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Abstract Deep hierarchical structure with multiple layers of hiddenspace in hu-
man speech is intrinsically connected to its dynamic characteristics manifested in
all levels of speech production and perception. The desire and an attempt to cap-
italize on a (superficial) understanding of this deep speechstructure helped ignite
the recent surge of interest in the deep learning approach tospeech recognition and
related applications [28, 29, 51], and a more thorough understanding of the deep
structure of speech dynamics and the related computationalrepresentations is ex-
pected to further advance the research progress in speech technology. In this chap-
ter, we first survey a series of studies on representing speech in a hidden space
using dynamic systems and recurrent neural networks, emphasizing different ways
of learning the model parameters and subsequently the hidden feature representa-
tions of time-varying speech data. We analyze and summarizethis rich set of deep,
dynamic speech models into two major categories: 1) top-down, generative models
adopting localist representations of speech classes and features in the hidden space;
and 2) bottom-up, discriminative models adopting distributed representations. With
detailed examinations of and comparisons between these twotypes of models, we
focus on the localist versus distributed representations as their respective hallmarks
and defining characteristics. Future directions are discussed and analyzed of ways
to leverage the strengths of both the localist and distributed representations while
overcoming their respective weaknesses, beyond blind integration of the two by us-
ing the generative model to pre-train the discriminative one as a popular method of
training deep neural networks.
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1 Introduction

Before around 2010-2011, speech recognition technology had been dominated by
a “shallow” architecture — hidden Markov models (HMMs) witheach state char-
acterized by a Gaussian mixture model (GMM). While significant technological
success had been achieved using complex and carefully engineered variants of
GMM-HMMs and acoustic features suitable for them, researchers long before that
time had clearly realized that the next generation of speechrecognition technol-
ogy would require solutions to many new technical challenges under diversified de-
ployment environments and that overcoming these challenges would likely require
“deep” architectures that can at least functionally emulate the human speech system
known to have dynamic and hierarchical structure in both production and percep-
tion [29,36,41,96]. An attempt to incorporate a primitive level of understanding of
this deep speech structure, initiated at the 2009 NIPS Workshop on Deep Learning
for Speech Recognition and Related Applications [29], has helped create an impetus
in the speech recognition community to pursue a deep representation learning ap-
proach based on the deep neural network (DNN) architecture,which was pioneered
by the machine learning community only a few years earlier [52, 53] but rapidly
evolved into the new state of the art in speech recognition with industry-wide adop-
tion [16, 28, 29, 51, 59, 78, 93, 94, 108]. In the mean time, it has been recognized
that the DNN approach (with its interface to the HMM) has not modeled speech
dynamics properly. The deep and temporally recurrent neural network (RNN) has
been developed to overcome this problem [13, 49], where the internal representa-
tion of dynamic speech features is discriminatively formedby feeding the low-level
acoustic features into the hidden layer together with the recurrent hidden features
from the past history. Even without stacking RNNs one on top of another as carried
out in [49] or feeding DNN features as explored in [13], an RNNitself is a deep
model since temporal unfolding of the RNN creates as many layers in the network
as the length of the input speech utterance.

On the other hand, before the recent rise of deep learning forspeech modeling
and recognition, many earlier attempts had been made to develop computational ar-
chitectures that are “deeper” than the conventional GMM-HMM architecture. One
prominent class of such models are hidden dynamic models where the internal rep-
resentation of dynamic speech features is generated probabilistically from the higher
levels in the overall deep speech model hierarchy [12,19,23,37,65,86,92,102]. De-
spite separate developments of the RNNs and of the hidden dynamic models, they
share the same motivation — more realistically representing the dynamic structure
of speech. Nevertheless, the different ways in which these two types of deep dy-
namic models are constructed endow them with distinct pros and cons. Investiga-
tions of the contrast between the two model types and the similarity to each other
will yield insights into the strategies for developing new types of deep dynamic
models with the hidden representations of speech features superior to the existing
RNNs and hidden dynamic models. This forms the main motivation of this chapter.

In this chapter, we will focus on the most prominent contrastbetween the above
two types of models in terms of the opposing localist and distributed representations
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adopted by the hidden layers in the models. In the distributed representation adopted
by the RNNs, we cannot interpret the meaning of activity on a single unit or neu-
ron in isolation. Rather, the meaning of the activity on any particular unit depends
on the activities of other units. Using distributed representations, multiple concepts
(i.e., phonological/linguistic symbols) can be represented at the same time on the
same set of neuronal units by superimposing their patterns together. The strengths
of distributed representations used by the RNN include robustness, representational
and mapping efficiency, and the embedding of symbols into continuous-valued vec-
tor spaces which enable the use of powerful gradient-based learning methods. The
localist representation adopted by the generative hidden dynamic models has very
different properties. It offers very different advantages— easy to interpret, under-
stand, diagnose, and easy to work with. Section 6 of this chapter will compare the
two types of models, in terms of the localist versus distributed representations as
well as other attributes, with respect to their strengths and weaknesses in detail.
Based on such comparisons, Section 7 will discuss how to exploit the advantages
of both types of models and of the representations they have adopted while circum-
venting their weaknesses. Before that and in Sections 2 to 5,we will first provide
a detailed review on major deep dynamic models in the literature relevant to our
topic, focusing on the algorithms for learning model parameters from data and for
computing the representations in the hidden spaces.

2 Generative Deep-Structured Speech Dynamics: Model
Formulation

2.1 Generative Learning in Speech Recognition

In speech recognition, the most common generative learningapproach is based on
the GMM-HMM; e.g., [9,30,58,88]. A GMM-HMM is a model that describes two
dependent random processes, an observable processx1:T and a hidden Markov pro-
cessy1:T . The observationxt is assumed to be “generated” by the hidden stateyt

according to a Gaussian mixture distribution. The GMM-HMM can be parameter-
ized byλ = (π ,A,B); π is a vector of state prior probabilities;A= (ai, j) is a state
transition probability matrix; andB = {b1, . . . ,bn} is a set whereb j represents the
Gaussian mixture model of statej. The state is typically associated with a sub-
segment of a phone in speech. One important innovation in speech recognition is
the introduction of context-dependent states (e.g. [32, 88]), motivated by the desire
to reduce output variability associated with each state, a common strategy for “de-
tailed” generative modeling. A consequence of using context dependency is a vast
expansion of the HMM state space, which, fortunately, can becontrolled by regu-
larization methods such as state tying.

The introduction of the HMM and the related statistical methods to speech recog-
nition in mid 1970s [2, 57] can be regarded the most significant paradigm shift in
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the field, as discussed in [3]. One major reason for this earlysuccess was due to the
highly efficient maximum likelihood learning method invented about ten years ear-
lier [5]. This MLE method, often called the Baum-Welch algorithm, had been the
principal way of training the HMM-based speech recognitionsystems until 2002,
and is still one major step (among many) in training these systems nowadays. It is
interesting to note that the Baum-Welch algorithm serves asone major motivating
example for the later development of the more general Expectation-Maximization
(EM) algorithm [17].

The goal of maximum likelihood learning is to minimize an empirical risk with
respect to the joint likelihood loss (extended to sequential data),i.e.,

Remp( f ) =−∑
i

ln p(x(i),y(i);π ,A,B) (1)

wherex represents acoustic data, usually in form of a sequence feature vectors ex-
tracted at frame-level;y represents a sequence of linguistic units. It is crucial to ap-
ply certain type of regularization to improve generalization. This leads to a practical
training objective referred to asaccuracy-regularizationwhich takes the following
general form:

J( f ) = Remp( f )+ γC( f ) (2)

whereC( f ) is a regularizer that measures “complexity” off , andγ is a tradeoff
parameter. In large-vocabulary speech recognition systems, it is normally the case
that word-level labels are provided, while state-level labels are latent. Moreover, in
training HMM-based speech recognition systems, parametertying is often used as a
type of regularization [55]. For example, similar acousticstates of the triphones can
share the same Gaussian mixture model. In this case, theC( f ) term is expressed by

C( f ) = ∏
(m,n)∈T

δ (bm = bn) (3)

whereT represents a set of tied state pairs.
The use of the generative model of HMMs, including the most popular Gaussian-

mixture HMM, for representing the (piece-wise stationary)dynamic speech pattern
and the use of MLE for training the tied HMM parameters constitutes one of the
most prominent and successful examples of generative learning in speech recogni-
tion. This success was firmly established by the speech recognition community, and
has been widely spread to the machine learning and related communities; in fact,
the HMM has become a standard tool not only in speech recognition but also in ma-
chine learning and their related fields such as bioinformatics and natural language
processing. For many machine learning as well as speech recognition researchers,
the success of the HMM in speech recognition is a bit surprising due to the well-
known weaknesses of the HMM.

Another clear success of the generative learning paradigm in speech recognition
is the use of the GMM-HMM as prior “knowledge” within the Bayesian frame-
work for environment-robust speech recognition. The main idea is as follows. When
the speech signal, to be recognized, is mixed with noise or another non-intended
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speaker, the observation is a combination of the signal of interest and interference
of no interest, both unknown. Without prior information, the recovery of the speech
of interest and its recognition would be ill defined and subject to gross errors. Ex-
ploiting generative models of GMM-HMMs, or often simpler GMMs, as Bayesian
priors for “clean” speech overcomes the ill-posed problem.Further, the genera-
tive approach allows probabilistic construction of the model for the relationship
between the noisy speech observation, clean speech, and interference, which is typ-
ically nonlinear when the log-domain features are used. A set of generative learn-
ing approaches in speech recognition following this philosophy are variably called
“parallel model combination” [45], vector Taylor series (VTS) method [1, 26], and
Algonquin [44]. Notably, the comprehensive application ofsuch a generative learn-
ing paradigm for single-channel multitalker speech recognition is reported and re-
viewed in [89], where the authors apply successfully a number of well established
ML methods including loopy belief propagation and structured mean-field approx-
imation. Using this generative learning scheme, speech recognition accuracy with
loud interfering speakers is shown to exceed human performance.

Despite some success of GMM-HMMs in speech recognition, their weaknesses,
such as the conditional independence assumption, have beenwell known for speech
recognition applications [3,4]. Since the early 1990’s, speech recognition researchers
have begun the development of statistical models that capture the dynamic proper-
ties of speech in the temporal dimension more faithfully than HMMs. This class
of beyond-HMM models have been variably called the stochastic segment model
[81, 82], trended or nonstationary-state HMM [18, 24], trajectory segmental model
[54, 81], trajectory HMMs [63, 111, 112], stochastic trajectory models [47], hid-
den dynamic models [12, 19, 23, 37, 65, 86, 92, 102], buried Markov models [8],
structured speech model [40], and the hidden trajectory model [39] depending on
different “prior knowledge” applied to the temporal structure of speech and on var-
ious simplifying assumptions to facilitate the model implementation. Common to
all these beyond-HMM models is some temporal trajectory structure built into the
models, hence trajectory models. Based on the nature of sucha structure, we can
classify these models into two main categories. In the first category are the models
focusing on a temporal correlation structure at the “surface” acoustic level. The sec-
ond category consists of hidden dynamics, where the underlying speech production
mechanisms are exploited as the Bayesian prior to representthe temporal structure
that accounts for the observed speech pattern. When the mapping from the hidden
dynamic layer to the observation layer is limited to linear (and deterministic), then
the generative hidden dynamic models in the second categoryreduces to the first
category.

The temporal span of the generative trajectory models in both categories above
is controlled by a sequence of linguistic labels, which segment the full sentence into
multiple regions from left to right; hence segment models.

In a general form, the trajectory/segment models with hidden dynamics make
use of the switching state space formulation. They use temporal recursion to define
the hidden dynamics,z(k), which may correspond to articulatory movement during
human speech production. Each discrete region or segment,s, of such dynamics is
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characterized by thes-dependent parameter setΛΛΛ s, with the “state noise” denoted by
ws(k). The memory-less nonlinear mapping function is exploited to link the hidden
dynamic vectorz(k) to the observed acoustic feature vectoro(k), with the “obser-
vation noise” denoted byvs(k), and parameterized also by segment-dependent pa-
rameters. The combined “state equation” (4) and “observation equation” (5) below
form a general switching nonlinear dynamic system model:

z(k+1) = gk[z(k),ΛΛΛ s]+ws(k) (4)

o(k′) = hk′ [z(k
′),ΩΩΩ s′ ]+ vs′(k

′). (5)

where subscriptsk andk′ indicate that the functionsg[.] andh[.] are time varying and
may be asynchronous with each other.sor s′ denotes the dynamic region correlated
with phonetic categories.

The model expressed by (4) and (5) is not only dynamic, but also deep since
there is a hierarchy of information flow from discrete linguistic symbolss to the
hidden dynamic vectorz(k) and then to the observed vectorso(k). We call this
type of model a generative deep-structured dynamic model. Being “generative” here
means that the model provides a causal relationship from the(top) linguistic labels to
intermediate and then to the (bottom) observed acoustic variables. This distinguishes
from the “discriminative” deep-structured models where the information flow starts
from the (bottom) observed acoustic variables to the intermediate representations
and then to the (top) linguistic labels.

There have been several studies on switching nonlinear state space models for
speech recognition, both theoretical [21, 37] and experimental [12, 61, 65, 86]. The
specific forms of the functions ofgk[z(k),ΛΛΛ s] andhk′ [z(k′),ΩΩΩ s′ ] and their parame-
terization are determined by prior knowledge based on the current understanding of
the nature of the temporal dimension in speech. In particular, state equation (4) takes
into account the temporal elasticity in spontaneous speechand its correlation with
the “spatial” properties in hidden speech dynamics such as articulatory positions or
vocal tract resonance frequencies; see [23] for a comprehensive review of this body
of work.

When nonlinear functions ofgk[z(k),ΛΛΛ s] andhk′ [z(k′),ΩΩΩ s′ ] in (4) and (5) are
reduced to linear functions (and when synchrony between thetwo equations are
eliminated), the switching nonlinear dynamic system modelis reduced to its lin-
ear counterpart, the switching linear dynamic system. It can be viewed as a hybrid
of standard HMMs and linear dynamical systems, with a general mathematical de-
scription of

z(k+1) = Asz(k)+Bsws(k) (6)

o(k) = Csz(k)+ vs(k). (7)

There has also been an interesting set of work on the switching linear dynamic
system applied to speech recognition. The early set of studies have been carefully
reviewed in [81] for generative speech modeling and for its speech recognition ap-
plications. The studies reported in [42, 72] further applied this system model to
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noise-robust speech recognition and explored several approximate inference tech-
niques, overcoming intractability in decoding and parameter learning. The study
reported in [91] applied another approximate inference technique, a special type
of Gibbs sampling commonly used in machine learning, to an speech recognition
problem.

During the development of trajectory/segment models for speech recognition, a
number of machine learning techniques invented originallyin non-speech recogni-
tion communities, e.g. variational learning [61], pseudo-Bayesian [42, 65], Kalman
filtering [81], extended Kalman filtering [23,37,101], Gibbs sampling [91], orthog-
onal polynomial regression [24], etc., have been usefully applied with modifications
and improvement to suit the speech-specific properties and speech recognition appli-
cations. However, the success has mostly been limited to small-scale tasks. We can
identify four main sources of difficulty (as well as new opportunities) in successful
applications of trajectory/segment models to large-scalespeech recognition. First,
scientific knowledge on the precise nature of the underlyingarticulatory speech dy-
namics and its deeper articulatory control mechanisms is far from complete. Cou-
pled with the need for efficient computation in training and decoding for speech
recognition applications, such knowledge has been forced to be again simplified, re-
ducing the modeling power and precision further. Second, most of the work in this
area has been placed within the generative learning setting, having a goal of pro-
viding parsimonious accounts (with small parameter sets) for speech variations due
to contextual factors and co-articulation. In contrast, the recent joint development
of deep learning by both ML and speech recognition communities, which we will
review in Section 6, combines generative and discriminative learning paradigms and
makes use of massive instead of parsimonious parameters. There is a huge potential
for synergy of research here. Third, although structural MLlearning of switching
dynamic systems via Bayesian nonparametrics has been maturing and producing
successful applications in a number of ML and signal processing tasks (e.g. the tu-
torial paper [43]), it has not entered mainstream speech recognition; only isolated
studies have been reported on using Bayesian nonparametrics for modeling aspects
of speech dynamics [83] and for language modeling [14]. Finally, most of the tra-
jectory/segment models developed by the speech recognition community have fo-
cused on only isolated aspects of speech dynamics rooted in deep human production
mechanisms, and have been constructed using relatively simple and largely standard
forms of dynamic systems.

In the remainder of this section, we will review two special cases of the general
dynamic models of speech represented by (4) to (7) with hidden structure. These
models are considered to be “deep”, in that the hidden structure is modeled as an
intermediate information processing stage connecting thelinguistic information to
the observable acoustics.
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2.2 A Hidden Dynamic Model with Nonlinear Observation
Equation

Let us consider in detail the hidden dynamic model (HDM) using the extended
Kalman filter [102]. The hidden dynamics is chosen to be the vocal-tract-resonances
(VTRs), which are closely related to the smooth and target-oriented movement of
the articulators. The first component of the HDM, also calledthe state equation,
is a target-directed, continuously-valued (hidden) Markov process that is used to
describe the hidden VTR dynamics according to:

z(k+1) =ΦΦΦsz(k)+ (Im−ΦΦΦs)Ts+w(k) (8)

wherez(k) is them× 1 VTR state vector,Ts is them× 1 phone target vector pa-
rameter andΦΦΦs is them×m diagonal “time-constant” matrix parameter associated
with the phone regimes. The phone regime is used to describe the segment of speech
that is attributed to the phone identified by the model pair (ΦΦΦs,Ts). The process noise
w(k) is an i.i.d, zero-mean, Gaussian process with covarianceQ. The target-directed
nature of the process is evident by noting thatz(k) → Ts ask → ∞ independent of
the initial value of the state.

The second component of the HDM is the observation equation used to describe
the static mapping from the lower dimensional hidden VTR state vector (typically
m= 3 for the first three VTR resonances) to the higher dimensional observable
acoustic feature vector. The general form of this mapping adopted in the current
study assumes a static, multivariate nonlinear mapping function as follows:

o(k) = hr(z(k))+ v(k). (9)

where then× 1 acoustic observationo(k) is the set of acoustic feature vectors
for framek (the usual Mel-frequency cepstral co-efficient (MFCC) features with
n= 12), andhr(z(k)) is then×m static, non-linear mapping function on the state
vectorz(k) associated with the manner of articulationr. The manner of articulation
describes how the phone is articulated to produce the acoustic observations arising
from the speech production process and will usually be different for the different
broad phonetic classes (e.g. vowels, voiced stops, etc.) . The observation noisev(k)
is an i.i.d, zero-mean, Gaussian process with covarianceR. The multivariate map-
ping functionhr(z(k)) is implemented by am-J-n feedforward multi-layer percep-
tron (MLP) with J hidden nodes, a linear activation function on the output layer,
and the antisymmetric hyperbolic tangent function on the hidden layer. There is a
unique MLP network for each distinctr.

The switching state behaviour of this model is represented by anM-state discrete-
time random sequence, wheres≡ s(k) ∈ [1,2. . . ,M] is a random variable that takes
on one of theM possible “phone” regimes (or states) at timek. An additionalR-state
discrete-time random sequence also exists wherer ≡ r(k) ∈ [1,2, . . .R] is a random
variable that takes on one of theRpossible manner of articulation states at timek. In
practice both sequences are unknown and need to be estimated, both when training
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the model (i.e. estimating the parameters) and testing (i.e. using the model to rescore
or decode an unknown observation sequence).

An important property of this model is the continuity of the hidden state variable
z(k) across phone regimes. That is,z(k) at the start of segmentl + 1 is set to the
value computed at the end of segmentl. This provides a long-span continuity con-
straint across adjacent phone regimes that structurally models the inherent context
dependencies and coarticulatory effects [35].

An important concern is the specific modelling of the state dynamic and observa-
tion process. The target-directed state dynamic is reasonable but requires knowledge
of the per-phone target and time-constant values. If these are not known these have
to be jointly estimated. The non-linear mapping from the state vector to observa-
tion vector is more problematic as the MLP weights also have to be estimated and
this creates a system with too many degrees of freedom. Possible solutions to do
this have included: using prior VTR measurement data to independently train the
MLP [102], using a more simple linear mapping [61], or restricting to observation
features like LPC cepstra which permit an analytical mapping with the VTR res-
onances [31]. Finally we also assume that the phone sequenceor segmentation of
model regimes,s(k), is known in advance, which, in practice, requires trainingon
phonetically transcribed speech corpora.

2.3 A Linear Hidden Dynamic Model Amenable to Variational EM
Training

An alternative approach to implementing the hidden dynamicmodel is to reformu-
late it in the context of a segmental switching state space model and to apply the
variational EM algorithm to learn the model parameters. Thestate equation and
observation equation in this reformulated model, as described in [61], are

xn = Asxn−1+(I −As)us+w, (10)

yn = Csxn+ cs+ v, (11)

wheren ands are frame number and phone index respectively,x is the hidden dy-
namics andy is the acoustic feature vector (such as MFCC). The hidden dynamics is
chosen to be the vocal-tract-resonances (VTRs). The state equation (10) is a linear
dynamic equation with phone dependent system matrixAs and target vectorus and
with built-in continuity constraints across the phone boundaries. The observation
equation (11) represents a phone-dependent VTR-to-acoustic linear mapping. The
choice of linear mapping is mainly due to the difficulty of algorithm development.
The resulting algorithm can also be generalized to mixturesof linear mapping and
piece-wise linear mapping within a phone. Gaussian white noiseswn andvn are
added to both the state and observation equations to make themodel probabilistic.
Similar models have been proposed and used previously [35,62].
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To facilitate algorithm development, the model is also expressed in terms of prob-
ability distributions:

p(sn = s | sn−1 = s′) = πss′ ,

p(xn | sn = s,xn−1) = N(xn | Asxn−1+as,Bs),

p(yn | sn = s,xn) = N(yn | Csxn+ cs,Ds), (12)

whereπss′ is the phone transition probability matrix,as= (I −As)us andN denotes
a Gaussian distribution with mean and precision matrix (inverse of the covariance
matrix) as the parameters. The joint distribution over the entire time sequence is
given by

p(y1:N,x1:N,s1:N) = ∏
n

p(yn|sn,xn)p(xn|sn,xn−1)p(sn|sn−1). (13)

Fig. 1 HDM represented as a Bayesian network

The conditional independence relations of the model can be seen more clearly
from a graphic form (Bayesian network) as shown in Fig. 1.

There are a few issues to be solved before any estimation or learning algorithms
can be applied to speech, and they are discussed here:

1. Parameter initialization: It is important to initializethe parameters appropriately
for an iterative local optimization procedure such as EM. The HDM enjoys the
benefit of being closely related to speech-specific knowledge and some key pa-
rameters, especially the phone targets, can be reliably initialized from a formant
synthesizer. Due to the small number of total parameters, others can be easily
initialized by a small amount of hand-labeled VTR data.

2. Segmental constraint: The probabilistic form of the model allows phone transi-
tions to occur at each frame, which is undesirable for speech. In training, we
construct a series of time-varying transition matricesπss′ based on the given pho-
netic transcript (or one created from a lexicon if only word transcripts are given)
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and some initial segmentation to impose the segmental constraint and force the
discrete-state component of the model to be consistent withthe phonetic tran-
script. Such an approach also greatly reduces the number of possible phoness
that have to be summed at each time step.

3 Generative Deep-Structured Speech Dynamics: Model
Estimation

3.1 Learning a Hidden Dynamic Model Using the Extended
Kalman Filter

The estimation problem that we investigate is as follows. Given multiple sets of
observation sequences,o(k), for each distinct phone regime, we seek to determine
the optimal estimates for the unknown values of the state-equation parametersΦΦΦ and
T, and the observation-equation parameters,W, which is the MLP weight vector of
the nonlinear mapping functionh(z(k)). For clarity of notation we will drop the
s and r subscripts since it is understood the estimation equationsonly apply for
observations taken over a particular phone regime segment.

The expectation-maximisation (EM) algorithm is a widely used algorithm for
the estimation of the parameters in general state-space models and in the current
research on the HDM [34, 35]. The EM algorithm provides new estimates of the
parameters after the set of all availableN observation vectors have been presented.
The EM algorithm can be considered a batch or off-line estimation method most
suited to applications where all of the data is available. Wenow present the EM
algorithm for the specific type of model given by (8) and (9) following [101,102].

E-step

For a sequence ofN observation vectors, the E-step involves computation of the con-
ditional expectation of the log joint likelihood betweenZ = {z(0), z(1), . . . , z(N)}
andO = {o(0), o(1), . . . , o(N)} given the observationO and parameter setΘ esti-
mated at the previous step, that is:

Q(Θ |Θ) = E{logL(Z,O|Θ)|O,Θ)

= −
1
2

N−1

∑
k=0

EN[eT
k1Q−1ek1|O,Θ ]

−
1
2

N−1

∑
k=0

EN[eT
k2R−1ek2|O,Θ ]+ const (14)
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whereek1 = [z(k+ 1)−ΦΦΦz(k)− (I −ΦΦΦ)T] andek2 = [o(k)− h(z(k))] andEN de-
notes the expectation based onN samples. The standard EKF smoother is used to
provide estimates of the hidden dynamic variable,z(k) ≡ ẑ(k|N) = EN[z(k)|O,Θ ].
The Jacobian matrix for then×m non-linear mapping functionh(z(k)) used in the
EKF recursion is given by:

H ji
z [̂z(k+1|k)] =

[
∂o j(k+1)

∂ ẑi(k+1|k)

]

=

[
J

∑
h=1

Wh
2 jg

′
(WT

1hẑ(k+1|k))Wi
1h

]
(15)

whereo j(k) is the jth component of the observation vector at timek, ẑi(k+ 1|k)
is theith component of the predicted state vectorẑ(k+1|k) at timek, Wi

lh is theith

component of the MLP weight vector,W lh, of nodeh in layerl (layer 1 is the hidden
layer and layer 2 is the output layer),J is the number of nodes in the hidden layer
andg

′
(x) is the derivative of the activation function in the hidden layer.

It should be noted that the continuity condition onẑ(k) is also applied to the EKF
error covariance.

M-step

In the M-step theQ function in (14) is maximised with respect to the parameter set
Θ = (T,ΦΦΦ,W). We consider the first summation involving the parametersT andΦΦΦ:

Q1(Z,O,Θ) =
N−1

∑
k=0

EN[eT
k1Q−1ek1|O,Θ ] (16)

Minimisation ofQ1 ,which implies maximisation ofQ , proceeds by setting the
partial derivatives with respect toT andΦΦΦ to zero, that is:

∂Q1

∂ΦΦΦ
∝

N−1

∑
k=0

EN{[z(k+1)−ΦΦΦz(k)− (I −ΦΦΦ)T][T − z(k)]T |O,Θ}= 0 (17)

∂Q1

∂T
∝

N−1

∑
k=0

EN{[z(k+1)−ΦΦΦz(k)− (I −ΦΦΦ)T]|O,Θ}= 0 (18)

The resulting equations to be solved are nonlinear high-order equations in terms
of ΦΦΦ andT:

NΦΦΦTTT −ΦΦΦTAT −ΦΦΦATT −NTTT +TAT +BTT +ΦΦΦC−D = 0 (19)

B−ΦΦΦA−NT +NΦΦΦT = 0 (20)
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where:

A =
N−1

∑
k=0

EN[z(k)|O,Θ ], C =
N−1

∑
k=0

EN[z(k)z(k)T |O,Θ ] (21)

B =
N−1

∑
k=0

EN[z(k+1)|O,Θ ], D =
N−1

∑
k=0

EN[z(k+1)z(k)T |O,Θ ] (22)

are the relevant sufficient statistics that are computed by the EKF smoother during
the E-step. By simplifying (19) and (20) we can first form:

Φ̂ΦΦ = XY−1 (23)

whereΦ̂ΦΦ is the estimate of the system matrix, and then:

T̂ =
1
N
(I −Φ̂ΦΦ)−1(B−Φ̂ΦΦA) (24)

whereT̂ is the estimate of the target vector.
We now consider the second summation of theQ function in (14) involving the

parameterW:

Q2(Z,O,Θ) =
N−1

∑
k=0

EN[eT
k2R−1ek2|O,Θ ] (25)

Minimisation ofQ2, which leads to maximisation ofQ, proceeds by setting the
partial derivatives with respect toW to zero, that is:

∂Q2

∂W
∝

N−1

∑
k=0

EN[
∂

∂W
{[o(k)−h(z(k)]2}|O,Θ ] = 0 (26)

That is,Q2 is minimised when the error signal,ek2 = o(k)− h(z(k)), is min-
imised. Since the multi-variate mapping function is a feedforward MLP network,
then the standard back-propagation is used withẑ(k|N) as the input ando(k) as the
desired output to provide estimates of the MLP weights,W.

3.2 Learning a Hidden Dynamic Model Using Variational EM

Model Inference and Learning

For the system described by (10)-(13 inference refers to thecalculation of posterior
distributionp(s1:N,x1:N | y1:N) given all model parameters, while learning refers to
the estimation of model parametersΘ = {A1:S,a1:S,B1:S,C1:S,c1:S,D1:S} given the
complete distribution, usually in a maximum likelihood (ML) sense. Under this EM
framework, inference is the E step and learning is the M step.In this model, however,
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the posterior turns out to be a Gaussian mixture whose numberof components is ex-
ponential in the number of states (or phones) and frames, andis therefore computa-
tionally intractable. Here we develop two approximations,called GMM and HMM
posteriors, respectively, based onvariational techniques. The idea is to choose the
approximate posteriorq(s1:N,x1:N |y1:N) with a sensible and tractable structure and
optimize it by minimizing its Kullback-Liebler (KL) distance to the exact posterior.
It turns out that this optimization can be performed efficiently without having to
compute the exact (but intractable) posterior.

It is necessary to say a few words about previous approaches and other related
work in the literature before presenting the current one. Most of our previous al-
gorithms are developed under the assumption of hard phone boundaries which are
either known or estimated separately by some heuristic methods [65], and the in-
tractable exact posterior is approximated by a single Gaussian. This is also true for
most of the work in a broad range of literatures for switchingstate space models. In
contrast, the approach presented here uses soft phone assignments that are estimated
under a unified EM framework as in [46,85], but unlike [46,85], our approximation
doesn’t factorizes from x and results in a multimodal posterior overx instead of a
unimodal one, which is justifiably more suitable for speech applications.

The GMM posterior

Under this approximationq is restricted to be:

q(s1:N,x1:N) = ∏
n

q(xn | sn)q(sn), (27)

where from now on the dependence of theq’s on the datay is omitted but always
implied.

Minimizing the KL divergence betweenq andp is equivalent to maximizing the
following functionalF,

F[q] = ∑
s1:N

∫
dx1:N q(s1:N,x1:N) ·

[logp(y1:N,x1:N,s1:N)− logq(s1:N,x1:N)] , (28)

which is also a lower bound of the likelihood function and will be subsequently used
as the objective function in the learning (M) step.

By takingcalculus of variationto optimizeF w.r.t. q(xn|sn) andq(sn), it turns
out that each componentq(xn|sn) follows a Gaussian distribution, i.e.,

q(xn | sn = s) =N(xn | ρρρs,n,ΓΓΓ s,n), (29)

and the parametersρρρs,n andΓΓΓ s,n are given by

ΓΓΓ s,n = CT
s DsCs+Bs+∑

s′
γs′,n+1AT

s′Bs′As′ , (30)
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ΓΓΓ s,nρρρs,n = Bs(As∑
s′

γs′,n−1ρρρs′,n−1+as)

+ ∑
s′

γs′,n+1AT
s′Bs′(ρρρs′,n+1−as′)

+ CT
s Ds(yn− cs), (31)

whereγs,n = q(sn = s) and is computed from

logγs,n = f1(ρρρs,n,ΓΓΓ s,n,Θ)+ f2(ρρρs′,n−1,ΓΓΓ s′,n−1,Θ)

+ f3(ρρρs′,n+1,ΓΓΓ s′,n+1,Θ). (32)

and thef ’s denote linear functions whose expressions are too lengthy to be written
down here. Eq (30) and (31) are coupled linear equations given model parameters
Θ andγ ’s and can be solved efficiently by sparse matrix techniques.Eq (32) is a
nonlinear equation by itself and has to be solved by iteration. Eqs (30), (31) and (32)
constitute the inference or E step of the algorithm and have to be solved iteratively
all together after some proper initializations.

Model learning involves taking derivatives ofF w.r.t. all the model parameters
and setting them to zero. This results in a set of linear equations which can be solved
easily. Since this step is standard in all EM approaches withno special difficulties,
the detailed equations are omitted.

The HMM posterior

Under this approximationq is taken to be

q(s1:N,x1:N) =
N

∏
n=1

q(xn | sn) ·
N

∏
n=2

q(sn | sn−1) ·q(s1). (33)

First we define two posterior transition probabilities:

ηs′s,n = q(sn = s | sn−1 = s′),

η̄s′s,n = q(sn = s | sn+1 = s′) =
ηs′s,n+1γs,n

γs′,n+1
, (34)

whereγ is the same as in the previous section. It turns out that eachq(xn|sn) is again
a Gaussian distribution, andρρρs,n andΓΓΓ s,n are given by coupled linear equations hav-
ing the same form as (30) and (31), except that theγ ’s are replaced byη ’s andη̄ ’s.
These equations can again be solved by sparse matrix techniques. Theγ ’s andη ’s
themselves can be solved by the following efficient backward-forward procedure
given the model parameters and all theρρρ ’s andΓΓΓ ’s.

1. Initialize:zs,N+1 = 1 for all s.
2. Backward pass: forn= N, · · · ,2
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zs,n = ∑
s′

exp( fss′ ,n)zs′ ,n+1 ,

ηss′,n =
1

zs,n
exp( fss′,n)zs′ ,n+1 . (35)

3. Forn= 1:

z1 = ∑
s

exp( fs,1)zs,2 ,

γs,1 =
1
z1

exp( fs,1)zs,2 . (36)

4. Forward pass: forn= 2, · · · ,N

γs,n = ∑
s′

ηs′s,nγs′,n−1 . (37)

Again, f ’s are functions of theρρρ ’s, ΓΓΓ ’s and model parameters whose expressions
are too lengthy to be given here. Also remember that the complete E step still has to
iterate between the calculation ofq(xn | sn) andq(sn | sn−1). The model learning is
quite similar to the GMM case and the detailed equations are omitted.

There are a number of important issues to be addressed when using the above
algorithms for speech:

1. Hidden dynamics recovery: It is both informative (especially for debugging) and
desirable to recover the hidden VTR, and it is calculated by:

x̂n = ∑
s

γs,nρρρs,n (38)

for both the GMM and HMM posterior assumptions.
2. Recognition strategy: Here we seek the most likely phone sequence given a

sequence of observations. For the GMM case, this is simply accomplished by
choosing the maximumγ at each frame; while for the HMM posterior we need
to perform Viterbi decoding by usingγ andη , e.g., the initialization and induc-
tion equation for the scoring are:

V1(s) = γs,1, Vn(s
′) = max

1≤s≤S

[
Vn−1(s)ηss′,n

]
γs′,n. (39)

It is highly desirable to incorporate segmental (or minimalduration) constraint
and language weighting in the recognition stage and this is implemented by
Viterbi decoding with modified transition matrices for bothcases (in GMM the
transition matrix is created from scratch while in HMM the changes are merged
into η). Such a strategy allows the hidden dynamic model to be used in phone
recognition directlywithoutresorting to an N-best list provided by HMM.
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4 Discriminative Deep Neural Networks Aided by Generative
Pre-Training

After providing detailed reviews of a range of generative deep-structured dynamic
models of speech, we now turn to their discriminative counterpart. Recall that the
generative model expressed by (4) and (5) have deep structure, with causal relations
from the top discrete linguistic symbolss through to hidden dynamic vectors and
then to the bottom observed vectors. The reverse direction,from bottom to top, is
referred to as the inference step, which is required to perform learning (i.e., training)
and for decoding in speech recognition whose goal is to estimate the linguistic sym-
bol sequences. Now we discuss the discriminative version ofthe deep-structured
models, where the direct information flow is opposite: bottom up rather top down.
That is, the observed acoustic variables are used to directly compute the interme-
diate representations, and then to compute the estimate of linguistic labels. It turns
out that the deep neural network (DNN) is an excellent candidate for this type of
model, as (non-recurrent) neural networks are known to lackthe modeling power
for explicit speech dynamics.

Historically, the DNN had been very difficult to learn before2006 [11, 80]. The
difficulty was alleviated around 2006 with the work of [52, 53], where a generative
pre-training procedure was developed and reported. In thissection, we will review
this advance and the more recent impact by the DNN on speech recognition research
and deployment. We will then analyze the weaknesses of the DNN-based methods,
especially those in modeling speech dynamics. This analysis paves a natural path to
the recurrent versions of the DNN as well as their connections to and the differences
between the generative deep-structured dynamic models of speech reviewed in the
preceding two sections.

4.1 Restricted Boltzmann Machines

The generative pre-training procedure first reported in [52, 53] starts with the re-
stricted Boltzmann machine (RBM), which is a special type ofMarkov random
field that has one layer of (typically Bernoulli) stochastichidden units and one layer
of (typically Bernoulli or Gaussian) stochastic visible orobservable units.

In an RBM, the joint distributionp(v,h;θ ) over the visible unitsv and hidden
units h, given the model parametersθ , is defined in terms of an energy function
E(v,h;θ ) of

p(v,h;θ ) =
exp(−E(v,h;θ ))

Z
, (40)

whereZ = ∑v ∑h exp(−E(v,h;θ )) is a normalization factor, and the marginal dis-
tribution that the model assigns to a visible vectorv (we don’t care abouth since it
is hidden) is
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p(v;θ )=∑h exp(−E(v,h;θ ))
Z

. (41)

For a Bernoulli (visible)-Bernoulli (hidden) RBM, the energy function is defined
as

E(v,h;θ )=−
I

∑
i=1

J

∑
j=1

wi j vih j−
I

∑
i=1

bivi−
J

∑
j=1

a jh j , (42)

wherewi j represents the symmetric interaction term between the visible unitvi and
the hidden unith j , bi anda j are the bias terms, andI andJ are the numbers of visible
and hidden units. The conditional distributions (for Bernoulli stochastic variables,
i.e. binary data) can be efficiently calculated as

p(h j= 1|v;θ )=σ

(
I

∑
i=1

wi j vi+a j

)
, (43)

p(vi= 1|h;θ )=σ

(
J

∑
j=1

wi j h j+bi

)
, (44)

whereσ (x)=1/(1+exp(x)).
Similarly, for a Gaussian (visible)-Bernoulli (hidden) RBM, the energy is

E(v,h;θ )=−
I

∑
i=1

J

∑
j=1

wi j vih j−
1
2

I

∑
i=1

(vi−bi)
2−

J

∑
j=1

a jh j , (45)

The corresponding conditional distributions (for Bernoulli or binaryh and Gaus-
sian or continuous-valuedv) become

p(h j= 1|v;θ )=σ

(
I

∑
i=1

wi j vi+a j

)
, (46)

p(vi |h;θ )=N

(
J

∑
j=1

wi j h j+bi , 1

)
, (47)

wherevi takes real values and follows a Gaussian distribution with mean∑J
j=1wi j h j +

bi and variance one. Gaussian-Bernoulli RBMs can be used to convert real-valued
stochastic variables to binary stochastic variables, which can then be further pro-
cessed using the Bernoulli-Bernoulli RBMs.

Taking the gradient of the log likelihood logp(v;θ ) we can derive the update
rule for the RBM weights as

△wi j ∝ Edata
(
vihj
)
−Emodel

(
vihj
)
, (48)

whereEdata
(
vihj
)

is the expectation observed in the training set under the distri-
bution defined by the given observations,p(h|v;θ ), andEmodel

(
vihj
)

is that same
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expectation under the distribution defined by the model,p(v,h;θ ). Calculation of
Edata

(
vih j

)
is facilitated by usingp(h j = 1|v; ;θ ) to weight samplesvih j given ob-

servationsv. Unfortunately,Emodel
(
vih j

)
is intractable to compute so the contrastive

divergence (CD) approximation to the gradient is used whereEmodel
(
vihj
)

is re-
placed by running the Gibbs sampler initialized at the data for one full step. The
steps in approximatingEmodel

(
vihj
)

is as follows:

1. Initializev0 at data
2. Sampleh0 ∼ p(h|v0)
3. Samplev1 ∼ p(v|h0)
4. Sampleh1 ∼ p(h|v1)

Then the (v1, h1) is a sample from the model, acting as a very rough estimate of
Emodel

(
vihj
)
. Use of (v1,h1) to approximateEmodel(vih j) gives rise to the algorithm

of CD-1. The sampling process is pictorially depicted in Fig. 2 where< vih j >
k≡

(vk,hk).

Fig. 2 A pictorial view of sampling from an RBM during RBM learning (courtesy of Geoff Hinton)

Careful training of RBMs is essential to the success of applying the RBM and
related deep learning techniques to solve practical problems. See the technical report
[50] for a very useful practical guide for training RBMs.

The RBM discussed above is a generative model, which characterizes the input
data distribution using hidden variables and there is no label information involved.
However, when the label information is available, it can be used together with the
data to form the joint “data” set. Then the same CD learning can be applied to
optimize the approximate “generative” objective functionrelated to data likelihood.
Further, and more interestingly, a “discriminative” objective function can be defined
in terms of the conditional likelihood of labels. This discriminative RBM can be
used to “fine tune” an RBM for classification tasks [60].
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4.2 Stacking up RBMs to form a DBN

Stacking a number of the RBMs learned layer by layer from bottom up gives rise to
a deep belief network (DBN), an example of which is shown in Fig. 3. The stack-
ing procedure is as follows. After learning a Gaussian-Bernoulli RBM (for appli-
cations with continuous features such as speech) or Bernoulli-Bernoulli RBM (for
applications with nominal or binary features such as a black-white image or coded
text), we treat the activation probabilities of its hidden units as the data for train-
ing the Bernoulli-Bernoulli RBM one layer up. The activation probabilities of the
second-layer Bernoulli-Bernoulli RBM are then used as the visible data input for the
third-layer Bernoulli-Bernoulli RBM, and so on. Mathematically for a DBN withM
layers we can model the joint distribution between the observationsv and theL
hidden layers{hk : k= 1,2, . . .M} as follows

p
(
v,h1, . . . ,hM)= p

(
v
∣∣ h1)

(
M−2

∏
k=1

p(hk|hk+1)

)
p(hM−1,hM) (49)

This allows us to derive relevant distributions, e.g. the posterior distribution
p(hM|v). Some theoretical justification of this efficient layer-by-layer greedy learn-
ing strategy is given in [52], where it is shown that thestackingprocedure above
improves a variational lower bound on the likelihood of the training data under the
composite model. That is, the greedy procedure above achieves approximate max-
imum likelihood learning. Note that this learning procedure is unsupervised and
requires no class label.

When applied to classification tasks, the generative pre-training can be followed
by or combined with other, typically discriminative, learning procedures that fine-
tune all of the weights jointly to improve the performance ofthe network. This
discriminative fine-tuning is performed by adding a final layer of variables that rep-
resent the desired outputs or labels provided in the training data. Then, the back-
propagation algorithm can be used to adjust or fine-tune the network weights in the
same way as for the standard feed-forward neural network. When used in this way
we refer to this as the deterministic neural network or DNN. What goes to the top,
label layer of this DNN depends on the application. For speech recognition applica-
tions, the top layer, denoted byhM = {l1, l2, . . . , l j , . . . , lL}, in Fig. 3 , can represent
either syllables, phones, sub-phones, phone states, or other speech units used in the
HMM-based speech recognition system.

The generative pre-training described above has produced better phone and
speech recognition results than random initialization on awide variety of tasks.
Further research has also shown the effectiveness of other pre-training strategies.
As an example, greedy layer-by-layer training may be carried out with an addi-
tional discriminative term to the generative cost functionat each level. And without
generative pre-training, purely discriminative trainingof DNNs from random ini-
tial weights using the traditional stochastic gradient decent method has been shown
to work very well when the scales of the initial weights are set carefully and the
mini-batch sizes, which trade off noisy gradients with convergence speed, used in
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Fig. 3 An illustration of the DBN/DNN architecture

stochastic gradient decent are adapted prudently (e.g., with an increasing size over
training epochs). Also, randomization order in creating mini-batches needs to be
judiciously determined. Importantly, it was found effective to learn a DNN by start-
ing with a shallow neural net with a single hidden layer. Oncethis has been trained
discriminatively (using early stops to avoid overfitting),a second hidden layer is
inserted between the first hidden layer and the labeled softmax output units and the
expanded deeper network is again trained discriminatively. This can be continued
until the desired number of hidden layers is reached, after which a full backpropaga-
tion “fine tuning” is applied. This discriminative “pre-training” procedure is found
to work well in practice (e.g., [94,107]).

Despite the great success in using DNNs for large vocabularyspeech recognition,
training is still quite slow due to the large number of parameters and the required
large data set sizes. Part of current research has now begun to focus on optimization
techniques to improve the training regime for DNNs [93] specifically and for speech
and language processing as a whole [104].

4.3 Interfacing the DNN with an HMM to Incorporate Sequential
Dynamics

The DNN discussed above is a static classifier with input vectors having a fixed
dimensionality. However, many practical pattern recognition and information pro-
cessing problems, including speech recognition, machine translation, natural lan-
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guage understanding, video processing and bio-information processing, require se-
quence recognition. In sequence recognition, sometimes called classification with
structured input/output, the dimensionality of both inputs and outputs are variable.

Fig. 4 Interface between DBN/DNN and HMM to form a DBN-HMM or DNN-HMM.

The HMM, based on dynamic programming operations, is a convenient tool
to help port the strength of a static classifier to handle dynamic or sequential
patterns. Thus, it is natural to combine the DNN and HMM to bridge the gap
between static and sequence pattern recognition. A populararchitecture to fulfil
this is shown in Fig. 4. This architecture has been successfully used in speech
recognition experiments from small to mid and to large scales, as reported in
[15, 16, 51, 59, 64, 77, 79, 93, 94, 108–110]. The excellent recognition accuracy ob-
tained by the DNN-HMM and its scalability from small to largetasks have resulted
in wide industry adoption of this architecture and a huge surge of research efforts.
This is so despite the recognition of the weaknesses of modeling realistic speech
dynamics via the HMM and via the windowed speech frames as inputs to the DNN.

It is important to note that the unique elasticity of the temporal dynamic of speech
as elaborated in [39, 40] would require temporally-correlated models more power-
ful than the HMM for the ultimate success of speech recognition. Integrating such
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dynamic models having realistic co-articulatory properties with the DNN and pos-
sibly other deep learning models to form the coherent dynamic deep architecture is
a challenging new research. Adding recurrent connections over the hidden neurons
gives one reasonable way of incorporating speech dynamics into the model, at least
more principled than using a long window of frames in the DNN-HMM architec-
ture. In the next section we turn to a review and analysis of the recurrent neural
network (RNN) before providing connections to the generative deep-structured dy-
namic speech models reviewed earlier.

5 Recurrent Neural Networks for Discriminative Modeling of
Speech Dynamics

The use of RNNs or related neural predictive models for speech recognition dates
back to early 1990’s (e.g., [27, 90]), with relatively low accuracy and whose re-
sults could not be reproduced by other groups until recently. Since deep learning
became popular in recent years, much more research has been devoted to the RNN
(e.g., [48, 69–71, 73–76, 84, 98–100, 103] and its stacked versions, also called deep
RNNs [49]. Most work on RNNs made use of the method of Back Propagation
Through Time (BPTT) to train the RNNs, and empirical tricks need to be exploited
(e.g., truncate gradients when they become too large [74]) in order to make the train-
ing effective. It is not until recently that careful analysis was made to fully under-
stand the source of difficulties in learning RNNs and somewhat more principled, but
still rather heuristic, solutions were developed. For example, in [7, 84], a heuristic
strategy of gradient norm clipping was proposed to deal withthe gradient explod-
ing problem during BPTT training. There are other solutionsoffered to improve the
learning method for the RNN (e.g., [28,56])

5.1 RNNs Expressed in the State-Space Formalism

Let us formulate the RNN in terms of the nonlinear state spacemodel commonly
used in signal processing. We will compare it with the same state space formulation
of nonlinear dynamic systems used as generative models for speech acoustics. The
contrast between the discriminative RNN and the use of the same mathematical
model in the generative mode allows us to shed light onto why one approach works
better than another and how a combination of the two is desirable.

As shown in Fig. 5 given an input sequenceX = (x1, · · · ,xt , · · · ,xT), the RNN
computes the noise free hidden state dynamic vector sequenceH =(h1, · · · ,ht , · · · ,hT)
by iterating the following fromt = 1 toT:

ht = f (Wxhxt +Whhht−1) = f (ut ) (50)

yt = g(Whyht) = g(vt) (51)



24 Li Deng and Roberto Togneri

Fig. 5 Information flow in the standard recurrent neural network from observation variables to the
target labels as output variables via the hidden-state vectors

whereY = (y1, · · · ,yt , · · · ,yT) is the “target label” output sequence, which is the
“observation” sequence in the standard state-space formulation.

The desired target signal in the above state-space model is the predicted “label”
or target vector,lt , a vector of one-hot coded class labels. Define the error function
as the sum of squared differences betweenyt andlt over time, or the cross entropy
between them. Then BPTT unfolds the RNN over time in computing the gradients
with respect toWhy,Wxh and Whh, and stochastic gradient descent is applied to
update these weight matrices.

5.2 The BPTT learning algorithm

The BPTT [10,56] is an extension of the classic feedforward backpropagation where
the stacked hidden layers for the same training epoch,t, are replaced by unfolding
the recurrent neural network in time and stackingT single hidden layers across
time, t = 1,2, . . . ,T. Referring to Fig. 5 and (50),(51) let us assume a recurrent
neural network withK inputs,N internal hidden units, andL outputs, and define the
following variables at time layert:

• xt is theK ×1 vector of inputs,ht is theN×1 vector of hidden unit outputs,yt

is theL×1 vector of outputs, andlt is theL×1 vector of training output targets,
where thejth vector element, e.g.,ht( j) is the jth hidden unit forj = 1,2, . . . ,N;

• Why is theL×N matrix of weights connecting theN hidden units to theL outputs,
Wxh is theN×K matrix of weights connecting theK inputs to theN hidden
units, andWhh is theN×N matrix of weights connecting theN hidden units
from layert −1 to layert, where the(i, j)th matrix element, e.g.,why(i, j) is the
weight connecting thejth hidden unit to theith output unit fori = 1,2, . . . ,L and
j = 1,2, . . . ,N;
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• ut = Wxhxt +Whhht−1 is theN×1 vector of hidden unit input potentials,vt =
Whyht is theL×1 vector of output unit input potentials, from which we have
ht = f (ut ) andyt = g(vt); where

• f (ut ) is the hidden layer activation function (f
′
(ut ) is its derivative), andg(vt) is

the output layer activation function (g
′
(vt) is its derivative).

Similar to classic backpropagation we begin by defining the summed squared er-
ror between the actual output,yt , and the target vector,lt , averaged across all time
epochs:

E = c
T

∑
t=1

‖lt − yt‖
2 = c

T

∑
t=1

L

∑
j=1

(lt( j)− yt( j))2 (52)

wherec is a conveniently chosen scale factor and seek to minimise this error w.r.t
to the weights using a gradient descent. For a specific weight, w, the update rule for
gradient descent is:

wnew= w− γ
∂E
∂w

(53)

To do this we define the so-called error propagation term which is the error gradient
w.r.t to the unit input potential:

δ y
t ( j) =−

∂E
∂vt( j)

, δ h
t ( j) =−

∂E
∂ut( j)

(54)

choosec = 0.5 and then use the chain rule (keeping track of the dependencies) as
follows:

1. For t = 1,2, . . . ,T compute the input potentials(ut ,vt) and activation outputs
(ht ,yt) given the current RNN weights and inputxt (the forward pass).

2. At time layer t = T calculate the error propagation term (where⊙ is the
component-wise multiplication operator):

δ y
T( j) = −

∂E
∂yT( j)

∂yT( j)
∂vT( j)

= (lT( j)− yT( j))g
′
(vT( j)) for j = 1,2, . . . ,L

δδδ y
T = (lT − yT)⊙g

′
(vT) (55)

at the output units and

δ h
T( j) = −

(
L

∑
i=1

∂E
∂vT(i)

∂vT(i)
∂hT( j)

∂hT( j)
∂uT( j)

)
=

L

∑
i=1

δ y
T(i)why(i, j) f

′
(uT( j)) for j = 1,2, . . . ,N

δδδ h
T = WT

hyδδδ
y
T ⊙ f

′
(uT) (56)

for the internal units (whereδδδ y
T is propagated back from the output layerT).

3. At the earlier layers,t = T −1,T−2, . . . ,1, calculate the error propagation term:
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δ y
t ( j) = (lt( j)− yt( j))g

′
(vt( j)) for j = 1,2, . . . ,L

δδδ y
t = (lt − yt)⊙g

′
(vt) (57)

for the output units and

δ h
t ( j) = −

[
N

∑
i=1

∂E
∂ut+1(i)

∂ut+1(i)
∂ht( j)

+
L

∑
i=1

∂E
∂vt(i)

∂vt(i)
∂ht( j)

]
∂ht( j)
∂ut( j)

=

[
N

∑
i=1

δ h
t+1(i)whh(i, j)+

L

∑
i=1

δ y
t (i)why(i, j)

]
f
′
(ut( j)) for j = 1,2, . . . ,N

δδδ h
t =

[
WT

hhδδδ h
t+1+WT

hyδδδ
y
t

]
⊙ f

′
(ut) (58)

for the internal units (whereδδδ y
t is propagated back from the output layert, and

δδδ h
t+1 is propagated back from hidden layert +1).

Then we adjust the weights as follows:

1. For thejth hidden toith output layer weights at layert:

wnew
hy (i, j) = why(i, j)− γ

T

∑
t=1

∂E
∂vt(i)

∂vt(i)
∂why(i, j)

= why(i, j)− γ
T

∑
t=1

δ y
t (i)ht( j)

Wnew
hy = Why+ γ

T

∑
t=1

δδδ t
yh

T
t (59)

2. For thejth input to theith hidden layer weights at layert:

wnew
xh (i, j) = wxh(i, j)− γ

T

∑
t=1

∂E
∂ut(i)

∂ut(i)
∂wxh(i, j)

= wxh(i, j)− γ
T

∑
t=1

δ h
t (i)xt ( j)

Wnew
xh = Wxh+ γ

T

∑
t=1

δδδ t
hxT

t (60)

3. For thejth hidden at layert +1 to theith hidden at layert weights:

wnew
hh (i, j) = whh(i, j)− γ

T

∑
t=1

∂E
∂ut(i)

∂ut(i)
∂whh(i, j)

= wxhh(i, j)− γ
T

∑
t=1

δ h
t (i)ht−1( j)

Wnew
hh = Whh+ γ

T

∑
t=1

δδδ t
hhT

t−1 (61)

whereγ is the learning rate.

One drawback of the BPTT is that the entire time series is needed to perform one
update of the weights, thereby making BPTT a “batch” adaptation algorithm. It is
possible to consider an online adaptation if one truncates the past history to no more
than the lastp time epochs, creating the BPTT(p) or p-BPTT variant.
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The computational complexity of the BPTT is given asO(M2) per time step
whereM = LN+NK+N2 is the number of internal units. As with classic feed-
forward backpropagation slow convergence can be expected with several thousand
epochs needed. However unlike feedforward backpropagation the BPTT is not guar-
anteed to converge to a local minimum and it is far from trivial to achieve good
results with much experimentation and tuning. This is mainly due to the problem of
exploding and vanishing gradients as described in [84].

5.3 The EKF learning algorithm

In section 2.2 the extended Kalman filter (EKF) was used to provide estimates of the
hidden state variable in the non-linear state-space systemdescribed by (4) and (5).
By reformulating the state-space system such that the hidden state variable are the
RNN weights and the system observations are the target vectors we can use the EKF
as a learning algorithm for the RNN. First popularised in thehallmark work of [87]
we proceed by restacking theL×N Why, N×K Wxh, andN×N Whh RNN weights
into a single, state vectorw of sizeLN+NK+N2. Then we form the following
state-space system:

w(n+1) = w(n)+q(n)

l(n) = hn(w(n),x1:n) (62)

where l(n) ≡ ln is the target vector and the desired “observation” from the sys-
tem at timen, q(n) is the external input to the system considered as an uncor-
related Gaussian white noise process,w(n) are the RNN weights at timen, and
yn ≡ hn(ŵ(n),x1:n) is the time-dependent RNN output observation function at time-
stepn derived from the current RNN weight estimatesŵ(n) and the input vector
sequencex1:n = (x1,x2, . . . ,xn). The EKF recursion applied to this system will esti-
mate the unknown hidden statew(n), given the “observations”l(n), by attempting
to minimise the innovation errorξξξ (n) = (l(n)− hn(ŵ(n),x1:n)) = (ln − yn) in the
minimum mean square error (MMSE) sense equivalent to the minimisation of the
BPTT squared error of (52). The EKF recursion for this systemsimplifies to:

K(n) = P(n)H(n)[H(n)TP(n)H(n)]−1

ŵ(n+1) = ŵ(n)+K(n)ξξξ(n)
P(n+1) = P(n)−K(n)H(n)TP(n)+Q(n) (63)

whereK(n) is the Kalman gain,P(n) =E[(w(n)− ŵ(n))(w(n)− ŵ(n))T is the state

error covariance andH(n) = ∂hn(w(n)),x1:n)
∂w

∣∣∣
w=ŵ(n)

is the Jacobian of partial deriva-

tives of the the RNN output with respect to the weights. The EKF recursion requires
the initial estimateŝw(0) andP(0) and a model for the process noiseQ(n). Typically
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ŵ(0) is generated randomly,P(0) is set to a diagonal matrix with a large diagonal
component andQ(n) is a diagonal matrix with small diagonal variance terms.

Although the EKF recursion is a very elegant approach exploiting the theory of
optimum Kalman filters, the Jacobian linearisation of the non-linearhn only guaran-
tees convergence to a local minimum. Furthermore the calculation of the Jacobian
at each iteration time step requires either direct calculation of the gradients, which
is computationally expensive, or the use of an offline run of the BPTT for the gra-
dients by backpropagation. The BPTT-EKF executes a reformulated BPTT(p) over
the input data sequence(x1,x2, . . . ,xn), where the RNN weightsw = ŵ(n), to cal-
culate the gradient∂yn

∂w for theH(n). This is followed by one iteration of the EKF
recursion to calculatêw(n+1) and so on. The BPTT-EKF exhibits an orderO(LM2)
computational complexity per time-step whereM = LN+NK+N2 is the number of
internal units and has been shown to exhibit superior convergence over BPTT and
can be considered one of the classic state of the art approaches to RNN training.

6 Comparing Two Types of Dynamic Models

We are now in a position to discuss similarities of and differences between the
two types of deep and dynamic models: 1) the generative deep-structured dynamic
model, which we reviewed in Section 2, and 2) the discriminative RNN, which we
reviewed in Section 5. The “deepness” of the models is expressed in terms of the
time steps. Several key aspects are compared below, one in each subsection.

6.1 Top-Down versus Bottom-Up

Top-down modeling here refers to the hierarchical way in which the speech data
are modeled by the generative hidden dynamics. The modelingprocess starts with
specification of the linguistic label sequence at the top level. Then the label sequence
generates the hidden dynamic vector sequence, which in turngenerates the acoustic
observation sequence at the bottom level in the hierarchy. This way of modeling can
be viewed as fitting the observation data. On the other hand, in bottom-up modeling
based on the RNN, the information flow starts at the bottom level of acoustic obser-
vation, which activates the hidden layer or vector dynamicsin the RNN. Then the
output layer of the RNN computes the linguistic label or target sequence at the top
level of the hierarchy. Since the top layer determines the speech-class distinction,
the bottom-up modeling approach can also be called discriminative learning. We
elaborate on the top-down verses bottom-up comparisons below.
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6.1.1 Top-down generative hidden dynamic modeling

To facilitate the comparison, we use a general form of the generative hidden dy-
namic model following the discussion in Section III.A of [33] with slight modi-
fication, and note that speech recognition researchers haveused many variants of
this form to build speech recognizers in the past; see a survey in Sections III.D and
III.E of [33] and the review in Section 2. In the discussion provided in this section,
the general form of the state and observation equations in the generative hidden
dynamic model takes the form of

ht = G(ht−1;W lt ,ΛΛΛlt )+StateNoise (64)

xt = H(ht ,ΩΩΩlt )+ObsNoise (65)

Here,W lt is the system matrix that shapes the (articulatory-like) state dynamics,
andΛΛΛlt serves as the “input” driving force to the state dynamics. Both of them are
dependent on the labellt at timet with segmental properties, hence the model is also
called a (segmental) switching dynamic system. The system matrix is analogous
to Whh in the RNN.ΩΩΩlt is the parameter set that governs the nonlinear mapping
from the hidden (articulatory-like) states in speech production to acoustic features
of speech. In one implementation,ΩΩΩlt took the form of shallow MLP weights [35,
86, 101]. In another implementation,ΩΩΩlt took the form of a set of matrices in a
mixture of linear experts [67].

The state equation in various previous implementations of the hidden dynamic
models of speech does not take nonlinear forms. Rather, the following linear form
was used (e.g., [35]):

ht = Whh(lt)ht−1+[I −Whh(lt)]t lt +StateNoise (66)

which exhibits the target-directed property for the articulatory-like dynamics. Here,
the parametersWhh are a function of the (phonetic) labellt at a particular timet, and
t lt is a mapping from the symbolic quantitylt of a linguistic unit to the continuous-
valued “target” vector with the segmental property. To makethe following compar-
isons easy, let’s keep the nonlinear form and remove both thestate and observation
noise, yielding the state-space generative model of

ht = G(ht−1;W lt , t lt ) (67)

xt = H(ht ,ΩΩΩlt ) (68)

6.1.2 Bottom-up discriminative recurrent neural networksand the
“generative” counterpart

Let us rewrite (50) and (51) into a more general form:
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ht = F(ht−1,xt ;Whh,Wxh) (69)

yt = K(ht ;Why). (70)

where information flow goes from observation dataxt to hidden vectorsht and then
to the predicted target label vectorsyt in the bottom-up direction.

Compared with (67) and (68), which describe the informationflow from the top-
level label-indexed phonetic “target” vectort lt to hidden vectorsht and then to ob-
servation dataxt , we clearly see opposite information flows.

In order to examine other differences between the two types of models in addi-
tion to the top-down versus bottom-up difference, we keep the same mathematical
description of the RNN but swap the variables of inputxt and outputyt in (69) and
(70). This yields

ht = F1(ht−1,yt ;Whh,Wyh) (71)

xt = K1(ht ;Whx). (72)

or more specifically

ht = f1(Whhht−1+Wyhyt) (73)

xt = g1(Whxht) (74)

The “generative” version of the RNN can be illustrated by Figure 6, which is the
same as the normal “discriminative” version of the RNN shownin Figure 5 except
all arrows change their directions.

Fig. 6 Information flow in the same recurrent neural network of Figure 5 except we swap the
observation variables with the output variables without changing the mathematical form of the
state-space model.

Given the “generative” form of the two types of the deep, dynamic models, one
(the hidden dynamic model) described by (67) and (68), and the other (the RNN)
by (71) and (71), we discuss below the contrast between them with respect to the
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differrent nature of the hidden-space representations (while keeping the same gen-
erative form of the models). We will also discuss below otheraspects of the contrast
between them including different ways of exploiting model parameters.

6.2 Localist versus distributed representations

Localist and distributed representations are important concepts in cognitive science
as two distinct styles of data representation. In the localist representation, each neu-
ron represents a single concept on a stand-alone basis. Thatis, localist units have
their own meaning and interpretation, not so for the units indistributed representa-
tion. The latter pertains to an internal representation of concepts in such a way that
they are modeled as being explained by the interactions of many hidden factors. A
particular factor learned from configurations of other factors can often generalize
well to new configurations, not so in localist representation.

Distributed representations, based on vectors consistingof many elements or
units, naturally occur in a “connectionist” neural network, where a concept is rep-
resented by a pattern of activity across a number of many units and where at the
same time a unit typically contributes to many concepts. Onekey advantage of such
many-to-many correspondence is that they provide robustness in representing the in-
ternal structure of the data in terms of graceful degradation and damage resistance.
Such robustness is enabled by redundant storage of information. Another advantage
is that they facilitate automatic generalization of concepts and relations, thus en-
abling reasoning abilities. Further, distributed representation allows similar vectors
to be associated with similar concepts and it allows efficient use of representational
resources. These attractive properties of distributed representations, however, come
with a set of weaknesses. These include non-obviousness in interpreting the repre-
sentations, difficulties with representing hierarchical structure, and inconvenience
in representing variable-length sequences. Distributed representations are also not
directly suitable for input and output to a network and some translation with localist
representations are needed.

On the other hand, local representation has advantages of explicitness and ease
of use — the explicit representation of the components of a task is simple and the
design of representational schemes for structured objectsis easy. But the weaknesses
are many, including inefficiency for large sets of objects, highly redundant use of
connections, and undesirable growth of units in networks which represent complex
structure.

All versions of the hidden dynamic models for deep speech structure [12, 19,
34, 37, 86, 101] adopt the “localist” representation of the symbolic linguistic units,
and the RNN makes use of the distributed representation. This can be seen directly
from (67) for the hidden dynamic model and from (71) for the RNN (in the “gen-
erative” version). In the former, symbolic linguistic units lt as a function of timet
are coded implicitly in a stand-alone fashion. The connection of symbolic linguistic
units to continuous-valued vectors is made via a one-to-onemapping, denoted byt lt
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in (67), to the hidden dynamic’s asymptotic “targets” denoted by vectort. This type
of mapping is common in phonetic-oriented phonology literature, and is called the
“interface between phonology and phonetics” in a functional computational model
of speech production in [19]. Further, the hidden dynamic model uses the linguistic
labels represented in a localist manner to index separate sets of time-varying param-
eters WWWlt andΩΩΩlt , leading to “switching” dynamics which considerably complicates
the decoding computation. This kind of parameter specification isolates the param-
eter interactions across different linguistic labels, gaining the advantage of explicit
interpretation of the model but losing on direct discrimination across linguistic la-
bels.

In contrast, in the state equation of the RNN model shown in (71), the symbolic
linguistic units are directly represented as one-hot vectors of yt as a function of
time t. No mapping to separate continuous-valued “phonetic” vectors are needed.
While the one-hot coding ofyt vectors is localist, the hidden state vectorh provides
a distributed representation and thus allows the model to store a lot of information
about the past in a highly efficient manner. Importantly, there is no longer a notion
of label-specific parameter sets of WWWlt andΩΩΩlt as in the hidden dynamic model.
The weight parameters in the RNN are shared across all linguistic label classes.
This enables direct discriminative learning for the RNN. Inaddition, the distributed
representation used by the hidden layer of the RNN allows efficient and redundant
storage of information, and has the capacity to automatically disentangle variation
factors embedded in the data. However, as inherent in distributed representations
discussed earlier, the RNN also carries with them the difficulty of interpreting the
parameters and hidden states, and the difficulty of modelingstructure.

6.3 Latent Explanatory Variables versus End-to-End
Discriminative Learning

An obvious strength of the localist representation as adopted by the hidden dynamic
models for deep speech structure is that the model parameters and the latent (i.e.
hidden) state variables are explainable and easy to diagnose. In fact, one main mo-
tivation of many of such models is that the knowledge of hierarchical structure in
speech production in terms of articulatory and vocal tract resonance dynamics can
be directly (but approximately with a clear sense of the degree of approximation)
incorporated into the design of the models [12,19,20,22,31,37,66,68,83,102,106].
Practical benefits of using interpretable, localist representation of hidden state vec-
tors include sensible ways of initializing the parameters to be learned (e.g., with
extracted formants for initializing hidden variables composed of vocal tract reso-
nances), and straightforward methods of diagnosing analyzing errors during model
implementation. Since localist representations, unlike their distributed counterpart,
do not superimpose patterns for signaling the presence of different linguistic labels,
the hidden state variables not only are explanatory but alsounambiguous. Further,
the interpretable nature of the models allows complex causal and structured rela-
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tionships to be built into them, free from the common difficulty associated with dis-
tributed representations. In fact, the hidden dynamic models have been constructed
with many layers in the hierarchical hidden space, all with clear physical embodi-
ment in speech production; e.g., Chapter 2 in [23]. However,the complex structure
makes it very difficult to do discriminative parameter learning. As a result, nearly all
versions of hidden dynamic models have adopted maximum-likelihood learning or
data fitting approaches. For example, the use of linear or nonlinear Kalman filtering
(E step of the EM algorithm) for learning the parameters in the generative state-
space models has been applied to only maximum likelihood estimates [95,101].

In contrast, the learning algorithm of BPTT commonly used for end-to-end train-
ing of the RNN with distributed representations for the hidden states performs dis-
criminative training by directly minimizing linguistic label prediction errors. It is
straightforward to do so in the formulation of the learning objective because of each
element in the hidden state vector contributes to all linguistic labels due to the very
nature of the distributed representation. It is very unnatural and difficult to do so in
the generative hidden dynamic model based on localist representations of the hidden
states, where each state and the associated model parameters typically contribute to
only one particular linguistic unit, which is used to index the set of model parame-
ters.

6.4 Parsimonious versus Massive Parameters

The final aspect of comparisons between the hidden dynamic model and the RNN
concerns different ways to parameterize these two types of models. Due to the inter-
pretable latent states in the hidden dynamic model as well asthe parameters associ-
ated with them, speech knowledge can be used in the design of the model, leaving
the size of free parameters to be relatively small. For example, when vocal tract
resonance vectors are used to represent the hidden dynamics, a dimension of eight
appears to be sufficient to capture the prominent dynamic properties responsible for
the observed acoustic dynamics. Somewhat higher dimensionality is needed with the
use of the hidden dynamic vectors associated with the articulators’ configuration in
speech production. The use of such parsimonious parameter sets, often called “small
is good”, is also facilitated by the localist representation of hidden state components
and the related parameters that are connected or indexed to aspecific linguistic unit.
This contrasts with the distributed representation in the RNN where both the hid-
den state vector elements and the connecting weights are shared across all linguistic
unit, thereby demanding many folds of more model parameters.

The ability to use speech-domain knowledge to construct themodel with a parsi-
monious parameter set is both a blessing and a curse. Examples of such knowledge
used in the past are the target-directed and smooth (i.e., non-oscillatory) hidden
dynamics within each phone segment, an analytical relationship between the vocal
tract resonance vector (both resonance frequencies and bandwidths), and both an-
ticipatory and regressive types of coarticulation expressed in the latent space as a
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result of the the hidden dynamics. With the right predictionof time-varying trajec-
tories in the hidden space and then causally in the observed acoustic space, powerful
constraints can be placed in the model formulation to reduceover-generation in the
model space and to avoid unnecessarily large model capacity. On the other hand, the
use of speech knowledge limits the growth of the model size asmore data are made
available in training. For example, when the dimensionality of the vocal tract reso-
nance vectors goes beyond eight, many advantages of interpretable hidden vectors
no longer hold. Since speech knowledge is necessarily incomplete, the constraints
imposed on the model structure may be outweighed by the opportunity lost with
increasingly large amounts of training data and by the incomplete knowledge.

In contrast, the RNN uses hardly any speech knowledge to constrain the model
space due to the inherent difficulty of interpreting the ambiguous hidden state rep-
resented in a distributed manner. As such, the RNN in principle has the freedom
to use massive parameters in keeping with the growing size ofthe training data.
Lack of constraints may cause the model to over-generalize.This, together with
the known difficulties of the various learning algorithms for the RNN as analyzed
in [6] and reviewed in Section 5, has limited the progress of using RNNs in speech
recognition for many years until recently. Some recent progress of RNNs applied
to speech recognition involves various methods of introducing constraints either in
the model construction or in the implementation of learningalgorithms. For exam-
ple, in the study reported in [49], the RNN’s hidden state is designed with memory
units, which, while constraining the variations of the recurrent hidden units and the
associated weight parameters, still allow the massive model parameters to be used
by simply increasing the size of the memory units. Separately, the RNN can also be
constrained during the learning stage, where the size of thegradient computed by
BPTT is limited by a threshold to avoid explosion as reportedin [6, 75] or where
the range of the permissible RNN parameters are constrainedto be within what the
“echo-state property” would allow [13,25].

6.5 Comparing recognition accuracy of the two types of models

Given the analysis on and comparisons presented so far in this section between the
generative hidden dynamic model using localist representations and the discrimina-
tive RNN using distributed representations, we see both types of the models have
respective strengths and weaknesses. Here we compare the empirical performance
of the two types of models in terms of speech recognition accuracy. For consis-
tency reasons, we use the TIMIT phone recognition task for the comparison since
no other common tasks have been used to assess both types of models in a con-
sistent manner. It is important to point out that both types of the dynamic models
are much more difficult to implement than other models in morecommon use for
speech recogition, e.g. the GMM-HMM and DNN-HMM. While the hidden dy-
namic models have been evaluated on the large vocabulary tasks involving Switch-
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board databases, e.g., [12, 66, 68, 86], the RNN has been mainly evaluated on the
TIMIT task, e.g., [13,25,49,90].

One particular version of the hidden dynamic model, called the hidden trajectory
model, was developed and evaluated after careful design with approximations aimed
to overcome the various difficulties associated with localist representations as dis-
cussed earlier in this section [38–40]. The main approximation involves using the
finite impulse response filter to replace the infinite impulseresponse one as in the
original state equation (67) of the state space formulationof the model. This version
gives 75.2% phone recognition accuracy as reported in [38],somewhat higher than
73.9% obtained by a plain version of the RNN (but with very careful engineering) as
reported in Table I (on page 303) of [90] and somewhat lower than 76.1% obtained
by an elaborated version of the RNN with LSTM memory units without stacking as
reported in Table I (on page 4) of [49]. (With less careful engineering, the plain RNN
could only achieve 71.8% accuracy as reported in [25].) Thiscomparison shows that
the top-down generative hidden dynamic model based on localist representation of
the hidden state performs similarly to the bottom-up discriminative RNN based on
distributed representation of the hidden state. This is understandable due to the pros
and cons of these different types of models analyzed throughout this section.

7 Summary and Discussions on Future Directions

This paper provides an overview on a rather wide range of computational models
developed for speech recognition over the past 20 some years. These models are
characterized by the use of linear or nonlinear dynamics in the hidden space not
directly observed. The temporal unfolding of these dynamicsequence models make
the related networks deep, with the depth being the length ofthe data sequence to be
modeled. Among all the models surveyed in this chapter, there are two fundamen-
tally opposing categories. First, we have the top-down hidden dynamic models of a
generative nature. The hidden state adopts the localist representation with explicit
physical interpretation and the model parameters are indexed with respect to each
of the linguistic/phonetic classes in a parsimonious manner. Second, we have the
bottom-up recurrent neural network (RNN) of a discriminative nature. The hidden
state adopts the distributed representation with each unitin the hidden state or layer
contributing to all linguistic classes.

Sections 2 and 3 in the early part of this chapter are devoted to the first, genera-
tive type of the dynamic models. Section 4 describes an interesting class of the deep
neural network models (DNN) where the network with high depth is constructed
independently of the length of the data sequence. In this sense, the DNN technically
does not belong to the class of deep dynamic network models discussed above. We
include the DNN in this chapter not only due to its prominent role in the current
speech recognition practice but also due to the interestingway in which the genera-
tive DBN is integrated into the overall DNN learning. In Section 4, we also discuss
how sequence dynamics, an essential part for any sensible speech model, is incor-
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porated into the DNN-based speech model using the HMM as in interface. Section
5 then turns to detailed technical reviews on the second typeof the (true) dynamic
and deep network models for speech, the RNN, which is viewed as a generalization
of the DNN where the network’s depth is linked to the length ofthe data sequence.

The most important material of the chapter is Section 6, which compares the
two types of the deep, dynamic models in four incisive aspects. The most critical
aspect of the discussion is the localist versus distributedrepresentations for the hid-
den states, with the respective strengths and weaknesses analysized in detail. The
recognition accuracy achieved by both types of the models isshown to be compa-
rable between the two, implying that the strengths and weaknesses associated with
the different model types balance out with each other. (We have analyzed the error
patterns and found rather distinct errors produced by the generative hidden dynamic
model and by the RNN although the overall error rates are comparable.)

The comprehensive comparisons conducted in Section 6 shed insights into the
question of how to leverage the strengths of both types of models while overcom-
ing their respective weaknesses. Analyzing this future direction is actually the main
motivation of this chapter. The integration of the two distinct types of generative
and discriminative models may be done blindly as in the case discussed in Section
4, where the generative DBN is used effectively to initialize or pre-train the discrim-
inative DNN. However, much better strategies can be pursuedas present and future
directions, given our sufficient understanding by now of thenature of the respec-
tive strengths and weaknesses associated with the two modeltypes as elaborated in
Section 6. As an example, one weakness associated with the discriminative RNN,
which we briefly mentioned in Section 6.2, is that distributed representations are
not suitable for input to the network. This difficulty has been circumvented in the
preliminary work reported in [25] by first using the DNN to extract input features,
which gains the advantages of distributed representationsembedded in the hidden
layers of the DNN. Then the DNN-extracted features equippedwith distributed rep-
resentations of the data are fed into the subsequent RNN, producing dramatic im-
provement of phone recognition accuracy from 71.8% to as high as 81.2%. Other
ways to cleverly get around the problems with localist representations in the gener-
ative, deep, and dynamic model and the problems with distributed representations
in the discriminative model counterpart are expected to also improve speech recog-
nition performance. As a further example to this end, we alsodiscussed in Section 6
the strength of the localist representation in easy interpretation of the hidden space
of the model. One can take advantage of this strength by usingthe generative model
to create new features that can be effectively combined withother features based
on distributed representations. Some advanced approximate inference and learning
techniques developed for deep generative models (e.g., [97,105]) may facilitate suc-
cessful implementations of this strategy by learning better generative models than
the several existing inference and learning methods in the literature (e.g., variational
EM and extended Kalman filtering) discussed earlier in this chapter.
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