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Abstract Deep hierarchical structure with multiple layers of hiddgrace in hu-
man speech is intrinsically connected to its dynamic charestics manifested in
all levels of speech production and perception. The desiceam attempt to cap-
italize on a (superficial) understanding of this deep spetaltture helped ignite
the recent surge of interest in the deep learning approasppeech recognition and
related applicationg [2B8,29,51], and a more thorough wideding of the deep
structure of speech dynamics and the related computatiepedsentations is ex-
pected to further advance the research progress in speguiotegy. In this chap-
ter, we first survey a series of studies on representing speea hidden space
using dynamic systems and recurrent neural networks, esimhg different ways
of learning the model parameters and subsequently the mitdéure representa-
tions of time-varying speech data. We analyze and summthnigeich set of deep,
dynamic speech models into two major categories: 1) toppdgenerative models
adopting localist representations of speech classes ahatés in the hidden space;
and 2) bottom-up, discriminative models adopting disteloLrepresentations. With
detailed examinations of and comparisons between thesgytves of models, we
focus on the localist versus distributed representatisrikeir respective hallmarks
and defining characteristics. Future directions are digsisnd analyzed of ways
to leverage the strengths of both the localist and disteibuepresentations while
overcoming their respective weaknesses, beyond blingratien of the two by us-
ing the generative model to pre-train the discriminative as a popular method of
training deep neural networks.
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1 Introduction

Before around 2010-2011, speech recognition technologyblean dominated by
a “shallow” architecture — hidden Markov models (HMMs) withch state char-
acterized by a Gaussian mixture model (GMM). While significeechnological
success had been achieved using complex and carefully esrguh variants of
GMM-HMMs and acoustic features suitable for them, reseenstong before that
time had clearly realized that the next generation of speecbgnition technol-
ogy would require solutions to many new technical challsngeler diversified de-
ployment environments and that overcoming these chalkengeld likely require
“deep” architectures that can at least functionally ensulaé human speech system
known to have dynamic and hierarchical structure in bottdpetion and percep-
tion [29]36[41,96]. An attempt to incorporate a primitiegel of understanding of
this deep speech structure, initiated at the 2009 NIPS Wogken Deep Learning
for Speech Recognition and Related Application$ [29], ledgdd create an impetus
in the speech recognition community to pursue a deep repiasn learning ap-
proach based on the deep neural network (DNN) architecttieh was pioneered
by the machine learning community only a few years earli@;§&] but rapidly
evolved into the new state of the art in speech recognitidh industry-wide adop-
tion [16,28/29,51, 59, 78, 93,194, 108]. In the mean time,ais been recognized
that the DNN approach (with its interface to the HMM) has natdeled speech
dynamics properly. The deep and temporally recurrent hewtsavork (RNN) has
been developed to overcome this problém [13, 49], whererttegrial representa-
tion of dynamic speech features is discriminatively forrbgdeeding the low-level
acoustic features into the hidden layer together with tleeimrent hidden features
from the past history. Even without stacking RNNs one on tognother as carried
out in [49] or feeding DNN features as explored in][13], an RK#¢If is a deep
model since temporal unfolding of the RNN creates as margrfay the network
as the length of the input speech utterance.

On the other hand, before the recent rise of deep learningpieech modeling
and recognition, many earlier attempts had been made tdagesemputational ar-
chitectures that are “deeper” than the conventional GMMMikskchitecture. One
prominent class of such models are hidden dynamic modelsaithe internal rep-
resentation of dynamic speech features is generated glishedlly from the higher
levels in the overall deep speech model hierarchy [12,13 2,102]. De-
spite separate developments of the RNNs and of the hiddesinadigrmodels, they
share the same motivation — more realistically represgritie dynamic structure
of speech. Nevertheless, the different ways in which thesetypes of deep dy-
namic models are constructed endow them with distinct pnalscans. Investiga-
tions of the contrast between the two model types and thdagityito each other
will yield insights into the strategies for developing neypés of deep dynamic
models with the hidden representations of speech featupisr to the existing
RNNs and hidden dynamic models. This forms the main motivadi this chapter.

In this chapter, we will focus on the most prominent contbettveen the above
two types of models in terms of the opposing localist andithisted representations
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adopted by the hidden layers in the models. In the distribrgpresentation adopted
by the RNNs, we cannot interpret the meaning of activity oimgle unit or neu-
ron in isolation. Rather, the meaning of the activity on aaytigular unit depends
on the activities of other units. Using distributed repreagons, multiple concepts
(i.e., phonological/linguistic symbols) can be represdrdt the same time on the
same set of neuronal units by superimposing their pattegether. The strengths
of distributed representations used by the RNN includestiass, representational
and mapping efficiency, and the embedding of symbols int¢icoous-valued vec-
tor spaces which enable the use of powerful gradient-b@&sedihg methods. The
localist representation adopted by the generative hidgeardic models has very
different properties. It offers very different advantagesasy to interpret, under-
stand, diagnose, and easy to work with. Sedflon 6 of thistehayill compare the
two types of models, in terms of the localist versus distedurepresentations as
well as other attributes, with respect to their strengthd @weaknesses in detail.
Based on such comparisons, Secfibn 7 will discuss how to#xhe advantages
of both types of models and of the representations they hdwetad while circum-
venting their weaknesses. Before that and in Secfibnd? weeHyill first provide
a detailed review on major deep dynamic models in the liteeatelevant to our
topic, focusing on the algorithms for learning model parargefrom data and for
computing the representations in the hidden spaces.

2 Generative Deep-Structured Speech Dynamics: Model
Formulation

2.1 Generative Learning in Speech Recognition

In speech recognition, the most common generative leaagipgoach is based on
the GMM-HMM; e.g., [9.:30,58,88]. A GMM-HMM is a model that seribes two
dependent random processes, an observable pmogessd a hidden Markov pro-
cessyi-t. The observation; is assumed to be “generated” by the hidden syate
according to a Gaussian mixture distribution. The GMM-HMEhde parameter-
ized byA = (m,A,B); mis a vector of state prior probabilitied,= (& j) is a state
transition probability matrix; an& = {bs,...,bn} is a set wherd; represents the
Gaussian mixture model of staje The state is typically associated with a sub-
segment of a phone in speech. One important innovation iacépeecognition is
the introduction of context-dependent states (€.9/[3R, &otivated by the desire
to reduce output variability associated with each statemancon strategy for “de-
tailed” generative modeling. A consequence of using cdrdependency is a vast
expansion of the HMM state space, which, fortunately, candrgrolled by regu-
larization methods such as state tying.

The introduction of the HMM and the related statistical noethito speech recog-
nition in mid 1970s[[?, 57] can be regarded the most signifip@amadigm shift in
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the field, as discussed inl[3]. One major reason for this eartgess was due to the
highly efficient maximum likelihood learning method invedtabout ten years ear-
lier [5]. This MLE method, often called the Baum-Welch aligom, had been the
principal way of training the HMM-based speech recognisystems until 2002,
and is still one major step (among many) in training theséesys nowadays. It is
interesting to note that the Baum-Welch algorithm servesresmajor motivating
example for the later development of the more general EqtieatMaximization
(EM) algorithm [17].

The goal of maximum likelihood learning is to minimize an erigal risk with
respect to the joint likelihood loss (extended to sequedéta),i.e.,

Remp(f) =~ In p(x .y 1 A B) (1)

wherex represents acoustic data, usually in form of a sequenceréeatctors ex-
tracted at frame-levey; represents a sequence of linguistic units. It is cruciapto a
ply certain type of regularization to improve generaliaatiThis leads to a practical
training objective referred to accuracy-regularizationvhich takes the following
general form:

J(f) = Remp(f) +yC(f) 2)

whereC(f) is a regularizer that measures “complexity” bifandy is a tradeoff

parameter. In large-vocabulary speech recognition systéns normally the case
that word-level labels are provided, while state-leveklatare latent. Moreover, in
training HMM-based speech recognition systems, paramgteyis often used as a
type of regularizatiori [55]. For example, similar acoustates of the triphones can
share the same Gaussian mixture model. In this cas€(theterm is expressed by

C(f) = |_| O (bm = bn) (3)
(mn)eT

whereTJ represents a set of tied state pairs.

The use of the generative model of HMMs, including the mogiytar Gaussian-
mixture HMM, for representing the (piece-wise stationatyhamic speech pattern
and the use of MLE for training the tied HMM parameters cdnts one of the
most prominent and successful examples of generativeitepim speech recogni-
tion. This success was firmly established by the speech némycommunity, and
has been widely spread to the machine learning and relatadhoaities; in fact,
the HMM has become a standard tool not only in speech redogtitit also in ma-
chine learning and their related fields such as bioinforesatnd natural language
processing. For many machine learning as well as speecigniiom researchers,
the success of the HMM in speech recognition is a bit surggisiue to the well-
known weaknesses of the HMM.

Another clear success of the generative learning paradigpéech recognition
is the use of the GMM-HMM as prior “knowledge” within the Begjan frame-
work for environment-robust speech recognition. The m@éaiis as follows. When
the speech signal, to be recognized, is mixed with noise otha@n non-intended
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speaker, the observation is a combination of the signaltefést and interference
of no interest, both unknown. Without prior informationetrecovery of the speech
of interest and its recognition would be ill defined and sabje gross errors. Ex-

ploiting generative models of GMM-HMMs, or often simpler G, as Bayesian

priors for “clean” speech overcomes the ill-posed probl&orther, the genera-
tive approach allows probabilistic construction of the miofbr the relationship

between the noisy speech observation, clean speech, anf@ishce, which is typ-

ically nonlinear when the log-domain features are used.tfgenerative learn-

ing approaches in speech recognition following this plofdsy are variably called

“parallel model combination’[45], vector Taylor seriesTS8) method([l, 26], and

Algonquin [44]. Notably, the comprehensive applicatiorsoth a generative learn-
ing paradigm for single-channel multitalker speech redigmis reported and re-

viewed in [89], where the authors apply successfully a nurobavell established

ML methods including loopy belief propagation and struetimean-field approx-
imation. Using this generative learning scheme, speeabgretion accuracy with

loud interfering speakers is shown to exceed human perfocema

Despite some success of GMM-HMMs in speech recognitiolir, heaknesses,
such as the conditional independence assumption, havensdidmown for speech
recognition application5[3,4]. Since the early 1990'gesh recognition researchers
have begun the development of statistical models that oaite dynamic proper-
ties of speech in the temporal dimension more faithfullynttMMs. This class
of beyond-HMM models have been variably called the stoéhastgment model
[811,/82], trended or nonstationary-state HMM[18, 24],eépry segmental model
[54,181], trajectory HMMs[[6R, 111, 112], stochastic tragy models [47], hid-
den dynamic model$ [12, 19,123,187] 65} 86,92 102], buriedkbamodels [[8],
structured speech model [40], and the hidden trajectoryeif@®] depending on
different “prior knowledge” applied to the temporal struet of speech and on var-
ious simplifying assumptions to facilitate the model impekntation. Common to
all these beyond-HMM models is some temporal trajectonycstire built into the
models, hence trajectory models. Based on the nature ofastiucture, we can
classify these models into two main categories. In the fatgory are the models
focusing on a temporal correlation structure at the “s@facoustic level. The sec-
ond category consists of hidden dynamics, where the unidgrgpeech production
mechanisms are exploited as the Bayesian prior to reprédsetemporal structure
that accounts for the observed speech pattern. When theimgafoppm the hidden
dynamic layer to the observation layer is limited to lineamd deterministic), then
the generative hidden dynamic models in the second categdoces to the first
category.

The temporal span of the generative trajectory models ih bategories above
is controlled by a sequence of linguistic labels, which seginthe full sentence into
multiple regions from left to right; hence segment models.

In a general form, the trajectory/segment models with hiddgnamics make
use of the switching state space formulation. They use teahpecursion to define
the hidden dynamicg(k), which may correspond to articulatory movement during
human speech production. Each discrete region or segg@iftsuch dynamics is
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characterized by thedependent parameter ¢, with the “state noise” denoted by
ws(K). The memory-less nonlinear mapping function is exploitelitik the hidden
dynamic vectorz(k) to the observed acoustic feature veaitk), with the “obser-
vation noise” denoted bys(k), and parameterized also by segment-dependent pa-
rameters. The combined “state equatidd” (4) and “obsemwatguation”[(b) below
form a general switching nonlinear dynamic system model:

z2(k+1) = gk[z(k), As| +ws(k) (4)
o(K) = h[z(K), Qg]+ s (K). (5)

where subscriptsandk’ indicate that the functiony.] andh|.] are time varying and
may be asynchronous with each ottsar s denotes the dynamic region correlated
with phonetic categories.

The model expressed byl (4) arid (5) is not only dynamic, but déep since
there is a hierarchy of information flow from discrete lingtic symbolss to the
hidden dynamic vectoz(k) and then to the observed vectar&k). We call this
type of model a generative deep-structured dynamic mo@ehg3'generative” here
means that the model provides a causal relationship froifidpglinguistic labels to
intermediate and then to the (bottom) observed acoustiahas. This distinguishes
from the “discriminative” deep-structured models whereitiformation flow starts
from the (bottom) observed acoustic variables to the inéeliate representations
and then to the (top) linguistic labels.

There have been several studies on switching nonlinear spetce models for
speech recognition, both theoretidall[21, 37] and expertald12/61[ 65, 86]. The
specific forms of the functions @j[z(k),As] andhy [z(K'), Q<] and their parame-
terization are determined by prior knowledge based on thentiunderstanding of
the nature of the temporal dimension in speech. In particstiate equatiofi{4) takes
into account the temporal elasticity in spontaneous speadtits correlation with
the “spatial” properties in hidden speech dynamics suchtasiatory positions or
vocal tract resonance frequencies; [23] for a compsareereview of this body
of work.

When nonlinear functions afy[z(k),As] andhy([z(K'),Q¢] in @) and [5) are
reduced to linear functions (and when synchrony betweervtbeequations are
eliminated), the switching nonlinear dynamic system maslekduced to its lin-
ear counterpart, the switching linear dynamic system.ntlma viewed as a hybrid
of standard HMMs and linear dynamical systems, with a gémeathematical de-
scription of

Z(kJr 1) = AsZ(k) + BsWs(k) (6)
o(k) = Csz(k) + vs(k). (7)

There has also been an interesting set of work on the swgdhiear dynamic
system applied to speech recognition. The early set ofesuative been carefully
reviewed in [[81] for generative speech modeling and forpsesh recognition ap-
plications. The studies reported in_[42] 72] further applikis system model to
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noise-robust speech recognition and explored severabaippate inference tech-
niques, overcoming intractability in decoding and paramétarning. The study
reported in[[91] applied another approximate inferencénae, a special type
of Gibbs sampling commonly used in machine learning, to &eslp recognition
problem.

During the development of trajectory/segment models feesh recognition, a
number of machine learning techniques invented origiriallyon-speech recogni-
tion communities, e.g. variational learning [61], pseBRyesian([4Z, 65], Kalman
filtering [81], extended Kalman filtering [23,37,101], Gibsampling[[91], orthog-
onal polynomial regression [24], etc., have been usefypfiad with modifications
and improvementto suit the speech-specific propertiesgerts recognition appli-
cations. However, the success has mostly been limited td-so#e tasks. We can
identify four main sources of difficulty (as well as new opfamities) in successful
applications of trajectory/segment models to large-sspéech recognition. First,
scientific knowledge on the precise nature of the underlgiigulatory speech dy-
namics and its deeper articulatory control mechanismsrigdan complete. Cou-
pled with the need for efficient computation in training aretadding for speech
recognition applications, such knowledge has been forred tigain simplified, re-
ducing the modeling power and precision further. Secondtrmbthe work in this
area has been placed within the generative learning settangng a goal of pro-
viding parsimonious accounts (with small parameter sets3ffeech variations due
to contextual factors and co-articulation. In contrasg, tbcent joint development
of deep learning by both ML and speech recognition commesyitivhich we will
review in Sectiofill, combines generative and discrimiedéarning paradigms and
makes use of massive instead of parsimonious parametense Ba huge potential
for synergy of research here. Third, although structural Islrning of switching
dynamic systems via Bayesian nonparametrics has beenintaaurd producing
successful applications in a number of ML and signal prangsasks (e.g. the tu-
torial paper([43]), it has not entered mainstream speeabgréton; only isolated
studies have been reported on using Bayesian nonparasfetrimodeling aspects
of speech dynamic§ [83] and for language modeling [14]. I§inaost of the tra-
jectory/segment models developed by the speech recogmitimmunity have fo-
cused on only isolated aspects of speech dynamics rootegmitiman production
mechanisms, and have been constructed using relativepfesand largely standard
forms of dynamic systems.

In the remainder of this section, we will review two speciases of the general
dynamic models of speech representedDy (4o (7) with middeicture. These
models are considered to be “deep”, in that the hidden streiés modeled as an
intermediate information processing stage connectingditigeiistic information to
the observable acoustics.
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2.2 A Hidden Dynamic Model with Nonlinear Observation
Equation

Let us consider in detail the hidden dynamic model (HDM) gsihe extended
Kalman filter [102]. The hidden dynamics is chosen to be thei#ract-resonances
(VTRs), which are closely related to the smooth and targietated movement of
the articulators. The first component of the HDM, also catleel state equation,
is a target-directed, continuously-valued (hidden) Margoocess that is used to
describe the hidden VTR dynamics according to:

z(k+1) = Psz(K) + (Im— Ps) Ts+w(K) (8)

wherez(k) is themx 1 VTR state vectorT s is themx 1 phone target vector pa-
rameter andPs is them x m diagonal “time-constant” matrix parameter associated
with the phone regime The phone regime is used to describe the segment of speech
that is attributed to the phone identified by the model pBir T's). The process noise
w(K) is an i.i.d, zero-mean, Gaussian process with covari@ndée target-directed
nature of the process is evident by noting th@) — Ts ask — « independent of
the initial value of the state.

The second component of the HDM is the observation equatied to describe
the static mapping from the lower dimensional hidden VTResteector (typically
m = 3 for the first three VTR resonances) to the higher dimensiohservable
acoustic feature vector. The general form of this mappingpset in the current
study assumes a static, multivariate nonlinear mappingctiom as follows:

o(k) = hr (z(k)) + v(K).- (9)

where then x 1 acoustic observation(k) is the set of acoustic feature vectors
for framek (the usual Mel-frequency cepstral co-efficient (MFCC) teas with
n = 12), andh;(z(k)) is then x m static, non-linear mapping function on the state
vectorz(k) associated with the manner of articulatiomhe manner of articulation
describes how the phone is articulated to produce the dcabservations arising
from the speech production process and will usually be diffefor the different
broad phonetic classes (e.g. vowels, voiced stops, etbg observation nois&k)
is an i.i.d, zero-mean, Gaussian process with covarignCene multivariate map-
ping functionh, (z(k)) is implemented by atJ-n feedforward multi-layer percep-
tron (MLP) with J hidden nodes, a linear activation function on the outpuéiay
and the antisymmetric hyperbolic tangent function on titelén layer. There is a
unique MLP network for each distinct

The switching state behaviour of this model is represenyexhid-state discrete-
time random sequence, where: s(k) € [1,2...,M] is a random variable that takes
on one of theM possible “phone” regimes (or states) at tiknén additionalR-state
discrete-time random sequence also exists where (k) € [1,2,...R] is a random
variable that takes on one of tRpossible manner of articulation states at tiknin
practice both sequences are unknown and need to be estjrhatbdvhen training
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the model (i.e. estimating the parameters) and testingugiag the model to rescore
or decode an unknown observation sequence).

An important property of this model is the continuity of thidden state variable
z(k) across phone regimes. That igk) at the start of segment+ 1 is set to the
value computed at the end of segmenthis provides a long-span continuity con-
straint across adjacent phone regimes that structuralijefsdhe inherent context
dependencies and coarticulatory effects [35].

An important concern is the specific modelling of the stateashgic and observa-
tion process. The target-directed state dynamic is re&debat requires knowledge
of the per-phone target and time-constant values. If thesa@t known these have
to be jointly estimated. The non-linear mapping from theestaector to observa-
tion vector is more problematic as the MLP weights also haveet estimated and
this creates a system with too many degrees of freedom.e@ssilutions to do
this have included: using prior VTR measurement data topgaddently train the
MLP [102], using a more simple linear mapping[[61], or resing to observation
features like LPC cepstra which permit an analytical magpiuith the VTR res-
onances[[31]. Finally we also assume that the phone sequerssgmentation of
model regimess(k), is known in advance, which, in practice, requires trairming
phonetically transcribed speech corpora.

2.3 A Linear Hidden Dynamic Model Amenable to Variational EM
Training

An alternative approach to implementing the hidden dynamddel is to reformu-
late it in the context of a segmental switching state spacdeand to apply the
variational EM algorithm to learn the model parameters. $tate equation and
observation equation in this reformulated model, as desdrin [61], are

Xn = A3Xn71 + (I - A3>US+ W7 (10)
Yn = CsXn+Cs+V, (11)

wheren ands are frame number and phone index respectivelg, the hidden dy-
namics ang is the acoustic feature vector (such as MFCC). The hiddearmtjcs is
chosen to be the vocal-tract-resonances (VTRs). The statgien [1D) is a linear
dynamic equation with phone dependent system maAtgiand target vectous and
with built-in continuity constraints across the phone bdames. The observation
equation[(Il1) represents a phone-dependent VTR-to-acdingtar mapping. The
choice of linear mapping is mainly due to the difficulty of atghm development.
The resulting algorithm can also be generalized to mixtofdmear mapping and
piece-wise linear mapping within a phone. Gaussian whiisesav, andv, are
added to both the state and observation equations to makedtel probabilistic.
Similar models have been proposed and used previdusly?R5, 6



10 Li Deng and Roberto Togneri

To facilitate algorithm development, the model is also esged in terms of prob-
ability distributions:

P(sh=5S|sh1=9) = T,
P(Xn | Sh=5Xn-1) = N(Xn | AsXn—1+ 8s,Bs),
P(Yn | $h=$,Xn) = N(yYn | CeXn+Cs,Ds), (12)

wherertg is the phone transition probability matrias = (I — As)us andN denotes
a Gaussian distribution with mean and precision matrixgjise of the covariance
matrix) as the parameters. The joint distribution over thére time sequence is
given by

P(YLN:X1n,Stn) = [] P(YnlSh: Xn) P(Xn|Sn, Xn—1) P(SnSh-1)- (13)
n
_/‘s\n—l _/‘s\n _£x+1 R
L L L L1
'x)g-l r x}g r 'x)g+l r
107
| | |
yn—l yn ynﬂ

Fig. 1 HDM represented as a Bayesian network

The conditional independence relations of the model careba smore clearly
from a graphic form (Bayesian network) as shown in Elg. 1.

There are a few issues to be solved before any estimatiomoritey algorithms
can be applied to speech, and they are discussed here:

1. Parameter initialization: It is important to initialitee parameters appropriately
for an iterative local optimization procedure such as EMe HDM enjoys the
benefit of being closely related to speech-specific knovdeattyd some key pa-
rameters, especially the phone targets, can be relialtiglined from a formant
synthesizer. Due to the small number of total parametengrstcan be easily
initialized by a small amount of hand-labeled VTR data.

2. Segmental constraint: The probabilistic form of the mMadlews phone transi-
tions to occur at each frame, which is undesirable for spekctraining, we
construct a series of time-varying transition matrimgsbased on the given pho-
netic transcript (or one created from a lexicon if only wahiscripts are given)
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and some initial segmentation to impose the segmental reamisand force the
discrete-state component of the model to be consistenttivétphonetic tran-
script. Such an approach also greatly reduces the numberssilpe phones
that have to be summed at each time step.

3 Generative Deep-Structured Speech Dynamics: Model
Estimation

3.1 Learning a Hidden Dynamic Model Using the Extended
Kalman Filter

The estimation problem that we investigate is as followseBimultiple sets of
observation sequenceaxk), for each distinct phone regime, we seek to determine
the optimal estimates for the unknown values of the statexéon paramete® and

T, and the observation-equation parametéfsyhich is the MLP weight vector of
the nonlinear mapping functioln(z(k)). For clarity of notation we will drop the

s andr subscripts since it is understood the estimation equatohs apply for
observations taken over a particular phone regime segment.

The expectation-maximisation (EM) algorithm is a widelyedsalgorithm for
the estimation of the parameters in general state-spacelmadd in the current
research on the HDM_[34, 35]. The EM algorithm provides netinegtes of the
parameters after the set of all availablebservation vectors have been presented.
The EM algorithm can be considered a batch or off-line egtomamethod most
suited to applications where all of the data is available.\e present the EM
algorithm for the specific type of model given Igy (8) ahtl (d)dwing [101[102].

E-step

For a sequence & observation vectors, the E-step involves computationeétn-
ditional expectation of the log joint likelihood betwegn= {z(0), z(1), ..., z(N)}
andO = {0(0), o(1), ..., o(N)} given the observatio® and parameter s@ esti-
mated at the previous step, that is:

Q(6/0) = E{logL(Z,0|0)|0,0)

1N71 o
=Y En[ghQ 'eq|0,0]

1N71 o
-5 > En[eR 'ece|0,0] +const (14)
k=0
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wheregg = [z(k+ 1) — ®z(k) — (I — ®)T] andep = [o(k) — h(z(k))] andEy de-
notes the expectation based Nrsamples. The standard EKF smoother is used to
provide estimates of the hidden dynamic variallé&) = Z(k|N) = Ex[z(k)|O, O].

The Jacobian matrix for thex m non-linear mapping functioh(z(k)) used in the
EKF recursion is given by:

I 2 1K) = [ 90;(k+1) }

07 (K+ 1]K)

- [ZWZJ Wi Z(k+ 1|k))Wlh] (15)

whereoj(k) is the j'" component of the observation vector at tikez (k + 1)
is theit™ component of the predicted state vedtik+ 1/k) at timek, W} is theit"
component of the MLP weight vectdi,, of nodehin layerl (layer 1 is the hidden
layer and layer 2 is the output layed)js the number of nodes in the hidden layer
andg (x) is the derivative of the activation function in the hiddeyeda

It should be noted that the continuity conditionziR) is also applied to the EKF
error covariance.

M-step

In the M-step theQ function in [I4) is maximised with respect to the parameger s
O = (T,®,W). We consider the first summation involving the parameteasd®:

N—1
Qi1(2,0,0) = %EN[allelemo,@] (16)
k=

Minimisation of Q; ,which implies maximisation o , proceeds by setting the
partial derivatives with respect and® to zero, that is:

% O ’:Z_:EN{[z(k—i— 1) —dz(k) — (I —®)T][T—2(k)]"|0,0} =0 (17)
99 1 e 2k 1) - dz(k)— (1 - ®)T][0.8) =0 (18)
aT k;) N e

The resulting equations to be solved are nonlinear higleraduations in terms
of ® andT:

NOTTT —dTAT —ATT —NTTT +TAT+BTT+®C-D=0 (19)
B—®A—NT+NOT =0 (20)
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where:

N-1 N-1
A= kZO En[z(k)[0,0], C= k; En[z(k)z(K)T|0, O] (21)
B= NfEN [z(k+1)|0,0], D= NfEN [z(k+1)z(k)"|O,0] (22)
k=0 k=0

are the relevant sufficient statistics that are computedheyEKF smoother during
the E-step. By simplifyind(19) an@{R0) we can first form:

®=xy! (23)

where® is the estimate of the system matrix, and then:
~ 1 ~ ~
T= N(I —®) (B-DA) (24)

whereT is the estimate of the target vector.
We now consider the second summation of @&inction in [14) involving the
parameteWw:

N—-1
QZ(Zvoa@) = % En [61—2R716K2|07_] (25)
k=

Minimisation of Q», which leads to maximisation @, proceeds by setting the
partial derivatives with respect W to zero, that is:

N-1

aw = 2. EvGw [o(K) — h(z(k)|%}|0,8] = 0 (26)

That is, Q. is minimised when the error signa, = o(k) — h(z(k)), is min-
imised. Since the multi-variate mapping function is a feedfrd MLP network,
then the standard back-propagation is used %(ikfN) as the input and(k) as the
desired output to provide estimates of the MLP weigis,

3.2 Learning a Hidden Dynamic Model Using Variational EM

Model Inference and Learning

For the system described By {10)7(13 inference refers tadlmilation of posterior
distribution p(s1:n, X1:N | Y1:n) given all model parameters, while learning refers to
the estimation of model parameté&s= {A;.s,a;1:s,B1:s,C1:5,C1:5,D1:s} given the
complete distribution, usually in a maximum likelihood (W4ense. Under this EM
framework, inference is the E step and learning is the M stebis model, however,
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the posterior turns out to be a Gaussian mixture whose nuoflecemponents is ex-
ponential in the number of states (or phones) and framedsahdrefore computa-
tionally intractable. Here we develop two approximatiaradled GMM and HMM
posteriors, respectively, based wariational techniques. The idea is to choose the
approximate posteriaf(sin, X1:n | Y1:n) With a sensible and tractable structure and
optimize it by minimizing its Kullback-Liebler (KL) distare to the exact posterior.
It turns out that this optimization can be performed effitemwithout having to
compute the exact (but intractable) posterior.

It is necessary to say a few words about previous approacttesther related
work in the literature before presenting the current onestMi our previous al-
gorithms are developed under the assumption of hard phamedaoies which are
either known or estimated separately by some heuristic odstf65%], and the in-
tractable exact posterior is approximated by a single Gais$his is also true for
most of the work in a broad range of literatures for switchstage space models. In
contrast, the approach presented here uses soft phonerassits that are estimated
under a unified EM framework as in [46,85], but unlikel[46,8%8]r approximation
doesn't factorizes from x and results in a multimodal posterior oveinstead of a
unimodal one, which is justifiably more suitable for speegpl@ations.

The GMM posterior

Under this approximatioq is restricted to be:

a(sun,Xan) = []d(Xn [ sn)d(sn), (27)

where from now on the dependence of tifig on the datay is omitted but always
implied.

Minimizing the KL divergence betweemnandp is equivalent to maximizing the
following functional,

Fld =3 /dxl:N q(St:N, X1N) -
SIN

[log p(y1n, X1:N, Sun) — loga(sin, Xan)] s (28)

which is also a lower bound of the likelihood function and\wé subsequently used
as the objective function in the learning (M) step.

By taking calculus of variationto optimizeJ w.r.t. q(Xn|S) andq(sn), it turns
out that each componeq(x,|s») follows a Gaussian distribution, i.e.,

Ad(Xn [ Sn=5) =N(Xn | Psn;sn); (29)
and the parametepy; , andl" s, are given by

Msn= C;—DSCS+ Bs+ ; Vs’,n+lAng’As’a (30)
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rs,nps’n = BS(AS; Vs’,nflps’,nfl + aS)
+ ; Ve ni1ASBs (Pg i1 — as)

+ Cl— Ds(Yn—Cs), (31)

whereysn = g(sh = S) and is computed from

lOgVSn = fl(Pg,mrs,m@)Jr fZ(ps’,n—lvrS’,n—lve>
+ f3(ps’,n+1vrs’,n+lae)- (32)

and thef’s denote linear functions whose expressions are too lgrigthe written
down here. Eq{30) an@ (B1) are coupled linear equationsigivedel parameters
© andy’s and can be solved efficiently by sparse matrix technigigs32) is a
nonlinear equation by itself and has to be solved by itenatims [30),[(31) and (32)
constitute the inference or E step of the algorithm and haveetsolved iteratively
all together after some proper initializations.

Model learning involves taking derivatives 8fw.r.t. all the model parameters
and setting them to zero. This results in a set of linear égustvhich can be solved
easily. Since this step is standard in all EM approachesndgtlpecial difficulties,
the detailed equations are omitted.

The HMM posterior

Under this approximatioq is taken to be

N N
q(sun,Xen) = [ an | sn) - [LQ(Sn | $n-1) - q(sn)- (33)

n=1

First we define two posterior transition probabilities:

Ngsn = d(S =S| $-1=59),
_ ”lgs,n-rlysm7 (34)

ﬁs’s,n = Q(Sn = S| Syl = S/)
Yo' n+1

wherey is the same as in the previous section. It turns out that @aeis,) is again

a Gaussian distribution, am , andl” s , are given by coupled linear equations hav-
ing the same form a§(B0) arld {31), except thatthare replaced by's andn’s.
These equations can again be solved by sparse matrix teemifhey’s andn’s
themselves can be solved by the following efficient backward/ard procedure
given the model parameters and all pe andl"’s.

1. Initialize:zsn41 = 1 for all s,
2. Backward pass: far=N,---,2
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Zsn = gexp( fssf,n)zs’,n+l7

1
Nsgn = —— exp( fsé,n)zs’,nJrl . (35)
Zsn
3. Forn=1:
7= exp(fs1)zs2,
S

1
Ys1 = Z—leXp(fs,l)z&z. (36)
4. Forward pass: fan=2,--- N

Ysn = ;ns’s,nys’,nfl . (37)

Again, f’s are functions of thg’s, I's and model parameters whose expressions
are too lengthy to be given here. Also remember that the cetefd step still has to
iterate between the calculation @fx, | sh) andq(s, | s»—1). The model learning is
quite similar to the GMM case and the detailed equations aniged.

There are a number of important issues to be addressed whenthe above
algorithms for speech:

1. Hidden dynamics recovery: Itis both informative (espégifor debugging) and
desirable to recover the hidden VTR, and it is calculated by:

Xn = Z VS,nps,n (38)
S

for both the GMM and HMM posterior assumptions.

2. Recognition strategy: Here we seek the most likely phatrience given a
sequence of observations. For the GMM case, this is simgigraplished by
choosing the maximum at each frame; while for the HMM posterior we need
to perform Viterbi decoding by usingandn, e.g., the initialization and induc-
tion equation for the scoring are:

Vi(S) = Ys1, Vi(s) = 1235)(8 [Vn—l(s)rlsé,n] Ys n- (39)
It is highly desirable to incorporate segmental (or minimafation) constraint
and language weighting in the recognition stage and thisnjgemented by
Viterbi decoding with modified transition matrices for batases (in GMM the
transition matrix is created from scratch while in HMM theadlges are merged
into ). Such a strategy allows the hidden dynamic model to be usetione
recognition directlywithoutresorting to an N-best list provided by HMM.
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4 Discriminative Deep Neural Networks Aided by Generative
Pre-Training

After providing detailed reviews of a range of generativeplstructured dynamic
models of speech, we now turn to their discriminative corpag. Recall that the
generative model expressed By (4) ddd (5) have deep steyetith causal relations
from the top discrete linguistic symbodsthrough to hidden dynamic vectors and
then to the bottom observed vectors. The reverse diredtiom bottom to top, is
referred to as the inference step, which is required to p@rfearning (i.e., training)
and for decoding in speech recognition whose goal is to es#iithe linguistic sym-
bol sequences. Now we discuss the discriminative versiahefeep-structured
models, where the direct information flow is opposite: bottap rather top down.
That is, the observed acoustic variables are used to diresthpute the interme-
diate representations, and then to compute the estimaitegafidtic labels. It turns
out that the deep neural network (DNN) is an excellent caatdidor this type of
model, as (non-recurrent) neural networks are known to thekmodeling power
for explicit speech dynamics.

Historically, the DNN had been very difficult to learn bef@@06 [11.80]. The
difficulty was alleviated around 2006 with the work bf [62] 5&here a generative
pre-training procedure was developed and reported. Irs#gion, we will review
this advance and the more recent impact by the DNN on speegbmiion research
and deployment. We will then analyze the weaknesses of the-Dased methods,
especially those in modeling speech dynamics. This arsbgies a natural path to
the recurrent versions of the DNN as well as their connestiomand the differences
between the generative deep-structured dynamic modefseeth reviewed in the
preceding two sections.

4.1 Restricted Boltzmann Machines

The generative pre-training procedure first reported_ in[552 starts with the re-
stricted Boltzmann machine (RBM), which is a special typevrkov random
field that has one layer of (typically Bernoulli) stochastidden units and one layer
of (typically Bernoulli or Gaussian) stochastic visibleadyservable units.

In an RBM, the joint distributiom (v, h; 8) over the visible unitv and hidden
units h, given the model parameteés is defined in terms of an energy function
E(v,h;8) of

exp(—E(v,h; 0))
Z Y
whereZ =5, Shexp(—E(v,h; 8)) is a normalization factor, and the marginal dis-

tribution that the model assigns to a visible veatdwe don't care about since it
is hidden) is

p(v,h;8) = (40)
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ex v,h; 0
p (V 9) Zh p( > ( )) )

For a Bernoulli (visible)-Bernoulli (hidden) RBM, the eggrfunction is defined
as

(41)

E(v,h;0)= ZAZW.Jvth Zlb.vI ZajhJ7 (42)

wherew;j represents the symmetric interaction term between thblgisnity; and
the hidden unihj, bj anda; are the bias terms, amdndJ are the numbers of visible
and hidden units. The conditional distributions (for Barlicstochastic variables,
i.e. binary data) can be efficiently calculated as

p(hj=1Jv;0)= <ZW|JV.+aJ> (43)
J

i=1h;0)= ijhj+bi |, 44

p(vi=1/h;6) U(lewl i+ ) (44)

whereo (x) =1/(1+exp(X)).
Similarly, for a Gaussian (visible)-Bernoulli (hidden) RBthe energy is

1 J 1 | 2 J
E(V,h;e):— WijVihj—— (Vi—bi) — ajhj, (45)
22" 22
The corresponding conditional distributions (for Berriood binary h and Gaus-
sian or continuous-valuag become

[
p(hj=1lv;0)=0 (_leijvi—kaj) , (46)
p(vilh; 0)= <ZWIJ J+blv ); (47)

wherev; takes real values and follows a Gaussian distribution witany}_, wi; h; +
b; and variance one. Gaussian-Bernoulli RBMs can be used teecoreal-valued
stochastic variables to binary stochastic variables, wken then be further pro-
cessed using the Bernoulli-Bernoulli RBMs.

Taking the gradient of the log likelihood Ig(v; 8) we can derive the update
rule for the RBM weights as

Awij O Egata (Vlh ) —Emodel (Vth) (48)

whereEqgaa (Vihj) is the expectation observed in the training set under thtei-dis
bution defined by the given observatiomgh|v; 8), andEmegel(Vih;) is that same
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expectation under the distribution defined by the mogél, h; 6). Calculation of
Egata(Vih;) is facilitated by usingp(h; = 1|v;; 6) to weight samples;h; given ob-
servationy. UnfortunatelyEmogel (vi h J-) is intractable to compute so the contrastive
divergence (CD) approximation to the gradient is used witgfgiei(Vih;) is re-
placed by running the Gibbs sampler initialized at the dateohe full step. The
steps in approximatinBmodel (Vih; ) is as follows:

1. Initializevg at data

2. Sampléhg ~ p(h|vo)
3. Sampler; ~ p(v|hp)
4. Sampleh; ~ p(h|vy)

Then the ¥1, h;) is a sample from the model, acting as a very rough estimate of
Emodel (Vih;j). Use of {/1,hy) to approximaté&magei(Vih;) gives rise to the algorithm
of CD-1. The sampling process is pictorially depicted in. @gvhere< vih; Sk=
(Vi ).

<v;h;>"
a fantasy

t = infinity

Fig. 2 Apictorial view of sampling from an RBM during RBM learningdurtesy of Geoff Hinton)

Careful training of RBMs is essential to the success of dpglthe RBM and
related deep learning techniques to solve practical pnafl&ee the technical report
[5Q] for a very useful practical guide for training RBMs.

The RBM discussed above is a generative model, which cleizes the input
data distribution using hidden variables and there is nellatformation involved.
However, when the label information is available, it can beditogether with the
data to form the joint “data” set. Then the same CD learning loa applied to
optimize the approximate “generative” objective functiefated to data likelihood.
Further, and more interestingly, a “discriminative” olijee function can be defined
in terms of the conditional likelihood of labels. This digoinative RBM can be
used to “fine tune” an RBM for classification tasks][60].
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4.2 Stacking up RBMstoform a DBN

Stacking a number of the RBMs learned layer by layer fromdmottip gives rise to
a deep belief network (DBN), an example of which is shown ig.[Bi The stack-
ing procedure is as follows. After learning a Gaussian-BaelihRBM (for appli-
cations with continuous features such as speech) or Bdniarhoulli RBM (for
applications with nominal or binary features such as a blakke image or coded
text), we treat the activation probabilities of its hidderits as the data for train-
ing the Bernoulli-Bernoulli RBM one layer up. The activatiprobabilities of the
second-layer Bernoulli-BernoulliRBM are then used as thible data input for the
third-layer Bernoulli-Bernoulli RBM, and so on. Matheneily for a DBN withiM
layers we can model the joint distribution between the olz@msv and thelL
hidden layergh*: k=1,2,...M} as follows

p(v,ht,...,n"M) =p(v|hh) <M|'|2 p(h'<|h'<+l)> p(hM=1 hM) (49)
k=1

This allows us to derive relevant distributions, e.g. thetpdor distribution
p(hM|v). Some theoretical justification of this efficient layer-layer greedy learn-
ing strategy is given in [52], where it is shown that tstackingprocedure above
improves a variational lower bound on the likelihood of tregrting data under the
composite model. That is, the greedy procedure above sehegyproximate max-
imum likelihood learning. Note that this learning proceslis unsupervised and
requires no class label.

When applied to classification tasks, the generative @ieitrg can be followed
by or combined with other, typically discriminative, learg procedures that fine-
tune all of the weights jointly to improve the performancetioé network. This
discriminative fine-tuning is performed by adding a finaldegf variables that rep-
resent the desired outputs or labels provided in the trgideta. Then, the back-
propagation algorithm can be used to adjust or fine-tunedhg&ark weights in the
same way as for the standard feed-forward neural networlenNised in this way
we refer to this as the deterministic neural network or DNMatgoes to the top,
label layer of this DNN depends on the application. For speecognition applica-
tions, the top layer, denoted W' = {I1,15,...,1j,...,I }, in Fig.[3 , can represent
either syllables, phones, sub-phones, phone states, @rsgbech units used in the
HMM-based speech recognition system.

The generative pre-training described above has produetdrbphone and
speech recognition results than random initialization omide variety of tasks.
Further research has also shown the effectiveness of otkergining strategies.
As an example, greedy layer-by-layer training may be cdraet with an addi-
tional discriminative term to the generative cost funcdeach level. And without
generative pre-training, purely discriminative trainiodDNNs from random ini-
tial weights using the traditional stochastic gradientagenethod has been shown
to work very well when the scales of the initial weights aré carefully and the
mini-batch sizes, which trade off noisy gradients with cengence speed, used in
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Fig. 3 Anillustration of the DBN/DNN architecture

stochastic gradient decent are adapted prudently (e amiincreasing size over
training epochs). Also, randomization order in creatingirbatches needs to be
judiciously determined. Importantly, it was found effeetto learn a DNN by start-

ing with a shallow neural net with a single hidden layer. Otinée has been trained
discriminatively (using early stops to avoid overfitting) second hidden layer is
inserted between the first hidden layer and the labeled saftatput units and the
expanded deeper network is again trained discriminatividlis can be continued
until the desired number of hidden layers is reached, afiécina full backpropaga-

tion “fine tuning” is applied. This discriminative “pre-irang” procedure is found

to work well in practice (e.g.[[94,107]).

Despite the great success in using DNNSs for large vocabafagch recognition,
training is still quite slow due to the large number of parteneand the required
large data set sizes. Part of current research has now befprus on optimization
techniques to improve the training regime for DNNs|[93] sfieslly and for speech
and language processing as a whple [104].

4.3 Interfacing the DNN with an HMM to I ncorporate Sequential
Dynamics

The DNN discussed above is a static classifier with inputorschaving a fixed
dimensionality. However, many practical pattern recdgnigind information pro-
cessing problems, including speech recognition, machiargskation, natural lan-
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guage understanding, video processing and bio-informatiocessing, require se-
guence recognition. In sequence recognition, sometimiédoaassification with
structured input/output, the dimensionality of both irgpaihd outputs are variable.

Transition Probabilities Determined
‘ with Triphone Strcture

HMM
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Fig. 4 Interface between DBN/DNN and HMM to form a DBN-HMM or DNN-HML

The HMM, based on dynamic programming operations, is a auawe tool
to help port the strength of a static classifier to handle dyinaor sequential
patterns. Thus, it is natural to combine the DNN and HMM tadfe the gap
between static and sequence pattern recognition. A pojutdnitecture to fulfil
this is shown in Fig[4. This architecture has been succkgsfeed in speech
recognition experiments from small to mid and to large sases reported in
[15,[16/51 58, 64,47, 79.83.194,108-110]. The excellecdggition accuracy ob-
tained by the DNN-HMM and its scalability from small to largesks have resulted
in wide industry adoption of this architecture and a huggsuwaf research efforts.
This is so despite the recognition of the weaknesses of rmgdealistic speech
dynamics via the HMM and via the windowed speech frames agsrip the DNN.

Itis important to note that the unique elasticity of the temgbdynamic of speech
as elaborated i [309, 40] would require temporally-cotedanodels more power-
ful than the HMM for the ultimate success of speech recognitintegrating such
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dynamic models having realistic co-articulatory propestivith the DNN and pos-
sibly other deep learning models to form the coherent dyna®ép architecture is
a challenging new research. Adding recurrent connectigastbe hidden neurons
gives one reasonable way of incorporating speech dynanticgtie model, at least
more principled than using a long window of frames in the DNINIM architec-
ture. In the next section we turn to a review and analysis efréturrent neural
network (RNN) before providing connections to the geneeatieep-structured dy-
namic speech models reviewed earlier.

5 Recurrent Neural Networks for Discriminative Modeling of
Speech Dynamics

The use of RNNs or related neural predictive models for dpeecognition dates
back to early 1990’s (e.g.. [27.190]), with relatively lowcacacy and whose re-
sults could not be reproduced by other groups until receBilyce deep learning
became popular in recent years, much more research has &esedito the RNN
(e.g., [48 6971, 73-76.84.198-100,103] and its stackezlares, also called deep
RNNs [49]. Most work on RNNs made use of the method of Back &gagion
Through Time (BPTT) to train the RNNs, and empirical tricksed to be exploited
(e.g., truncate gradients when they become too larde [@4lder to make the train-
ing effective. It is not until recently that careful analysias made to fully under-
stand the source of difficulties in learning RNNs and soméwitae principled, but
still rather heuristic, solutions were developed. For epdamin [4/84], a heuristic
strategy of gradient norm clipping was proposed to deal withgradient explod-
ing problem during BPTT training. There are other solutiofisred to improve the
learning method for the RNN (e.d., [28]56])

5.1 RNNs Expressed in the State-Space Formalism

Let us formulate the RNN in terms of the nonlinear state spacdel commonly
used in signal processing. We will compare it with the saratestpace formulation
of nonlinear dynamic systems used as generative modelpéach acoustics. The
contrast between the discriminative RNN and the use of theesamathematical
model in the generative mode allows us to shed light onto wieyapproach works
better than another and how a combination of the two is dasira

As shown in Fig[b given an input sequente= (X, ,X,--- ,X1), the RNN
computes the noise free hidden state dynamic vector segtierchs,--- ,ht,--- ,ht)
by iterating the following front = 1 to T:

ht = f(WxnXt + Whphe—1) = f(u) (50)
Yt = 9(Whyht) = g(vt) (51)
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Fig. 5 Information flow in the standard recurrent neural netwodkrfrobservation variables to the
target labels as output variables via the hidden-staterect

whereY = (y1,---,Vt,--+,Y7) is the “target label” output sequence, which is the
“observation” sequence in the standard state-space fationl

The desired target signal in the above state-space moded jgrédicted “label”
or target vectot;, a vector of one-hot coded class labels. Define the errotifumc
as the sum of squared differences betwgeandl; over time, or the cross entropy
between them. Then BPTT unfolds the RNN over time in comjguitie gradients
with respect toWpy, Wy, and Wy, and stochastic gradient descent is applied to
update these weight matrices.

5.2 The BPTT learning algorithm

The BPTT[10,56] is an extension of the classic feedforwackpropagation where
the stacked hidden layers for the same training epip@re replaced by unfolding
the recurrent neural network in time and stackingsingle hidden layers across
time,t = 1,2,...,T. Referring to Fig[b and (50 (b1) let us assume a recurrent
neural network wittK inputs,N internal hidden units, anld outputs, and define the
following variables at time layér.

e X is theK x 1 vector of inputsh; is theN x 1 vector of hidden unit outputg;
is theL x 1 vector of outputs, anid is theL x 1 vector of training output targets,
where thejth vector element, e.g () is the jth hidden unitforj =1,2,...,N;

e Wy isthel x N matrix of weights connecting th¢ hidden units to thé outputs,
Wy is the N x K matrix of weights connecting thk inputs to theN hidden
units, andWhy, is the N x N matrix of weights connecting thi hidden units
from layert — 1 to layert, where the(i, j)th matrix element, e.gwh(i, ) is the
weight connecting thgh hidden unit to théth output unit fori =1,2,...,L and
j=12,...,N;
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o U = WynX; + Wpnh_1 is theN x 1 vector of hidden unit input potentialg, =
Whyht is theL x 1 vector of output unit input potentials, from which we have
hy = f(u) andy; = g(vt); where

e f(u)is the hidden layer activation functiofi (u;) is its derivative), angy(v;) is
the output layer activation functiog'((vt) is its derivative).

Similar to classic backpropagation we begin by defining thmrsed squared er-
ror between the actual outpwt, and the target vectol, averaged across all time
epochs:

T T L
E:ct;|\Itfyt||2:Ct;le(h(j)*Yt(J'))z (52)

wherec is a conveniently chosen scale factor and seek to minimisesthor w.r.t
to the weights using a gradient descent. For a specific weiglihe update rule for

gradient descent is:
JE

WV =w—y— I (53)
To do this we define the so-called error propagation term kvisithe error gradient
w.r.t to the unit input potential:

oE

&) =~ guc 0 =—g0°

ou(j)

choosec = 0.5 and then use the chain rule (keeping track of the depene®ras
follows:

(54)

1. Fort =1,2,...,T compute the input potential®i;,v;) and activation outputs
(ht,yt) given the current RNN weights and inpyt(the forward pass).

2. At time layert = T calculate the error propagation term (wheteis the
component-wise multiplication operator):

(1) =~ s Sk = () ~yr (1) (vr (i) forj=1.2....
& = (It —yr)@g(vr) (55)

at the output units and

L
6?(1)(_ dff()j,ﬁ(('] ) zlc# Wiy, D) (ur()) forj =1,2,...

& = WIL8% o f (ur)

for the internal units (wher6¥ is propagated back from the output layéx
3. Atthe earlier layerg,=T —1, T —2,...,1, calculate the error propagation term:

(56)



26 Li Deng and Roberto Togneri

&) = k() —w(i)g () forj=1.2,....L
8! = (k—y) ©d (v) (57)

for the output units and

0ht(i)
Ou(j)

hov . |e O9E dun() < 9E dwu()
qm‘[mmnmm+ o (i) oM (])

lZd—O—l )Whh(i +Z\§y )Why(i, )

8 = [Whilya +Wi,Y| o f (u) (58)

f'(w(j) forj=1,2,...,N

for the internal units (wher&{ is propagated back from the output latyeand
6th+1 is propagated back from hidden layer 1).

Then we adjust the weights as follows:

1. For thejth hidden taith output layer weights at layér

. < OE  ow(i) . LI
ew, _ o y
hy (Ia J) Why VZ th aWhy( J) Why('d) yt;q (I>ht
WRSY = Wy + yzléi;htT (59)
t=

2. For thejth input to theith hidden layer weights at layér

. L JE 0 L
W) = (1. 1) = 5 G Gt =i, 1) 5 &%)
WIEY = W+ yt; Shx! (60)

3. For thejth hidden at layet + 1 to theith hidden at layet weights:

. L 0E  du()
ew, h
hh (5 ]) = Whn(i VZdut S I 1) Wyhh(i VZQ
WY — Wiy, + Vzl5thhll (61)
t=

wherey is the learning rate.

One drawback of the BPTT is that the entire time series is egéal perform one
update of the weights, thereby making BPTT a “batch” adaptadlgorithm. It is
possible to consider an online adaptation if one trunchepast history to no more
than the lasp time epochs, creating the BPTf)(or p-BPTT variant.
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The computational complexity of the BPTT is given @éM?) per time step
whereM = LN + NK 4 N2 is the number of internal units. As with classic feed-
forward backpropagation slow convergence can be expedtadseveral thousand
epochs needed. However unlike feedforward backpropagteBPTT is not guar-
anteed to converge to a local minimum and it is far from ttiteaachieve good
results with much experimentation and tuning. This is nyaihle to the problem of
exploding and vanishing gradients as described ih [84].

5.3 The EKF learning algorithm

In sectio 2.P the extended Kalman filter (EKF) was used twigeoestimates of the
hidden state variable in the non-linear state-space systseribed by({4) and]5).
By reformulating the state-space system such that the higtdge variable are the
RNN weights and the system observations are the targetrgegtocan use the EKF
as a learning algorithm for the RNN. First popularised inthmark work of [87]
we proceed by restacking thex N Wy, N x K Wy, andN x N Wy, RNN weights
into a single, state vectaw of size LN + NK + N2. Then we form the following
state-space system:

w(n+1) = w(n) +q(n)
[(n) = hp(w(n),X1n) (62)

wherel(n) = I, is the target vector and the desired “observation” from & s
tem at timen, g(n) is the external input to the system considered as an uncor-
related Gaussian white noise process$n) are the RNN weights at time, and

Yn = hn(W(n),X1:n) is the time-dependent RNN output observation functiomag+i
stepn derived from the current RNN weight estimat&én) and the input vector
sequencein = (X1,X2,...,Xn). The EKF recursion applied to this system will esti-
mate the unknown hidden statgn), given the “observationd(n), by attempting

to minimise the innovation erraf (n) = (I(n) — hn(W(Nn),X1:n)) = (In—yn) in the
minimum mean square error (MMSE) sense equivalent to thémigation of the
BPTT squared error of (52). The EKF recursion for this syssemplifies to:

K (n) = P(MH(n)[H(n)"P(mH(n)] *
W(n+1) = W(n) +K(n)&(n)
P(n+1) = P(n) — K (NH(n)TP(n) +Q(n) (63)

whereK (n) is the Kalman gairP(n) = E[(w(n) —W(n))(w(n) —W(n))T is the state

error covariance antl(n) = % _is the Jacobian of partial deriva-
w='

w(n
tives of the the RNN output with respect to the weights. Thé&E&cursion requires
the initial estimate#/(0) andP(0) and a model for the process nof3én). Typically
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W(0) is generated randomlfp(0) is set to a diagonal matrix with a large diagonal
component an(n) is a diagonal matrix with small diagonal variance terms.
Although the EKF recursion is a very elegant approach eipfpthe theory of
optimum Kalman filters, the Jacobian linearisation of the-finearh, only guaran-
tees convergence to a local minimum. Furthermore the cloul of the Jacobian
at each iteration time step requires either direct calmnaif the gradients, which
is computationally expensive, or the use of an offline rurhefBPTT for the gra-
dients by backpropagation. The BPTT-EKF executes a reflated BPTT) over
the input data sequenc¢ery, Xy, ..., Xn), where the RNN weight&/ = W(n), to cal-
culate the gradien%‘ for theH(n). This is followed by one iteration of the EKF
recursion to calculaté(n+ 1) and so on. The BPTT-EKF exhibits an or@(L.M?)
computational complexity per time-step whée= LN +NK + N2 is the number of
internal units and has been shown to exhibit superior cgarere over BPTT and
can be considered one of the classic state of the art appretaiRNN training.

6 Comparing Two Types of Dynamic Models

We are now in a position to discuss similarities of and dédferes between the
two types of deep and dynamic models: 1) the generative deaptured dynamic
model, which we reviewed in Secti@h 2, and 2) the discriniea®NN, which we
reviewed in Sectiofi]5. The “deepness” of the models is exprei terms of the
time steps. Several key aspects are compared below, onetirsebsection.

6.1 Top-Down versus Bottom-Up

Top-down modeling here refers to the hierarchical way inctthe speech data
are modeled by the generative hidden dynamics. The modetingess starts with
specification of the linguistic label sequence at the topllebhen the label sequence
generates the hidden dynamic vector sequence, which irg&rrerates the acoustic
observation sequence at the bottom level in the hierardiig.Way of modeling can
be viewed as fitting the observation data. On the other harimhttom-up modeling
based on the RNN, the information flow starts at the bottorallef/acoustic obser-
vation, which activates the hidden layer or vector dynarnridhe RNN. Then the
output layer of the RNN computes the linguistic label or &rgequence at the top
level of the hierarchy. Since the top layer determines tleeep-class distinction,
the bottom-up modeling approach can also be called discativie learning. We
elaborate on the top-down verses bottom-up comparisoosbel
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6.1.1 Top-down generative hidden dynamic modeling

To facilitate the comparison, we use a general form of theegaive hidden dy-
namic model following the discussion in Section III.A &f [3&ith slight modi-
fication, and note that speech recognition researchersus®e many variants of
this form to build speech recognizers in the past; see a gim&ections I11.D and
I1.E of [B3] and the review in Sectidd 2. In the discussiooyided in this section,
the general form of the state and observation equationseirgémerative hidden
dynamic model takes the form of

ht = G(hi—1; W,,,A;,) + StateNoise (64)
xt = H(h,Qy,) + ObsNoise (65)

Here,W,, is the system matrix that shapes the (articulatory-likafestlynamics,
andA,, serves as the “input” driving force to the state dynamicghBxd them are
dependent on the labklat timet with segmental properties, hence the model is also
called a (segmental) switching dynamic system. The systatnixris analogous
to Wpp in the RNN.Q,, is the parameter set that governs the nonlinear mapping
from the hidden (articulatory-like) states in speech putitun to acoustic features
of speech. In one implementatid®,, took the form of shallow MLP weight$ [35,
[86,[101]. In another implementatiof,, took the form of a set of matrices in a
mixture of linear experts [67].

The state equation in various previous implementationtefidden dynamic
models of speech does not take nonlinear forms. Ratherptlosving linear form
was used (e.g. [35]):

ht = Whh(lt)ht—l + [| — Whh(lt)]tlt + StateNoise (66)

which exhibits the target-directed property for the altitory-like dynamics. Here,
the parameted/, are a function of the (phonetic) ladeht a particular time, and
t;, is a mapping from the symbolic quantityof a linguistic unit to the continuous-
valued “target” vector with the segmental property. To méieefollowing compar-
isons easy, let’s keep the nonlinear form and remove bothktie and observation
noise, yielding the state-space generative model of

ht = G(ht,]_;Wh,th) (67)
Xt = H(ht,Qh) (68)

6.1.2 Bottom-up discriminative recurrent neural networksand the
“generative” counterpart

Let us rewrite[(BD) and($1) into a more general form:
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ht = F(ht—1,Xt; Whn, Wxn) (69)
yt = K(ht;Why). (70)

where information flow goes from observation datéo hidden vectors; and then
to the predicted target label vectgrsin the bottom-up direction.

Compared with[{67) and {68), which describe the informatiiow from the top-
level label-indexed phonetic “target” vectiprto hidden vector$; and then to ob-
servation data;, we clearly see opposite information flows.

In order to examine other differences between the two typesoadlels in addi-
tion to the top-down versus bottom-up difference, we keepsdime mathematical
description of the RNN but swap the variables of inguand outputy; in (€9) and

(Q). This yields

ht = Fa(ht—1,¥t; Whn, Wyn) (71)

Xt = Kg(ht; Why). (72)
or more specifically

ht = f1(Whnhe—1 +Wynyt) (73)

Xt = g1(Whyht) (74)

The “generative” version of the RNN can be illustrated byurag, which is the
same as the normal “discriminative” version of the RNN shawRigurel® except
all arrows change their directions.

Al AZ AT*l AT

Wan Wan Wan Wap

Whn Whn Win
i e e
Wo Wo Wo Wo

X X2 X1 Xr

Fig. 6 Information flow in the same recurrent neural network of FéJ8 except we swap the
observation variables with the output variables withowtrging the mathematical form of the
state-space model.

Given the “generative” form of the two types of the deep, dgitamodels, one
(the hidden dynamic model) described byl(67) (68), aadbther (the RNN)
by (71) and[(7]1), we discuss below the contrast between thigmraspect to the
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differrent nature of the hidden-space representationéwbeping the same gen-
erative form of the models). We will also discuss below otimgrects of the contrast
between them including different ways of exploiting modatagmeters.

6.2 Localist versusdistributed representations

Localist and distributed representations are importantepts in cognitive science
as two distinct styles of data representation. In the Istadipresentation, each neu-
ron represents a single concept on a stand-alone basisisT hatalist units have
their own meaning and interpretation, not so for the unitsigtributed representa-
tion. The latter pertains to an internal representatioroofcepts in such a way that
they are modeled as being explained by the interactions of/alden factors. A
particular factor learned from configurations of other éastcan often generalize
well to new configurations, not so in localist representatio

Distributed representations, based on vectors consistingany elements or
units, naturally occur in a “connectionist” neural netwonkhere a concept is rep-
resented by a pattern of activity across a number of many @mtl where at the
same time a unit typically contributes to many concepts. K&tyeadvantage of such
many-to-many correspondence is that they provide robssingepresenting the in-
ternal structure of the data in terms of graceful degradatitd damage resistance.
Such robustness is enabled by redundant storage of inflermatnother advantage
is that they facilitate automatic generalization of coriseand relations, thus en-
abling reasoning abilities. Further, distributed repnéaton allows similar vectors
to be associated with similar concepts and it allows efficiese of representational
resources. These attractive properties of distributeresgmtations, however, come
with a set of weaknesses. These include non-obviousnesteipieting the repre-
sentations, difficulties with representing hierarchidalcture, and inconvenience
in representing variable-length sequences. Distributpdessentations are also not
directly suitable for input and output to a network and soraaglation with localist
representations are needed.

On the other hand, local representation has advantagepliditmess and ease
of use — the explicit representation of the components ok i simple and the
design of representational schemes for structured obgeetsy. But the weaknesses
are many, including inefficiency for large sets of objecighly redundant use of
connections, and undesirable growth of units in networkigkwhepresent complex
structure.

All versions of the hidden dynamic models for deep speealcttre [12[ 109,
[34,/37[86,101] adopt the “localist” representation of thealsolic linguistic units,
and the RNN makes use of the distributed representatios.c#ri be seen directly
from (64) for the hidden dynamic model and from](71) for theNRfin the “gen-
erative” version). In the former, symbolic linguistic it as a function of time
are coded implicitly in a stand-alone fashion. The conweaatif symbolic linguistic
units to continuous-valued vectors is made via a one-tortaEping, denoted by,
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in (&2), to the hidden dynamic’s asymptotic “targets” dehby vectot. This type
of mapping is common in phonetic-oriented phonology litera, and is called the
“interface between phonology and phonetics” in a functi@eanputational model
of speech production in[19]. Further, the hidden dynamidetaises the linguistic
labels represented in a localist manner to index separastefime-varying param-
etersWy, andQ,,, leading to “switching” dynamics which considerably coinptes
the decoding computation. This kind of parameter specifinasolates the param-
eter interactions across different linguistic labelsngag the advantage of explicit
interpretation of the model but losing on direct discrintioa across linguistic la-
bels.

In contrast, in the state equation of the RNN model showhi), (he symbolic
linguistic units are directly represented as one-hot wsctd y; as a function of
time t. No mapping to separate continuous-valued “phonetic”’omscére needed.
While the one-hot coding of; vectors is localist, the hidden state vedigirovides
a distributed representation and thus allows the modebi@ st lot of information
about the past in a highly efficient manner. Importantlyréhie no longer a notion
of label-specific parameter sets i \nd Q,, as in the hidden dynamic model.
The weight parameters in the RNN are shared across all Btiguabel classes.
This enables direct discriminative learning for the RNNaddition, the distributed
representation used by the hidden layer of the RNN allowsieffi and redundant
storage of information, and has the capacity to autométidédentangle variation
factors embedded in the data. However, as inherent in lolis&dl representations
discussed earlier, the RNN also carries with them the dlfficaf interpreting the
parameters and hidden states, and the difficulty of modslingture.

6.3 Latent Explanatory Variables versus End-to-End
Discriminative Learning

An obvious strength of the localist representation as agtbpy the hidden dynamic
models for deep speech structure is that the model parasremerthe latent (i.e.
hidden) state variables are explainable and easy to diaghofct, one main mo-
tivation of many of such models is that the knowledge of higtecal structure in
speech production in terms of articulatory and vocal trasbnance dynamics can
be directly (but approximately with a clear sense of the degf approximation)
incorporated into the design of the modéls [12], 19,20, 28356, 68,83, 102,106].
Practical benefits of using interpretable, localist repnéstion of hidden state vec-
tors include sensible ways of initializing the parameterd¢ learned (e.g., with
extracted formants for initializing hidden variables camed of vocal tract reso-
nances), and straightforward methods of diagnosing aimajyerrors during model
implementation. Since localist representations, unliigrtdistributed counterpart,
do not superimpose patterns for signaling the presencédfefetit linguistic labels,
the hidden state variables not only are explanatory butw@aisenbiguous. Further,
the interpretable nature of the models allows complex dearsé structured rela-
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tionships to be built into them, free from the common difftgilssociated with dis-
tributed representations. In fact, the hidden dynamic risdu&ve been constructed
with many layers in the hierarchical hidden space, all widac physical embodi-
ment in speech production; e.g., Chapter Zid [23]. Howehercomplex structure
makes it very difficult to do discriminative parameter léagn As a result, nearly all
versions of hidden dynamic models have adopted maximuetitiikod learning or
data fitting approaches. For example, the use of linear dimear Kalman filtering
(E step of the EM algorithm) for learning the parameters i glenerative state-
space models has been applied to only maximum likelihodohats[[95, 101].

In contrast, the learning algorithm of BPTT commonly usetsind-to-end train-
ing of the RNN with distributed representations for the l@ddtates performs dis-
criminative training by directly minimizing linguistic kel prediction errors. It is
straightforward to do so in the formulation of the learnirjeztive because of each
element in the hidden state vector contributes to all liatjciiabels due to the very
nature of the distributed representation. It is very unratand difficult to do so in
the generative hidden dynamic model based on localist septations of the hidden
states, where each state and the associated model pamtypteally contribute to
only one particular linguistic unit, which is used to indé&etset of model parame-
ters.

6.4 Parsimonious versus Massive Parameters

The final aspect of comparisons between the hidden dynamiehamd the RNN
concerns different ways to parameterize these two type®defs. Due to the inter-
pretable latent states in the hidden dynamic model as wéleagarameters associ-
ated with them, speech knowledge can be used in the desithe ofiddel, leaving
the size of free parameters to be relatively small. For exanwhen vocal tract
resonance vectors are used to represent the hidden dynandirsension of eight
appears to be sufficient to capture the prominent dynamigspties responsible for
the observed acoustic dynamics. Somewhat higher dimeagiois needed with the
use of the hidden dynamic vectors associated with the #atams’ configuration in
speech production. The use of such parsimonious parane¢tepften called “small
is good”, is also facilitated by the localist representatid hidden state components
and the related parameters that are connected or indexegppeHic linguistic unit.
This contrasts with the distributed representation in théNRvhere both the hid-
den state vector elements and the connecting weights aredsheross all linguistic
unit, thereby demanding many folds of more model parameters

The ability to use speech-domain knowledge to construattbael with a parsi-
monious parameter set is both a blessing and a curse. Exanfdach knowledge
used in the past are the target-directed and smooth (i.ae-pgscillatory) hidden
dynamics within each phone segment, an analytical relshiiprbetween the vocal
tract resonance vector (both resonance frequencies amtviziths), and both an-
ticipatory and regressive types of coarticulation exprdda the latent space as a



34 Li Deng and Roberto Togneri

result of the the hidden dynamics. With the right predictddtime-varying trajec-
tories in the hidden space and then causally in the obseomestc space, powerful
constraints can be placed in the model formulation to redwee-generation in the
model space and to avoid unnecessarily large model cap@citthe other hand, the
use of speech knowledge limits the growth of the model siza@® data are made
available in training. For example, when the dimensiopalitthe vocal tract reso-
nance vectors goes beyond eight, many advantages of ietelpbe hidden vectors
no longer hold. Since speech knowledge is necessarily iptaim the constraints
imposed on the model structure may be outweighed by the apmby lost with
increasingly large amounts of training data and by the irgete knowledge.

In contrast, the RNN uses hardly any speech knowledge taremmshe model
space due to the inherent difficulty of interpreting the agabius hidden state rep-
resented in a distributed manner. As such, the RNN in priadias the freedom
to use massive parameters in keeping with the growing sizbeofraining data.
Lack of constraints may cause the model to over-generdlizes, together with
the known difficulties of the various learning algorithms fboe RNN as analyzed
in [6] and reviewed in Sectid 5, has limited the progresssifigtRNNs in speech
recognition for many years until recently. Some recent preg of RNNs applied
to speech recognition involves various methods of intraayiconstraints either in
the model construction or in the implementation of learratgprithms. For exam-
ple, in the study reported in [49], the RNN’s hidden statedsigned with memory
units, which, while constraining the variations of the neeat hidden units and the
associated weight parameters, still allow the massive hmatameters to be used
by simply increasing the size of the memory units. Separated RNN can also be
constrained during the learning stage, where the size ofjthéient computed by
BPTT is limited by a threshold to avoid explosion as repoitef,[75] or where
the range of the permissible RNN parameters are constréinege within what the
“echo-state property” would allow 133, 25].

6.5 Comparing recognition accuracy of the two types of models

Given the analysis on and comparisons presented so farsiselstion between the
generative hidden dynamic model using localist represientaand the discrimina-
tive RNN using distributed representations, we see bothsygf the models have
respective strengths and weaknesses. Here we compare fliicahperformance
of the two types of models in terms of speech recognition ayu For consis-
tency reasons, we use the TIMIT phone recognition task fercttmparison since
no other common tasks have been used to assess both typeslefsiroa con-

sistent manner. It is important to point out that both typethe dynamic models
are much more difficult to implement than other models in ntmemon use for
speech recogition, e.g. the GMM-HMM and DNN-HMM. While th&ltien dy-

namic models have been evaluated on the large vocabul&yitaslving Switch-
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board databases, e.d., [12,[66,68, 86], the RNN has beeryneamluated on the
TIMIT task, e.qg.,[18,25.49.90].

One particular version of the hidden dynamic model, caledtidden trajectory
model, was developed and evaluated after careful desi¢papjiroximations aimed
to overcome the various difficulties associated with |@takpresentations as dis-
cussed earlier in this section [38+40]. The main approxonahvolves using the
finite impulse response filter to replace the infinite impuksgponse one as in the
original state equatioh (67) of the state space formulaifdhe model. This version
gives 75.2% phone recognition accuracy as reported in f88hewhat higher than
73.9% obtained by a plain version of the RNN (but with veryefarengineering) as
reported in Table | (on page 303) 6f]90] and somewhat lowan ff6.1% obtained
by an elaborated version of the RNN with LSTM memory unitdwiit stacking as
reported in Table | (on page 4) 6f[49]. (With less carefulieegring, the plain RNN
could only achieve 71.8% accuracy as reportedin [25].) Tbimparison shows that
the top-down generative hidden dynamic model based onisbcapresentation of
the hidden state performs similarly to the bottom-up disarative RNN based on
distributed representation of the hidden state. This ietstedndable due to the pros
and cons of these different types of models analyzed thrawfghis section.

7 Summary and Discussions on Future Directions

This paper provides an overview on a rather wide range of coatipnal models
developed for speech recognition over the past 20 some.yBaese models are
characterized by the use of linear or nonlinear dynamicfiénhidden space not
directly observed. The temporal unfolding of these dynasaguence models make
the related networks deep, with the depth being the lengtieadiata sequence to be
modeled. Among all the models surveyed in this chapterethee two fundamen-
tally opposing categories. First, we have the top-down éiddlynamic models of a
generative nature. The hidden state adopts the localistgeptation with explicit
physical interpretation and the model parameters are adlaith respect to each
of the linguistic/phonetic classes in a parsimonious marf®econd, we have the
bottom-up recurrent neural network (RNN) of a discriminathature. The hidden
state adopts the distributed representation with eachinutiie hidden state or layer
contributing to all linguistic classes.

Sectiong R andl 3 in the early part of this chapter are devotéuktfirst, genera-
tive type of the dynamic models. Sectldn 4 describes andatisg class of the deep
neural network models (DNN) where the network with high tleistconstructed
independently of the length of the data sequence. In thiseseime DNN technically
does not belong to the class of deep dynamic network modstsisied above. We
include the DNN in this chapter not only due to its prominesierin the current
speech recognition practice but also due to the interestaygin which the genera-
tive DBN is integrated into the overall DNN learning. In Seofd, we also discuss
how sequence dynamics, an essential part for any sensiéelspnodel, is incor-
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porated into the DNN-based speech model using the HMM agénfate. Section
then turns to detailed technical reviews on the seconddfiee (true) dynamic
and deep network models for speech, the RNN, which is viewedgeneralization
of the DNN where the network’s depth is linked to the lengtithef data sequence.

The most important material of the chapter is Secfibn 6, witiempares the
two types of the deep, dynamic models in four incisive aspéldte most critical
aspect of the discussion is the localist versus distribrgptesentations for the hid-
den states, with the respective strengths and weaknesalysiaad in detail. The
recognition accuracy achieved by both types of the modedhasvn to be compa-
rable between the two, implying that the strengths and wesdes associated with
the different model types balance out with each other. (We lamalyzed the error
patterns and found rather distinct errors produced by themggive hidden dynamic
model and by the RNN although the overall error rates are evatye.)

The comprehensive comparisons conducted in SeLtion 6 siseghts into the
question of how to leverage the strengths of both types ofeisodhile overcom-
ing their respective weaknesses. Analyzing this futureation is actually the main
motivation of this chapter. The integration of the two distitypes of generative
and discriminative models may be done blindly as in the césmidsed in Section
[, where the generative DBN is used effectively to initielar pre-train the discrim-
inative DNN. However, much better strategies can be purasguesent and future
directions, given our sufficient understanding by now of tia¢ure of the respec-
tive strengths and weaknesses associated with the two rypasl as elaborated in
Section 6. As an example, one weakness associated withgbendiinative RNN,
which we briefly mentioned in Sectidn 6.2, is that distrilsuitepresentations are
not suitable for input to the network. This difficulty has hegrcumvented in the
preliminary work reported i [25] by first using the DNN to extt input features,
which gains the advantages of distributed representagorisedded in the hidden
layers of the DNN. Then the DNN-extracted features equippidudistributed rep-
resentations of the data are fed into the subsequent RNNupirmy dramatic im-
provement of phone recognition accuracy from 71.8% to ak h&§81.2%. Other
ways to cleverly get around the problems with localist repreations in the gener-
ative, deep, and dynamic model and the problems with dig&tbrepresentations
in the discriminative model counterpart are expected to iafgprove speech recog-
nition performance. As a further example to this end, we discussed in Sectidd 6
the strength of the localist representation in easy ingdgpion of the hidden space
of the model. One can take advantage of this strength by tisengenerative model
to create new features that can be effectively combined ottier features based
on distributed representations. Some advanced appraximiarence and learning
techniques developed for deep generative models (e.¢1JS)) may facilitate suc-
cessful implementations of this strategy by learning begenerative models than
the several existing inference and learning methods intérature (e.g., variational
EM and extended Kalman filtering) discussed earlier in thegpter.
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