provided low-overhead, none of the state-of-the-art 
technologies for “always-on” tracing of PS interactions 
provide for efficient storage and analysis. 

We present the Flight-Data Recorder (FDR), a high-
performance, always-on tracer that provides complete 
records of PS interactions.  Our primary contribution is 
a domain-specific, queryable and compressed log file 
format, designed to exploit workload characteristics of 



 

 

PS interactions and key aspects of common-case 
queries—primarily that most systems management 
tasks are looking for “the needle in the haystack,” 
searching for a small subset of PS interactions that meet 
well-defined criteria.  The result is a highly efficient log 
format, requiring only 0.47-0.91 bytes per interaction, 
that supports the analysis of 1000 machine-days of logs, 
over 25 billion events, in less than 30 minutes. 

We evaluate FDR’s performance overhead, 
compression rates, query performance, and scalability.  
We also report our experiences with a deployment of 
FDR to monitor 207 production servers at various MSN 
sites.  We describe how always-on tracing and analysis 
improve our ability to do after-the-fact queries on hard-
to-reproduce incidents, provide insight into on-going 
system behaviors, and help administrators scalably 
manage large-scale systems such as IT environments 
and Internet service clusters. 

In the next section, we discuss related work and the 
strengths and weaknesses of current approaches to 
tracing systems.  We present FDR’s architecture and 
log format design in sections 3 and 4, and evaluate the 
system in Section 5.  Section 6 presents several analysis 
techniques that show how PS interactions can help 
systems management tasks like troubleshooting and 
change management.  In Section 7, we discuss the 
implications of this work, and then conclude. 

Throughout the paper, we use the term PS entries to 
refer to files and folders within the file system, as well 
as their equivalents within structured files such as the 
Windows Registry.  A PS interaction is any kind of 
access, such as an open, read, write, close or delete 
operation. 

2. Related Work 
In this section, we discuss related research and 

common tools for tracing system behaviors.  We 
discuss related work on analyzing and applying these 
traces to solve systems problems in Section 6.  Table 1 
compares the log-sizes and performance overhead of 
FDR and other systems described in this section for 
which we had data available [33,11,21,20,40]. 

The tools closest in mechanics to FDR are file system 
workload tracers.  While, to our knowledge, FDR is the 
first attempt to analyze PS interactions to improve 
systems management, many past efforts have analyzed 
file system workload traces with the goal of optimizing 
disk layout, replication, etc. to improve I/O system 
performance [3,9,12,15,25,28,29,33]. Tracers based on 
some form of kernel instrumentation, like FDR and 
DTrace [30], can record complete information.  While 
some tracers have had reasonable performance 
overheads, their main limitation has been a lack of 
support for efficient queries and the large log sizes.  
Tracers based on sniffing network file system traffic, 
such as NFS workload tracers [12,29] avoid any client-

perceived performance penalties, but sacrifice visibility 
into requests satisfied by local caches as well as 
visibility of the process making a request. 

Complete versioning file systems, such as CVFS [31] 
and WayBack [8] record separate versions of files for 
every write to the file system.  While such file systems 
have been used as a tool in configuration debugging 
[39], they do not capture file reads, or details of the 
processes and users that are changing files.  The 
Repairable File Service (RFS) logs file versioning 
information and also tracks information-flow through 
files and processes to analyze system intrusions [40].   

In [33], Vogels declares analysis of his 190M trace 
records to be a “significant problem,” and uses data 
warehousing techniques to analyze his data.  The 
Forensix project, tracing system calls, also records logs 
in a standard database to achieve queryability [13].  
However, Forensix’s client-side performance overhead 
and their query performance (analyzing 7 machine-days 
of logs in 8-11 minutes) make it an unattractive option 
for large-scale production environments. 

A very different approach to tracing a system’s 
behavior is to record the nondeterministic events that 
affect the system, and combine this trace with virtual 
machine-based replay support.  While this provides 
finer-grained and more detailed information about all 
the behaviors of a system than does FDR, this extra 
information can come at a high cost: ReVirt reports 
workload-dependent slowdowns up to 70% [11].  More 
significantly, arbitrary queries are not supported 
without replaying the execution of the virtual machine, 
taking time proportional to its original execution. 

While, to our knowledge, we are the first to 
investigate domain-specific compression techniques for 
PS interaction or file system workload traces, there has 
been related work in the area on optimizing or 
compressing program CPU instruction traces [5,19], as 
well as work to support data compression within 
general-purpose databases [6]. 

Table 1: Performance overhead and log sizes for 
related tracers.  VTrace, Vogel and RFS track 

similar information to FDR.  ReVirt and Forensix 
track more detailed information.  Only FDR and 

Forensix provide explicit query support for traces. 
 Performance 

Overhead 
Log size 

(B/event) 

Log Size 

(MB/machine-day) 

FDR <1% 0.7  20MB 

VTrace 5-13% 3-20 N/A 

Vogel 0.5% 105 N/A 

RFS <6% N/A 709MB 

ReVirt 0-70% N/A 40MB-1.4GB 

Forensix 6-37% N/A 450MB 



 

 

3. Flight Data Recorder Architecture 
In this section, we present our architecture and 

implementation for black-box monitoring, collecting, 
and analysis of PS interactions.  Our architecture 
consists of (1) a low-level driver that intercepts all PS 
interactions with the file system and the Windows 
Registry, calls to the APIs for process creation and 
binary load activity, and exposes an extensibility API 
for receiving PS interaction events from other 
specialized stores; and (2) a user mode daemon that 
collects and compresses the trace events into log files 
and uploads them to a central server, (3) a central server 
that aggregates the log files and, (4) an extensible set of 
query tools for analyzing the data stream.  Our 
implementation does not require any changes to the 
core operating system or applications running atop it. 
We provide detailed discussion of our domain-specific 
queryable log format in Section 4. 

3.1 FDR Agent Kernel-Mode Driver 
Our low-level instrumentation is handled by a kernel 

mode boot driver2, which operates in real-time and, for 
each PS interaction, records the current timestamp, 
process ID, thread ID, user ID, interaction type (read, 
write, etc.), and hashes of data values where applicable.  
For accesses to the file system, the driver records the 
path and filename, whether the access is to a file or a 
directory and, if applicable, the number of bytes read or 
written.  For accesses to the registry, the driver records 
the name and location of the registry entry as well as 
the data it contains.  The driver sits above the file 
system cache, but below the memory mapping 
manager.  This driver also records process tree 
information, noting when a binary module is loaded, or 
when a process spawns another. 

The largest performance impact from the driver stems 
from I/O related to log writing, memory copies related 
to logging events, and latency introduced by doing this 
work on the calling application’s thread. We mitigate 
this by only using the application’s thread to write the 
relevant records directly into the user-mode daemon’s 
memory space, and doing the processing on the user-
mode daemon’s thread.  Caches for user names and file 
names that need to be resolved for each interaction also 
help to minimize lookup costs. 

Our kernel driver is stable and suitable for use in 
production environments, and will be available for 
public use as part of Windows Vista. 

3.2 FDR Agent User-Mode Daemon 
The user-mode daemon is responsible for receiving 

records of PS interactions from the kernel driver, 
compressing them into our log format in-memory, and 
periodically uploading these logs to a central server.   

                                                           
2 A kernel-mode boot driver is the first code to run after 

booting and the last to stop if the system is shut down. 

To avoid impacting the performance of the system, 
we configure our daemon to run at lowest-priority, 
meaning it will be scheduled only if the CPU is 
otherwise idle.  If the daemon does fall behind, the 
driver can be configured to either block until space is 
available or drop the event.  However, in practice, we 
have found that a 4MB buffer is sufficient to avoid any 
loss on even our busiest server machines. 

The daemon throttles its overall memory usage by 
monitoring the in-memory compressed log size, and 
flushing this to disk when it reaches a configurable 
threshold (typically 20MB to 50MB). The daemon will 
also periodically flush logs to disk to ensure reliable log 
collection in the event of agent or system failure.   
These logs are uploaded to a central server using a 
standard SMB network file system protocol.  If a failure 
occurs during upload the daemon will save the log 
locally and periodically retry the upload. 

The daemon also manages its own operation, for 
example, by automatically update its binaries and 
configuration settings when indicated on the central 
server, and monitoring its disk space and memory 
usage.  Setting up FDR tracing on a new machine is 
simple:  a user only needs to run a single binary on the 
machine and configure the log upload location. 

3.3 FDR Collection Server 
The collection server is responsible for organizing 

FDR log files as they are uploaded, triggering relevant 
query tools to analyze the files as they arrive, and 
pruning old log files from the archive.  It also sets the 
appropriate access privileges and security on the 
collected files and processed data.  

3.4 FDR Query Tools 
The final pieces of our framework are the query tools 

that analyze log files as they arrive.  Each query tool is 
specialized to answer a specific type of query for a 
systems management task.  Simple example queries 
include “what files were modified today?”, or “which 
programs depend on this configuration setting?”  As all 
our log files are read-only, we do not require 
complicated transactional semantics or other 
coordination between our query tools.  Each query tool 
reads the log files it is interested in scanning and 
implements its own query plan against the data within.  
While future work might investigate benefits of 
caching, sharing intermediate results across multiple 
concurrent queries, or other optimization techniques 
from the database literature, we found that allowing 
uncoordinated reads simplified the process of building 
new query tools as required. 

4. Designing the Log Format 
The key requirements we have for FDR’s log format 

are that 1) logs are compact, so that their size does not 
overly burden client resources, network bandwidth or 
server-side scalability; and 2) the log format efficiently 



 

 

supports common-case queries.  To meet these 
requirements, we built a preliminary version of FDR 
with a straightforward, flat format, and collected 5000 
machine-days of traces from a wide variety of 
machines.  We can personally attest to the difficulty of 
collecting, storing and analyzing this scale of data 
without support for compression and queryability.  
Based on our analysis of these traces, and a survey of 
how previous work applies such traces to systems 
management tasks, we designed an optimized log file 
format that takes advantage of three aspects of PS 
interaction workloads that we saw across our collected 
traces. 

First, most PS interactions repeat many times during a 
day—93-99% of daily activity is a duplicate of an 
earlier event.  For queries that care only about what 
happened, rather than when or how often, we can 
improve query performance by separating the 
definitions of this small number of distinct interactions 
from the details of when they occur. 

Secondly, we observe that PS interactions are highly 
bursty, with many interactions occurring almost 
simultaneously and long idle periods between bursts.  
This allows us to save significant storage space by 
amortizing timestamp information across a burst. 

Finally, we find that sequences of PS interactions are 
also highly repetitious; if we see a sequence of PS reads 
and writes, we are very likely to see the same sequence 
again in the future.  This leads us to apply standard 
compression schemes to the time-ordered traces of PS 
interactions, achieving a high compression rate. 

In the rest of this section, we describe relevant 
attributes of common-case queries, present the results 
and implications of our survey of PS interaction traces, 
and then describe the details of our log format. 

4.1 Common Queries 
Today, systems administrators deal with large-scale, 

complicated systems.  According to surveys 
[9,28,33,36], an average Windows machine has 70k 
files and 200k registry settings.  Faced with the task of 
managing these systems, a systems administrator’s job 
is often a problem of “finding the needle in the 
haystack.”  For example, troubleshooting is the task of 
finding the few configuration settings or program files 
that are causing a problem; and to test a software 
upgrade or patch, the administrator needs to know what 
subset of the system might be affected by the change.  
To be useful, FDR must help systems administrators 
quickly identify the small set of relevant state and 
events out of all the state existing and events occurring 
across the many machines of a computing or IT 
environment.  We describe the details of how systems 
management tasks use PS interaction traces in 
Section 6.  Here, we briefly describe the aspects of 
common-case queries that informed our log format 
design. 

We find that most common systems management 
queries of PS interaction traces search for a subset of 
events, identified by the responsible process or user, the 
file or registry entry being accessed, or another aspect 
of the interaction (“Who changed this configuration?” 
or “What did I change yesterday?”).  This means that, 
by organizing or indexing our log format around such 
attributes, we can quickly identify the subset of 
interactions of interest.  Common queries are also often 
restricted by time range, looking only at events that 
occurred during a specific period, implying that our 
logs should support random access over time, not just 
sequential access. 

Many systems management tasks only involve the 
existence (or absence) of a particular PS interaction, 
and not when or how often the interaction occurred.  For 
example, finding all loads of a shared library, regardless 
of when they occurred, can identify the processes that 
depend on that library and help assess the impact of a 
software upgrade.  Other times, queries do care about 
when a PS interaction occurred, but only need to know 
an interaction’s relative-ordering vis-à-vis other PS 
interactions on a given thread, e.g., to determine 
potential causalities like loading a binary after reading 
its name from the Registry.  In both cases, the 
implication is that some queries need not read 
timestamps at all. 

4.2 PS Workloads and Log Optimizations 
For our survey, we monitored the PS interactions of 

over 324 machines during one year across a variety of 
computing environments and collected over 5000 
machine-days of PS interactions in total.  We worked 
with MSN to instrument 207 of their machines, across 4 
different services with different workloads, including 
CPU-bound systems with heavy disk workloads, a large 
storage service for external users, and web notifications 
publish/subscribe service.  In our own research lab, we 
monitored 72 laboratory machines used for various data 
collection, analysis and simulation experiments.  We 
also monitored 35 corporate desktops and laptops, used 
by researchers and engineers, primarily for activities 
such as software development and word processing.  
Finally, we monitored 7 home machines, used for 
entertainment and work-related activities by 
researchers, engineers, and their families.  As a control, 
we also collected traces from 3 idle systems, running 
within virtual machines with no user workload. 

4.2.1 Scale and repeated interactions 
The primary challenge to efficiently tracing the PS 

interactions of a machine is the volume of events that 
occur.  In our survey, we found that the average number 
of daily PS interactions was O(107) ranging from 9M 
on desktop machines to 70M on the busiest workloads, 
as shown in Table 2.  Not surprisingly, servers tended 
to have a stable workload from day-to-day, while our 



 

 

lab, corporate desktop and home machines had varied 
workloads. The highest number of daily interactions we 
saw was 264M events, on an MSN server that collected 
application logs from 1000s of other machines. 

However, we found several factors that mitigate the 
large volume of PS interactions in all these workloads.  
First, the number of distinct files and registry entries 
read or written every day is much smaller than the total 
number of interactions.  Secondly, the number of 
distinct processes that run on each machine is very 
small, O(102) processes on the busiest desktops, and 
fewer on production servers.  Overall, we found that 
most PS entries are only accessed by a small number of 
processes, and that the total number of distinct 
interactions (i.e., distinct <user, process, operation-type, 
PS entry> tuples) was O(105), only 0.2% to 5.4% of the 
total interactions per day. 

This implies that we can improve the performance of 
queries not interested in timestamps or counts of PS 
interaction occurrences by separating the unique 
definitions of observed interactions from the time-
ordered traces of when they occur.  Effectively, this 
allows many common queries to ignore 94.6-99.8% of 
the log. This also provides the possibility of 
compressing our logs, by replacing repeated 
descriptions of an interaction with a single unique ID.  

4.2.2 Bursts of Activity 
Several studies of I/O traffic and file system activities 

have shown that server and desktop I/O workloads 
demonstrate bursty or self-similar behavior [14,16].  
We observe this in our traces as well, where it 
manifests as many interactions arriving together with 
long idle periods in between. 

The primary implication of these bursts for our log 
format is that, when many events occur together, there 
is a clear opportunity to merge their associated time 
information, storing a single timestamp for all the 
events that occur during the same timestamp bucket.  

This is a significant observation because per-event 
timestamps are a major limiting factor to achieving high 
compression rates.  To help us choose an appropriate 
bucket duration, we look to the requirements of 
common-case systems management queries.  We find 
that fine-grained timestamps are rarely necessary, 
instead what is most important is the relative ordering 
of events and the ability to map event occurrences to 
human activities (i.e., wall-clock time).  This leads us to 
choose a relatively coarse-grained 48-bit or 6ms 
granularity timestamp.  Note that this still provides a 
granularity finer than Windows’ time-scheduling 
quantum of 10-15ms.  While one might worry that a 
coarse-grained timestamp would mean every bucket 
would have at least one event in it, in practice, even our 
busiest observed machine-day, with 264M daily events, 
showed no PS interactions during 60% of its timestamp 
buckets.  Of course, this does not mean the machine as 
a whole was idle—it might have been busy with CPU 
calculations during the times it was not doing PS 
interactions. 

4.2.3 Repeated Sequences of Interactions 
Our final key observation is that many sequences of 

PS interactions repeat over time.  This is not a surprise, 
as we would expect that most of the file system and 
registry activities performed by a system are standard, 
repetitive tasks, including process start-up and 
shutdown, background activities, document auto-saves, 
and logging.  We perform a detailed analysis of 
repeating “activity bursts,” in [32] and, for space 
considerations, provide only a summary here. 

In our analysis in [32], we define an “activity burst” 
as the set of PS interactions occurring in one thread, 
where each interaction occurs no more than some small 
time separation apart.  Formally, we define an activity 
burst as a group of events {et | i ≤ t ≤ j} occurring 
within a single thread, where gap(et,et+1) < k, for all 
i ≤ t < j; gap(ei-1,ei) ≥ k; gap(ej,ej+1) ≥ k; gap(x,y) is the 
time between two interactions x and y; and k is the 
threshold gap between bursts.  We call an activity burst 
a “repeat” if it is identical to an earlier activity burst in 
every attribute of its interactions except for timestamps.  
Otherwise, we call it a “distinct” burst.  In our survey, 
we find that most activity bursts in a day are repeated 
bursts.  On desktops, we see 2K-5K distinct bursts out 
of 20K-40K total and, on servers, we see 3K-4K 
distinct bursts out of 40K-70K. 

This repetition of PS interaction sequences indicates 
that simple byte compression schemes, applied to the 
time-ordered event sequences, should detect and 
compress these repeating patterns. Since our analysis of 
activity burst repetition focuses on bursts within a 
single-thread, storing PS interactions in a system-wide 
timestamp sequence runs the risk of allowing 
concurrent I/O from multiple threads to interfere with 
the compressibility of each other’s patterns.  However, 

Table 2: The average per machine daily total and 
distinct interactions, entries, and processes 
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Svc. 1 70M 0.2% >0.1% 40-60 
Svc. 4 29M 3.3% 0.4% 30-70 
Svc. 2 22M 0.6% 0.1% 30 
Svc. 3 19M 1.1% 0.1% 30-70 
Home 17M 4.2% 0.6% 30-40 
Desktop 9M 5.4% 1.0% 20-100 
Lab 9M 1.5% 0.3% 17-40 
Average 25M 1.6% 0.2% 43 
Idle 965K 2.1% 0.5% 14 



 

 

because of the relatively large CPU time slice of 10-
15ms on the Windows OS, and the knowledge that most 
PS interactions are handled quickly by file caches, we 
still expect to gain significant compression of repeating 
patterns in a cross-thread trace of PS interactions. 

4.3 Log Format Details 
Based on the machines observed in our survey, our 

log format has two key facets to its logical design, 
shown in Figure 1.  First, given the repetition of 
accessed files, observed processes, etc., we normalize 
the attributes of our persistent state interactions into 
separate sections, essentially following a standard 
procedure of database normalization.3 We create one 
section for distinct PS interactions, which point to other 
sections containing distinct names, user context, 
process information, file data hashes and values.  The 
primary benefit of this normalization is a reduction of 
repetitive information.  In addition, we find that 
grouping attributes into their own sections improves the 
performance of byte compression algorithms as we 
compress these log sections later.  This separation also 

                                                           
3 Database normalization is a process of organizing data to 

eliminate redundancy and reduce potential for error (33).  

improves query efficiency by transforming queries that 
involve multiple attributes and expensive string 
comparisons into inexpensive comparisons of integer 
IDs as we scan through traces of PS interactions. 

Our second design choice in our logical log format is 
to represent the trace of events itself as two parallel, but 
connected, streams of data.  The first stream is an 
ordered list of events as they are captured by our kernel 
driver and reported to the user daemon.  The second 
stream contains timestamp information for groups of 
events.  This amortizes the size of timestamp 
information across multiple events, reducing the overall 
size of the log, as well as improving byte compression 
of the event stream by better exposing patterns in the 
sequences of events.  Both logical streams are stored in 
a single physical file to ease management of log 
archives.  

We created a file structure that contains a large 
logical address space split into 32 sections.  Each of the 
normalized attribute sections, the section of distinct PS 
interactions, as well as the ordered event stream and 
timestamp stream, are mapped to a section in our log 
file.  Each section is composed of individually 
compressed 64k pages.  Compressing in blocks, rather 
than using a streaming compression format allows 
random access within a data section. 

To simultaneously optimize our log for random 
access and compression, our physical log file layout 
consists of a three-layer addressing scheme of block 
table, block number, and block offset, shown in 
Figure 2.  This three-layer addressing scheme is 
important because we want to compress individual 
blocks and store the start and end offsets of each block 
in a table for fast lookup, and as a further optimization, 
compress these tables as well.  With 448 block tables, 
8192 blocks per table and a 64k uncompressed block 
size, this provides a maximum addressable storage size 
of 234 GB of uncompressed data within each log file.  
While we find this is many times more than a single 
machine-day of logs, this format gives us the flexibility 
of joining many days of logs into a single file for 
improved compression, and gives us flexibility if PS 
interaction workloads grow in the future. 

Figure 1: Logical design of our log format 

 

Figure 2: The physical layout of our log format 



 

 

Each log file starts with a 4k uncompressed header.  
The first 256 bytes consist of versioning and other 
miscellaneous information.  Next are 32 section 
descriptions, each 8 bytes long.  Each of the logical 
sections, described earlier, is laid out contiguously over 
our three-layer addressing scheme, aligned at block 
boundaries.  These section descriptors provide the block 
table and number of the start and end of each section.  
The rest of the 4k header is filled by 448 block table 
descriptors, that point to the start and end offsets of a 
compressed block table.  The block table, in turn, 
contains 8192 block entries, each pointing to the start 
and end offset of a compressed 64k block. 

The timestamp section is maintained as a 16 byte 
entry containing 6 bytes (48 bits) to represent a 6ms 
time resolution, 2 bytes to count missing events within 
that region, and two 4 byte offsets pointing to the first 
and last consecutive event with that time resolution.  
While almost all events are received by the daemon in 
time sorted order, we correctly handle timestamp 
information for any events that appear out of order. 
This can happen when a context switch occurs just after 
an I/O activity completes, but before the kernel driver 
reports it, but this delays the reporting of an event by a 
few scheduling quantums, and never affect the intra-
thread ordering of PS interactions. 

The user daemon first creates log files in-memory.  
As it receives raw events from the kernel driver, the 
daemon normalizes the events, replacing attribute 
values with indexes into the appropriate sections.  The 
normalized event is then compared to the table of 
distinct normalized events using an O(1) hash lookup, 
and added to the table if necessary.  Finally, the 
normalized event is added to the ordered event stream 
section, along with new timestamp information, if 
necessary.  Each of the log file’s data sections is 
append-only in memory.  When a log file is closed and 
flushed to disk the daemon writes each data section 
contiguously to disk while applying a standard 
compression algorithm to each 64K-byte block. 

4.4 Querying Logs 
When analyzing these log files, our tools tend to 

restrict their queries based on one or more attributes in 
the PS interaction record, based on a time-range of 
interest, or based on both.  To restrict a query by 
attribute, a query tool scans the appropriate section, 
looking for all values matching the given criteria.  From 
these values, the tool then generates a filter to apply 
against the section of distinct PS interactions, resulting 
in a set of unique IDs, one for each PS interaction 
matching the original attribute restriction.  For example, 
to return only PS interactions that access a particular 
file, a tool would first scan the string section to find the 
ID of the filename, and then scan the section of distinct 
PS interactions to find the IDs of all distinct PS 
interactions that accessed this filename ID.  If a tool is 

not interested in when or how many times an 
interaction occurred then it can stop here, without 
scanning the much larger event stream sections.  
Otherwise, the tool can scan through the ordered event 
list and timestamp stream to find the details of the 
occurrences of these PS interactions. 

To restrict a query by a time range, a query tool 
applies a binary search to the timestamp stream, 
searching for the start of the desired time range.  Once 
this timestamp is found, it can skip to the appropriate 
64K block of the ordered list of events, and begin 
scanning the ordered list from that point on, until the 
end of the time range. 

Common-case queries tend to extract sparse 
information from the extremely large data set of PS 
interactions.  Our log format enables efficient queries 
by allowing query tools to focus on the relevant subsets 
of data, and expanding their scope to larger and larger 
portions of the data as necessary.  For example, a query 
to find a list of all files modified during a day of 25M 
PS interactions requires only one pass over a distinct 
event table with 318Kentries to identify the string 
attribute id of modified files, and then scanning over the 
string attribute section with 100K entries to discover the 
full filenames of each modified file, avoiding ever 
scanning the full list of 25M events that occurred 
during the day. 

5. Experimental Evaluation 
In this section, we evaluate FDR and find that on 

average, our logs use only 0.7 bytes/PS interaction.  We 
find that query performance scales linearly with the 
number of events in a log. All of our queries can be 
processed in a single pass against an entire machine-day 
of logs in just 3.2 seconds.  FDR’s client-side 
performance overhead is less than 1%, and calculating 
the load on bottleneck resources in our central server 
indicates that a single machine could scale to collecting 
and analyzing all the PS interactions from 4300 
machines, keeping all logs for over 3 months. 

5.1 Log File Compression 
The efficiency of FDR’s log file format affects both 

the runtime load on clients’ memory and network, and 
the long-term storage costs of PS interaction logs. 

In our survey of 5000 machine-days of logs, 
described in Section 4.2, the average raw event size is 
140 bytes and daily per machine raw logs are 7GB, 
compressing to 700MB with GZIP. After converting 
our collected logs to our new format, we found, 
depending on workload, each PS interaction takes 
between 0.5 to 0.9 bytes of storage, and 0.7 bytes on 
average.  One machine-day of PS interactions can be 
stored in 6 to 71MB, 20MB on average, with a 
maximum observed machine-day size of 179MB. 
Table 3 shows the results across our environments. 



 

 

Table 3: Daily storage requirements for 
machines across environments 

Role Avg. 
Bytes/Event 

Avg. 
MB/day 

Max 
MB/day 

Svc. 1 0.91 71 179 
Svc. 4 0.78 57 103 
Svc. 2 0.71 19 22 
Svc. 3 0.66 10 53 
Home 0.58 17 51 
Desktop 0.80 13 21 
Lab 0.47 6 43 
Average 0.70 20 49 
Idle 0.85 0.76 0.88 

 

Figure 3: Compression Ratio variation with log file 
interval for each category of machines 

 
 
 

In addition to PS interaction workload, the efficiency 
of our log format’s compression is sensitive to the 
frequency at which the logs are uploaded to the central 
server.  More frequent uploads of logs reduces the 
latency between when an event occurs and when it can 
be analyzed.  However, uploading logs less frequently 
allows the logs to collect more repeated events and 
achieve better overall compression.   

Figure 3 shows how storage size varies with the event 
collection period. It shows that 80% of the compression 
efficiency is typically achieved with log files an hour 
long, and that improvement ceases after 1 week of data.  
Based on this result, our current deployments upload 
log files every 2 hours, and our central server 
reprocesses and merges them into 1-week long log files 
to save long-term storage space.  We envision that 
future versions of FDR will support latency-critical 
queries by moving them to the client-side agent. 

In Table 4, we look inside the log files to see how 
much space is taken up by each section of our log file 
format across our different environments.  We see that 
the ordered event stream and timestamps dominate, 
together taking 66-96% of the daily logs of non-idle 
machines.  The definitions of distinct file and registry 

interactions are the next major contributor to log file 
size, taking 1.3-22.2% of daily logs from non-idle 
machines.  Surprisingly, storing the values of every 
registry setting read or written (in the data section) 
takes only 1.9-7% of daily logs of non-idle machines. 

5.2 Log File Query Performance 
To evaluate FDR’s query performance, we performed 

three types of queries against our collected daily 
machine logs: a single-pass query, a two-pass query, 
and a more complicated multi-pass query. Our first 
query is a single-pass scan of distinct PS interactions, 
and generates a manifest that identifies the distinct set 
of registry settings and files used by every process 
during the day. This query does not require scanning 
the time-ordered event streams. Our second query is a 
two-pass scan that searches for stale binaries (discussed 
in Section 6.1.2).  This query scans through all PS 
interactions for files loaded for execution, and then 
scans the time-ordered event stream to see if the file has 
been modified on-disk since it was last loaded into 
memory, indicating that a stale copy exists in memory.  
Our third query looks for Extensibility Points 
(discussed in Section 6.2).  This is our most 
complicated query, making multiple scans of the 
distinct PS interactions and time-ordered event stream. 

Query performance was measured by evaluating our 
three queries against log files that ranged from 200k to 
200M PS interactions across all categories of machines. 
For this experiment we used a single 3.2GHz processor. 
We found that the average machine-day can be queried 
in only 3.2 to 19.2 seconds, depending on query 
complexity. Figure 4 plots the count of items in scanned 
sections vs. the time to complete each query, and 
indicates that performance scales linearly with log size. 

We found that our query performance was not I/O 
bound reading log files from disk, but rather CPU-
bound, on decompressing log files.  In fact, we found 
that query performance can be accurately predicted as a 
linear function of the number of items per section in the 

Table 4: Average section size as a percentage of 
total log file size for each machine role 

Role Event Time Reg. File String Data Other  

Svc 1 77% 19% 1% 0.3% 0.2% 1.9% 0.6% 

Svc 4 57% 17% 7% 13.9% 1.8% 3.2% 0.1% 

Svc 2 71% 15% 4% 1.4% 0.6% 7.9% 0.1% 

Svc 3 69% 15% 7% 1.8% 0.9% 2.7% 3.6% 

Home 46% 27% 9% 11% 4.0% 1.9% 1.1% 

Desktop 47% 19% 14% 8.2% 5.2% 5.7% 0.9% 

Lab 48% 31% 8% 3.5% 1.9% 7.0% 0.6% 

Average 53% 22% 9% 7.7% 2.8% 4.1% 1.4% 

Idle 44% 35% 7% 4.2% 4.8% 3.9% 1.5% 

 

1 week 30 sec. 5 min. 1 hr. 1 day 



 

 

 Figure 4: Time taken for each query compared 
with the number of attributes scanned 

log file scanned by the query and the Intel Pentium 
CPU cycle cost to process each item.  We measured the 
average per item CPU cycle cost to be 63k cycles for 
manifest queries, 27k for stale binary queries and 53k 
for extensibility point queries. Using Pearson’s product 
moment correlation to compare our predicted and 
measured query times, we find the correlation to be 
from 0.923 to 0.998, indicating that query performance 
is a linear function of the size of the log items scanned. 

5.3 Client-Side Overhead 
Here, we evaluate the tracing and compression 

overhead of our kernel driver and user-mode agent.  
Through our initial survey of PS interactions, we have 
tested and deployed our driver and our user-mode agent 
without our compression tools on over 324 Windows 
2000, Windows XP and Windows 2003 machines.  At 
MSN, pre-production testing of our data collector was 
done in a lab setup of 4 identical servers, 1 running our 
agent, each receiving a copy of the current live 
production load. Measurements were made of volume 
and latency of workload transactions along with 
memory, network, CPU, and I/O overhead. The 
performance impact of our driver and agent was 
minimal, with < 1% CPU overhead measured, and no 
measurable degradation in transaction rate or latency.  
To further confirm this, we conducted an experiment 
where we placed a high and varied PS interaction 
workload, consisting of simultaneously creating 
100,000 processes, scanning the entire registry and file 
system for non-existent entries, and making 10,000 
copies of a 1KB file, 35 copies of a 1GB file, and 
100,000 registry keys and values.  Even under this load, 
we found no measurable performance degradation. 

The next stage of our evaluation of agent performance 
focuses on the overhead of log format generation and 
compression.  Because we configure our agent to run on 
a low-priority thread, we have not observed a 
noticeable performance impact, but do want to 

understand its limits.  Therefore, we measure the CPU 
cost of processing a single PS interaction, and use this 
to evaluate the cost of processing our observed PS 
interaction rates. 

Our measured CPU cost to process a PS interaction is, 
on average, 64k CPU cycles.  This cost is constant with 
regard to the number of events already processed.  Our 
highest observed spike from our collected data is 2400 
interactions per second.  The average peak burst every 
day is 1800 interactions per second.  From this, we 
extrapolate that the highest 1 second CPU usage spike 
on a 3.2 GHz CPU is 64k x 2400 / 3.2 GHz = 4.8% 
CPU overhead.  Our average peak is 3.6% CPU 
overhead.  As a further test case, we created an 
artificially high PS interaction load by repeatedly 
accessing cached PS data, without pause, generating a 
rate of 15k interactions / second.  Compressing these 
interactions at this rate produces 30% CPU overhead.  
Our average rate of 100-800 PS interactions per second 
requires only 0.2 – 1.6% CPU overhead. 

5.4 Server Scalability 
The scalability of a single-machine FDR server 

collecting and analyzing PS interaction logs from many 
other machines is potentially limited by several factors:  
network bandwidth for receiving logs, disk I/O 
bandwidth for storing and reading logs, CPU cost for 
analyzing logs, and the disk capacity for storing logs.   

The single-machine configuration we consider is the 
one we use to collect logs from our agents today.  It is a 
dual 3.2GHz CPU, 2GB of RAM, a 1Gbps network 
connection, and a 24 hard drives (400GB 7200RPM 
SATA) in two 12 disk RAID 5 sets with 1 parity drive, 
providing 8TB of storage.  Assuming an average 20MB 
log file per machine-day, and using the performance of 
this system, we consider each of the potential 
scalability bottlenecks: 
Network bandwidth: A 1Gbps network link, with an 
achieved bandwidth of 100 Mbps, could support 54,000 
machines uploading per day.  
Disk I/O bandwidth: Our RAID storage system 
provides 80 Mbps random access bandwidth.  At this 
rate, we could support both writing logs and a single-
pass query at a rate of 43,200 machines per day. 
CPU for analysis: Following the analysis of query cost 
in Section 5.2, our dual processor 3.2GHz machine can 
support querying up to 54,000 machines per day, at a 
rate of 1.6 seconds per machine-day (3.2s per CPU). 

From this analysis, not counting long-term storage 
requirements, the limiting factor to scalability appears 
to be disk bandwidth, supporting the centralized 
collection of data from 43,200 machines.  Of course, 
this is not a sophisticated analysis, and there are likely 
to be issues and interactions which might further limit 
the scalability of a single-machine log collector.  For 
this reason, we apply a safety factor of 10 to our 
analysis, and claim that FDR can allow a single server 



 

 

to provide centralized collection and analysis of the 
complete PS interaction logs of up to 4,300 machines. 

Separately, analyzing the storage capacity of our 
single-machine server, we find that our 8TB RAID 
system can store a total of 400k 20MB machine-days.  
This would store the complete PS interaction logs of 
13,000 machine for 1 month, 4,000 machines for over 3 
months, or 1000 machines for 1 year. 

6. Using FDR for Systems Management 
In this section, we first review our use of early on-

demand tracing prototypes to attack various systems 
management problems, then present one new case study 
in detail.  Throughout, we describe how each technique 
is improved by one or more of FDR’s benefits: 
Completeness: FDR gathers a complete record of 
reads, writes, creations, etc. to the file system and 
registry, including details of the running process, user 
account and, when appropriate, data hashes, values, etc. 
Always-on: FDR’s always-on tracing means that users 
do not have to anticipate when they might need tracing 
information, do not need to reproduce problems to 
obtain traces, and enables analysis of long-term trends.   
Collection and Query Scalability: FDR’s scalability 
eases cross-machine analysis, such as PeerPressure 
[35], and allows administrators to centrally apply 
current PS analysis techniques rigorously and en masse 
to large computing and IT systems. 

6.1 Management Scenarios 
6.1.1 Troubleshooting Misconfigurations 

When a problem, like a misconfiguration, happens, 
troubleshooting is the task of determining what has 
gone wrong and fixing it.  The Strider Troubleshooter 
[36] used a precursor to FDR, called AppTracer, to 
capture on-demand traces of a program’s registry 
interactions. Once a user notices a program error, they 
turn on AppTracer and reproduce the problem.  Strider 
then asks the user when the program last worked, and 
uses this date to find a “known-good” Windows System 
Restore snapshot.  Strider then searches for registry 
settings used by the program that have changed since 
the known-good snapshot.  With some noise filtering 
and ranking heuristics, Strider produces a short list of 
settings likely responsible for the problem. 

PeerPressure [35] improves on Strider by using 
knowledge of the configuration settings on other 
machines, stored in a central database.  By assuming 
that most other machines are configured correctly, 
PeerPressure removes the need for users to identify the 
last known-good state. 

Both Strider and PeerPressure suffer from similar 
limitations due to their use of an on-demand 
AppTracer.  First, both tools require users to reproduce 
a problem so that the AppTracer can collect a trace—
hard to accomplish if an error appears only transiently 
or is otherwise hard to reproduce.  An always-on tracer 

will already have captured the trace at the time of the 
original problem.  Secondly, both tools require the user 
to guess which process is failing and should be traced 
and the user must know to iteratively expand the scope 
of the on-demand tracer to debug a cross-application 
problem, where one process fails because of an error in 
another (e.g., a word processor acting as an editor for 
an e-mail reader).  An always-on tracer will already 
have captured traces of all the processes on a system, 
obviating the user’s need to guess what part of the 
system to trace.  Finally, [35] states that updating 
PeerPressure’s central database of machine 
configurations as software and operating systems are 
upgraded is an open challenge.  With the scalable log 
collection provided by FDR, collecting descriptions of 
new configurations and software to insert into 
PeerPressure’s central database is trivial. 

Furthermore, FDR’s always-on tracer improves on 
Strider and PeerPressure’s troubleshooting in a 
fundamental way:  whereas these previous tools are 
only able to locate the misconfiguration, FDR’s history 
of PS interactions can also help place responsibility for 
a misconfiguration by determining when and how the 
misconfiguration occurred.  This can help identify the 
root cause of the issue and prevent future occurrences. 

6.1.2 Detecting Known Problems 
In addition to reactive trobuleshooting, we can use 

always-on tracing to proactively search for specific, 
known problems, such as common misconfigurations 
and old versions of software with known 
vulnerabilities.  One common problem, the “stale 
binary problem,” occurs when software upgrades fail to 
restart affected processes or reboot a machine after 
replacing its on-disk binaries.  The result is that the 
system is continuing to execute the old program in-
memory.  This is an especially serious problem when 
patching security vulnerabilities.  With complete, 
always-on tracing, we can periodically query for the 
last load-time of running programs and DLLs, and 
compare them to their last modification-time on disk, 
reporting inconsistencies to system administrators. 

6.1.3 Change Management: Impact Analysis 
Keeping systems up-to-date with the latest security 

and bug patches is critical for minimizing vulnerability 
to malicious adversaries, and loss of productivity to 
software bugs. At the same time, patches can 
destabilize existing applications. Today, unfortunately, 
even if a patch only updates a single shared library, the 
administrators do not know in advance which 
applications might be affected.  Consequently, patch 
deployment is often delayed as it undergoes a lengthy 
(and expensive) testing cycle, and computer systems 
remain vulnerable to “fixed” bugs and security holes. 

To help administrators focus their testing of software 
upgrades, we built the Update Impact Analyzer (UIA) 



 

 

[10] that cross-references the files and configuration 
settings being patched against always-on traces of PS 
interactions.  The UIA generates a list of programs that 
interact with any state that is going to be updated.  Any 
application not on this list can be placed at a lower-
priority on the testing regimen.  (An exception is when 
a given application interacts with an updated 
application via inter-process communication—in this 
case, both applications could still require thorough 
testing.  See Section 7.3 for a discussion of other 
possible candidates for always-on logging, including 
inter-process communication and locks.) 

A primary challenge faced by UIA, as reported in 
[10], is that patch testing and deployment is managed 
centrally by administrators, but application usage, for 
determining the dependencies between an application 
and various files and settings, is distributed across 
many computers.  FDR’s scalable tracing and collection 
of PS interactions enables administrators to easily 
gather the accurate information they need. 

6.1.4 Malware Mitigation 
The challenges to mitigating a malware infection, 

whether spyware, Trojan software, viruses or worms, 
are detecting its existence on a system and determining 
how the malware entered the system.  With always-on 
PS interaction traces, identifying running malware is a 
matter of querying for the hashes of loaded executables 
and shared libraries.  Any well-known malware 
signatures can be flagged, and unrecognized hashes can 
be reported to an administrator to determine whether or 
not they are malicious. Following the methodology of 
[17], always-on tracing of PS interactions can also be 
analyzed to discover how malware entered a system. 

To further backtrack the “route of entry” of malware, 
the HoneyMonkey (HM) project analyzes the PS 
interaction traces collected with FDR of web browsers 
as they visit many websites [37], Using a farm of 
virtual machines running scripted web browsers, HM 
crawls the Internet.  If HM notices a web browser 
writing to the file system outside of its browser sandbox 
(e.g., writes other than temporary cache files), then it 
can be assured that a malicious website is exploiting a 
browser vulnerability to install malware.  SpyCrawler, a 
concurrent research project, used a similar system to 
detect malicious websites [23]. Without FDR’s detailed 
trace information stating which processes where 
making the changes, their browser monitoring system 
had a high false-positive rate for detecting exploits, 
reduced by using antivirus tools to check for known 
malware. New malware would not be detected. 

FDR’s log collection can be modified in several ways 
to harden it against malicious adversaries.  Many 
malicious software programs, such as spyware bundled 
with otherwise legitimate downloaded software, must 
first be written to disk before executing.  We can 
prevent these programs from tampering with FDR’s 

logs after-the-fact by adding tamper-evident hash-
chaining signatures [18] to our logs or by moving our 
user agent to a hypervisor or VM outside the 
accessibility of the monitored system.  Malicious 
software that enters a system directly (e.g., via a remote 
buffer overflow exploit) could corrupt our kernel driver 
before writing to disk.  To avoid this attack, the file 
system itself would have to be moved to a separate VM 
or hypervisor.  Detecting malware that never interacts 
with the disk is outside of FDR’s scope.       

6.2 Case Study: Exploiting SW Extensibility 
Once spyware or other malware first infects a system, 

they often load themselves as a plug-in or extension to 
the operating system, daemon, or frequently used 
applications such as a web browser, ensuring their 
continued execution on the host system.  One method to 
defend against such malware is to monitor the settings 
or extensibility points (EPs) which control software 
extensions, alerting the user to changes that might 
signify a malware installation. 

By comparing snapshots of the Windows Registry 
before and after 120 different malware installations, 
GateKeeper [38] found 34 EPs that should be 
monitored for signs of malicious activity.  Here, we 
show how we can take advantage of always-on tracing 
to detect potential malware-exploitable settings, even if 
they are currently used only by benign software 
extensions.  Further, we show how PS interaction traces 
can help rank the importance of these EPs, based on the 
observed privileges and lifetimes of the processes that 
use these extensions. 

6.2.1 Detecting Extensibility Points 
To discover EPs we monitor application PS 

interactions for files being loaded for execution4, and 
check for a previous PS interaction which contained the 
executable’s filename.  If we find such a setting, we 
assume that it directly triggered the executable file load 
and mark the setting as a direct extensibility point.  In 
some cases, if we continue to search backward through 
the history of PS interactions, we will also find indirect 
extensibility points, where another configuration setting 
triggers the process to read the direct EP.  For example, 
an indirect EP may reference an ActiveX class 
identifier that points to a COM5 object’s settings that 
contain the executable file name. 

Many EPs have a similar name prefix, indicating that 
plug-ins using it follow a standard design pattern. We 
define a common EP name prefix as an extensibility 
point class, and the fully named EP as an extensibility 

                                                           
4 Our PS interaction tracing records the loading of a file for 

execution as a distinct activity from simply reading a file 
into memory. 

5 `Component Object Model’ is a Microsoft standard for 
reusing and sharing software components across 
applications. 



 

 

point instance. We identify new EP classes by manually 
examining newly discovered EP instances that do not 
match an existing EP class. 

To survey how significant a vulnerability EPs are, we 
processed 912 machine-days of traces from 53 home, 
desktop, and server machines. From these machines, we 
discovered 364 EP classes and 7227 EP instances. 6526 
EP instances were direct and 701 were indirect. While 
130 EP classes had only 1 instance, 28 had more than 
20 unique instances.  The dominant EP class consists of 
COM objects, and accounts for 40% of all EP instances. 
The next two largest EP classes are associated with the 
Windows desktop environment, and web browser plug-
ins. Other popular EP classes are related to an Office 
productivity suite and a development environment, both 
of which support rich extensibility features.  Overall, 
we found that 67% of the software programs observed 
in our traces accessed an EP instance, and those that did 
used 7 on average.  Explorer.exe, responsible for 
the Windows desktop, used the largest number of EP 
classes (133 EP Classes), followed by a web browser 
(105 EP Classes) and an email client (73 EP Classes). 

Comparing our list of EP classes with the 34 
discovered by Gatekeeper, we found that our procedure 
detected all except 6 EPs used by programs not 
observed in our traces. 

6.2.2 Criticality of Extensibility Points 
The criticality of an EP can be estimated using 1) the 

privilege-level of the loading process, where higher-
privilege processes such as operating system or 
administrator-level processes, are more critical; and 
2) the lifetime of the loading process, where longer 
running applications provide higher availability for a 
malicious extension.  We observed that on average a 
machine will have at least a third of EP instances 
(spanning 210 EP classes) loaded by processes that are 
running for 95% of the machine’s uptime.  We also 
observed that one third of all EP instances were used by 
processes with elevated privileges. This indicates that 
many EP instances are critical security hazards. 

6.2.3 Lessons and Suggestions 
This case study shows how FDR’s traces of PS 

interactions can be analyzed to connect the security-
sensitive behavior of loading dynamic code modules 
back to the critical configuration settings which control 
its behavior, and furthermore rank the criticality of each 
setting.  Since this analysis requires that an EP be in 
use, whether by malware or by a benign software 
extension, FDR’s scalability and always-on tracing is 
critical to analyzing a wide-breadth of computer usage 
and detecting as many EPs as possible. 

Once we have discovered these EPs, we can continue 
to analyze their use and suggest ways to mitigate the 
threat from EP exposure.  In particular, we observed 
that 44% of EP instances were not modified during our 

monitoring period.  This suggests that system 
administrators could restrict write permissions on these 
EPs, or that application designers could transform them 
into static data instead of a configurable setting.  Also, 
70% of all EP instances were used by only single 
process: an opportunity for administrators or 
application designers to lockdown these EPs to prevent 
their misuse.  In all, we found that only 19% of EP 
instances were both modified and shared by multiple 
applications, and thus not easy candidates for removal 
or lockdown.  For these remaining EPs, we suggest 
monitoring for suspicious activities and, for critical 
EPs, we suggest that administrators and developers 
audit their usefulness vs. their potential to be misused. 

7. Discussion 
In this section, we discuss the implications of our 

work on systems management techniques, as well as 
limitations and opportunities for future work. 

7.1 White-box and Black-Box Knowledge  
Software installers use manifests to track installed 

software and their required dependencies, anti-virus 
monitors use signatures of known malware, and 
configuration error checkers use rules to detect known 
signs of misconfigurations.  All of these automated or 
semi-automated tools use explicit prior knowledge to 
focus on a narrow set of state and look either for known 
problematic state or checking for known good state.  
This approach is fragile in its reliance on the 
correctness and completeness of pre-determined 
information.  This information can become stale over 
time, might not account for all software and cannot 
anticipate all failures.  Keeping this information 
complete and up-to-date is hard because of the long-tail 
of third-party software, in-house applications, and the 
continuous development of new malware.  With FDR-
collected traces, a black-box approach to systems 
management can help by augmenting predetermined 
information with observed truth about system behavior. 

For example, today’s software installers commonly 
fail to account for program-specific PS created post-
installation, such as log files and post-install plug-ins, 
as well as interruptions or failures during installation or 
removal. These mistakes accumulate and lead to system 
problems.6  Common advice is to occasionally reinstall 
your computer to clean up such corruptions.  Black-box 
tracing helps avoid this by providing installers with 
complete, ground-truth about installed files. 

To test this approach, we compared a black-box 
accounting of files created during installations of 3 
popular applications to the files accounted for in their 
explicit manifests.  By collecting FDR traces while 
installing the application, using it, and then uninstalling 

                                                           
6 Examples of failed installations causing such problems can 

be found at http://support.microsoft.com/ via the article IDs: 
898582, 816598, 239291, and 810932. 



 

 

it, we measured the file and registry entries leaked on 
the system.  The first application, Microsoft Office 
2003, leaked no files, but did leave 1490 registry 
entries, and an additional 129 registry entries for each 
user that ran Office while it was installed.  The second 
application, the game ‘Doom3’, leaked 9 files and 418 
registry entries. Finally, the enterprise database 
Microsoft SQL Server leaked 57 files and 6 registry 
entries.  These point examples validate our belief that 
predetermined information can be unreliable and that 
black-box analysis of FDR traces provides a more 
complete accounting of system behavior.  
Predetermined information does have its uses, however.  
For example, a priori knowledge can express our 
expectations of software behavior [27] and higher-level 
semantics than can be provided by a black-box analysis. 

7.2 State Semantics 
One of the limitations of a black-box tracing approach 

is that, while it can provide complete, low-level ground 
truth, it cannot provide any semantic guidance about the 
meaning of the observed activities.  For example, FDR 
cannot tell whether the Windows Registry editor 
program (RegEdit) is reading a registry entry as a 
configuration setting to affect its own behavior, or as 
mere data for display.  Similarly, FDR cannot tell 
whether any given file on disk is a temporary file, a 
user document, or a program binary (unless explicitly 
loaded for execution).  Investigating how to best 
augment low-level tracing with heuristics and semantic, 
white-box knowledge is an important topic for 
continuing to improve systems management techniques.  
One option, discussed below, is to selectively log 
application-level events and information to expose the 
semantic context of lower-level PS interactions. 

7.3 Logging higher-level events 
The question we pose here, as a challenge for future 

work, is what classes of events, in addition to PS 
interactions, should be logged to help operators and 
administrators maintain reliable and secure systems? 

One category, mentioned above, is the semantic 
context of PS interactions, such as the context we 
receive when software binaries must be explicitly 
loaded for execution.  Perhaps we can receive similar 
context and benefit from knowing that the Windows 
Registry editor is reading configuration settings as data, 
and not to affect its own behavior.  Similarly, explicitly 
recording whether a newly created file is a user 
document, temporary program state or a system file 
might help administrators improve backup strategies 
and debug problems. 

A second category of higher-level events are those 
that help to track the provenance of data.  While there 
has been research on how to explicitly track the 
providence of data, we might be able to gain some of 
the same benefit from simply logging a “breadcrumb” 

trail as new files are created.  Even just integrating web 
browsing history with PS interactions would allow us to 
track the provenance of downloaded files and locate the 
source of malware installed via a browser exploit. 

A third category of events that might benefit from 
FDR-style always-on logging are interactions and 
communications between processes, such as network 
connections and inter-process communication.  While 
this category does not provide extra semantic 
information, these interactions are important for 
detecting software dependencies, fault propagation 
paths, and potential exposure to malware. 

Altogether, extending always-on tracing to include 
more context and events could enable a gray-box 
approach to systems management, combining the 
benefits of black-box ground-truth and white-box 
semantic knowledge [2]. 

7.4 Using Traces to (Re) Design Programs 
In this paper, we have focused on analyzing PS 

interactions to benefit systems administrators and 
operators as they attempt to understand the state of the 
systems they manage.  However, these PS interactions 
might be just as useful, though on a different time-
scale, for developers interested in improving the 
applications and systems they have built.  One obvious 
benefit is when PS interactions expose an otherwise 
difficult-to-track software bug.  We already discussed 
an analysis to detect “stale binaries” after software 
installations (a bug in the installer).  Tracing PS 
interactions has uncovered other bugs in several server 
management programs as well.  Other benefits to 
application designers can come from specific analyses 
of a system’s reliability and security, such as our 
analysis of extensibility points in Section 6.2. 

The bottom-line is that always-on tracing of PS 
interactions improves our understanding of a system’s 
dynamic behavior in production environments, and 
understanding this behavior is the first step towards 
improving it. 

8. Conclusion 
We built FDR, an efficient and scalable system for 

tracing and collecting a complete, always-on audit of 
how all running processes read, write, and perform 
other actions on a system’s persistent state, and for 
scalably analyzing the enormous volume of resultant 
data.  Thus, FDR addresses significant limitations faced 
by prior work in using PS interactions to solve systems 
management problems.  We achieved our goal by 
designing a domain-specific log format that exploits 
key aspects of common-case queries of persistent state 
interaction workload: the relatively small number of 
daily distinct interactions, the burstiness of interaction 
occurrences, and repeated sequences of interactions. 

For the last 20 years, systems management has been 
more of a black-art than a science or engineering 



 

 

discipline because we had to assume that we did not 
know what was really happening on our computer 
systems.  Now, with FDR’s always-on tracing, scalable 
data collection and analysis, we believe that systems 
management in the next 20 years can assume that we do 
know and can analyze what is happening on every 
machine.  We believe that this is a key step to removing 
the “black art” from systems management. 
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