
FingerShadow: An OLED Power Optimization

based on Smartphone Touch Interactions

Xiang Chen†‡, Kent W. Nixon†‡, Hucheng Zhou†, Yunxin Liu†, Yiran Chen‡

Microsoft Research†

Beijing, China 100080

{huzho, yunliu}@microsoft.com

ECE Department, University of Pittsburgh‡

Pittsburgh, PA, USA 15261

{xic33, kwn2, yic52}@pitt.edu

Abstract

Despite that OLED screen has been increasingly adopt-

ed in smartphones to save power; screen is still one of

the most energy-consuming modules in smartphones.

Techniques such as local dimming are proposed to fur-

ther reduce the power consumption of OLED screen,

but it is hard to decide which part of the screen could be

dimmed, and it often results in compromised user expe-

rience. Intuitively, when a user interacts with a

smartphone via the touch screen, the screen areas are

covered by the user’s fingers and even some of the

neighboring areas could be safely dimmed. Thus, in this

paper, we propose FingerShadow, a new technique

which does local dimming for the screen areas covered

by user fingers to save more power, without compro-

mising the user visual experience. We have studied 10

users’ touch interaction behaviors and found that on

average 11.14% of the screen were covered by fingers.

For these 10 users, we estimate that FingerShadow can

achieve 5.07%~22.32% power saving, averaging

12.96%, with negligible overhead. We discuss the chal-

lenges and future research work to implement Finger-

Shadow in existing smartphone systems.

1. Introduction

Power is a paramount concern on smartphones and

screen is one of the top power-hungry modules. To re-

duce power consumption of smartphone screen, Organic

Light Emitting Diode (OLED) screen has been devel-

oped. Compared to the old generations of Super-twisted

Nematic (STN) [1] screen and Liquid Crystal Display

(LCD) [2] screen, OLED screen offers better display

quality, lower power consumption, and the feasibility of

manufacturing flexible and transparent screens [3][4].

Therefore, OLED is increasingly adopted in modern

smartphones. However, even with low power OLED,

screen is still one of the most power-hungry modules in

smartphones, consuming near half the total energy in

normal usage [5].

Different from STN and LCD, OLED’s power con-

sumption is color dependent. An OLED pixel is com-

posed of three basic sub-pixels corresponding to RGB

color space. Each sub-pixel is driven by an independent

TFT driver circuit, and the emitting efficiency of the

sub-pixels varies with different RGB colors. Taking

advantage of this color-dependent nature, techniques

such as local dimming and color remapping have been

proposed to further reduce the power consumption of

OLED screens. Local dimming proportionally lowers

the RGB values, while color remapping changes power

hungry colors to power friendly ones [2][6][7].

Arbitrary decision on where to apply local dimming or

color remapping would compromise the user visual ex-

perience. Existing works utilized techniques, such as

visual unfocused area analysis [2], driver panel division

[6], and UI color remapping [7]. However, it is still

hard to control the possible user experience interfer-

ence, even with certain visual quality criteria such as

SSIM [8] based on human visual perception or certain

color compensations. Furthermore, they usually require

considerable computation overhead in pre-analysis of

display content and the frame buffer modification.

These limitations make them hardly adopted.

We observe that when a user interacts with a

smartphone via the touch screen, e.g., in using Twitter,

Facebook, and many other interactive Apps, the screen

is partially covered by the user’s fingers. Intuitively, the

areas covered by the fingers and even some of its

neighboring areas could be safely dimmed or color-

remapped, without compromising the user experience.

Besides finger actions such as tap, swipe and scroll,

users may also constantly hover their fingers over the

screen for a long time, e.g., in scrolling a list of tweets.

To this end, we propose FingerShadow, a new tech-

nique which applies local dimming to the screen areas

covered by user fingers to save more power. As the user

cannot see the screen areas covered by her or his fin-

gers, FingerShadow is able to save power without com-

promising the user visual experience. FingerShadow

does not need to analyze the content of the screen and

thus imposes minimal computation overhead.

In this paper, we have studied 10 users’ touch interac-

tion behaviors in two popular Apps, Twitter and Face-

book, and found that on average 11.14% of the screen

mailto:yunliu%7D@microsoft.com
mailto:kwn2,%20yic52%7D@pitt.edu

4%
41%

50%

x

y

Coverage
Rate

100%

50%

0%

User #1 User #5

 (a) (b)

Fig. 1 Finger operation behavior methodology:

(a) Screen division and finger movement coverage,

(b) Total screen coverage heat maps from two users.

0
5

1
0

1
5

2
0

2
5

0
2

0
4

0
6

0
8

0
1

0
0

1 2 3 4 5 6 7 8 9 10

M
ax

 C
o

ve
ra

ge
 T

im
e

 (
%

)

A
vg

. C
o

ve
ra

ge
 p

e
r

G
e

st
u

re
 (

%
)

A
vg

.
C

o
ve

ra
ge

 R
at

io
 (

%
)

User #1~#10

Fig. 2 Finger operation behavior statistic

were covered by the fingers during the entire usage,

with the maximum coverage area as high as 60% (Sec-

tion 2). Using a power model, we estimate that Finger-

Shadow can achieve about 5.07%~22.32%, averaging

12.96% screen power saving for these 10 users. This

demonstrates the great performance of FingerShadow

in saving screen power (Section 3). We further show

that FingerShadow can be implemented with low over-

head and discuss the challenges and future research

work towards fully implementing FingerShadow in

existing smartphone systems (Section 4).

2. Finger Operation Behavior Study

This section aims to study on how many optimization

opportunities of FingerShadow can be applied in real

Apps usage behaviors.

2.1 Methodology

We study different finger behaviors from real App us-

age. To reduce bias, we select 10 different videos in

YouTube from 10 different users that records real finger

behaviors via camera, rather than usage behaviors from

nearby friends. They record the usage in most popular

Apps, Twitter and Facebook (for example, [9]). We cut

these videos to only select a continuous data with the

length of 2~3 minutes, and extract the frames with two

frames per second (fps=2), .i.e., the gap between two

continuous frames is half second. Larger fps will not

help much that one finger action would span multiple

frames. For each frame, we register the regions that are

mainly covered by the finger.

The screen is divided into 4×7 regions to compute the

finger coverage ratio of the entire screen. A region is

treated as the basic area for analysis. Fig. 2(a) shows

three typical movement patterns on the whole screen

regions, including 1 vertical slide, 1 horizontal slide and

1 corner hover. In Fig. 2(a), the coverage ratios are

about 50%, 41% and 4%, respectively.

Therefore, we can track all the finger movement pat-

terns and time sessions to evaluate the finger coverage

on the screen. We accumulated the coverage ratio of

each screen region from all the frames. And the whole

screen’s coverage condition is shown in heat map. For a

better understanding, we presented all the data as per-

centage ratio. Fig. 2(b) shows the finger usage heat

maps for user #1, and #5, respectively. It is shown that

different user could have different finger usage habits,

including the hand holding position, preferred finger

movement track and hover position.

2.2 Data Analysis

From the videos, 10 users overall finger operation be-

havior statistics are analyzed. The max coverage time,

which indicates that how long the operation finger is

touching or hovering on the screen with any coverage

area, are 27%~92%, and the average coverage time is

59.72%. For the extreme case of 92%, which can be

seen in user #1’s heat map, the user prefers to rest his

thumb on the right bottom corner. This indicates that,

during the smartphone usage, there is a considerable

time that people’s fingers are on the screen, either

touching or hovering. Meanwhile, the average time of a

finger movement session is about 2.7s~7.1s.

When considering the screen coverage area when each

finger movement (or gesture) is issued as shown in Fig

2(a), there is a significant screen coverage area about

27%~60% for each movement session. Averagely, each

user would block 40.73% of the screen area for one

finger gesture. The biggest data set comes from user #6,

since he is operating the smartphone with right index

finger and the screen is frequently covered by his partial

palm.

Combining the finger movement time and area, from

the whole operation video clip, the total coverage ratio

for 10 users are is 4.65%~22.15% respectively, averag-

ing 11.14%. It indicates that, averagely the user’ finger

is continuously covering about 11.14% of the screen

areas when operating interactive Apps like Twitter or

Facebook. For the proposed FingerShadow design,

these coverage areas can be directly dimmed for power

Fig. 3 The power model of Galaxy S5 OLED display panel

(a) (b) (c)

Fig. 4 Different local dimming policy examples

saving without user experience defection. Hence, com-

paring the 3 data sets from Fig. 2, we can tell that, each

user has specific finger operation behavior. These be-

havior patterns could create significant operation oppor-

tunities for FingerShadow to optimize OLED power.

3. Performance Evaluation

Based on the behavior study, this section continues to

evaluate the power savings of FingerShadow via both

frame level simulation and in real-time usage track.

3.1 OLED Power Model

Before the evaluation, an OLED power model is neces-

sary for data simulation and power consumption estima-

tion. The OLED panel’s power consumption is comput-

ed by the sum of each individual pixel’s power con-

sumption, which is the sum of its RGB sub-pixels. We

have built a power model of Samsung Galaxy S5

(1920x1080) shown in Fig. 1, which is measured by

Monsoon power monitor [10]. During the measurement,

the screen brightness is set to be the maximum. The

color value in x-axis scaled from 0 to 255 presents the

whole brightness range the device can generate. The

power value in y-axis indicates that the whole display

panel’s power consumption, when display a specific

monochromatic color. Accordingly, the power con-

sumption of each pixel with a given RGB value can be

computed by the entire screen power corresponding to

that RGB value divides the number of pixels

(1920x1080). From the power model shown in Fig. 3,

we can tell that, although the display panel is very pow-

er efficient in the low brightness range, the power con-

sumption increases exponentially and makes the display

screen the biggest power contributor (considering the

whole devices’ power consumption is ~ 2W).

3.2 FingerShadow Polices Evaluation

In FingerShadow, when the finger is detected either

touching or hovering above the screen, which will be

discussed in Section 4.1. It will apply local dimming to

the covered screen areas and even some of the neigh-

boring areas. Different local dimming policies, with

different dimmed areas, achieve different savings on the

same frame. We thus evaluate the three local dimming

policies from conservative to aggressive.

In Fig. 4, the frame’s background is a screenshot from

the Facebook App, and its screen power is about

1,047mW based on Galaxy S5’s power model. When

the finger is touching the screen, the finger’s length,

width and direction can be quickly calculated by the

touch area [11]. They are used to compute the finger

coverage area. Once the scree area for local dimming is

decided, FingerShadow directly shutdowns the color

emitting pixels in that area.

There are three local dimming policies evaluated:

(1) Only the area exactly covered by finger is dimmed

(rigid dimming), and the corresponding RGB value is

changed to 0 with complete black color. Note that the

touch area is generally smaller than the actual finger

size. For instance in Fig. 4(a), the rigid coverage area

ratio is about 6.1% of the screen, and about 9.3% of

screen power saving can be achieved.

(2) The neighboring areas could also be safely dimmed

other than the area exactly under the finger (neighbor

dimming), as shown in Fig. 4(b), since finger operation

would distract user’s attention around the finger area

[12]. The neighboring area is dimmed with half of the

original RGB value. By enlarging the area via neighbor

dimming, the power saving is increased to 14%.

(3) A much more aggressive dimming policy is evaluat-

ed. For finger movement like swipe and scroll, the user

would ignore the area on the finger gesture path [12]

(track dimming). The finger movement specs is easy to

compute, such as swipe radius, scroll length can be well

predicted after short time of usage [13]. For instance,

the track of finger gestures, shown in Fig. 4(c), is

dimmed. A radius area is selected for the moving finger.

And for a single frame, the power saving ratio via track

dimming is further increased into 26%.

40
0

80
0

12
00

16
00

Po
w

er
 C

o
n

su
m

p
ti

o
n

 (m
W

) Original Power Trace

Optimized Power Trace

1 50 100 150 200 250 300 350 400

Frames (fps=2)

Fig. 5 Finger operation behavior statistic

0
1

0
2

0
3

0

7
0

0
9

0
0

1
1

0
0

1
3

0
0

1 2 3 4 5 6 7 8 9 10

P
o

w
e

r
Sa

vi
n

g
R

at
io

 (
%

)

D
is

p
la

y
P

o
w

e
r

C
o

n
su

m
p

ti
o

n
 (

m
W

) Original Power Optimized Power

User #1~#10

Fig.6 FingerShadow performance evaluation

3.3 Real-time Performance Evaluation

Based on the above local dimming policy analysis, we

continue to evaluate FingerShadow in practical real-

time scenario. However, due to the security considera-

tion, Android operating system limits the finger move-

ment tracking or modification for user Apps, except

system UI activities. As a result, FingerShadow current-

ly cannot directly apply to Apps like Facebook or Twit-

ter. The possible solution is discussed in Section 4.4,

and in this section, we built a simple test benches to

mimic the UI of Facebook, to simulate the real Face-

book usage from 10 users described in Section 2.1.

When a user’s finger movement trace is inputted, the

test bench replays the finger gesture, such as tap and

slide. Then the test bench could generate corresponding

display frames with a Facebook screenshots pool. Af-

terwards, FingerShadow applies the track dimming pol-

icy to evaluate the real power savings.

For example, the evaluation from user is shown in Fig.

5. There are 400 frames are extracted from video with

200 seconds (fps=2). The original power consumption

curve is shown as yellow color. It can be seen that the

display power varies significantly if the display content

changes. The optimized power consumption curve is

shown as green color. It shows obvious power reduc-

tion, and different finger gestures with different cover-

age area ratios have different power savings, their dif-

ferent coverage ratio. For some traced frames, the origi-

nal power consumption and the optimized power con-

sumption stay the same, which indicates that there is

neither finger touch nor the finger hover on the screen.

In this example, the original average power consump-

tion is 1,048.84mW, and the average after optimization

is reduced to 952.48mW. FingerShadow can achieve

about 10.52% of the power savings.

Fig. 6 depicts the power savings of FingerShadow for

all the 10 users, that we apply the same methodology

described above. Due to different user activities, the

original screen power consumption is varying between

1,010mW~1,240mW, shown as red bar in Fig. 6. The

optimized power consumption is shown in green bar,

varying from 910mW~1,145mW, with about 5.07%~

22.32% power saving ratio, and 12.96% in average. The

biggest data comes from user 6, which complies with

the opportunity study shown in Fig. 2 that user 6 has the

biggest screen coverage ratio.

Since FingerShadow’s power saving is directly user

behavior dependent, the power optimization result al-

most complies with the finger behavior study shown in

Section 2. However, due to complex display content

and practical local dimming traces, the power saving

ratio doesn’t equals the coverage ratio.

4. Discussion

In this work, the behavior study and power evaluation is

still remained by the level of data collection and power

model based simulation. We are still working on the

FingerShadow integration on smartphone. This discuss-

es the findings and challenges in implementation.

4.1 Finger Position Detection

Despite of default touch screen sensor, which can call

back touch event and provide fingertip area, we also

need to detect finger’s “hover” status. In present

smartphones, like Galaxy and Xperia series, capacity

touch screen are improved with another layer of hover

sensors, which generates stronger sensing signals and

allows accurate detection of the hovering finger further

away. On Galaxy S5, by reconfiguring the screen sensor

sensitivity in Android, we found that the screen can

generally sense the hovering finger over 1.5cm above

the screen [14]. By analyzing the touch/hover area and

shape, the finger vector can be built; therefore the finger

coverage area can be well detected [11].

During touch operation considerable power overhead

may be introduced by the system, for related UI and

App response computation. However, measured by the

Monsoon power monitor, the power consumption over-

head of the hover senor is < 40mW.

4.2 Adaptive Local Dimming Policies

There could be more local dimming policies, besides

the three policies we evaluated, which are based on pre-

vious researches. It would be interesting to learn the

relationship between the finger position and the user

visional focus area on the smartphone screen, not only

based on certain heuristics. Besides, eye tracking devic-

es in the future could also be helpful to accurately com-

pute the dimmed areas. And the dimming degree on

RGB value modification could also be configurable or

dynamic adjusted, which strikes a better tradeoff be-

tween power saving and user experience feedback. The

color remapping is also interesting, but how to efficient-

ly decide the right color remains future work.

Other than used passively, FingerShadow can also be

used proactively. Essentially, FingerShadow provides

such flexibility. For instance, the user can proactively

cover a large part of the screen for aggressive power

saving without any help of other tools, in the scenarios

that the smartphone is going to be out of power while

he/she still wishes to use it even with certain experience

compromise.

4.3 Computation Overhead

The major computation involved in the FingerShadow

is the display frame buffer rending. However, compare

to previous research, FingerShadow has several ad-

vantages. First, the dimming area is located by the fin-

ger touch/hover operation, and the sensor call back pro-

cess’s calculation load is ignorable. Second, the pixel

rending process doesn’t require intensive computation

load, the target area could be directly turned down or

dimmed to the predefined level. Third, the dimming

layer introduced by FingerShadow is handled by dedi-

cated display controller rather than GPU, which is much

cheaper with only about 11.14% of the workloads.

These overheads are totally ignorable.

Such dedicated display controllers are already integrat-

ed in recent smartphones with OLED screen, such as

Samsung Galaxy S4 and S5. Dimming algorithms are

mature enough to be implemented in image processing

by an integrated module called MDNIe (Mobile Digital

Natural Image engine) [15], which can dynamically

adjust the brightness, sharpness, contrast and remap

color tone of the OLED screen at pixel-level. The cor-

responding APIs have also been released to the software

developers, allowing for customization. We will port

the FingerShadow on top of it in the future.

4.4 Framework Integration

In this work, the FingerShadow evaluation is based on

only two apps, Facebook and Twitter, and a self-made

Facebook test bench. To mitigate the limitation that the

finger movement tracking is not exposed for user Apps

in Android operating system, we consider adding Fin-

gerShadow as a new component in Android App

framework, that developer can integrate FingerShadow

for their Apps. Another workaround approach is to use

the eye-track techniques instead of finger track.

5. Conclusion

In this paper, we proposed a new screen power saving

technique based on user touch interactions, FingerShad-

ow, which applies local dimming for the screen areas

covered by user fingers without compromising user

experience too much. It shows promising potential with

about 12.96% in average of screen power saving, with

22.32% at most. In the future, more general useful prin-

ciples from user interactions would be applied for dis-

play power saving. For instance, when user swipes the

phone, the screen could be turned off; or the screen

could be completely dimmed or even turned off for

driving App usage, it is only turned on or switched to

normal when the voice prompts is on.

References

[1] T. Scheffer, et al. “Supertwisted Nematic (STN) Liquid Crystal

Displays,” Materials Science, 1997.

[2] A. Iranli, et al. “HVS-Aware Dynamic Backlight Scaling in

TFT LCD's.” IEEE Trans. on VLSI Sys., 2006.

[3] W. Graupner, et al. “High-resolution Color Organic Light-

emitting Diode Micro-display Fabrication Method,” Int’l Socie-

ty for Optical Engineering, 2000.

[4] G. Gustafsson, et al. “Flexible Light-emitting Diodes Made

from Soluble Conducting Polymers,” Nature, 1992.

[5] X. Chen, et al. “Fine-grained Dynamic Voltage Scaling on OLED

Display,” Asia and South Pacific Des. Auto. Conf., 2012.

[6] X. Chen, et al. “Quality-retaining OLED Dynamic Voltage

Scaling for Video Streaming Applications on Mobile Devices,”

Des. Auto. Conf., 2012.

[7] M. Dong, et al. “Power-saving Color Trans-formation of Mobile

Graphical User Interfaces on OLED-based Displays,” Int’l

Symp. on Low Power Elec. and Des., 2009.

[8] Z. Wang, et al. “Image Quality Assessment: From Error Visibil-

ity to Structural Similarity,” IEEE Trans. on Image Proc., 2004.

[9] http://www.youtube.com/watch?v=MykiGpRlu2Y

[10] Monsoon Solutions Inc. Power Monitor.

http://www.msoon.com/LabEquipment/PowerMonitor/

[11] F. Wang, et al. “Empirical Evaluation for Finger Input Proper-

ties in Multi-Touch Interaction,” SIGCHI Conf. on Human

Factors in Computing Sys, 2009.

[12] M. Negulescu, et al. “Tap, Swipe, or Move: Attentional De-

mands for Distracted Smartphone Input,” Int’l Working Conf.

on Advanced Visual Interfaces, 2012.

[13] M. Franck, et al. “Touchalytics: On the Applicability of

Touchscreen Input as a Behavioral Biometric for Continuous

Authentication,” Infor. Forensics and Security, 2013.

[14] Tuning the Touchscreen Sensitivity,

http://forum.xda-developers.com/showthread.php?t=844216

[15] MDNIe: Digital Natural Image Engine, www.samsug.com.

http://www.msoon.com/LabEquipment/PowerMonitor/

