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ABSTRACT

We develop an hidden Markov model (HMM)-based algorithm for
computing exact parametric and non-parametric linkage scores
in larger pedigrees than was possible before. The algorithm is
applicable whenever there are chains of persons in the pedigree
with no genetic measurements and with unknown affection status.
The algorithm is based on shrinking the state space of the HMM
considerably using such chains. In a two g-degree cousins pedigree
the reduction drops the state space from being exponential in g to
being linear in g. For a Finnish family in which two affected children
suffer from a rare cold-inducing sweating syndrome, we were able to
reduce the state space by more than five orders of magnitude from
250 to 232. In another pedigree of state-space size of 227, used for a
study of pituitary adenoma, the state space reduced by a factor of
8.5 and consequently exact linkage scores can now be computed,
rather than approximated.
Contact: dang@cs.technion.ac.il
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Genetic linkage analysis seeks to locate genomic regions that are
likely to contain genes that increase the probability of traits such
as heredity diseases. The input to such analysis are pedigrees of
families that segregate a disease, marker information such as SNP
readings, and affection status of some or all family members. The
main idea is that markers which are found in the same vicinity on the
chromosome are more likely to stay together during meiosis. Thus,
based on the topology of the pedigree and the marker readings, it is
possible to compute how likely it is for a predisposing gene to be
located on the chromosome nearby each of the markers (Elston and
Stewart, 1971; Lander and Green, 1987; Lange, 1997; Ott, 1999).

There are several scoring methods commonly used for linkage
analysis. They differ in how the scoring function depends on the
probability of the possible inheritance patterns in the pedigree.
Examples of such functions are Sall, Spairs and log of odds (LOD)
scores (Kruglyak et al., 1996). As the number of such inheritance
patterns grows exponentially in the number of markers and
roughly in the number of persons in the pedigree, computationally
sophisticated methods were proposed for this task. A common
structure shared by most exact scoring methods is a hidden Markov
model (HMM) (Rabiner and Juang, 1986) backbone, which is
in fact a factored HMM with a state space defined by a set of
variables called selectors that determine the inheritance pattern in
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the pedigree (Abecasis et al., 2002; Gudbjartsson et al., 2000, 2005;
Ingolfsdottir and Gudbjartsson, 2005; Kruglyak and Lander, 1998;
Kruglyak et al., 1995, 1996; Lander and Green, 1987; Markianos
et al., 2001). Other techniques based, sometimes implicitly, on
Bayesian networks (Lauritzen, 1996; Pearl, 1988) focus on larger
pedigrees with fewer measurements (Cottingham et al., 1993;
Elston and Stewart, 1971; Fishelson and Geiger, 2002; O’Connell
and Weeks, 1995; Silberstein et al., 2006; Sobel and Lange, 1996;
Thompson, 1994).

Whenever the pedigree is too complex, and the number of
selectors needed to determine the inheritance in the pedigree is too
large, current methods can not utilize the HMM backbone, and exact
computation of the linkage scores is not computationally feasible.
In this article, we describe a method to reduce the state space for
HMMs via a partition of the state space into equivalence classes,
which consequently reduces the amount of computations needed in
these models without sacrificing the exact solution. We specify two
conditions a partition needs to satisfy in order to allow for such a
reduction, and prove that whenever they hold, computations in the
original and the reduced models yield the same results.

A partition which is of particular interest for the HMM used for
linkage analysis models is based on reducing chains of individuals
in pedigrees where genetic information cannot distinguish among
individuals in the chain. In such chains, it is possible to cluster
together selector variables that control the inheritance from a founder
allele in the pedigree, indicating only if the allele is transmitted to
the individual at the end of the chain or, if not, what is the number
of selectors that block its inheritance. For r selectors (meiosis), this
clustering reduces the state space from 2r to r+1 states.

To demonstrate the usefulness of the state-space reduction, we
provide several examples of pedigrees in which computations are
significantly easier once the reduction is used. For a Finnish family
in which two affected children suffer from a rare cold-inducing
sweating syndrome (Knappskog et al., 2003), we were able to reduce
the state space of the internal inbreeding loop by over 9-folds, and
to reduce the state space for the entire pedigree by more than five
orders of magnitude from 250 to 232. For another pedigree, recently
used for the study of pituitary adenoma (Vierimaa et al., 2006),
we were able to reduce the state space from 227 to 60·218, by a
factor of more than 8.5. Previously, only approximate scores could
be computed for this pedigree on a standard PC and software for
exact linkage computations such as Merlin (Abecasis et al., 2002)
failed as reported by Albers et al. (2008). Our space reduction
enables exact linkage computations and we demonstrate order of
magnitude experimental speedups when performing computations
across 6000 genomic locations, as used by standard SNP panels for
linkage analysis.
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2 STATE REDUCTION IN HMMS
Consider an HMM with hidden variables Si and observed variables
Xi, i=1,...,L (Rabiner and Juang, 1986). The (hidden) state space
is the set S of possible values for Si. The state space is identical
for every slot i. The likelihood of data (x1,...,xL) for L slots is
specified via two main components. The single slot likelihood of data
P(xi|si) at slot i given a state si for Si and the transition probabilities
P(Si =si|Si−1 =si−1) from a state at slot i−1 to slot i.

P(data)=
∑
s1

P(s1)P(x1|S1 =s1)

∑
s2

P(S2 =s2|S1 =s1)P(x2|S2 =s2)···
∑
sL

P(SL =sL|SL−1 =sL−1)P(xL|SL =sL). (1)

The time complexity of computing this sum grows quadratically
with the size of the state space |S| and linearly in the number of
slots L. The time complexity is O(L|S|2 +cL|S|) where c is an upper
bound for computing the single slot likelihood P(xi|si). We note that
in many HMM applications, including linkage analysis, the goal
is to compute the marginal probabilities P(Si|x1,...,xL) for all i=
1,...,L rather than to compute the likelihood of data. This task can
be completed using the junction-tree algorithm with only twice the
computational cost (Lauritzen and Spiegelhalter, 1988). We show
experimental results for both tasks, but restrict the discussion to
computation of the likelihood to simplify the presentation.

We focus on applications where S is possibly very large such as
for linkage analysis where it grows exponentially in, roughly, the
number of persons in the pedigree. In such cases, the dominating
factor |S|2 can be reduced substantially if the state space S can
be partitioned into equivalence classes [s] for which the likelihood
of data is constant. This effectively changes the sum over the state
space at each slot to a sum over equivalence classes. The dominating
complexity will now depend on the number of equivalence classes
rather than on the number of states in S.

The likelihood is computed for one representative of each
equivalence class via

P(data)=
∑
[s1]

P([s1])P(x1|S1 =[s1])
∑
[s2]

P(S2 =[s2]|S1 =[s1])P(x2|S2 =[s2])···
∑
[sL]

P(SL =[sL]|SL−1 =[sL−1])P(xL|SL =[sL]) (2)

where the prior for a class [s] is the sum over the priors of its
constituent states, namely, P([s])=∑

s∈[s]P(s). Note that [si] is
used to denote the class containing si, as in si ∈[si], and also a
representative from the class containing state si, as in Si =[si].

The equivalence of Equations (1) and (2) stems from two general
conditions. Explicating these conditions facilitates the discovery
of novel equivalence classes that reduce the computational cost of
likelihood computations, as we show for genetic linkage analysis.

Condition I: the single-slot likelihood given a hidden state s is
equal for all states in the equivalence class [s], namely,
P(xi|s)=P(xi|s′) for all s and s′ in the same equivalence class.
Hence, we can safely define the single-slot likelihood given
an equivalence class via P(xi|[s])=P(xi|s).

Condition II: denote by P([s]|s′)=∑
s∈[s]P(s|s′) the transition

probability from state s′ to an equivalence class [s]. The
condition is that this transition probability does not distinguish
between two states in the same equivalence class, namely,
P([s]|s′)=P([s]|s′′) for all s′ and s′′ in the same equivalence
class. Hence, we can safely define the transition probabilities
between equivalence classes via P([s]|[s′])=P([s]|s′).

These two natural conditions are sufficient to ensure that
Equations (1) and (2) are equivalent due to the following reasoning.
We first rewrite the right most sum in Equation (1). The following
equality is due to Condition I.

∑
sL

P(SL =sL|SL−1 =sL−1)P(xL|SL =sL)

=
∑
sL

P(SL =sL|SL−1 =sL−1)P(xL|SL =[sL])

The latter sum is further rewritten,

∑
[sL]

⎡
⎣ ∑

sL∈[sL]
P(SL =sL|SL−1 =sL−1)

⎤
⎦P(xL|SL =[sL])

=
∑
[sL]

P(SL =[sL]|SL−1 =[sL−1])P(xL|SL =[sL])

where the final equality is due to Condition II. Proceeding with these
steps over decreasing indices L,L−1,...,1 transforms Equation (1)
to Equation (2) where in the last step P([s1]) is set to

∑
s1∈[s1]P(s1).

3 STATE-SPACE REDUCTION IN
FACTORED HMMS

Factored HMMs (Ghahramani and Jordan, 1997) are HMMs in
which the hidden variable is a vector Si = (S1

i ,...,Sk
i ) with values

drawn from a Cartesian product H1 ×···×Hk and with a transition
probability defined component by component for i=2,...,L via

P(Si = (s1
i ,...,sk

i )|Si−1 = (s1
i−1,...,sk

i−1))

=
k∏

j=1

Pj(s
j
i |sj

i−1). (3)

and for the first slot, P(S1 = (s1
1,...,sk

1))=∏k
j=1Pj(s

j
1). When all the

component transition probabilities Pj are equal for all j, we term the
resulting HMM a homogeneously factored HMM.

Factored HMMs offer computational benefits when computing
the likelihood of data. Ghahramani and Jordan (1997) show
how specifying the probabilities P(Si|Si−1) via a product as
in Equation (3) reduces the time complexity to O(L|S|log|S|+
cL|S|). Their algorithm is a special case of bucket elimination
(Dechter, 1998). We note that computing the L marginal probabilities
P(Si|x1,...,xL) in a factored HMM can be performed with
only twice the amount of computations using the junction-tree
algorithm (Lauritzen and Spiegelhalter, 1988).

We offer state-space reductions for homogeneously factored
HMMs that maintain these benefits and further reduce the
computational complexity. For simplicity of notation, we assume

that Hi ={0,1} and so each Sj
i is a binary variable, which we call a

selector, and the state-space size is 2k . The state-space reductions
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are formed by clustering the selectors and partitioning the states of
each cluster so that Conditions I and II are satisfied.

Assuming the choice of clusters is such that Conditions I and II are
satisfied, we now explicate how the likelihood of data computations
are carried out in the reduced state space, and examine the reduction
in time and space complexity of the computation. In particular,
starting with Equation (1), we need to show how the computation
of each sum is done when the state space is in a factored form.
Suppose B={B1,...,Bm} is a set of disjoint clusters of all selectors
for some slot i with r1,...,rm selectors, respectively, and suppose
A={A1,...,Am} is a set of disjoint clusters of all selectors for the

previous slot where S j
i ∈Bl iff S j−1

i ∈Al . Let al and bl denote vectors
of zeros and ones of length rl . Then the final sum in Equation (1),
denoted by �L , can be written as follows.

�L =
∑

b1,...,bm

P(xL|b1,...,bm)P(b1|a1)···P(bm|am).

Due to Condition I, we get,

�L =
∑

b1,...,bm−1

P(b1|a1)···P(bm−1|am−1)

∑
[bm]

P(xL|b1,...,bm−1,[bm])
⎡
⎣ ∑

bm∈[bm]
P(bm|am)

⎤
⎦

Due to Condition II, the last sum equals P([bm]|[am]). Incorporating
these two modifications sequentially for the indices m,m−1,...,1
yields

�L =
∑
[b1]

P([b1]|[a1])···
∑
[bm]

P(xL|[b1],...,[bm])P([bm]|[am]). (4)

This sum is carried out right to left, summing over [bm], then over
[bm−1] and finally over [b1]. The result is a conditional probability
table �L =λ(xL|[a1],...,[am]). This conditional probability table is
carried to the L−1’s sum of Equation (2), and this process is repeated
L times, once per slot. Hence, the likelihood depends on the cluster
states and not on the states of individual selectors.

We now define a specific choice of clusters and prove that it
satisfies Condition II. In the next section, we specify additional
domain-specific restrictions in order for this choice to also satisfy
Condition I, as needed in order to achieve computational savings.
For simplicity, we assume a symmetric transition probability table
so that a transition from state 0 at slot i to state 1 and from state
1 to 0 are equal and are denoted by θi. Note that the results can
be easily extended beyond binary domains Hi ={0,1} and without
assuming symmetric transition probability tables, but this extension
is not needed for genetic linkage analysis. A selector can have two
complement states: on and off. For a cluster C with r selectors,
a state [j] of the reduced state space of C is the equivalence class
which contains all vectors of size r that have j entries being on
and r− j being off. So, we have c(j,r)=r!/j!(r−j)! vectors in state
[j] for j=0,...,r. This set of r+1 equivalent classes is called the
counting partition.

Theorem 1. Let S = (S1,...,Sk) be a vector of selectors and let
C ={C1,...,Cm} be a set of disjoint clusters with r1,...,rm selectors,
respectively, in each cluster, where k =∑m

j=1rj. Then a factored

HMM in which the hidden variable has values drawn from the
Cartesian product [C]=[C1]×···×[Cm], where [Cl] is the set of
equivalence classes of cluster Cl generated by using the counting
partition, satisfies Condition II.

Proof. To prove that Condition II holds for the counting partition,
we consider a single cluster C ∈C with r selectors. The transition
probability P([i]|c̄j) for switching from a state c̄j of C with j positions
on to any one state with i positions on is developed below. Let
θ be the probability of switching from state on to state off and of
switching from state off to state on. The other two transitions have
probability 1−θ . The probability of switching from a state c̄j where
j selectors are on to the state [i] in which some arbitrary i selectors
are on is given by

P([i]|c̄j)

=
min(i,j)∑

t=max(0,i+j−r)

c(t,j)·c(i−t,r−j)(1−θ )r−(i+j−2t) ·θ i+j−2t

where t is the number of selectors that are on both in [i] and
in the state c̄j . Since this formula does not depend on which
j selectors are on, it follows that P([i]|c̄j)=P([i]|[j]). This is exactly
Condition II for one cluster of r selectors. These definitions of the
transition probability tables apply separately to each of the clusters
C1,...,Cm. Consequently, the conditional probabilities P([s]|s′)
satisfy Condition II via

P([s]|s′)=
m∏

l=1

P([cl]|c′
l)=

m∏
l=1

P([cl]|c′′
l )=P([s]|s′′)

where cl is the component of state s for the selectors associated with
Cl , and where c′

l and c′′
l are the components for the selectors Cl of

the two equivalent states s′ and s′′. �

The counting partition reduces the state space of each
cluster with r selectors from 2r to r+1 states. Thus, the
complexity of computing Equation (4) for this partition is
the following. Suppose the k selectors are divided into
m equally sized clusters each corresponding to k/m selectors
and having d =1+k/m states. Then summing over [bm] yields
a probability table λ(xL|[b1],...,[bm−1],[am]). The next sum yields
a table λ(xL|[a1],...,[bm−2],[am−1],[am]). Finally, the conditional
probability table �L =λ(xL|[a1],[...,[am]) is created. Since each
λ table has m dimensions, each step involves O(dm+1) arithmetic
operations. This step is repeated m times, and therefore O(mdm+1)
arithmetic operations are used. The entire process is repeated L
times, once per slot, and so the overall complexity is O(Lm(1+
k/m)m) where 1≤m≤k. For example, if m=k, each cluster
contains one selector, the complexity is O(Lk2k+1) as suggested
by Ghahramani and Jordan (1997) and used in all the current HMM-
based linkage analysis programs (Kruglyak and Lander, 1998;
Markianos et al., 2001). On the other extreme, when all selectors
are clustered together, namely m=1, then the complexity is merely
O(L(1+k)).

Examples of utilizing the counting partition and obtaining
significant speed up in real genetic applications are discussed in
the next two sections.
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4 APPLICATION IN GENETIC LINKAGE ANALYSIS
The purpose of genetic linkage analysis is to score the human
genome in such a way that produces high scores for areas that
harbor genes that predispose to a disease under study. The means
are pedigrees of families that segregate the disease and genetic
information such as SNP data measured on individual members
of these families. There are various scoring methods for linkage
analysis, some are called parametric and some non-parametric, but
all scoring methods share the backbone of a common HMM. This
HMM is in fact a homogeneously factored HMM and its state space
is defined by a set of selectors precisely as discussed in the previous
section. The data at slot i are the measurements of the individuals’
genetic material at the i-th location.

In this section, we provide the needed background to describe
the meaning of the transition probabilities, define precisely the
likelihood P(xi|si) of data at slot i given a hidden state and provide
clustering methods that generate the state-space reductions via the
counting partition as studied in the previous section.

4.1 HMM for linkage analysis
A pedigree is a directed acyclic graph (V ,E) with a set V of n vertices
of two possible types called male and female and a set of directed
edges E ⊆V ×V such that for each vertex v there is at most one
directed edge (u,v) for which the type of u is male and at most one
edge for which the type of u is female. When a vertex has in-degree
0, it is called a founder. A vertex that is not a founder is called a
non-founder. Each vertex in a pedigree is classified either as typed
(measured) or untyped (not measured).

Semantically, each vertex in a pedigree represents a person and
each directed link represents a parent–child relationship. When a
vertex has in-degree 1, it means that one parent is specified in the
pedigree and the other is not. A typed vertex represents a person
whose genetic material has been measured. Such person is also said
to be typed.

Definition. A potential descent graph for a pedigree (V ,E) is a
directed acyclic graph (V ′,E′) such that for every vertex vi ∈V , there
are two vertices mi (termed the maternal vertex) and pi (termed the
paternal vertex) in V ′, and for every edge (vi,vj)∈E there are two
edges in E′ as follows: if the type of vertex vi is male, then the edges
(mi,pj) and (pi,pj) are in E′ and if the type of vertex vi is female,
then the edges (mi,mj) and (pi,mj) are in E′. If a vertex vi ∈V is
typed, then both mi and pi are typed and if vi is not typed then both
mi and pi are untyped.

Semantically, the meaning of a pair of vertices (mj,pj) is the
maternally inherited and paternally inherited genetic information
of person j at some genomic location. A parent i contributes either
mi or pi to each child j.

Definition (Sobel and Lange, 1996). A descent graph D= (V ′′,E′′)
of a potential descent graph (V ′,E′) is a subgraph of (V ′,E′) such
that V ′′ =V ′ and for every pair of edges {(mi,pj),(pi,pj)} in E′
exactly one is in E′′ and for every pair of edges {(mi,mj), (pi,mj)}
in E′ exactly one is in E′′. Vertices that are classified as typed in V ′
remain typed in V ′′ and the other remain untyped.

Note that for a pedigree with n non-founders there are 22n descent
graphs, since there is a binary choice of genetic material twice for
every person that is not a founder. For each choice from a pair of
edges, we assign a binary variable called a selector whose values

are 0 if the first edge from a pair is chosen and 1 otherwise. The
vector of selectors, which is called the inheritance vector, can get 22n

assignments and each assignment s defines a descent graph denoted
by D[s]. Each assignment s is called an inheritance state.

Each descent graph specifies how each of the founding alleles
is inherited. That is, given a descent graph of a pedigree and an
assignments of alleles a= (a1,...,a2f ) to the maternal and paternal
variables of its f founders, every maternal and paternal variable is
assigned a specific founding allele. In other words, each descent
graph consists of 2f directed trees, two for each founder, called
descent trees and each descent tree specifies how one founder allele
is assigned to the maternal and paternal vertices that constitute that
tree.

A label of a typed person vi is an unordered pair of letters
{ai,aj} from a finite set A. An element of A is called an allele.
The label is also termed the genotype of person vi (at some genomic
location). The marker data at some genomic location are a vector
of genotypes—one for each typed person.

In the case of SNP marker data, there are only two letters in A
and hence each label has three options: {{0,0},{0,1},{1,1}}. In the
case of simple tandem repeats (STR) markers, there are r letters in
A and therefore 1

2 r(r−1)+r possible labels of the form {ai,aj}. If
the genotype of a person is (a′,a′′) then either its maternal allele is
a′ and its paternal allele is a′′ or the converse. The marker data are
a vector of unordered pairs and does not distinguish which allele is
the maternal and which is the paternal. Each typed person vi adds a
constraint on the possible alleles for (mi,pi).

Definition. A vector of founder alleles a is said to be consistent with
marker data xi and a descent graph D[s] iff xi can be obtained by
inheritance via D[s] from a. This consistency statement is denoted
by a �→xi ∧s.

The HMM for linkage analysis can now be defined as in Sobel
and Lange (1996). The likelihood of a marker data vector xi given
a state s of the inheritance vector is specified by

P(xi|s)=
∑

a �→xi∧s

P(a)=
∑

a �→xi∧s

2f∏
i=1

P(ai) (5)

where P(a) equals the probability of the founders having a vector of
founder alleles a= (a1,...,a2f ). The product form is justified by the
common assumption that the founders are random persons from a
population and their two alleles are randomly sampled as well (called
Hardy–Weinberg equilibrium). As written, this sum is exponential in
the number of founders. However, Sobel and Lange (1996) devised
an efficient polynomial algorithm for this sum using founder graphs.
The transition probabilities are given by

P(Si = (s1
i ,...,sk

i )|Si−1 = (s1
i−1,...,sk

i−1))=
k∏

j=1

Pj(s
j
i |s j

i−1).

where Pj(s
j
i |s j

i−1)=θi if s j
i 
=s j

i−1. The biological meaning of the

statement s j
i 
=s j

i−1 is that a recombination has occurred in the j-th
meiosis, namely, in one genomic location a maternal allele of a
parent is transmitted to a child and in the next location the paternal
allele of the same parent is transmitted to the same child.

The specified model is a homogeneously factored HMM and
therefore any clustering of the selectors using the counting
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partitioning satisfies Condition II, as shown in Theorem 1. The
remaining challenge is to define clusters that also satisfy Condition
I and for this the properties of the likelihood P(xi|s) [Equation (5)]
must be studied in detail.

4.2 Chain reductions
The main idea for identifying useful clusters is to find chains in the
pedigree such that either the chain is on, meaning that an allele is
transmitted from the start of the chain to its end, or the chain is off,
in which case a random allele is transmitted to the end of the chain.
Clusters of such chains only depend on the number of selectors that
block the transmission of that allele. This idea is made precise as
follows.

Definition. A chain of length l in a pedigree is a sequence of edges
(vi,vi+1), i=1,...,l, such that nodes v1,...,vl are each untyped and
have one incoming edge and one outgoing edge in the pedigree, and
node vl+1 has one incoming edge (but may or may not be typed and
may have any number of children).

A chain of length l in a pedigree translates to a set of 2l edges in
the potential descent graph of the pedigree connecting the maternal
and paternal nodes of person vi to the paternal node of person vi+1
when vi is a male, and connecting them to the maternal node of
vi+1 when vi is a female. In the potential descent graph, we define
the maternal node m1 to be the source of the chain if the parent of
person v1 in the pedigree is a female and define the paternal node
p1 as the source, if the parent of person v1 is a male. Similarly, we
define the sink of the chain to be node ml+1 if person vl is a female,
and define node pl+1 as the sink, if person vl is a male.

There is one descent graph in which the source of the chain is
connected by a directed path to the sink of the chain. Let S1,...,Sl

be the selectors associated with the l choices of these edges and
define an on state as the choice of an edge on the directed path from
source to sink, and by off a choice that disconnects this path.

In practice, before searching for chains in a given pedigree, we
transform the pedigree to a normalized form by using the following
two operations repeatedly until they no longer apply. First, remove
an untyped person that has no children. Second, remove an untyped
founder that has one child. It can be shown that the likelihood
of marker data remains unchanged under these transformations.
Furthermore, it can be assumed that the pedigree is specified in
a normalized form. This normalization procedure is merely a rule
that tells the geneticist when there is no need to add more persons to
the pedigree specification, which, in principle, can expand endlessly
to various directions. The normalization procedure can create more
chains and consequently facilitates larger state-space reductions.

For example, consider Pedigree I depicted in Figure 1 with three
typed children Dt,Eu and Fz who are distant cousins. The parents
of individuals along the chains D,E and F are not specified in the
normalized pedigree.

For each chain Cj , we define a cluster which we denote also by Cj .
The cluster Cj consists of the selectors associated with the chain Cj .
Such a chain cluster with l selectors can get one of l+1 values,
corresponding to the number of selectors that are on. This reduction
is the counting partition, defined in Section 3. The following theorem
states that such chain reductions do not change the likelihood of data.
The proof is given in the appendix of the Supplementary Material.

Fig. 1. A normalized pedigree with two founders (A and B) and three typed
distant cousins (Dt,Eu and Fz , with genotypes g1, g2 and g3 respectively).
The chains D, E and F can be reduced from a collection of selectors to one
cluster each with number of states linear in the chain’s length. In Pedigree II,
the collection of the selectors in the two chains, can be reduced to a single
cluster with number of states linear in the sum of lengths of the two chains.

Theorem 2. Let S1,...,Sn be the selectors for a pedigree (V ,E)
and let C be a chain in (V ,E) such that S1,...,Sl are the selectors
associated with the edges of C. Let SC be a variable with a value
equal to the number of selectors S j that are on for 1≤ j≤ l. Then
the likelihood of data can be computed by summing over the states
of SC ,Sl+1,...,Sn.

This chain reduction can be repeated for every chain in the
pedigree yielding considerable reduction in the state space. For
example, the full-inheritance state space of Pedigree I in Figure 1
corresponds to 4+ t+u+z informative meiosis yielding a state
space of size1 N =2t+u+z+4. The reduced state space uses the fact
that the likelihood of data does not depend on the exact state of
the selectors along the chains D,E and F that connect the typed
cousins to the two founders, but only on whether they point toward
a common ancestor, and if not, how many selectors do not point to
the common ancestor. In other words, how many selectors are off.
Consequently, for each W -chain, where W ∈{D,E,F} of length w,
it is possible to cluster the w−1 selectors from W2 along the chain
into a single variable with w states. Thus, the total reduced state
space is now N ′ =27 ·t ·u ·z yielding an exponential reduction of the
state space.

5 EXPERIMENTAL RESULTS
We demonstrate the power of the state space reduction in factored
HMMs for genetic linkage analysis problems via the pedigree
depicted in Figure 2. This pedigree was recently used for the study of

1The constant 4 (rather than 6) is due to ideas in Kruglyak et al. (1995) and
it could be reduced to 3 using ideas from Gudbjartsson et al. (2000).
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Fig. 2. A normalized pedigree used by Vierimaa et al. (2006) for the study
of pituitary adenoma. There are six typed individuals in the pedigree that are
marked in black stripes. We use chains 1, 2 and 3 to reduce the state space
by a factor of 8.5 and speedup computations.

Fig. 3. Runtime comparison for computations using the original model and
the reduced state-space model for the pedigree in Figure 2, as a function of
the length m of Chain 1.

pituitary adenoma (Vierimaa et al., 2006). Since the state-space size
of the pedigree is 227, exact linkage scores could not be computed
and heuristics were used (Albers et al., 2008). Reducing the chains
marked in the figure, of lengths 2, 3 and 4, reduces the state space
to 218 ×3×4×5 by an overall factor of 8.5. Consequently, exact
linkage scores can now be computed, rather than approximated.

We implemented an algorithm that computes the probabilities
P(Si|data) for every location i, which facilitates the computations of
parametric and non-parametric linkage scores. Our implementation
supports the factored HMM model for genetic linkage analysis with
and without the state-space reduction. We used this software to
compare the runtime of computations in the reduced model with
the runtime of the original model across 6000 markers, for variable

Fig. 4. Runtime comparison for computations using the original model and
the reduced state-space model for the pedigree in Figure 2 across 6000
markers, where Chain 1 is of length 0.

lengths of the chain marked as ‘Chain-1’. Figure 3 shows the runtime
in hours for the two models for lengths m=0,...,4. For m=3 and
m=4 the time it takes to perform computations on the original model
has been extrapolated from running the software for this model
across 150 locations and multiplying by 40. It is evident from the
figure that the runtime grows linearly in m in the new model, while it
is exponential in m in the original model. The probabilities computed
are the same in both models. In addition, Figure 4 plots the runtime
of the two models for m=0 as a function of the number of markers
for the computation of the likelihood of data and the inheritance
probabilities at all loci given the data. As can be seen, the runtime
is linear in the number of markers for both models and the runtime
ratio is maintained regardless of the length of the model, as expected.
In addition, as predicted from complexity analysis, the runtime of
computing probabilities at all loci is twice that of computing the
likelihood of data.

6 DISCUSSION
In this article, we described two general conditions which, when
satisfied, allows one to reduce the state space of HMMs and factored
HMMs. We also described when these conditions can be applied to
linkage analysis problems which yields a new method for performing
exact linkage computations at a potentially reduced cost. In general,
when our method reduces the size of the state space it yields a
computational savings and, for linkage problems, these savings are
exponential.

The computation of exact linkage scores (LOD or non-parametric)
in linkage analysis is of great importance. Having an exact linkage
scores provides researchers confidence to proceed with the often
expensive and time-consuming fine-mapping process. The use of
approximate linkage score methods typically yields no guarantees
or loose bounds that do not enable a researcher to draw conclusions
regarding the linkage score. In addition, for stochastic-based Monte
Carlo techniques, researcher must rely on approximate tests of
convergence.

Our state-space reduction method does not yield a computational
benefit for all pedigrees, but, as we describe herein, it can yield
a significant reduction of the computational cost. This reduction
can be crucial for some pedigrees, turning a previously intractable
computation into one that is tractable, and beneficial for others.
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Fig. 5. The Finnish family studied by Knappskog et al. (2003), which
includes two affected individuals that suffer from cold-inducing sweating
syndrome (marked in black).

In addition, the identification of the potential cost savings of our
method is easy and can even be done by manual inspection of the
pedigree.

The general idea of collapsing states into equivalence classes is a
natural one, yet its realization in genetic linkage analysis is far less
obvious because the standard way to represent linkage problems uses
redundant selector variables. Identifying these redundancies and
using them to speed computations is one of our novel contributions.

In our method, we focus on reducing the state space by the
quotient of the subspace that arise from chains in a pedigree,
where no genetic information is available for individuals on the
chain. For a chain that consists of r selectors the state space
reduces from 2r to r+1. Although such chains are the most
common structure that enables the space reduction, there are cases
when more reductions are possible such as combing two chains
together. Consider Pedigree II depicted in Figure 1 within the dashed
rectangle with two affected distant cousins Dt and Eu. Here, the
full-inheritance state-space size equals N =2t+u+2. In the reduced
state space, the likelihood of data depends only on the combined
number of selectors that are off in chains D and E combined.
Consequently, it is possible to cluster the t+u selectors into a
single counting variable with t+u+1 states. The total reduced state
space is now N ′ =22 ·(t+u+1) yielding an exponential reduction
of the state space and, for this example, an algorithm that grows
quadratically in the number of persons in the chains and linearly
in the number of markers. Without combining the two chains, the
reduction would be smaller yielding a total reduced state space of
N ′′ =22 ·(t+1)(u+1).

As another example consider the internal inbreeding loop of the
family shown in Figure 5 which connects the two parents of the
affected individuals. We retain four selectors for the two affected
children and one selector for a child of the common founder. All
other 13 selectors for the two chains are replaced with a single
counting variable with 14 states that replaces both chains, rather
than having one cluster per chain. The state space reduces from
218 =252,144 to merely 14×25 =448, by a factor of 64/7. When
considering contracting chains in the entire pedigree, the total
state space dropped from 250, which is completely infeasible, to

a state space of 232, a reduction of more than five orders of
magnitude.

HMMs and factored HMMs are widely used in various
applications, thus speeding up common algorithms in these models,
as done via the state-space reduction, can be proved useful for
other domains as well. We note that the challenge in applying the
reduction to other domains lies in finding a suitable partition of
the state space, which satisfies Conditions I and II. Once these
conditions are satisfied, the computational savings are automatic
and do not require a special analysis. Finally, we note that our state-
space reductions are also immediately applicable to other methods
for linkage analysis such as Silberstein et al. (2006), Sobel and Lange
(1996) and Thompson (1994).
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