
Provably-Efficient Job Scheduling for Energy and Fairness in Geographically
Distributed Data Centers

Shaolei Ren Yuxiong He Fei Xu
Electrical Engineering Department Microsoft Research Microsoft Corporation

University of California, Los Angeles One Microsoft Way One Microsoft Way
Los Angeles, CA 90095 Redmond, WA 98052 Redmond, WA 98052

Abstract— Decreasing the soaring energy cost is impera-
tive in large data centers. Meanwhile, limited computational
resources need to be fairly allocated among different or-
ganizations. Latency is another major concern for resource
management. Nevertheless, energy cost, resource allocation
fairness, and latency are important but often contradicting
metrics on scheduling data center workloads.

In this paper, we explore the benefit of electricity price
variations across time and locations. We study the problem of
scheduling batch jobs, which originate from multiple organi-
zations/users and are scheduled to multiple geographically-
distributed data centers. We propose a provably-efficient
online scheduling algorithm – GreFar – which optimizes
the energy cost and fairness among different organizations
subject to queueing delay constraints. GreFar does not require
any statistical information of workload arrivals or electricity
prices. We prove that it can minimize the cost (in terms of
an affine combination of energy cost and weighted fairness)
arbitrarily close to that of the optimal offline algorithm
with future information. Moreover, by appropriately setting
the control parameters, GreFar achieves a desirable tradeoff
among energy cost, fairness and latency.

I. INTRODUCTION

With the emergence of cloud computing services, there
has been a growing trend toward large-scale and geographi-
cally distributed data centers. Many megawatts of electricity
are required to power such data centers, and companies
like Google and Microsoft spend a large portion of their
overall operational costs (e.g., tens of millions of dollars)
on electricity bills [1].

Better energy efficiency of servers and lower electricity
prices are both important in reducing the energy cost. Given
the heterogeneity of servers in terms of energy efficiency
and the diversity of electricity prices over geographically
distributed data centers and over time, the key idea is
to preferentially shift power draw (1) to energy-efficient
servers and (2) to places and times offering cheaper elec-
tricity prices.

In addition to reducing energy cost, satisfying fairness
and delay constraints is also important. For example, when
multiple organizations or groups of users share the re-
sources, allowing jobs from a few users to run first while
deferring other jobs for lower electricity prices may result in
reduced energy cost, but may sacrifice the response time of
other users and adversely affect fairness among users. Since
the performance metrics of energy, fairness and delay are
often contradicting, it is desirable to have a tunable system
with the flexibility to meet different business requirements.

In this paper, we consider the problem of developing
an online scheduler that distributes batch workloads ge-
ographically across multiple data centers and to hetero-
geneous servers for minimizing energy cost with fairness
consideration subject to delay requirements. This is a
challenging problem because data centers experience time-
varying workloads, server availability and electricity prices
with possibly unknown statistics and/or non-stationary dis-
tributions. Even though some statistics may be estimated
or predicted, applying traditional optimization techniques
such as dynamic programming to compute the globally
optimal solution can be time consuming and hence, it is
not applicable for online schedulers in practice [4].

We propose a practical yet provably-efficient online
scheduling algorithm “GreFar” to solve this problem, which
is inspired by the recently developed technique of Lyapunov
optimization [11] for time-varying systems. Our algorithm
does not require any prior knowledge of the system statistics
(which can even be non-stationary) or any prediction on
future job arrivals and server availability. Moreover, it is
computationally efficient and easy to implement in large
practical systems. GreFar constructs and solves an oline
optimal problem based on the current job queue lengths,
server availability and electricity prices; the solution is
proven to offer close to the offline optimal performance
with future information. More precisely, given a cost-delay
parameter 𝑉 ≥ 0, GreFar is 𝑂(1/𝑉)-optimal with respect
to the average (energy-fairness) cost against the offline
optimal algorithm while bounding the queue length by
𝑂(𝑉). Without considering fairness, the energy-fairness cost
solely represents the energy cost, while with fairness taken
into account, it is an affine combination of energy cost
and fairness score (which is obtained through a fairness
function). Furthermore, our algorithm is associated with two
control parameters, i.e., cost-delay parameter and energy-
fairness parameter, which can be appropriately tuned to pro-
vide a desired performance tradeoff among energy, fairness
and queueing delay.

To complement the analysis, we conduct a simulation
study to evaluate our algorithm using workloads from
Microsoft Cosmos clusters.1 Our results show that: (1)
GreFar effectively reduces the energy cost (at the expense of

1Cosmos is Microsoft’s internal cloud computing infrastructure for
storing and analyzing massive data sets. It is designed to run on large
clusters consisting of thousands of commodity servers and provide highly
reliable storage and highly scalable computation.

2012 32nd IEEE International Conference on Distributed Computing Systems

1063-6927/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDCS.2012.77

22

increased delay) by opportunistically processing batch jobs
using energy-efficient servers and when electricity prices
are sufficiently low; (2) With an appropriate energy-fairness
parameter, GreFar achieves much higher fairness while only
incurring a marginal increase in energy cost; (3) GreFar is
flexible in achieving a desirable tradeoff between energy
cost, fairness and queueing delay.

The remainder of the paper is organized as follows.
Section II discusses related work. Section III describes
the system, job and scheduling models. Section IV and V
presents the online algorithm and its analysis. Section VI
shows the performance evaluation results. Finally, Section
VII concludes the paper.

II. RELATED WORK

There has been a growing interest in cutting electricity
bills for large data centers. Several prior studies explore the
opportunity of energy saving by executing jobs when and/or
where the electricity prices are low (e.g., [5], [6], [7], [8],
[9]). Among them, some perform local optimization at each
time period without considering the electricity variations
across time periods; thus, they do not offer performance
guarantees for the average energy cost or queueing delay
over a large time horizon (e.g., [5], [6]). Some prior studies
assume that the electricity price variations and/or job ar-
rivals follow certain stationary (although possibly unknown)
distributions ([7], [8], [9]). In practice, the job arrivals may
not follow any stationary distributions, especially in an
enterprise computing environment where different organi-
zations only submit job requests sporadically (see Fig. 1
for a three-day trace of Microsoft Cosmos workloads).

There are other related studies on scheduling workloads
across multiple data centers. Lin et al. [3] propose an on-
line right-sizing algorithm which dynamically turns on/off
servers to minimizes the delay plus energy cost, under the
assumption that the electricity price is fixed over time.
Guenter et al. [4] consider a similar problem but proposes to
predict the future service demand using a Markov chain to
determine the number of active servers. Later, Buchbinder et
al. [2] study the problem by taking the bandwidth cost into
consideration; the proposed solution does not address the
queueing delay requirement. Qureshi et al. [1] quantify the
economic gains by scheduling workloads across multiple
data centers, which is an empirical study without providing
analytical performance bounds on the proposed scheduling
algorithm.

Compared with the existing research, GreFar does not
require any prior knowledge or assume any (stationary) dis-
tributions of the system dynamics. It minimizes the average
energy-fairness cost while bounding the average queueing
delay based on purely online information. Moreover, it
addresses fairness, an important factor in many shared
large-scale systems such as Microsoft Cosmos. To our best
knowledge, GreFar is the first provably-efficient solution
that minimizes the energy-fairness cost with queueing delay
guarantees under arbitrarily time-varying system dynamics
(e.g., non-stationary random server availability, electricity

prices, job arrivals).

III. PROBLEM FORMULATION

This section describes the data center system model, job
model and our scheduling model. We consider a system
with time indices 𝑡 = {0, 1, 2, ⋅ ⋅ ⋅ }, where each 𝑡 represents
a scheduling instant.

A. Data Center System Model

There are 𝑁 geographically distributed data centers, each
of which houses thousands of servers. Servers may be ho-
mogeneous or heterogeneous in hardware and performance
characteristics. One major source of heterogeneity is that
data centers operate several generations of servers from
multiple vendors. Application needs, hardware innovations
and prices jointly determine which type of servers to
purchase. Our model accommodates both homogeneous and
heterogeneous servers and, without loss of generality, we
consider that there are 𝐾 ≥ 1 types of servers. Each type-
𝑘 server is characterized by three parameters: processing
speed 𝑠𝑘, idle power 𝑝𝑘 and active power 𝑝𝑘, where 𝑝𝑘 >

𝑝𝑘.2

Next, we specify the state of each data center, which is
time-varying and captures the randomness in the environ-
ment.

1) Server availability: Server availability may change
over time due to different reasons server failures, software
upgrades, influence of other workloads, etc. For example,
the increase of interactive workloads may reduce the num-
ber of servers available to process batch jobs. We model
the time-varying server availability using 𝑛𝑖,𝑘(𝑡), which
denotes the number of type-𝑘 servers that are available for
processing batch jobs in data center 𝑖 during the time 𝑡.
To make the notation more concise, we use the vectorial
expression n𝑖(𝑡) = [𝑛𝑖,1(𝑡), 𝑛𝑖,2(𝑡), ⋅ ⋅ ⋅ , 𝑛𝑖,𝐾(𝑡)].

2) Electricity price: Due to the deregulation of elec-
tricity markets, electricity prices stochastically vary over
time (e.g., every hour or 15 minutes) and across different
locations [7][13][14]. We use 𝜑𝑖(𝑡) to denote the electricity
price in data center 𝑖 during the time 𝑡. The function 𝜑𝑖(𝑡)

maps the total energy usage in data center 𝑖 during time 𝑡

to the electricity price. For the ease of presentation, we
consider a simple example of 𝜑𝑖(𝑡) which is a constant
electricity price regardless of the actual energy usage during
time 𝑡. The constant electricity price during a time period
has been widely studied in prior works (e.g., [3]). However,
our model and analysis are still applicable when the total
electricity cost is not a linear function of the energy
consumption. For example, the electricity cost can be an
increasing and convex (or other) function of the energy
consumption [2]. In such scenarios, the amount of other
workloads such as interactive workloads also affects the
energy price, and hence, we need to add another component,
i.e., energy consumed by other workloads during each time
𝑡, into the data center state.

2Other server states, such as “low performance”, can also be captured if
we include the server state selection into the scheduling decisions (detailed
in Section III-C).

23

Based on the above discussion, we can mathematically
represent the state of data center 𝑖 during time 𝑡 using a
tuple x𝑖(𝑡) = {n𝑖(𝑡), 𝜑𝑖(𝑡)}, for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 . Throughout
the paper, we also use the vectorial expression x(𝑡) =

[x1(𝑡),x2(𝑡), ⋅ ⋅ ⋅ ,x𝑁 (𝑡)] wherever applicable. As we have
noted, x𝑖(𝑡) is stochastically changing over time and the
actual value of x𝑖(𝑡) is not revealed until the beginning of
time 𝑡. Unlike in prior works [7]–[9], we do not impose any
restriction on the distribution of x𝑖(𝑡), such as independent
and identically distributed (i.i.d.).

B. Job Model

Each job, or service request, is characterized by a tuple
{𝑑,𝒟, 𝜌}. We use 𝑑 > 0 to represent the service demand (i.e.,
job length) in terms of processor cycles; 𝒟 ∈ {1, 2, ⋅ ⋅ ⋅ , 𝑁}
represent the set of data centers that this job can be
scheduled to, which often relates to where the job’s data
is stored; 𝜌 ∈ {1, 2, ⋅ ⋅ ⋅ ,𝑀} (where 𝑀 is the total number
of accounts) is the account from which the job originates,
where an account may represent a user, a group of users
or an organization.3 During its execution, a job can be
suspended and resumed later.

Depending on the job characteristics, we classify the jobs
into 𝐽 ≥ 1 types and refer to the jobs belonging to type 𝑗

as type-𝑗 jobs, for 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝐽 . A type-𝑗 job can be fully
specified using y𝑗 = {𝑑𝑗 ,𝒟𝑗 , 𝜌𝑗}. In practice, we can group
jobs having approximately the same characteristics into the
same type. We denote by 𝑎𝑗(𝑡) the number of arrival jobs of
type 𝑗 during time slot 𝑡. The (time-varying) arrival process
{𝑎𝑗(𝑡) ∈ ℤ

+, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝐽, and 𝑡 = 0, 1, 2, ⋅ ⋅ ⋅ } does not
necessarily follow any stationary distributions and can be
arbitrary, while the only assumption, which is not a limiting
factor in practice, is boundedness:

0 ≤ 𝑎𝑗(𝑡) ≤ 𝑎max
𝑗 , (1)

for a finite positive integer 𝑎max
𝑗 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝐽 and 𝑡 =

0, 1, 2, ⋅ ⋅ ⋅ .
In the model, we assume that jobs are fully parallelizable.

In other words, a job can be processed by any number
of servers simultaneously. In practice, however, it may be
possible that only a certain number of servers can process a
job in parallel. Our model can be adapted easily to capture
this fact by adding a parallelism constraint for each job type.
Specifically, we need to add a constraint on the scheduling
decisions (detailed in the next subsection) such that the
maximum number of servers that can be used to process
a job simultaneously is upper bounded.

C. Scheduling Model

1) Performance Metrics: We consider three important
but often contradicting performance metrics in practice:
energy cost, fairness and queueing delay.

3In this study, we neglect the jobs’ service demands in terms of memory,
storage, etc., which can be considered if we extend the service demand
𝑑 > 0 from a scalar to a vector in which each element corresponds to one
type of demand.

Energy cost: Energy consumption is one of the largest
contributing factor to data center cost. Our scheduler con-
siders time-varying electricity prices across data centers to
decide where and when to run jobs to reduce the energy
cost. We consider turning servers on/off as external events
which affect the availability of servers but are orthogonal
to our scheduling decisions; given the available servers, our
scheduler decides which servers to use and which to stay
idle under power saving mode. Thus, what matters is the
difference in power consumption of servers between “busy”
and “idle” states. Without loss of generality, we let 𝑝𝑖 = 0

and hence, 𝑝𝑖 represents the energy consumption of a busy
type-𝑖 server minus that of an idle type-𝑖 server.

When 0 ≤ 𝑏𝑖,𝑘(𝑡) ≤ 𝑛𝑖,𝑘(𝑡) type-𝑘 servers in data
center 𝑖 are busy processing batch jobs, the energy cost for
processing the scheduled batch jobs in data center 𝑖 during
time 𝑡 is4

𝑒𝑖(𝑡) = 𝜑𝑖(𝑡) ⋅
𝐾∑

𝑘=1

𝑏𝑖,𝑘(𝑡)𝑝𝑘. (2)

Thus, the total energy cost during time 𝑡 is 𝑒(𝑡) =∑𝑁
𝑖=1 𝑒𝑖(𝑡).
Fairness: Fairness in resource allocation among different

accounts is an important concern for data centers. We
define a fairness function to mathematically characterize the
fairness of resource allocation. There are various fairness
functions such as 𝛼-fair index [12]. In this paper, we use
the following fairness function5

𝑓(𝑡) = −
𝑀∑

𝑚=1

[𝑟𝑚(𝑡)

𝑅(𝑡)
− 𝛾𝑚

]2
, (3)

where 𝑟𝑚(𝑡) is the total amount of computing resource
allocated to all the jobs from account 𝑚 during time 𝑡,
𝑅(𝑡) =

∑𝑁
𝑖=1

∑𝐾
𝑘=1 𝑛𝑖,𝑘(𝑡)𝑠𝑘 is the total available comput-

ing resource during time 𝑡, and 𝛾𝑚 ≥ 0 is the weighting
parameter indicating the desire amount of resource alloca-
tion to account 𝑚. The fairness score is maximized when
𝑟𝑚(𝑡) = 𝛾𝑚𝑅(𝑡) for 𝑚 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 .

Queueing delay: Given a job arrival process, queueing
delay is closely related to the average number of jobs
in the queue. In this paper, we bound the queue length,
which in turn determines the average delay performance.
For each type of jobs, there are separate queues maintained
at the central scheduler and in each data center. For type-
𝑗 jobs, we denote the queue lengths at time 𝑡 at the
central scheduler and in data center 𝑖 by 𝑄𝑗(𝑡) and 𝑞𝑖,𝑗(𝑡),
respectively.

2) Scheduler Decisions: Control decisions, including job
scheduling and server allocation, are made at the beginning
of each time 𝑡. In practice, the duration of each time 𝑡

depends on the scheduling quantum. For example, we may
consider 15 minutes or 1 hour as the duration of a time
slot, which correspond to the price updating frequencies in

4Each time 𝑡 has the same duration and hence, we normalize the duration
to one and the duration does not appear in the energy cost expression (2).

5Our analysis also applies if other fairness functions are considered.

24

electricity markets [13][14]. At the beginning of time 𝑡, the
following decisions are made.

(1) 𝑟𝑖,𝑗(𝑡) ∈ ℤ
+: the number of type-𝑗 jobs scheduled

to data center 𝑖 during time 𝑡, for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 and 𝑗 =

1, 2, ⋅ ⋅ ⋅ , 𝑗. A job cannot be split into multiple parts and
hence the scheduling decision 𝑟𝑖,𝑗(𝑡) takes integer values.

(2) ℎ𝑖,𝑗(𝑡) ∈ ℝ
+: the number of type-𝑗 jobs processed

in data center 𝑖 during time 𝑡, for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 and 𝑗 =

1, 2, ⋅ ⋅ ⋅ , 𝐽 . Since we allow a job to be paused during its
execution, ℎ𝑖,𝑗(𝑡) is not necessarily an integer.

(3) 0 ≤ 𝑏𝑖,𝑘(𝑡) ≤ 𝑛𝑖,𝑘(𝑡): the number of type-𝑘 servers in
data center 𝑖 during time 𝑡. Note that if a type-𝑘 server is
turned on for a fraction of the time slot 𝑡, 𝑏𝑖,𝑘(𝑡) may not
be an integer. Moreover,

∑𝐽
𝑗=1 ℎ𝑖,𝑗(𝑡)𝑑𝑗 ≤

∑𝐾
𝑘=1 𝑏𝑖,𝑘(𝑡)𝑠𝑘

is satisfied, i.e., the processed work cannot exceed the
provided computing resource.

For notational convenience, we write the decisions, which
we also refer to as action, made at the beginning of time
𝑡 in a compact form as z(𝑡) = {𝑟𝑖,𝑗(𝑡), ℎ𝑖,𝑗(𝑡), 𝑏𝑖,𝑘(𝑡), 𝑖 =

1, 2, ⋅ ⋅ ⋅ , 𝑁, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝐽, 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝐾}. Finally, we
impose a mild assumption on the scheduling decisions that
the following boundedness conditions are satisfied:

0 ≤ 𝑟𝑖,𝑗(𝑡) ≤ 𝑟max
𝑖,𝑗 , (4)

0 ≤ ℎ𝑖,𝑗(𝑡) ≤ ℎmax
𝑖,𝑗 , (5)

for some finite 𝑟max
𝑖,𝑗 and ℎmax

𝑖,𝑗 .

IV. SCHEDULING ALGORITHM

This section presents an offline optimal formulation of the
problem and a provably efficient online algorithm “GreFar”.

A. Problem formulation

To jointly consider the energy cost and fairness, we define
the instantaneous energy-fairness cost function as follows

𝑔(𝑡) = 𝑒(𝑡)− 𝛽 ⋅ 𝑓(𝑡) =
𝑁∑
𝑖=1

𝑒𝑖(𝑡)− 𝛽 ⋅ 𝑓(𝑡), (6)

where 𝛽 ≥ 0 is a scaler (called energy-fairness parameter)
that transfers the achieved fairness into energy cost saving,
and 𝑒𝑖(𝑡) and 𝑓(𝑡) are given in (2) and (3), respectively. In
special cases, when 𝛽 = 0, the scheduler does not consider
the fairness in resource allocation, whereas when 𝛽 → ∞,
the scheduler does not consider the energy cost. Affine
combination of two performance metrics is a common
approach in multi-objective optimization (e.g., [3][5][17]).
Moreover, 𝛽 is equivalent to the corresponding Lagrangian
multiplier if we formulate the fairness as a constraint [16].

Data centers operate over a large time horizon (e.g., more
than ten years), and minimizing the time-average cost is
crucial in cutting electricity bills. Let 𝑔 be the time average
cost of 𝑔(𝑡) under a particular control policy implemented
over a sufficiently large but finite time horizon with 𝑡𝑒𝑛𝑑
time slots:

𝑔 ≜ 1

𝑡𝑒𝑛𝑑

𝑡𝑒𝑛𝑑−1∑
𝜏=0

𝑔(𝜏). (7)

Similarly, we define �̄�𝑖 ≜ 1
𝑡𝑒𝑛𝑑

∑𝑡𝑒𝑛𝑑−1
𝜏=0 𝑎𝑖(𝜏), 𝑟𝑖,𝑗 ≜

1
𝑡𝑒𝑛𝑑

∑𝑡𝑒𝑛𝑑−1
𝜏=0 𝑟𝑖,𝑗(𝜏), and ℎ̄𝑖,𝑗 ≜ 1

𝑡𝑒𝑛𝑑

∑𝑡𝑒𝑛𝑑−1
𝜏=0 ℎ𝑖,𝑗(𝜏).

The problem of minimizing the cost can be formulated
as follows:

min
z(𝑡),𝑡=0,1,2,⋅⋅⋅ ,𝑡𝑒𝑛𝑑−1

𝑔 (8)

s.t., �̄�𝑗 ≤
∑
𝑖∈𝒟𝑗

𝑟𝑖,𝑗 , ∀𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝐽, (9)

𝑟𝑖,𝑗 ≤ ℎ̄𝑖,𝑗 , ∀𝑖 ∈ 𝒟𝑗 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝐽, (10)
𝐽∑

𝑗=1

ℎ𝑖,𝑗(𝑡)𝑑𝑗 ≤
𝐾∑

𝑘=1

𝑏𝑖,𝑘(𝑡)𝑠𝑘 ≤
𝐾∑

𝑘=1

𝑛𝑖,𝑘(𝑡)𝑠𝑘,(11)

where
∑𝐾

𝑘=1 𝑛𝑖,𝑘(𝑡)𝑠𝑘 in (11) is the maximum amount of
work that can be processed in data center 𝑖 during time 𝑡

and specifies that the scheduling decisions ℎ𝑖,𝑗(𝑡), for 𝑗 =

1, 2, ⋅ ⋅ ⋅ , 𝐽 , are bounded in a convex polyhedron.
To solve the optimization problem (8)–(11), we need

offline information (e.g., future job arrivals) which is un-
available in practice. Thus, we develop an online algorithm
that makes scheduling decisions based on the currently
available information only.

B. Online Algorithm

Based on the recently developed Lyapunov optimization
technique [11], this section presents an online algorithm
“GreFar”, whose performance is provably “good” compared
to that of the optimal offline policy with 𝑇 -step lookahead
information. The intuition of GreFar is to trade the delay
for energy-fairness cost saving by using the queue length
as a guidance for making scheduling decisions: jobs are
processed only when the queue length becomes sufficiently
large and/or electricity prices are sufficiently low.

Before presenting the algorithm, we need to intro-
duce “queue dynamics”, which specifies the queue length
changes governed by the scheduling decisions (and job
arrivals). The queue dynamics is instrumental for the sched-
uler to make online decisions. We express the queue dynam-
ics governed the action z(𝑡) = {𝑟𝑖,𝑗(𝑡), ℎ𝑖,𝑗(𝑡), 𝑏𝑖,𝑘(𝑡), 𝑖 =

1, 2, ⋅ ⋅ ⋅ , 𝑁, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝐽, 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝐾} as below:

𝑄𝑗(𝑡+ 1) = max

[
𝑄𝑗(𝑡)−

𝑁∑
𝑖=1

𝑟𝑖,𝑗(𝑡), 0

]
+ 𝑎𝑗(𝑡), (12)

𝑞𝑖,𝑗(𝑡+ 1) = max
[
𝑞𝑖,𝑗(𝑡)− ℎ𝑖,𝑗(𝑡), 0

]
+ 𝑟𝑖,𝑗(𝑡), (13)

where 𝑄𝑗(𝑡) is the queue length for type-𝑗 jobs at the central
scheduler and 𝑞𝑖,𝑗(𝑡) is the queue length for type-𝑗 jobs in
data center 𝑖 during time 𝑡.

We describe GreFar in Algorithm 1, which is purely
online and requires only the current data center state and
queue lengths as the input. Solving (14) subject to the
constraint (11) is a convex optimization problem, to which
efficient numerical algorithms (e.g., interior point method)
exist [16]. In particular, if the fairness is not taken into
account (i.e., 𝛽 = 0 in (6)), solving (14) becomes a standard
linear programming problem.

The parameter 𝑉 ≥ 0 is a control variable which we refer
to as cost-delay parameter, and it can be tuned to different

25

Algorithm 1 GreFar Scheduling Algorithm
1: At the beginning of every time slot 𝑡, observe the data

center state x(𝑡) and the vector of current queue states
Θ(𝑡)

2: Choose 𝑟𝑖,𝑗(𝑡) ≥ 0 and ℎ𝑖,𝑗 ≥ 0 subject to (4)(5)(11) to
minimize

𝑉 ⋅ 𝑔(𝑡)−
𝐽∑

𝑗=1

𝑄𝑗(𝑡) ⋅

⎡
⎣∑
𝑖∈𝒟𝑗

𝑟𝑖,𝑗(𝑡)

⎤
⎦

+

𝐽∑
𝑗=1

∑
𝑖∈𝒟𝑗

𝑞𝑖,𝑗(𝑡) ⋅
[
𝑟𝑖,𝑗(𝑡)− ℎ𝑖,𝑗(𝑡)

]
, (14)

where the cost 𝑔(𝑡) is defined in (6).
3: Update 𝑄𝑗(𝑡) and 𝑞𝑖,𝑗(𝑡) according to (12) and (13),

respectively.

values to trade the queueing delay for the energy-fairness
cost. For simplicity, let us consider 𝛽 = 0 and explain the
role of 𝑉 in making scheduling decisions. By substituting
(6) into (14), we see that the scheduler chooses ℎ𝑖,𝑗(𝑡) > 0

only when the electricity price 𝜑𝑖(𝑡) is sufficiently low such
that 𝑉 ⋅ (𝑊𝜑𝑖(𝑡)𝑑𝑗) is smaller than the current queue length
𝑞𝑖,𝑗(𝑡), where 𝑊 is a positive constant that only depends
on the server speeds and power consumptions. When 𝑉 is
larger, the scheduler will wait longer until the electricity
price is sufficiently low relative to the queue length before
scheduling the jobs for processing (i.e., opportunistically
take the advantage of low electricity prices). As a result,
the energy cost reduces at the expense of the increased
delay. On the other hand, when 𝑉 is smaller, the scheduler
will schedule jobs even though the electricity price is not
sufficiently low, resulting in an increased energy cost but
reduced delay. When the fairness is taken into account in
scheduling (i.e., 𝛽 > 0), the role of 𝑉 is similar and can
achieve a tradeoff between the energy-fairness cost and
delay.

V. ALGORITHM ANALYSIS

This section shows that the proposed online algorithm
is provably-efficient against an optimal algorithm with 𝑇 -
step of look-ahead information. This section first describes
the 𝑇 -step look-ahead policy, and then analyzes the perfor-
mance of GreFar against it. More specifically, we show that,
given a cost-delay parameter 𝑉 , our algorithm is 𝑂(1/𝑉)-
optimal with respect to average cost against the optimal 𝑇 -
step lookahead policy, while the queue length is bounded
by 𝑂(𝑉).

A. 𝑇 -Step Lookahead Policy

Here, we present the 𝑇 -step lookahead policy, which has
full knowledge of the data center states and job arrivals in
the next (up to) 𝑇 time steps. If 𝑇 is sufficiently large (e.g.,
in the extreme case 𝑇 = 𝑡𝑒𝑛𝑑), the 𝑇 -step lookahead policy
also “approximately” (or exactly if 𝑇 = 𝑡𝑒𝑛𝑑) minimizes the
average cost in (8).

We divide the time horizon of 𝑡𝑒𝑛𝑑 time steps into 𝑅 ∈ ℤ
+

frames, each of which contains 𝑇 time steps such that
𝑡𝑒𝑛𝑑 = 𝑅𝑇 . In the 𝑇 -step lookahead algorithm, the scheduler
has future information (i.e., data center states and job
arrivals) up to the next 𝑇 time steps and minimizes the cost
subject to certain constraints. Specifically, the cost mini-
mization problem over the 𝑟-th frame, for 𝑟 = 0, 1, ⋅ ⋅ ⋅ , 𝑅−1,
can be formulated as

min
z(𝑡),𝑡=𝑟𝑇,𝑟𝑇+1,⋅⋅⋅ ,𝑟𝑇+𝑇−1

1

𝑇

𝑡=𝑟𝑇+𝑇−1∑
𝑡=𝑟𝑇

𝑔(𝑡) (15)

s.t.,
𝑡=𝑟𝑇+𝑇−1∑

𝑡=𝑟𝑇

⎛
⎝𝑎𝑗(𝑡)−

∑
𝑖∈𝒟𝑗

𝑟𝑖,𝑗(𝑡)

⎞
⎠ ≤ 0, ∀𝑗, (16)

𝑡=𝑟𝑇+𝑇−1∑
𝑡=𝑟𝑇

(
𝑟𝑖,𝑗(𝑡)− ℎ𝑖,𝑗(𝑡)

)
≤ 0, ∀𝑖 ∈ 𝒟𝑗 , ∀𝑗,(17)

𝐽∑
𝑗=1

ℎ𝑖,𝑗(𝑡)𝑑𝑗 ≤
𝐾∑

𝑘=1

𝑏𝑖,𝑘(𝑡)𝑠𝑘 ≤
𝐾∑

𝑘=1

𝑛𝑖,𝑘(𝑡)𝑠𝑘.(18)

In the problem (15)–(18), we denote the infimum of
1
𝑇

∑𝑡=𝑟𝑇+𝑇−1
𝑡=𝑟𝑇 𝑔(𝑡) by 𝐺∗𝑟 , which is achievable over the 𝑟-

th frame considering all the actions including those that are
chosen with the perfect knowledge of data center states and
job arrivals over the entire frame. Thus, the minimum cost
over 𝑅 frames achieved by the optimal 𝑇 -step lookahead
policy is

1

𝑅

𝑅−1∑
𝑟=0

𝐺∗𝑟 . (19)

We shall show that our online algorithm can achieve a cost
close to the value of (19).

B. Online Algorithm Analysis

This section presents the performance analysis of our
proposed online algorithm compared with the optimal 𝑇 -
step lookahead policy.

Before showing the main theorem, we first present the
slackness conditions, which bound the relationship between
the resource demand and availability. These conditions are
prerequisites of Theorem 1.6

Slackness Conditions: There exists a value 𝛿 > 0 and
a sequence of scheduling decisions 𝑟𝑖,𝑗(𝑡) and ℎ𝑖,𝑗(𝑡) such
that, for data center states x(𝑡), 𝑡 = 0, 1, ⋅ ⋅ ⋅ 𝑡𝑒𝑛𝑑 − 1, the
following conditions are satisfied

𝑎𝑗(𝑡) ≤
∑
𝑖∈𝒟𝑗

𝑟𝑖,𝑗(𝑡)− 𝛿, ∀𝑗 (20)

𝑟𝑖,𝑗(𝑡) ≤ ℎ𝑖,𝑗(𝑡)− 𝛿, ∀𝑖 ∈ 𝒟𝑗 , ∀𝑗 (21)
𝐽∑
𝑗

ℎ𝑖,𝑗(𝑡)𝑑𝑗 ≤
𝐾∑

𝑘=1

𝑛𝑖,𝑘(𝑡)𝑠𝑘 − 𝛿 ∀𝑖 ∈ 𝒟𝑗 , ∀𝑗. (22)

6If we only assume that the problem (8)–(11) is strongly feasible without
slackness conditions, the performance analysis of energy-fairness cost
remains similar while the upper bound on the queue length may grow
as the time passes [10].

26

The conditions (20) and (21) ensure that the scheduler
can successfully schedule all arrived jobs with 𝛿 slackness,
while the condition (22) ensures that the available comput-
ing resource is always enough to process all the scheduled
jobs. In practice, these three conditions are mild and can be
easily satisfied. In particularly, the computing resource in a
data center is provisioned for the peak load, and thus the
available computing resource is (almost) always sufficient
for processing workloads, i.e., (22) holds in practice. In
the worst case where the data center is overloaded, admis-
sion control techniques can be applied to complement our
scheme.

Theorem 1 shows a cost bound and queue length bound
for GreFar.

Theorem 1. Suppose that the boundedness conditions
(1)(4)(5) and the slackness conditions (20)(21)(22) are sat-
isfied for some 𝛿 > 0, that the data center states x(𝑡) and job
arrivals 𝑎𝑗(𝑡) are arbitrarily random, for 𝑡 = 0, 1, ⋅ ⋅ ⋅ 𝑡𝑒𝑛𝑑−1

and 𝑗 = 1, 2, ⋅ ⋅ ⋅ 𝐽 , and that all the queue lengths are initially
zero. Then, the following statements hold.

a. All queue lengths are bounded. For any time step 𝑡 =

0, 1, ⋅ ⋅ ⋅ 𝑡𝑒𝑛𝑑 − 1, we have

𝑄𝑗(𝑡), 𝑞𝑖,𝑗(𝑡) ≤ 𝑉 𝐶3

𝛿
, (23)

where 𝑉 ≥ 0 and 𝐶3 is a finite number defined in (39) in
the appendix.

b. For any 𝑇 ∈ ℤ
+ and 𝑅 ∈ ℤ

+ such that 𝑡𝑒𝑛𝑑 = 𝑅𝑇 , the
energy-fairness cost achieved by GreFar satisfies

𝑔∗ ≤ 1

𝑅

𝑅−1∑
𝑟=0

𝐺∗𝑟 +
𝐵 +𝐷(𝑇 − 1)

𝑉
, (24)

where 𝑔∗ is the cost achieved by GeoFar for the problem
(8)–(11), 𝐵 and 𝐷 are (finite) constants defined in the
appendix and 𝐺∗𝑟 is the minimum cost in the 𝑟-th frame
achieved by the 𝑇 -step lookahead policy.

Proof: The proof is provided in the appendix. □
Theorem 1 shows that, given a cost-delay parameter 𝑉 ,

our algorithm is 𝑂(1/𝑉)-optimal with respect to the average
energy-fairness cost against the optimal 𝑇 -step lookahead
policy, while the queue length is bounded by 𝑂(𝑉). More
specifically, the inequality (23) bounds the queue length: the
queue length (which is closely related to the average delay)
is bounded by 𝑂(𝑉) where 𝑉 is the cost-delay parameter in
Algorithm 1. The queue length bound is tighter when 𝑉 is
smaller. The inequality (24) shows that the average energy-
fairness cost is bounded within an additional 𝑂(1/𝑉) cost
of that achieved by the optimal 𝑇 -step lookahead policy.
The cost bound is closer to the minimum cost when 𝑉 is
larger.

Theorem 1 also shows that, by appropriately tuning the
cost-delay parameter 𝑉 , we can achieve a desired tradeoff
between the cost and queue lengths. In particular, by
increasing the value of 𝑉 ≥ 0, the (energy-fairness) cost
becomes closer to that achieved by the optimal 𝑇 -step
lookahead policy, whereas the upper bounds on the queue
lengths become larger.

Table I
SERVER CONFIGURATION AND ELECTRICITY PRICE IN DATA CENTERS

DC Speed Power Avg. Price Avg. Energy Cost
per Unit Work

#1 1.00 1.00 0.392 0.392
#2 0.75 0.60 0.433 0.346
#3 1.15 1.20 0.548 0.572

10 20 30 40 50 60 70

0.4

0.5

0.6

0.7

Time (hour)

P
ric

e

DC #1
DC #2
DC #3

10 20 30 40 50 60 70
0

20

40

60

80

100

Time (hour)

W
or

k

Organization #1
Organization #2
Organization #3
Organization #4

Figure 1. Three-day trace of electricity prices and total work of arrived
jobs.

VI. PERFORMANCE EVALUATION

We perform a simulation study to evaluate our algo-
rithm using workload distributions from Microsoft Cosmos
clusters, which are Microsoft’s internal cloud computing
infrastructure consisting of thousands of commodity servers
at three geographically distributed data centers. We conduct
three sets of experiments:
∙ Minimizing energy cost with different 𝑉 : study the

impact of the cost-delay parameter 𝑉 on energy cost mini-
mization.
∙ Impact of the energy-fairness parameter 𝛽: study how

𝛽 value affects the energy cost and fairness score.
∙ Algorithm comparison: compare GreFar with an online

algorithm that always schedules jobs immediately whenever
there are resources available.

The experimental results show that (1) GreFar reduces
energy cost by opportunistically scheduling jobs when the
electricity prices are sufficiently low and to servers with
high energy efficiency; (2) With an appropriate energy-
fairness parameter 𝛽, GreFar significantly increases the
resource allocation fairness while only incurring a marginal
increase in energy cost; (3) GeoFar is flexible in achieving
a balance among energy cost, fairness and queueing delay.

A. Setup

We build a time-based simulator and drive the simulation
using a real-world trace from Microsoft Cosmos clusters,
where the trace includes the job arrival time, total work,
organizational account information, data centers where the
job is allowed to run, etc. To protect commercial business
interests, we do not disclose the data center locations,
the server quantity or hardware configurations. Instead, we

27

0 500 1000 1500 2000
25

30

35

40

45

50

Time (hour)

A
ve

ra
ge

 E
ne

rg
y

C
os

t

V=7.5

V=2.5
V=0.1

V=20

(a) Energy cost

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (hour)

A
ve

ra
ge

 D
el

ay
 in

 D
C

 #
1

V=20

V=7.5

V=2.5

V=0.1

(b) Delay in DC #1

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (hour)

A
ve

ra
ge

 D
el

ay
 in

 D
C

 #
2

V=0.1

V=2.5

V=7.5
V=20

(c) Delay in DC #2

Figure 2. GreFar: minimize energy cost without fairness consideration (i.e., 𝛽 = 0).

normalize the server speed and power consumption and
scale the work of jobs accordingly.

We consider three data centers and four organizations.
For illustration purposes, Table I only specifies one type
of servers for each data center using normalized values,
whereas each data center may have multiple types of
servers in practice. We choose publicly available (hourly)
electricity prices from [14] in locations with proximity to
our considered data centers.7 Fig. 1 shows a three-day trace
of electricity prices. The fairness weighting parameters of
the four organizations are 40%, 30%, 15% and 15%, re-
spectively, indicating the desired resource allocation ratios.
In the experiment, we scale the service demand: service
demand 1 refers to 1000 hours on a server with a normalized
speed of 1. Fig. 1 shows the total work of the arrived jobs
over a three-day period from four organizations, reflecting
the fact that the job arrivals are highly time dependent
(e.g., more jobs during the day) and do not follow any
stationary distributions. The (random) server availability is
chosen such that it satisfies the slackness conditions (20)–
(22).

B. Experimental Results

We discusses three sets of experimental results.
1) Minimizing energy cost with different 𝑉 : Here, we

study the impact of the cost-delay parameter 𝑉 on the
energy cost and delay of jobs. This experiment does not
consider fairness requirement (i.e., 𝛽 = 0). We show in
Fig. 2 the average energy cost, and average delays in data
center 1 and 2.8 The average delays in data center 3 and
at the central scheduler are similar and hence, we omit
them due to space limitations.9 The results conform with
our analysis that with a greater 𝑉 , GreFar is more efficient
in cost minimization at the expense of increased queueing
delays. The reason is that, with a large value of 𝑉 , the
scheduler will only schedule the jobs for processing when

7If the electricity prices change every 15 minutes in real-time markets,
our analysis still applies and the scheduler shall make scheduling decisions
every 15 minutes.

8Throughout this section, the average values at time 𝑡 = 1, 2, ⋅ ⋅ ⋅ are
obtained by summing up all the values up to time 𝑡 and then dividing the
sum by 𝑡.

9In Fig. 3 and Fig. 4, we only show the average delay in data center #1
for brevity.

the electricity prices are sufficiently low. Thus, the low
electricity prices are “opportunistically” utilized while high
electricity prices are avoided, resulting in a reduced energy
cost. On the other hand, when 𝑉 is small (e.g., 𝑉 = 0.1),
the scheduler will schedule jobs even when the prices are
not quite low, and thus the energy cost increases whereas
the average delay decreases. Different settings of the cost-
delay parameter 𝑉 allows the system to operate subject to
various business requirements on energy cost and queueing
delay.

In addition to opportunistically processing jobs when
the electricity prices are low, GreFar also schedules more
arrived jobs to data centers that are more energy cost
efficient, where the energy cost efficiency is related to both
energy efficiency of data center hardware and the electricity
price. For example, when 𝑉 = 7.5 and 𝛽 = 100, our
simulation result shows that the average work per time
step scheduled to data centers #1, #2, and #3 are 33.967,
48.502 and 14.770, respectively. In other words, more work
is processed in data centers that incur lower energy costs
(see Table I for the average energy cost per unit work).

2) Impact of the energy-fairness parameter 𝛽: Fig. 3
compares the total energy cost, fairness, and delay in data
center 1 with 𝛽 = 0 and 𝛽 = 100. According to our fairness
function in (3), the highest (ideal) fairness score is 0 where
all the resources are allocated and utilized based on the
specified fairness weights. The higher the fairness score,
the better fairness. Clearly, with 𝛽 = 100, the fairness score
is much higher than the score with 𝛽 = 0. Nevertheless,
the corresponding energy cost only increases marginally.
Another positive impact is that the average delay also
reduces, since this fairness model (Eqn. 3) has a side effect
on encouraging the use of resources. For example, if all the
servers are idle (i.e., 𝑟𝑚(𝑡) = 0 for 𝑚 = 1, 2, ⋅ ⋅ ⋅ ,𝑀), the
fairness score tends to be low. Therefore, with 𝛽 = 100,
GreFar schedules some jobs for processing even when the
electricity prices are not very low to compensate the fairness
score, which reduces the average queueing delay.

3) Algorithm comparison: We compare GreFar with an-
other scheduling algorithm “Always”, which always sched-
ules the jobs immediately whenever there are resources

28

0 500 1000 1500 2000
25

30

35

40

45

50

Time (hour)

A
ve

ra
ge

 E
ne

rg
y

C
os

t

β=100

β=0

(a) Energy cost

0 500 1000 1500 2000
−0.22

−0.21

−0.2

−0.19

−0.18

−0.17

−0.16

Time (hour)

A
ve

ra
ge

 F
ai

rn
es

s

β=100

β=0

(b) Fairness

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

Time (hour)

A
ve

ra
ge

 D
el

ay
 in

 D
C

 #
1

β=100

β=0

(c) Delay in DC #1

Figure 3. GreFar: minimize energy cost with fairness consideration.

0 500 1000 1500 2000
25

30

35

40

45

50

Time (hour)

A
ve

ra
ge

 E
ne

rg
y

C
os

t

Always

GreFar

(a) Energy cost

200 400 600 800 1000 1200 1400 1600 1800 2000
−0.22

−0.21

−0.2

−0.19

−0.18

−0.17

−0.16

Time (hour)

A
ve

ra
ge

 F
ai

rn
es

s

GreFar

Always

(b) Fairness

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

Time (hour)

A
ve

ra
ge

 D
el

ay
 in

 D
C

 #
1

GreFar

Always

(c) Delay in DC #1

Figure 4. GreFar versus “Always” with 𝛽 = 100 and 𝑉 = 7.5.

5 10 15 20

0.35

0.4

0.45

0.5

Time (hour)

P
ric

e

Price in DC #1

5 10 15 20
0

50

100

150

Time (hour)

W
or

k

GreFar
Always

Figure 5. Scheduled work to process (𝛽 = 0 and 𝑉 = 7.5).

available.10 Since Always tries to schedule the jobs based
on the server availability, most of the jobs will be scheduled
in the next time slot upon their arrivals. Thus, the average
delay is expected to be one. The result in Fig. 4 show
that GreFar (with 𝑉 = 7.5 and 𝛽 = 100) incurs a lower
energy cost and better fairness than Always at the expense
of increased average delay.

We illustrate in Fig. 5 why GreFar is more efficient
in energy cost minimization than Always. Fig. 5 shows a
snapshot of one-day schedule in data center 1. “Always”

10We do not show the performance of the optimal 𝑇 -step lookahead
algorithm, as GreFar is guaranteed to achieve a cost within 𝑂(1/𝑉) of
that of the optimal 𝑇 -step lookahead algorithm.

schedules the jobs without taking into account the elec-
tricity prices. In contrast, GreFar can effectively avoid high
electricity prices and schedule the jobs for processing when
electricity prices are low, thereby reducing the energy cost.

VII. CONCLUSION

This paper presents a provably-efficient online algorithm,
GreFar, for scheduling batch jobs among multiple geograph-
ically distributed data centers. For arbitrarily random job
arrivals, server availability and electricity prices, GreFar
minimizes the energy-fairness cost while providing queue-
ing delay guarantees. It opportunistically schedules jobs
when electricity prices are sufficiently low and to places
where the energy cost per unit work is low. Given the cost-
delay parameter 𝑉 , GreFar achieves a cost within 𝑂(1/𝑉)

of the optimal 𝑇 -step lookahead algorithm, while bounding
the queue length by 𝑂(𝑉).

REFERENCES

[1] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B.
Maggs, “Cutting the electric bill for internet-scale systems,”
Sigcomm, 2009.

[2] N. Buchbinder, N. Jain, and I. Menache, “Online job migration
for reducing the electricity bill in the cloud,” IFIP Networking,
2011.

[3] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska,
“Dynamic right-sizing for power-proportional data centers,”
Infocom, 2011.

[4] B. Guenter, N. Jain, and C. Williams, “Managing cost, per-
formance and reliability tradeoffs for energy-aware server
provisioning,” Infocom, 2011.

29

[5] Z. Liu, M. Lin, A. Wierman, S. Low, and L. H. Andrew,
“Greening geographical load balancing”, Sigmetrics, 2011.

[6] L. Rao, X. Liu, L. Xie, and Wenyu Liu, “Reducing electricity
cost: optimization of distributed Internet data centers in a
multi-electricity-market environment,” Infocom, 2010.

[7] D. Xu and X. Liu, “Geographic trough filling for Internet
datacenters,” http://arxiv.org/abs/1108.5494.

[8] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and M. J. Neely,
“Data centers power reduction: A two time scale approach for
delay tolerant workloads,” Infocom, 2012.

[9] Y. Guo, Z. Ding, Y. Fang, and D. Wu, “Cutting down elec-
tricity cost in Internet data centers by using energy storage,”
Globecom, 2011.

[10] M. J. Neely, “Universal scheduling for networks with arbi-
trary traffic, channels, and mobility,” Technical Report, 2010.

[11] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource
allocation and cross-layer control in wireless networks,” Foun-
dations and Trends in Networking, vol. 1, no. 1, pp. 1-
149,2006.

[12] J. W. Lee, M. Chiang, and R. A. Calderbank, “Utility-optimal
random-access control,” IEEE Trans Wireless Commun., vol.
6, no. 7, pp. 2741-2751, 2007.

[13] California ISO, http://www.caiso.com

[14] Federal Energy Regulatory Commission, http://www.ferc.gov

[15] A. Leon-Garcia, Probability, Statistics, and Random Pro-
cesses for Electrical Engineering, (3rd Ed.) Prentice Hall,
2008.

[16] S. Boyd and L. Vandenberghe, Convex Optimization, Cam-
bridge University Press, 2004.

[17] D. P. Bertsekas, Nonlinear Programming, Athena Scientific,
Belmont, MA, 1995.

APPENDIX

Proof: Here, we provide the proof of Theorem 1. First, we
define the vector of all queue states during time 𝑡 as

Θ(𝑡) ≜ {𝑄𝑗(𝑡), 𝑞𝑖,𝑗 , ∀𝑖 ∈ 𝒟𝑗 , ∀𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝐽}, (25)

where 𝑄𝑗(𝑡) is the queue length for type-𝑗 jobs at the central
scheduler and 𝑞𝑖,𝑗(𝑡) is the queue length for type-𝑗 jobs in data
center 𝑖 during time 𝑡. As a scalar measure of all the queue lengths,
we define the quadratic Lyapunov function as

𝐿(Θ(𝑡)) ≜ 1

2

𝐽∑
𝑗=1

𝑄2
𝑗 (𝑡) +

1

2

𝐽∑
𝑗=1

∑
𝑖∈𝒟𝑗

𝑞2𝑖,𝑗(𝑡). (26)

Let △𝑇 (𝑡) be the 𝑇 -step Lyapunov drift yielded by some control
policies over the interval 𝑡, 𝑡+ 1, ⋅ ⋅ ⋅ , 𝑡+ 𝑇 − 1:

△𝑇 (𝑡) ≜ 𝐿(Θ(𝑡+ 𝑇))− 𝐿(Θ(𝑡)). (27)

Similarly, the 1-step drift is

△1(𝑡) ≜ 𝐿(Θ(𝑡+ 1))− 𝐿(Θ(𝑡)). (28)

Then, it can be shown that the 1-step drift satisfies

△1(𝑡) ≤𝐵 +

𝐽∑
𝑗=1

𝑄𝑗(𝑡) ⋅ [𝑎𝑗(𝑡)−
∑
𝑖∈𝒟𝑗

𝑟𝑖,𝑗(𝑡)]

+

𝐽∑
𝑗=1

∑
𝑖∈𝒟𝑗

𝑞𝑖,𝑗(𝑡) ⋅ [𝑟𝑖,𝑗(𝑡)− ℎ𝑖,𝑗(𝑡)],

(29)

where 𝐵 is a constant satisfying, for all 𝑡 = 0, 1, ⋅ ⋅ ⋅ , 𝑡𝑒𝑛𝑑,

𝐵 ≥ 1

2

[
𝑎𝑗(𝑡) +

∑
𝑖∈𝒟𝑗

𝑟𝑖,𝑗(𝑡)
]
+

1

2
[𝑟𝑖,𝑗(𝑡) + ℎ𝑖,𝑗(𝑡)]

2 , (30)

where is finite due to the boundedness conditions (1)(4)(5).
Part (a): Based on (29), we can easily show that

△1(𝑡) + 𝑉 ⋅ 𝑔(𝑡) ≤𝐵 + 𝑉 ⋅ 𝑔(𝑡) +
𝐽∑

𝑗=1

𝑄𝑗(𝑡) ⋅ [𝑎𝑗(𝑡)−
∑
𝑖∈𝒟𝑗

𝑟𝑖,𝑗(𝑡)]

+

𝐽∑
𝑗=1

∑
𝑖∈𝒟𝑗

𝑞𝑖,𝑗(𝑡) ⋅ [𝑟𝑖,𝑗(𝑡)− ℎ𝑖,𝑗(𝑡)] .

(31)

Thus, GreFar actually minimizes the upper bound on the 1-step
Lyapunov drift plus a weighted cost shown on the right hand side
of (31).

Let us choose a control action z′(𝑡) satisfying the slackness
conditions (20)(21)(22). The corresponding 1-step Lyapunov drift
plus a weighted cost achieved satisfies

△1(𝑡) + 𝑉 ⋅ 𝑔(𝑡) ≤𝐵 + 𝑉 ⋅ 𝑔(𝑡)− 𝛿
[𝐽∑

𝑗=1

𝑄𝑗(𝑡) +

𝐽∑
𝑗=1

∑
𝑖∈𝒟𝑗

𝑞𝑖,𝑗(𝑡)
]
.

(32)

Since GreFar minimizes the right hand side of (31), the 1-step
Lyapunov drift plus a weighted cost achieved by GreFar must be
less than or equal to that achieved by z′(𝑡). In other words, the
following inequality can be established

△∗1(𝑡) ≤𝐵 + 𝑉 ⋅ (𝑔max − 𝑔min)− 𝛿
[𝐽∑

𝑗=1

𝑄𝑗(𝑡) +

𝐽∑
𝑗=1

∑
𝑖∈𝒟𝑗

𝑞𝑖,𝑗(𝑡)
]
,

(33)

where 𝑔max and 𝑔min are the maximum and minimum 1-step
costs,11 respectively, and △∗1(𝑡) is the 1-step Lyapunov drift
achieved by GreFar. Now, we define

𝑃 ≜ 𝐵 + 𝑉 ⋅ (𝑔max − 𝑔min). (34)

Thus, if the sum of the queue lengths,
∑𝐽

𝑗=1
𝑄𝑗(𝑡) +∑𝐽

𝑗=1

∑
𝑖∈𝒟𝑗

𝑞𝑖,𝑗(𝑡), is greater than or equal to 𝑃/𝛿, the 1-step
Lyapunov drift in (33) is non-positive. Moreover, we can show that
the maximum value of the Lyapunov function is [𝑃/(

√
2𝛿)]2 under

the constraint that the sum of all the queue lengths is less than
or equal to 𝑃/𝛿. Thus, if the Lyapunov function is greater than
[𝑃/(

√
2𝛿)]2, the sum of all the queue lengths will be greater than

𝑃/𝛿 and the Lyapunov function in the next step will not increase,
since the 1-step Lyapunov drift is negative. Nevertheless, if the
sum of all the queue lengths is less than or equal to 𝑃/𝛿 during
time 𝑡, we have

𝐿(Θ(𝑡+ 1)) ≤1

2

𝐽∑
𝑗=1

[
𝑄𝑗(𝑡) +𝑄𝑑𝑖𝑓𝑓

𝑗 (𝑡)
]2

+
1

2

𝐽∑
𝑗=1

∑
𝑖∈𝒟𝑗

[
𝑞𝑖,𝑗(𝑡) + 𝑞𝑑𝑖𝑓𝑓𝑖,𝑗 (𝑡)

]2
≤𝐿(Θ(𝑡)) +𝐷 +

𝑞max𝑃

𝛿

≤
(𝑃√

2𝛿

)2
+𝐷 +

𝑞max𝑃

𝛿
,

(35)

where 𝑄𝑑𝑖𝑓𝑓
𝑗 (𝑡) and 𝑞𝑑𝑖𝑓𝑓𝑖,𝑗 (𝑡) represent the absolute val-

ues of changes in the respective queue lengths, with max-
imum values being 𝑄𝑑𝑖𝑓𝑓

𝑗 = max[𝑎𝑚𝑎𝑥
𝑗 ,

∑
𝑖∈𝒟𝑗

𝑟max
𝑖,𝑗]

and 𝑞𝑑𝑖𝑓𝑓𝑖,𝑗 = max[𝑟max
𝑖,𝑗 , ℎmax

𝑖,𝑗] , respectively, 𝑞max =

11Both 𝑔max and 𝑔min are finite due to boundedness conditions (4)(5).

30

max𝑖∈𝒟𝑗 ,𝑗=1,2,⋅⋅⋅ ,𝐽{𝑄𝑑𝑖𝑓𝑓
𝑗 , 𝑞𝑑𝑖𝑓𝑓𝑖,𝑗 }, and 𝐷 is a constant satisfy-

ing, for all 𝑡 = 0, 1, ⋅ ⋅ ⋅ , 𝑡𝑒𝑛𝑑 − 1,

𝐷 ≥1

2

𝐽∑
𝑗=1

𝑄𝑑𝑖𝑓𝑓
𝑗 max

[
𝑎𝑗(𝑡),

∑
𝑖∈𝒟𝑗

𝑟𝑖,𝑗(𝑡)
]

+
1

2

𝐽∑
𝑗=1

∑
𝑖∈𝒟𝑗

𝑞𝑑𝑖𝑓𝑓𝑖,𝑗 max
[
𝑟𝑖,𝑗(𝑡), ℎ𝑖,𝑗(𝑡)

]
,

(36)

which is finite due to the boundedness conditions. Clearly,
𝐿(Θ(0)) satisfies (35), as all the queue lengths are initially zero.
Then, by mathematical induction, we can show that, for any
𝑡 = 0, 1, ⋅ ⋅ ⋅ , 𝑡𝑒𝑛𝑑 − 1,

𝐿(Θ(𝑡)) ≤
(𝑃√

2𝛿

)2
+𝐷 +

𝑞max𝑃

𝛿
, (37)

following which we see that all the queue lengths are bounded by

𝑄𝑗(𝑡), 𝑞𝑖,𝑗(𝑡) ≤
√(𝑃

𝛿

)2
+ 2𝐷 +

2𝑞max𝑃

𝛿

=
𝑉

√
𝑃2

𝑉 2 + 2𝐷𝛿2

𝑉 2 + 2𝑞max𝛿𝑃
𝑉 2

𝛿
=

𝑉 𝐶3

𝛿
,

(38)

where

𝐶3 =
√
𝐷1 +𝐷2 +𝐷3, (39)

in which

𝐷1 ≜
[
𝐵

𝑉
+ 𝑔max − 𝑔min

]2
, (40)

𝐷2 ≜ 2𝐷𝛿2

𝑉 2
, (41)

𝐷3 ≜ 2𝑞max𝛿

𝑉

√
𝐷1. (42)

This proves part (a) of Theorem 1.
Part (b): Based on (31), we can show that, for 𝑟 =

0, 1, ⋅ ⋅ ⋅ , 𝑅− 1, the 𝑇 -step drift plus weighted cost satisfies

△∗𝑇 (𝑟𝑇) + 𝑉

𝑟𝑇+𝑇−1∑
𝑡=𝑟𝑇

𝑔∗(𝑡)

≤𝐵𝑇 + 𝑉

𝑟𝑇+𝑇−1∑
𝑡=𝑟𝑇

𝑔(𝑡)

+

𝐽∑
𝑗=1

𝑟𝑇+𝑇−1∑
𝑡=𝑟𝑇

(𝑡− 𝑟𝑇)𝑄𝑑𝑖𝑓𝑓
𝑗 [𝑎𝑗(𝑡)−

∑
𝑖∈𝒟𝑗

𝑟𝑖,𝑗(𝑡)]

+

𝐽∑
𝑗=1

∑
𝑖∈𝒟𝑗

𝑟𝑇+𝑇−1∑
𝑡=𝑟𝑇

(𝑡− 𝑟𝑇)𝑞𝑑𝑖𝑓𝑓𝑖,𝑗 [𝑟𝑖,𝑗(𝑡)− ℎ𝑖,𝑗(𝑡)]

+

𝐽∑
𝑗=1

𝑄𝑗(𝑟𝑇)

𝑟𝑇+𝑇−1∑
𝑡=𝑟𝑇

[𝑎𝑗(𝑡)−
∑
𝑖∈𝒟𝑗

𝑟𝑖,𝑗(𝑡)]

+

𝐽∑
𝑗=1

∑
𝑖∈𝒟𝑗

𝑞𝑖,𝑗(𝑟𝑇)

𝑟𝑇+𝑇−1∑
𝑡=𝑟𝑇

[𝑟𝑖,𝑗(𝑡)− ℎ𝑖,𝑗(𝑡)].

(43)

Then, after some simple mathematic manipulations based on (43),

we can derive the following inequality

△∗𝑇 (𝑟𝑇) + 𝑉

𝑟𝑇+𝑇−1∑
𝑡=𝑟𝑇

𝑔∗(𝑡)

≤𝐵𝑇 + 𝑉

𝑟𝑇+𝑇−1∑
𝑡=𝑟𝑇

𝑔(𝑡) +𝐷𝑇 (𝑇 − 1)

+

𝐽∑
𝑗=1

𝑄𝑗(𝑟𝑇)

𝑟𝑇+𝑇−1∑
𝑡=𝑟𝑇

[𝑎𝑗(𝑡)−
∑
𝑖∈𝒟𝑗

𝑟𝑖,𝑗(𝑡)]

+

𝐽∑
𝑗=1

∑
𝑖∈𝒟𝑗

𝑞𝑖,𝑗(𝑟𝑇)

𝑟𝑇+𝑇−1∑
𝑡=𝑟𝑇

[𝑟𝑖,𝑗(𝑡)− ℎ𝑖,𝑗(𝑡)],

(44)

where 𝐷 is a finite constant satisfying (36). In (44), the left hand
side is the 𝑇 -step Lyapunov drift plus weighted cost achieved by
GreFar, which explicitly minimizes the right hand side of (31).
Note that the right hand side of (31) is smaller than or equal to
that of (44). Thus, by considering the optimal 𝑇 -step lookahead
policy on the right hand side of (44), we obtain the following
inequality

△∗𝑇 (𝑟𝑇) + 𝑉

𝑟𝑇+𝑇−1∑
𝑡=𝑟𝑇

𝑔∗(𝑡)

≤𝐵𝑇 + 𝑉 𝑇𝐺∗𝑟 +𝐷𝑇 (𝑇 − 1)

+

𝐽∑
𝑗=1

𝑄𝑗(𝑟𝑇)

𝑟𝑇+𝑇−1∑
𝑡=𝑟𝑇

[𝑎𝑗(𝑡)−
∑
𝑖∈𝒟𝑗

𝑟𝑖,𝑗(𝑡)]

+

𝐽∑
𝑗=1

∑
𝑖∈𝒟𝑗

𝑞𝑖,𝑗(𝑟𝑇)

𝑟𝑇+𝑇−1∑
𝑡=𝑟𝑇

[𝑟𝑖,𝑗(𝑡)− ℎ𝑖,𝑗(𝑡)]

≤𝐵𝑇 + 𝑉 𝑇𝐺∗𝑟 +𝐷𝑇 (𝑇 − 1),

(45)

where the second inequality follows from the constraints in (16)
and (17) satisfied by the optimal 𝑇 -step lookahead policy. There-
fore, by summing (45) over 𝑟 = 0, 1, ⋅ ⋅ ⋅ , 𝑅− 1, and considering
that all the queues are initially empty, it follows that

𝑉

𝑅𝑇−1∑
𝑡=0

𝑔∗(𝑡) ≤𝐵𝑇𝑅+ 𝑉 𝑇

𝑅−1∑
𝑟=0

𝐺∗𝑟

+𝑅𝐷𝑇 (𝑇 − 1)− 𝐿(Θ(𝑅𝑇 − 1))

≤𝐵𝑇𝑅+ 𝑉 𝑇

𝑅−1∑
𝑟=0

𝐺∗𝑟 +𝑅𝐷𝑇 (𝑇 − 1).

(46)

Finally, by dividing both sides in (46) by 𝑉 𝑇𝑅, we have

𝑔∗ =
1

𝑇𝑅

𝑅𝑇−1∑
𝑡=0

𝑔∗(𝑡) ≤ 1

𝑅

𝑅−1∑
𝑟=0

𝐺∗𝑟 +
𝐵 +𝐷(𝑇 − 1)

𝑉
, (47)

which shows that the online algorithm can achieve a cost within
𝑂(1/𝑉) to the minimum cost achieved by the optimal 𝑇 -step
lookahead policy. This proves part (b) of Theorem 1. ■

31

