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ABSTRACT 
Data analysts need to understand the quality of data in the 
warehouse. This is often done by issuing many Group By queries 
on the sets of columns of interest. Since the volume of data in 
these warehouses can be large, and tables in a data warehouse 
often contain many columns, this analysis typically requires 
executing a large number of Group By queries, which can be 
expensive. We show that the performance of today’s database 
systems for such data analysis is inadequate. We also show that 
the problem is computationally hard, and develop efficient 
techniques for solving it. We demonstrate significant speedup 
over existing approaches on today’s commercial database 
systems. 

1. INTRODUCTION 
Decision support analysis on data warehouses influences 
important business decisions and hence the accuracy of such 
analysis is crucial. Understanding the quality of data is an 
important requirement for a data analyst [18]. For instance, if the 
number of distinct values in the State column of a relation 
describing customers within USA is more than 50, this could 
indicate a potential problem with data quality. Other examples 
include the percentage of missing (NULL) values in a column, the 
maximum and minimum values etc. Such aggregates help a data 
analyst evaluate whether the data satisfies the expected norm. 
This kind of data analysis can be viewed as obtaining frequency 
distributions over a set of columns of a relation; i.e., a Group By 
query of the form:  SELECT X, COUNT(*) FROM R  GROUP 
BY X, where X is a set of columns on relation R. Note that X may 
sometimes contain derived columns, e.g., LEN(c) for computing 
the length distribution of a column c. For example, consider a 
relation Customer(Lastname, FirstName, M.I., Gender, Address, 
City, State, Zip, Country). A typical scenario is understanding the 
distributions of values of each column, which requires issuing 
several Group By queries, one per column. In addition, it is 
sometimes necessary to also understand the joint frequency 
distributions of sets of columns, e.g., the analyst may expect that 
(LastName, FirstName, M.I., Zip) is a key (or almost a key) for 
that relation. We note that some data mining applications [15] 
also have similar requirements of computing frequency 
distributions over many sets of columns of a relation.  

This kind of data analysis can be time consuming and resource 
intensive for two reasons. First the number of rows in the relation 
can be large. Second, the number of sets of columns over which 

Group By queries are required can also be large. A naïve 
approach is to execute a different Group By query for each set of 
columns.  

In some commercial database systems, an extension to the 
GROUP BY construct called GROUPING SETS is available, 
which allows the computation of multiple Group By queries using 
a single SQL statement. The multiple Group By queries are 
specified by providing a set of column sets. For example 
specifying GROUP BY GROUPING SETS ((A), (B), (C), (A,C)) 
would cause the Union All of all four Group By queries to be 
returned in the result set. The query optimizer has the ability to 
optimize the execution of the set of queries by potentially taking 
advantage of the commonality among them. However, as the 
following experiment on a commercial database system shows, 
GROUPING SETS functionality is not optimized for the kinds of 
data analysis scenarios discussed above. 

Example 1. Consider a scenario where the data analyst wishes to 
obtain single-column value distribution for each character or 
categorical column in a relation. For example, there are 12 such 
columns in the lineitem table of the TPC-H database (1GB) [24]. 
We used a single GROUPING SETS query on a commercial 
database system to compute results of these 12 Group By queries. 
We compared the time taken to execute the GROUPING SETS 
query with the time taken using the approach presented in this 
paper. Using our approach was about 4.5 times faster.  

The explanation for this is that GROUPING SETS is not 
optimized for scenarios where many column sets with little 
overlap among them are requested, which is a common data 
analysis scenario. In Example 1, where we request 12 single 
column sets only, the plan picked by the query optimizer is to first 
compute the Group By of all 12 columns, materialize that result, 
and then compute each of the 12 Group By queries from that 
materialized result. It is easy to see that such a strategy is almost 
the same as the naïve approach of computing each of the 12 
Group By queries from the lineitem table itself. In contrast, our 
solution consisted of materializing the results of the following 
Group By queries into temporary tables: (1) (l_receipdate, 
l_commitdate) (2) (l_tax, l_discount, l_quantity, l_returnflag, 
l_linestatus); and computing the single column Group By queries 
of these columns from the respective temporary tables. The Group 
By queries for each of the remaining columns were computed 
directly from the lineitem table.  

An important observation, illustrated by the above example, is 
that materializing results of queries, including queries that are not 
required, can speed up the overall execution of the required 
queries. It is easy to see that the search space, i.e., the space of 
queries that are not required, but whose results, if materialized, 
could speed up execution of the required queries, is very large. 
For example, for a relation with 30 columns, if we want to 
compute all single column Group By queries, the entire space of 
relevant Group By queries to consider for materialization is 230.  
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We note that previous solutions to the above problem, including 
GROUPING SETS, were designed for efficient processing of the 
(partial) datacube e.g., [2,14,16,21], as a generalization of CUBE 
and ROLLUP queries. Unlike the kind of data analysis scenarios 
presented above, these solutions were geared towards OLAP like 
scenarios with a small set of Group By queries typically having 
significant overlap in the sets of columns. Hence, most of these 
previous solutions to this problem assume that search space of 
queries can be fully enumerated as a first step in the optimization. 
Thus, these solutions do not scale well to the kinds of data 
analysis scenario described earlier. 

Our key ideas and contributions can be summarized as follows. 
First, we show that even a simple case of this problem, where we 
need to compute n single-column Group By queries of a relation 
is computationally hard. Second, unlike previous solutions to this 
problem, our algorithm explores the search space in a bottom up 
manner using a hill-climbing approach. Consequently, in most 
cases, we do not require enumerating the entire search space for 
optimizing the required queries. This allows us to scale well to the 
kinds of data analysis scenarios mentioned above. Third, our 
algorithm is cost based and we show how this technique can be 
incorporated into today’s commercial database systems for 
optimizing a GROUPING SETS query. As an alternative, we 
show how today’s client data analysis tools/applications can take 
advantage of our techniques to achieve better performance until 
such time that GROUPING SETS queries are better optimized for 
such scenarios. Finally, we have conducted an experimental 
evaluation of our solution on real world datasets against 
commercial database systems. These experiments indicate that 
very significant speedups are possible using our techniques.  

The rest of this paper is structured as follows. In Section 2, we 
discuss related work. Section 3 formally defines the problem and 
establishes the hardness of the problem. We present our algorithm 
for solving this problem and analyze key properties of the 
algorithm in Section 4. In Section 5 we discuss how our solution 
can be implemented both inside the server for optimizing a 
GROUPING SETS query as well as on the client side (i.e., using 
just SQL queries). Section 6 presents results of our experimental 
evaluation and Section 7 discuses extensions to the basic solution 
to handle a broader class of scenarios. We conclude in Section 8. 

2. RELATED WORK 
Our problem can be viewed as a multi-query optimization 
problem for Group By queries. The first body of related work 
proposes techniques for efficiently computing a (partial) data 
cube. The GROUPING SETS support in commercial database 
systems such as IBM DB2 and Oracle provide exactly the 
required functionality, i.e., the ability to compute the results of a 
set of Group By queries. However, as discussed in the 
introduction, the performance of GROUPING SETS does not 
scale well if a large number of non-overlapping Group By queries 
is provided as input, which is the kind of data analysis scenarios 
we described earlier. The work that is closest to ours is the work 
on partial CUBE computation [14,16]. This work proposes a 
technique for materializing new nodes (Group By queries) to help 
reduce the cost of computing other queries. A key difference is 
that their solution (which is an approximation algorithm to the 
Minimum Steiner Tree problem), assumes that the search lattice 
has been constructed. However, it is easy to see that if we need to 
compute all single column Group By queries of a table with many 

columns, the above solution does not scale, since the step of 
constructing the search lattice itself would not be feasible. In 
contrast, our approach constructs only a small part of the lattice in 
a bottom-up manner, interleaved with the search algorithm 
(Section 4). This allows us to scale to a much larger inputs. We 
note that once the set of queries to be materialized is determined, 
several physical operators, e.g., PipeHash, PipeSort [14,16], 
Partitioned-cube, Memory-Cube [16], etc. for efficiently 
executing a given set of queries (without introducing any new 
queries) can be used. This problem is orthogonal to ours, and 
these techniques can therefore be leveraged by our solution as 
well. The basic ideas is to take advantage of commonality across 
Group By queries using techniques such as shared scans, shared 
sorts, and shared partitions [2,8,15,16,21]. We note that work on 
efficient computation of a CUBE (respectively ROLLUP) query is 
a special case of the partial cube computation  discussed above 
where the entire lattice (resp. a hierarchy) of queries needs to be 
computed. In contrast our work can be thought of as introducing 
logically equivalent rewritings of a GROUPING SETS query in a 
cost based manner.  

The second category of work is creation of materialized views for 
answering queries. The paper [17] studies the problem of how to 
speed up update/creation of a materialized view V by creating 
additional materialized views.  They achieve this by creating a 
DAG over logical operators by considering various equivalent 
expressions for V (e.g., those generated by the query optimizer); 
and then determining an optimal set of additional views (sub-trees 
of the DAG) to materialize. Similarly, the work in [10,11] 
explores the problem of which views to materialize in a data 
warehouse to optimize the (weighted) sum of the cost of 
answering a set of queries as well as the cost of materializing the 
views themselves. However, the solution assumes that the graph 
G (a DAG) containing all possible candidate views to materialize 
is provided as input. In both the above studies, the proposed 
solution requires the DAG to be constructed prior to optimization. 
Once again, this approach does not scale for our scenario since the 
size of the DAG is exponential in the number of input queries.  

The idea of introducing a new query/view to answer a given set of 
queries (used in this paper) is not novel, and has been proposed in 
several contexts before [2,10,17]; including the ideas of: (a) 
merging views in [3,25] as well as building a common subsumer 
expression in [9]. However, in [3,14,25], the goal is to pick a set 
of materialized views to optimize the cost of executing a given set 
of queries, and the cost of materializing the chosen views is not 
part of the objective function. Thus a naïve adaptation to our 
problem is not possible. In [9], the exact space of common 
subsumer views that would be considered for a given set of Group 
By queries is not defined.  

In [15], a modification to GROUPING SETS syntax is proposed 
(called the Combi operator) to allow easy specification of a large 
number of Group By queries as input (e.g., all subsets of columns 
up to size k). Such a syntactic extension would be useful for the 
kinds of data analysis scenarios presented in this paper where e.g., 
all single-column and two-column Group By queries over a 
relation are required. Finally, there has been work in multi-query 
optimization for join queries e.g., [19]. In these papers, the focus 
is on reusing results of join expressions, unlike our case, where 
we focus on sharing work done by different Group By queries 
referencing the same single table/view.  



  

3. PROBLEM STATEMENT and 
HARDNESS 
3.1 Definitions 
We assume a relation R(c1, … cm) with m columns. Let C be the 
set of columns in R, i.e., C = {c1, …cm}. Let S = {s1, s2, … sn}, 
where each si is a subset of columns of R, represent a set of Group 
By queries over R. Thus each si  is a Group By query: 

SELECT si COUNT(*) FROM R GROUP BY si 

In the rest of this paper, we assume that all queries require only 
the COUNT(*) aggregate. In Section 7 we discuss extensions 
when different aggregates are needed by different queries.  

Search DAG 

Suppose we are given a relation R, and a set S = {s1, s2, … sn} of 
Group By queries over R. Let G = (V, E) be a directed acyclic 
graph (DAG) that is defined as follows.  A node in the graph 
corresponds to a Group By query. The set of nodes V contains all 
elements of the power set of s1 ∪ s2 ∪ … sn,. Note that s1, s2, … sn 
themselves will be nodes in the graph. We refer to the nodes in S 
as required nodes, since we are required to produce the results for 
these nodes. The edge set E contains a directed edge from node u 
to v iff, u ⊃ v. We refer to u as the ancestor of v, and v as the 
descendant of u. In addition, there is one distinguished node 
called the root node, which represents the relation R itself. The 
root node has an outgoing edge to every other node in V (since it 
is an ancestor of every other node). We call G the Search DAG.  

Example 2. Suppose R(A,B,C,D), and S = {(A), (B), (C),  (A,C)}. 
The search DAG for this example is shown in Figure 1. 

 

Logical plan for computing a set of Group By queries 

Let P be a logical plan for computing S, i.e., for computing all 
queries s1, … sn. P is a directed tree over the Search DAG, rooted 
at R, and including all required nodes. This tree can also be 
viewed as a partial order of SQL queries. An edge from node  u -> 
v in the tree means that v is computed as a Group By query over 
the table u. Note that if u ≠ R, (i.e., u is an intermediate node in 
the tree) then u will need to be materialized as a temporary table 
before v can be computed from it. Our notion of a logical plan is 
different from the notion of physical execution plan used in a 
query optimizer since the “operators” in our plan are SQL Group 
By queries rather than physical operators. 

Figure 2 shows two different logical plans for the input S = {(A), 
(B), (C), (AC)}.  The required nodes are shaded. In logical plan 

P1, all the required nodes are computed from the root node, i.e., 
base relation R. In plan P2, (A,B) is computed from R, its results 
are materialized, and both (A) and (B) are computed from it. 
Likewise, (A,C) is computed directly from R , its results 
materialized, and (C) is computed from the results of (A,C).  

 
A sub-plan is a sub-tree of a logical plan whose root node is 
directly pointed to by R. For example, in Figure 2 in P2, the sub-
trees rooted at (AB) and (AC) are both sub-plans. But the sub-tree 
rooted at (A) is not a sub-plan since its parent is not R.  

Finally, given a logical plan (a tree), there is the issue of how 
much additional storage (disk space) is consumed for 
materializing the intermediate nodes of the tree. Note that 
depending on the  sequence (i.e., depth first or breadth first) in 
which the queries in the logical plan are executed, the maximum 
storage consumed by that plan may be different. In Section 4.4 we 
show how to sequence the execution of queries in the tree so that 
at any point during the execution of the logical plan, the storage 
taken up by intermediate nodes is as small as possible.  

3.2 Cost Model 
Our goal is to efficiently compute all Group By queries in S, i.e., 
find an efficient logical plan for S. Therefore we now discuss the 
issue of what metric to use to compare two different logical plans. 
We note that our techniques do not depend on the specific cost 
model used, although they do rely on the ability to compute a cost 
for a given logical plan (or sub-plan) P. In this paper we consider 
two cost models. We denote the cost of a plan P as Cost(P).  

3.2.1 Cardinality Cost Model  
This cost model assumes that the cost of an edge from u -> v in 
the Search DAG is the number of rows of the table u, denoted by 
|u|. Intuitively, this simple cost model captures the cost of 
scanning the relation u, which is often a reasonable indicator of 
the cost, particularly when there are no (relevant) indexes on the 
table u.  Of course, in general, this cost model can be inaccurate -- 
e.g., it does not capture how “wide” the relation u is; it does not 
account for presence of indices on u etc. However, due to its 
simplicity, it is more amenable for use in analyzing the problem 
and its solutions, and has been used in previous work related to 
this problem e.g., [10,14]. 

We note that to use the Cardinality cost model, we still need to be 
able to estimate the cardinality of a Group By query, which is a 
hard problem. For this, we assume that known techniques for 
estimating number of distinct values such as [13] may be used.  

3.2.2 Query Optimizer Cost Model 
This cost model takes advantage of the fact that the logical plan 
is, in fact, a set of SQL queries. Thus, we can use the query 
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Figure 1. A search DAG for the input {(A), (B), 
(C), (AC)} 
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Figure 2. Two logical plans P1 and P2 for the 
input S = {(A),(B),(C),(AC)} 
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optimizer of the DBMS itself (which is capable of estimating the 
cost of an individual query) as the basis of the cost model. More 
precisely, we model Cost (P) as the sum of the optimizer 
estimated cost of each SQL query in P. This cost model has a 
couple of advantages over the Cardinality cost model (Section 
3.2.1). First it captures the effects of the current physical design in 
the database. For example, if a query can take advantage of an 
existing index in the database, then this effect will automatically 
be reflected in the optimizer estimated cost. Second, cost models 
used by the optimizer in today’s database systems are already 
quite sophisticated, and are able to take advantage of database 
statistics (e.g., histograms, distinct value estimates) for producing 
accurate estimates for many cases.  

We note that in order to be able to use this cost model, we need 
the ability to cost a query such as u -> v when u is not the base 
relation R, i.e., u does not actually exist as a table in the database. 
For this purpose, we take advantage of the capabilities of “what-
if” analysis APIs in today’s commercial query optimizers. These 
APIs allow us to pretend (as far as the query optimizer is 
concerned) that a table exists, and has a given cardinality and 
database statistics. Details of these APIs vary with each 
commercial system and can be found e.g., in [5,25].  

The accuracy of this cost model is a function of the available 
database statistics. Collecting statistics can be expensive; 
however, the optimizer can create multiple statistics from one 
sample, and the cost of creating a statistics can be amortized 
because the same statistics can be used to optimize many other 
queries. Even we ignored the effect of amortization, the 
experiments in Section 6.7 suggests that for large data sets, the 
time to create statistics is only a small fraction compared to the 
savings in running time resulting from a better logical plan.  

Finally, we note that the cost of materializing a temporary table 
can also be handled in this model in a straightforward way. For a 
query u -> v, where v needs to be materialized, we construct the 
query as a SELECT … INTO v … (or equivalently INSERT 
INTO v SELECT …), which can also be submitted to the query 
optimizer for cost estimation. 

3.3 Problem Statement  
Given a relation R, and a set of Group By queries on R denoted by 
S = {s1,… sn} find the logical plan for S having the lowest cost, 
i.e., find a logical plan P that minimizes Cost (P).  

We refer to the problem in the rest of this paper as the Group By 
Multi-Query Optimization problem or GB-MQO for short. In 
general, any cost function Cost (P) may be used to measure the 
cost of an execution plan.  

3.4 Hardness Results  
It has previously been noted [2] that the GB-MQO problem is NP-
Complete when the cost function can take on arbitrary values. 
The reduction is from the Minimum Steiner Tree problem over 
DAGs. In this paper, we show that even a very special case of the 
problem, namely the problem of computing even the single 
column Group By queries over a relation is also NP-Complete.  
This result is pertinent since as discussed in the introduction, this 
special case is a common occurrence in data analysis for 
understanding data quality or in certain data mining applications.  

Claim: The GB-MQO problem is NP-Complete even if we 
restrict the input set S to include only single column Group By 
queries and use the Cardinality cost model (Section 3.2.1). 

Proof: The reduction is from the problem of finding the optimal 
bushy execution plan for a cross product query over N relations 
[22]. See Appendix A for details. 

4. SOLUTION  
In Section 3 we defined the Group By Multi-Query Optimization 
(GB-MQO) problem, where the goal is to find a logical plan (a 
partial order to execute SQL queries) such that the cost of the plan 
(as determined by a cost model) is minimized. Given the hardness 
results presented in Section 3.4, it is unlikely that an efficient 
algorithm exists that can compute an exact solution to this 
problem. Moreover, it is important to note that even if efficient 
approximation algorithms exist for our problem (e.g., by adapting 
solutions to the Minimum Steiner tree problems), the input to 
such a solution would be the Search DAG (see Section 3.1). This 
would require constructing the Search DAG, whose size is 
exponential relative to the size of the input set of Group By 
queries S.  In this section, we therefore present a heuristic solution 
to the above problem that scales well with the size of the input set 
S, while still producing a good logical plan as output.   

Our algorithm starts with the “naïve” logical plan where each si ∈ 
S is computed directly from R, and uses the idea of combining 
two sub-plans (see Section 3.1) P1 and P2 as the basic operator 
for traversing the space of logical plans. In Section 4.1, we 
present the operator for combining two logical sub-plans. In 
Section 4.2, we present and analyze our overall algorithm. In 
Section 4.3, we present two pruning techniques that significantly 
speed up our algorithm in practice. In Section 4.4, we present that 
given a logical plan, how to execute it to minimize the storage 
taken up by the intermediate nodes. 

4.1 Merging Two Sub-Plans 
We use the idea of merging two logical sub-plans P1 and P2 as the 
basic operation for generating new logical sub-plans as described 
below. We refer to this operator as the SubPlanMerge operator. 
The SubPlanMerge operator (described below) has the desirable 
property that the root node of each new sub-plan output by the 
operator is the node with minimal cardinality from which the sub-
plans P1 and P2 can be computed.  

Consider a pair of sub-plans P1 and P2 as shown in Figure 3. The 
set of new sub-plans introduced by merging P1 and P2 is shown in 
Figures 4 (a)-(d). We refer to the merging operator as 
SubPlanMerge(P1, P2) and it returns a set of sub-plans as output. 
Note that in each case, the root node of the new sub-plan is v1 ∪ 
v2, which is the smallest relation from which both v1 and v2 can be 
computed. For example, if v1 is (A,B) and v2 is (A,C), then v1 ∪ 
v2 is (A,B,C). 

 

 

Figure 4(a) creates a sub-plan where the children of v1 and v2 are 
computed directly from the parent, thereby avoiding the cost of 
computing and materializing both v1 and v2. Of course, this sub-

p1 pk 

v1 

…… q1 ql 

v2 

…… 

P1 P2 

Figure 3. Two sub-plans P1 and P2. 



  

plan is only generated when neither v1 nor v2 is a required node. 
On the other hand Figure 4 (b) creates a plan where both v1 and v2 
are computed and materialized. This plan can be considered 
whether or not v1 and v2 are required nodes. Intuitively, the sub-
plan (a) can be good, when the size of v1 ∪ v2 is not much larger 
than the size of v1 or v2, whereas (b) can be good when the size of 
v1 ∪ v2 is much larger than the size of v1 and v2. The former is 
more likely when the values of v1 and v2 are highly correlated, 
whereas the latter is more likely when v1 and v2 are independent. 

 

 

Sub-plans (c) and (d) can be beneficial when either one (but not 
both) of v1 and v2 are much smaller than v1 ∪ v2. Thus for 
example if v1 ∪ v2 has only a slightly higher size than v2 but 
significantly higher size than v1, then in sub-plan (c) could be the 
best plan. This is because although sub-plans q1…ql will incur a 
higher cost since they are now computed from v1 ∪ v2 instead of 
from v2, the increased cost may be more than offset by the 
reduced cost of not computing and materializing v2. On the other 
hand, for sub-plans p1…pk it may be more beneficial to compute 
them from v1 even after paying the cost of computing and 
materializing it.  

If there is a subsumption relationship between v1 and v2 (which is 
common in practice), (b) (c) and (d) in Figure 4 degenerate into 
one case in which we compute v2 from v1, and then compute 
q1…ql from v2 (assuming v2 ⊆ v1). 

4.2 Algorithm for the GB-MQO problem 
Our algorithm for computing the logical plan for a given input set 
S = {s1, … sn} on a relation R is shown in Figure 5. The algorithm 
starts with the “naïve” plan where each si is computed directly 
from R and improves upon the solution until it reaches a local 
minimum. Observe that unlike previous algorithms for this 
problem [2,10,14,21], our algorithm does not require the Search 
DAG as input. Instead it constructs logical plans in a bottom-up 
manner. This allows it to scale for large input sizes, e.g., for the 
common case of computing all single column Group By queries 
over a relation with many columns.  

 

Analysis of Running Time: Let |S| = n. A naïve implementation 
of the above algorithm would call SubPlanMerge O(n3) times, 
since each iteration of the loop does O(n2) merges and there are 
O(n) iterations in the worst case. However, it is easy to see that if 
we are willing to store the logical sub-plans that have been 
computed in previous iterations (which incurs a memory cost of 
storing O(n2) sub-plans), then the algorithm needs to call 
SubPlanMerge only O(n2) times. This makes the algorithm 
scalable both in terms of running time as well as memory 
requirements for relatively large input sizes (e.g., up to 100’s of 
Group By queries).  

Restriction of search space to binary trees only: Given the 
above algorithm and the four different kinds of sub-plans returned 
by SubPlanMerge, it is easy to see that in general, the shape of the 
logical plan can be an arbitrary tree. As discussed earlier, an 
important special case of data analysis scenarios is computing all 
single column Group By queries. This special case has the 
property that all inputs are non-overlapping, i.e., no pair of inputs 
have any columns in common, e.g., S = {(A),(B),(C),(D)}. In this 
case, we have observed empirically (see Section 6.5) that 
restricting the search space to only binary trees can save a 
considerable amount of optimization time and still give very good 
logical plans in practice. This restriction is analogous to the 
restricted search space of left deep trees considered by many 
query optimizers today. Note that since our algorithm only 
considers merging pairs of sub-plans in any step, for the above 
case, restriction of the space of logical plans to binary trees can be 
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1. Let P be the naïve plan, i.e., where each si ∈S is a 
sub-plan, i.e., computed directly from relation R.  

2. Let C = Cost(S, P). 
3. Do 
4.   Let MP = Set of all plans obtained by invoking  
          SubPlanMerge on each pair of sub-plans in P. 
5.   Let P’ be the lowest cost plan in MP, with cost C’. 
6.   BetterPlanFound = False 
7.   If C’ < C Then 
8.      P = P’; C = C’; BetterPlanFound = True 
9.   End If 
10. While (BetterPlanFound) 
11. Return P 

Figure 5. Algorithm for finding a logical plan 
for a given set S of Group By queries.  

Figure 4. Space of new sub-plans introduced by 
SubPlanMerge operator 



  

done by limiting the SubPlanMerge operator to produce only 
plans of type (b).  

4.3 Pruning Techniques  
In this section, we present two techniques for pruning the space of 
execution plans considered by our algorithm for the GB-MQO 
problem (Section 4.2). These two pruning techniques are 
developed under the cardinality cost model and with the 
restriction of applying SubPlanMerge type (b) in Figure 4 only, 
and hence are heuristics for the general case; however, they 
appear to perform well in practice across several real data sets that 
we have tried in our experiments (Section 6.6). These pruning 
techniques significantly reduce the running time of the algorithm 
with relatively small impact on the cost of the logical plan 
produced.  

4.3.1 Subsumption Based Pruning 
In the algorithm presented in Section 4.2, we consider merging 
any two pairs of sub-plans in Step 4. The pruning technique is 
based on the intuition that it should be less expensive to compute 
Group Bys from a closer ancestor: in step 4 of the algorithm, 
given two sub-plans rooted at two nodes vi and vj, if there are any 
two sub-plans rooted at vx and vy such that (vi ∪ vj) ⊃ (vx ∪ vy), 
then do not consider merging vi and vj, i.e., do not consider the 
sub-plan rooted at (vi ∪ vj). For instance, if there are 3 sub-plans 
rooted at (A,B), (B,C) and (C,D) respectively, then do not 
consider merging sub-plans rooted at (A,B) and (C,D) because 
(A,B)∪(C,D) ⊃ (A,B)∪(B,C).  

Claim: Suppose vi and vj are non-overlapping and so are vx and 
vy. The above pruning technique is sound (i.e., the answer found 
by our algorithm is not affected) when using the Cardinality cost 
model and restricting SubPlanMerge to type (b) in Figure 4.  

Proof: Let us denote the cost of sub-plan Tu rooted at node u as 
Cost(u). Let Child(u) denote the set of children of u. Let R denote 
the base relation. So Cost(u)+Cost(v)-cost(u ∪ v) is the benefit of 
merging two sub-plans rooted at u and v. For the pruning 
technique to be sound, we need to show that: Cost(vx)+Cost(vy)-
Cost(vx ∪ vy) ≥ Cost(vi)+Cost(vj)-Cost(vi ∪ vj), since this would 
ensure that the algorithm would pick merging of vx and vy over 
merging of vi and vj. Using the cardinality cost model we know 
that: 

Cost (vi)+Cost (vj)= 2|R|+ ∑c ∈ Child(vi) Cost(c)+ ∑ c ∈ child(vj)  Cost(c) 

Cost (vi ∪v j)=|R|+2|vi ∪ vj| + ∑c∈Child(vi) Cost(c)+ ∑c∈child(vj) 

Cost(c) 

Thus, Cost (vi)+Cost (vj)-Cost (vi ∪ vj)=|R|-2| vi ∪ vj|  ……….(1)  

Likewise, Cost (vx)+Cost (vy)-Cost (vx ∪ vy)=|R|-2| vx ∪ vy| …(2) 

Since (vi ∪ vj) ⊃ (vx ∪ vy)  we know that | vi ∪ vj|≥| vx ∪ vy|. Thus 
(2) ≥(1), which proves the claim. 

4.3.2 Monotonicity Based Pruning 
This pruning technique is based on the same intuition as the 
pruning technique used in the Apriori algorithm for frequent 
itemset generation [1]. Given two sub-plans rooted at vi and vj if 
SubPlanMerge(vi,vj) does not result in a lower cost sub-plan, then 
do not consider merging any two sub-plans vx and vy such that vi 

∪ vj ⊆ vx ∪ vy. For instance, if SubPlanMerge((A), (B)) does not 
result in a lower cost sub-plan, then later on do not consider 
merging sub-plans like (A,C) and (B,D). Since our algorithm 
enumerates the plans in a bottom-up manner, we can take 

advantage of the above technique to prune out a potentially large 
space of plans from consideration, with the cost of storing the pair 
of sub-plans that cannot be merged in an n×n array. 

Claim: Suppose vi and vj are non-overlapping and so are vx and 
vy. The above pruning technique is sound when using the 
Cardinality cost model and restricting SubPlanMerge to type (b) 
in Figure. 4. 

Proof:  We need to show that given two sub-plans rooted at vi and 
vj, if Cost(vi) + Cost(vj) ≤ Cost (vi ∪ vj), then for any sub-plans 
rooted at vx and vy such that (vi ∪ vj) ⊆ (vx ∪ v y), then Cost(vx) + 
Cost(vy)  ≤  Cost(vx ∪ vy).  

From the cardinality cost model, it follows that: 

Cost (vi)+Cost (vj)= 2|R|+ ∑c ∈ Child(vi) Cost(c)+ ∑ c ∈ child(vj)  Cost(c) 

Cost(vi ∪vj)=|R|+2|vi ∪ vj| +∑c ∈ Child(vi)Cost(c)+∑ c ∈ child(vj) Cost(c) 

Since Cost (vi) + Cost (vj) ≤ Cost (vi ∪ vj), it follows that |R| ≤ 2|vi 

∪ v j|. Furthermore, since vi ∪ v j ⊆ vx ∪ v y, we know that  

|vi ∪ vj| ≤ |vx ∪v y|. Thus, |R| ≤ 2|vx ∪v y| ………………… (1) 

Likewise, we have 

Cost(vx)+Cost(vy)=2|R|+∑c∈Child(vx)Cost(c)+∑c∈child(vy)Cost(c) ..(2) 

Cost(vx∪vy)=|R|+2|vx∪vy|+∑c∈Child(vx)Cost(c)+∑c∈child(vy)Cost(c) 
(3) 

Comparing the expanded terms (2) and (3), and using the result 
from (1), we get: Cost(vx) + Cost(vy)  ≤  Cost(vx∪vy).  QED. 

4.4 Intermediate Storage Considerations 
Each node in the logical plan corresponds to a SQL Group By 
query, and for an intermediate node, the results of the query need 
to be materialized into a temporary table. We focus here on two 
constraints that might be interesting to the users: minimizing the 
storage consumed, at any point during execution, by the 
intermediate nodes when executing a given logical plan, and 
constraining plan space with user-specified maximum storage 
consumed by intermediate temporary tables. Such constraints can 
be easily incorporated into today’s commercial optimizer’s query 
hints framework. 

4.4.1 Minimizing Intermediate Storage 
In general, the SQL statements corresponding to a given 
execution plan tree P can be generated using either a breadth first 
or depth first traversal of the tree. When all children of a node u 
have been computed from it, then the intermediate table 
corresponding to u can be dropped, thereby reducing the required 
storage. However, the manner in which the execution plan tree is 
traversed for generating the SQL can affect the required storage 
for intermediate nodes.  

The example in Figure 6 illustrates this issue. Consider node 
(ABCD). If we use a depth-first traversal strategy, we need to 
execute the entire sub-tree rooted at (ABC) followed by the entire 
sub-tree rooted at (BCD) before we can delete the temporary table 
(ABCD).  Thus the maximum storage consumed using this 
strategy is 20 (10+6+4), which corresponds to the storage for 
simultaneously materializing (ABCD), (ABC) and (AB). If a 
breadth-first strategy is used, the maximum storage is 18 
(10+6+2), which corresponds to the storage for (ABCD), (ABC) 
and (BCD). Thus, in this example, a breadth-first traversal results 
in lower maximum required storage. It is easy to see that in other 



  

cases, a depth-first traversal may be preferable. Thus, for each 
node, one of these strategies will be better, depending only on the 
storage requirements on nodes in the subtree.  

 
Let u be any node, and let d(u) denote the storage required for 
materializing node u. Let Storage(u) denote the minimum storage 
required for the intermediate nodes (among all possible ways in 
which the tree can be executed) for the sub-tree rooted at u. Let 
v1, …, vk be the children of node u. Then the minimum storage for 
the sub-tree rooted at u can be written using the following 
recursive formula: 
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The first term represents the required intermediate storage if a 
breadth-first traversal is applied at node u, whereas the second 
term represents the required intermediate storage if a depth first 
traversal is applied at node u. Given the above formula, we can 
compute Storage (u) for any node in the tree in a bottom-up 
manner, and thereby determine at each node, whether a breadth-
first (BF) or depth-first (DF) traversal is preferable. In particular, 
we mark a node as ‘BF’ or ‘DF’ depending on whether the first 
term or the second term in the formula is smaller in value. Once 
each node in the tree is marked in this manner, we traverse the 
tree obeying this marking and compute the nodes in that order. 
This traversal ensures that the storage consumed during execution 
of the plan is minimized.  

It should be noted that such an optimization may affect the time to 
return the first result tuple though the time to complete the 
computation of the whole result set is the same, and therefore it 
may not be applicable to the case in which the user desires the 
first tuple is returned as early as possible. It should also be noted 
that the term d(u) is an estimate from the query optimizer; its 
accuracy is also subject to the accuracy of optimizer’s statistics. 

4.4.2 Constraint on Intermediate Storage 
In section 4.4.1, we described how to determine the order of 
execution of queries in a given logical plan so as to minimize the 
storage consumed by intermediate tables for that plan. It is also 
possible to specify as part of the GB-MQO problem (Section 3.3) 
a constraint on the maximum storage consumed by intermediate 
tables for a plan. A simple method for solving the constrained 
problem is to combine the algorithm in Figure 5 with the 

algorithm to determine the minimum storage in Section 4.4.1: for 
each plan in MP in Step 4 it also computes its minimum 
intermediate storage, and only retains the plans that meet the 
specified constraint.  

5. IMPLEMENTATION 
In Section 5.1, we outline how the optimization techniques 
presented in the paper can be integrated with the query optimizer 
of a DBMS for optimizing a GROUPING SETS query. An 
alternative is to use these techniques in the client, i.e., in the 
application itself. This allows today’s applications to potentially 
leverage the benefits of these optimizations on today’s existing 
database systems (Section 5.2).  

5.1 Integration with Query Optimizer 
Our techniques presented in Section 4.2 can be implemented 
inside the query optimizer for optimizing a GROUPING SETS 
query. Today’s query optimizers use algebraic transformations to 
change a logical query tree to an equivalent logical query tree [6]. 
In a Cascades style optimizer [12], these transformations are 
applied in a cost based manner. The algorithm presented in 
Section 4.2 can be viewed as a method for obtaining equivalent 
rewritings of the original GROUPING SETS query. For example, 
Figure 7 shows two equivalent logical expressions for computing 
GROUPING SETS ((A), (B)). The sub-tree labeled Expr in the 
figure is the logical expression for the rest of the GROUPING 
SETS query (e.g., base relation, joins, selections etc.). Each 
iteration of the GB-MQO algorithm in Figure 5 considers 
different logically equivalent expressions, each of which is 
equivalent to the input GROUPING SETS query. Furthermore, 
these expressions can be compared in a cost based manner. Note 
that costing of plans can be easily implemented in a query 
optimizer since these optimizers are already cost based, and we 
only require the ability to estimate the cardinality and average row 
size of the result of any Group By query. This capability is 
already present in today’s query optimizers. We note that the 
capabilities of estimating statistics over query expressions [4] 
containing Group By queries can also help improve accuracy of 
cost estimation in this context. 

 

 
No new physical operators are required by our techniques. In 
principle, besides the standard Sort and Hash operators, any 
techniques described for efficient (partial) cube computation (e.g., 
PipeSort, PipeHash [2,21]) can be used. These operators use the 
basic ideas of shared scans and sharing sorts [2,8,15,16,21]. The 
ability to materialize intermediate results is provided by the Spool 
operator -- also available in today’s DBMSs. 

Union All 

Gr-By A Gr-By B 

Expr 

Union All 

Gr-By A Gr-By B 

Expr 

Gr-By AB 

ABC BCD 

A B C 

ABCD 

Figure 6. A sub-tree of an execution plan. The numbers 
are the storage required to materialize a node.  

D 
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Figure 7. Two logically equivalent expressions of 
the GROUPING SETS query ((A),(B)) 



  

5.1.1 GROUPING SETS query with Selections and 
Joins 
In general, a GROUPING SETS query may be defined over an 
arbitrary SQL expression, rather than a single base relation. 
Transformations to commute selection and join [7] with Group By 
can be extended to the GROUPING SETS construct. It is easy to 
see that selection can be pushed below the GROUPING SETS 
(e.g. as part of Expr in Figure 7).  

 

 
The transformation to commute join and group by in [7] is also 
applicable to GROUPING SETS with little change. For example, 
consider a GROUPING SETS query over the inner join of two 
relations R and S (joining column is A). Suppose, we are 
interested in computing the GROUPING SETS ((B), (C)). For 
simplicity assume both B and C are columns in R. Then the 
transformation shown in Figure 8 is possible, wherein the 
Grouping Set computation is “pushed down” below the join of R 
and S. Note that the pushed down Group By queries over R will 
need to include the join attribute in the grouping (to allow 
subsequent joining with S) as the coalescing grouping 
transformation in [7]. Observe that our optimization techniques 
can once again be leveraged as shown in the figure by introducing 
the Group By (A,B,C) on R. An important point to note is that the 
Union-All below the Join returns a single result set of all Group 
Bys below it. Thus we need to ensure that the Group Bys above 
the Join get only the respective relevant rows. This can be done 
by introducing the notion of a Grp-Tag (i.e., a new column) with 
each tuple that denotes which Group By query it is a result of. 
This tag can be used to filter out the irrelevant rows. This 
transformation can be thought of as a generalization of the idea in 
[7] to multiple Group By queries. 

5.2 Client Side Implementation 
As mentioned earlier, a client side implementation can be useful 
until such time that database servers begin to provide efficient 
GROUPING SETS implementation for certain kinds of data 
analysis scenarios. In this context, our algorithm in Figure 5 can 
be viewed as a method for determining which additional Group 

By queries need to be executed (and materialized) to efficiently 
execute the input set of Group By queries. 

Given a logical plan (i.e., the output of our algorithm), the 
application can execute the plan as follows. Consider any edge   
u->v in the logical plan.  Assume that the name of the table 
corresponding to a node x is Tx (if x is the root of the logical plan, 
then the table is R). If the node v is an intermediate node (and 
therefore needs to be materialized), generate a query: SELECT v, 
COUNT(*) AS cnt INTO Tv FROM Tu GROUP BY v. If v is a 
leaf node, then generate the query: SELECT v, COUNT(*) AS cnt 
FROM Tu GROUP BY v. Note that if Tu is an intermediate node 
(and not R), then we need to replace COUNT(*) with SUM(cnt). 

6. EXPERIMENTS 
As mentioned earlier, we have done a client side implementation 
of the algorithm presented in Section 4.2 on top of a commercial 
DBMS, using the query optimizer cost model (Section 3.2.2). In 
this section we present the results of experiments that show: (1) 
that our algorithm performs significantly better than GROUPING 
SETS for certain data analysis scenarios over real and synthetic 
data sets (2) the quality of GB-MQO plan compared to the 
optimal plan (3) that our algorithm scales well with the number of 
columns (and hence number of Group By queries) in the table (4) 
the impact of restricting the plan space to binary trees (Section 
4.2) (5) the impact of the pruning techniques presented in Section 
4.3 (6) the overhead of creating statistics (Section 3.2.2) (7) the 
impact of skew in the data (8) the impact of physical design of the 
database.  

Table 1. Datasets used in experiments 

Dataset #rows size # columns used  

1g TPC-H (lineitem) 6M 1G 12 

10g TPC-H (lineitem) 60M 10G 12 

SALES 24M 2.5G 15 

NREF (neighboring_seq) 78M 5G 10 

The experiments are run on a Windows XP professional box with 
a 3GHz Pentium4 CPU and 1 GB RAM. All experiments are run 
on top of Microsoft SQL Server except those depicted in section 
6.1. The synthetic datasets used are the lineitem relation in TPC-H 
10GB and 1GB datasets[24]. The real world datasets is a 
proprietary sales data warehouse dataset and the PIR-NREF [20] 
dataset in which we use the biggest relation neighboring_seq. 
Table 1 summarizes the data sets used and their characteristics. 
For the TPC-H datasets in Section 6.1, 6.2, 6.3, 6.5, 6.6 and 6.7 
we use a standard physical design in the benchmark test: a 
clustered index on l_shipdate, a non-clustered index on 
l_orderkey, and a non-clustered index on the combination of 
l_suppkey and l_partkey.  

6.1 Comparison with GROUPING SETS 
We test the performance of our algorithm relative to GROUPING 
SETS supported by the commercial database system on the TPC-
H database. We test GROUPING SETS for two kinds of inputs. In 
the first scenario we need to compute many single column Group 
By queries (we call this SC). Thus, in this case, there are no 
overlapping columns in the inputs. The second input is one in 
which there are many containment relationships among queries in 
the input, which is the kind of scenario for which GROUPING 
SETS is designed (we call this CONT for short). For ease of 

Grp-Tag=AB Grp-Tag=AC 

R.A=S.A 
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Figure 8. Logical expression for GROUPING SETS 
query ((B), (C)) over the view Join(R, S). 



  

implementation, the GB-MQO plan (which is a series of Group 
By queries) reported in Table 2 is obtained by running our 
algorithm on top of Microsoft SQL Server against the same 
dataset with the same physical design. We note that ideally the 
reported GB-MQO plans should be obtained using the what-if 
API native to the DBMS which executes the plan. However, we 
expect that the reported plans should be less favorable in 
performance than the ones obtained via “ideal” methodology 
because the native what-if API is in tune with the optimizer and 
the query execution engine, which should result in better GB-
MQO plans. 

In the SC case, the input was all single column Group By queries 
except on the floating point columns (l_extendedprice, l_tax, 
l_discount). Thus the input was 12 single column Group By 
queries. From Table 2 it can be seen that for SC our approach 
significantly outperformed GROUPING SETS. By looking at the 
plan produced for the GROUPING SETS query for SC, we see 
that the plan cannot arrange any sharing in the processing of the 
12 Group Bys except for grouping all the 12 columns and 
computing all 12 Group Bys from this result. Because the 
intermediate result of grouping 12 columns is almost as big as the 
base table, such an optimization is inadequate. On the other hand, 
our algorithm introduced 2 subsuming Group By queries and 
performs 7 out of 12 Group Bys on these two much smaller 
intermediate result sets. As a result, our algorithm was 4.5 times 
faster than using GROUPING SETS. 

For CONT, the input was {(l_shipdate), (l_commitdate), 
(l_receiptdate), (l_shipdate, l_commitdate), (l_shipdate, 
l_receiptdate), (l_commitdate, l_receiptdate)}. In this case 
GROUPING SETS and our algorithm result in comparable 
performance. The GROUPING SETS plan takes advantage of the 
idea of shared sorts to speed up processing relative to the naïve 
approach of using one Group By per input query, since many 
containment relationships hold in the inputs; i.e., it arranges the 
sorting order so that if a grouping set subsumes another, the 
subsumed grouping is almost free of cost. Our algorithm did not 
introduce any new Group By, but arranged the singleton grouping 
sets to use index or the smallest result set of the two-column 
grouping-sets. We note that our implementation is on client side; 
so we are limited to issuing SQL queries. When implemented 
inside the server our approach can also potentially benefit from 
shared sorts as above. Thus, in a server side implementation, we 
would expect even greater speedup over GROUPING SETS. 

Table 2. Speedup over GROUPING SETS 

Query GrpSet Time (s) GB-MQO Time (s) Speedup 

CONT 213 167 1.2 

SC 1230 270 4.5 

6.2 Evaluation on different datasets 
We studied the performance of our algorithm compared to the 
naïve approach on synthetic and real world datasets. We 
computed single column (denoted SC) as well as two-column 
Group By queries (denoted TC) on all columns in each data set. 
Table 3 summarizes the running times. We see that our approach 
consistently outperforms the naïve approach (where each input 
query is run against the original table) with a speedup factor from 
1.9 to 4.5. Although we omit the numbers, we observed that once 
again GROUPING SETS performance was almost the same as the 
naïve approach in most of these cases.  

Table 3. Speedup over naïve plan on different datasets  

Datasets 
Sales 
(SC) 

NREF 
(SC) 

10g 
(SC) 

1g 
(SC) 

Sales 
(TC) 

NREF 
(TC) 

10g 
(TC) 

1g 
(TC) 

#GrBys 15 11 12 12 105 44 66 66 

Speedup 1.9 1.4 2.3 2.3 4.5 1.7 2.3 2.0 

6.3 Comparison with Optimal Plan 
To empirically study how the quality of the GB-MQO plans 
differs from that of the optimal plans, we implemented an 
exhaustive search algorithm to find the optimal plan under the 
Microsoft SQL Server optimizer’s cost model. Due to the 
exponential nature of the exhaustive search, we restricted the 
number of columns to 7. We randomly generated 10 queries, 
labeled from Q0 to Q9, by randomly choosing 7 columns out of 
the 12 non-floating-point columns of the TPC-H 1G data set and 
then computing single column Group Bys on these 7 columns. 
Figure 9 summarized the running time reduction ratio of the GB-
MQO plans and of the optimal plans against the naïve plans. From 
the figure we can see most of the times the quality of the GB-
MQO plans are close to that of the optimal one. 
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6.4 Scaling With Number of Columns 
In this experiment, we investigate the scalability of our algorithm 
for the case where we want all single column Group By queries, 
and the number of columns in the table is increased. We start with 
the projection of the 1GB TPC-H lineitem relation on its 12 non-
floating-point columns, and widen it by repeating all 12 columns. 
We put aside the time of creating statistics because the cost can be 
amortized by using them to optimize many queries other than this 
grouping-sets query. Since now the optimization overhead is 
dominated by calling the query optimizer to cost the queries, we 
use the number of optimizer calls as the metrics for the cost of 
optimization. We also report the running time of our algorithm 
compared to the naïve plan. Because of its quadratic nature, our 
approach scales reasonably well on wide table as seen in Figure 
10. Thus optimizing 48 single-column Group By queries can be 
accomplished within 100 seconds. Once again, we note that if 
implemented inside the server, this optimization can be done even 
faster since we do not incur overhead of creating dummy 
intermediate tables as well as invoking the query optimizer 
repeatedly during optimization.  

Figure 9. Ratio of run time reduction of GB-MQO plans 
and optimal plans. 
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6.5 Impact of Restricting To Binary Tree Plan 
We studied the impact of restricting the plan space searched by 
our algorithm to binary trees when computing all single column 
Group By queries over TPC-H and Sales databases. Specifically, 
we compared the optimization cost and the running time of the 
plan found by applying only SubPlanMerge (b) in Figure 4 vs. 
that found with all four ways of merging. As in Section 6.4, we 
use the number of queries sent to optimizer to cost as the 
optimization cost metrics. We found that for both these datasets 
the number of optimizer calls reduced by 30%, while the 
difference in the execution times was less than 10%. The reason is 
that our algorithm obtains much of its benefit by merging sub-
plans with small intermediate results. Thus even though the binary 
tree introduces additional queries to be materialized (compared to 
a k-way (k>2) tree), the costs of materialization are relatively 
small.  

6.6 Impact of Pruning Techniques 
In this experiment we used the TPC-H 1G dataset and the Sales 
dataset to evaluate the effect of the pruning heuristics in Section 
4.3 on the quality of plan and the efficiency of the algorithm. We 
computed all the single-column and two-column Group By 
queries and compared the cost of optimization (measured by 
number of calls to the query optimizer) and the running time of 
the plan with one or both pruning techniques enabled.  

From Figure 11 we can see that both the Subsumption based 
pruning technique (denoted by S in the figure) as well as the 
Monotonicity Based pruning technique (M) can dramatically 
reduce the search space in the two-column cases, and combined 
together, can cut the number of calls to the optimizer by as much 
as 80%, while the optimized plan can still reduce the running time 
of naïve approach by more than 65%. 
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6.7 Overhead of Statistics Creation 
In this experiment we studied the overhead of statistics creation, 
which is defined as the time to create statistics as a percentage of 
the savings in running time. We computed all single column and 
two-column Group By queries over TPC-H 1G and 10G datasets. 
We assumed there was no existing statistics on the base table at 
the very beginning and the algorithm in Figure 5 (with 
subsumption based pruning enabled) created a statistics on the 
grouping columns of a Group By query if it encountered that 
Group By for the first time. From Figure 12 we can see that 
creating statistics is just a small fraction compared to the running 
time savings of the GB-MQO plans over the naïve plans. In 
general, the statistics creation overhead appears to become 
smaller as the dataset becomes larger.  
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6.8 Varying Data Skew 
In this experiment we examine how the effect of data skew affects 
our algorithm. We generated TPC-H 1GB datasets with varying 
Zipfian distributions of skew factor 0, 0.5, 1, 1.5, 2, 2.5, 3, and 
compared the execution time of our algorithm with the naïve plan. 

Figure 13 is the plot of the speedup factor vs. data skew. The 
increase in speedup comes from the fact that as a column become 

Figure 11. (a) Number of calls to the query optimizer 
(b) Execution Time 

Figure 12. Statistics creation time versus savings in 
running time. 

Figure 10. (a) Number of calls to the query optimizer (b) 
Optimization time (c) Running time relative to naïve plan. 



  

more skewed, it becomes more sparse (fewer number of distinct 
values). This typically tends to make merging of sub-plans more 
attractive. 
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6.9 Impact of Physical Database Design 
One attractive property of our algorithm (Section 4.2) is that it  
assumes no knowledge of the physical design. In this experiment 
we examine how it performs on different physical designs (on 
TPC-H 1GB database). Starting with a clustered index on the 
combined primary key l_orderkey and l_linenumber, we built 
non-clustered indices on l_receiptdate, l_shipdate, l_commitdate, 
l_partkey, l_suppkey, l_returnflag, l_linestatus, l_shipinstruct, 
l_shipmode, l_comment, one per step in the above order, and 
compare the running time after each step.  
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We can see from Figure 14 that our approach automatically 
benefits from the addition of indices, especially for the highly 
dense column which cannot be merged with other Group Bys 
(e.g., l_comment). Further examining the plans we see that the 
plans generated can adapt to the physical design. For instance, 
before an index on l_receiptdate is built l_shipdate and 
l_receiptdate are combined together, while after the index is built, 
l_receiptdate remains a singleton and l_shipdate gets merged with 
other columns. Such ability to adapt to physical design is not 
surprising since the optimizer cost model automatically captures 
the influence of different access plans.  

7. EXTENSIONS 
7.1 Using CUBE and ROLLUP 
The definition of a node in a logical plan is a Group By query. 
However, in some cases it may be beneficial to also consider 
CUBE and ROLLUP queries in the plan. For example, suppose 
the nodes (AB), (A) and (B) are required nodes. Then instead of 
having a sub-tree of Group By queries, it may be less expensive to 
have a plan consisting of a single CUBE query on (AB), which 
would also give the same results. However, consider a case where 
only (A) and (B) are required nodes. In this case, the naïve plan of 
directly computing (A) and (B) from the relation R using Group 
By queries may be more efficient than using the CUBE operator 

(since the work done for computing (A,B) may be more than any 
benefit it provides). A similar argument applies for the ROLLUP 
query. For example, a ROLLUP A, B query will compute (A,B) 
as well as (A), but not (B). Thus, it can be more beneficial than 
using CUBE or simply Group By queries for certain cases. 
Incorporating the use of CUBE and ROLLUP queries into the 
algorithm (Figure 5) can be done as follows. When merging two 
sub-plans, in addition to the alternatives considered in Figure 4, 
we also consider replacing (v1 ∪ v2) with CUBE (v1 ∪ v2) or 
ROLLUP (v1 ∪ v2). Once again, these alternatives plans can be 
considered in a cost based manner since the query optimizer is 
capable of costing CUBE and ROLLUP queries similar to regular 
Group By queries. 

7.2 Handling Different Aggregates 
Thus far we have assumed that all queries contain the same 
aggregate COUNT(*). Our solution can be extended to other 
aggregates such as MIN(X), MAX(X) and SUM(X). One way to 
handle multiple aggregates in the SubPlanMerge module (see 
Section 4.1) is by taking the union of all aggregates of nodes v1 
and v2. The downside of such an approach is that it can potentially 
lead to a blowup in the size (specifically number of columns) of 
the node (v1 ∪ v2), thereby making it less attractive to materialize. 
Thus, in principle, it may be beneficial to consider materializing 
multiple copies of (v1 ∪ v2) each with only a subset of the 
aggregates required. The downside of the latter approach is that 
the cost of computing these copies and materializing them can be 
high. Once again, the decision of which method to use can be 
done in a cost based manner. We omit details due to lack of space.   

8. CONCLUSION 
We present an optimization technique for GROUPING SETS 
queries for common data analysis scenarios such as computing all 
single column Group By queries of a relation. Unlike previous 
approaches, we use a bottom up approach that does not require the 
entire search DAG as input. Our cost based approach is important 
since it enables easier integration with today’s query optimizers as 
well as efficient implementation from a client application. We see 
significant performance improvements compared to the naïve 
approach or even using available GROUPING SETS functionality 
in today’s commercial DBMSs. Developing transformations for 
optimizing a GROUPING SETS query with other relational 
operators is an interesting area of future work. 
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APPENDIX A: Hardness Result 
Claim: The GB-MQO problem is NP-Complete even if we 
restrict the input set S to include only single column Group By 
queries and use the Cardinality cost model (Section 3.2.1). 

Proof: We show a reduction from the problem of determining the 
optimal bushy plan for the cross product query of N relations 
(referred to as the XR problem), which is known to be NP-
Complete[22] to the GB-MQO problem. 

In XR, the cost of a cross product of two relations Ri and Rj is 
assumed to be |Ri|·|Rj|, called the table cardinality cost model. 
Given N relations R1, ..., RN, without loss of generality, we can 
assume that all of them have just one column and all tuples are 
distinct. (We can make this true by constructing a new Ri' from Ri 
by concatenating a unique row id with all the columns belonging 
to the same tuple in Ri). Without loss of generality we can also 
assume that |Ri|>1 because under the table cardinality cost model, 

such single-tuple relations do not change the cost of the cross 
product. 

Let R = R1×...×RN. Observe that Qi = select ci from R Group By ci 
is indeed Ri and Q = select c1, …, cN from R Group By c1, …, cN 
is R. Let f be a mapping from a bushy cross product plan to a 
logical plan to compute all single column Group By queries from 
relation R defined as follows. 

An internal node n in the cross product plan representing 

kii RR ×× ...
1

 is mapped to Qn = select c(1), ..., c(k) from QP 

Group By c(1), ..., c(k) , where QP is R if n is the root , or the 
mapping of n’s parent P otherwise, and a leaf node representing Rj 
is mapped to Q = select cj from QP Group By cj.  It is easy to see 
that f is reversible.  

Let T be the space of all cross product plans in XR. We need to 
show that (1) the optimal logical plan Popt for GB-MQO is in the 
space of f(T) and (2) f -1(Popt) is the optimal join plan for XR. 

Proof of sub-claim (1) by contradiction: it is equivalent to show 
that the optimal logical plan for GB-MQO consists of 2 sub-plans 
and both sub-plans are binary tree plans. First if there is only one 
sub-plan, the root of the sub-plan must be {c1, …, cN}, which 
implies Popt is sub-optimal because the edge pointing from the 
root to R is redundant. If there are more than 2 sub-plans, we 
apply SubPlanMerge (b) to merge the first two sub-plans, and get 
a new plan P. Let n1 and n2 be the root of the first two sub-plans 
and cx be a column not contained in either n1 or n2. We have 
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where w(e) equals to |u| for an edge e pointing from u to v.  The 

last inequality comes from the fact that 2|| )( ≥xR . This 
contradicts Popt being the optimal plan. So Popt must have two and 
only two sub-plans. Likewise, if Popt has a node n which has m 
children where m>2. Let n1 and n2 denote the first two children. 
We can create a new plan P with lower cost by introducing n1 ∪ 
n2 as a child of n and making n1 and n2 be the children of n1 ∪ n2. 
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The last inequality holds because n - n1 ∪ n2 is not empty and any 
|R(i)|≥2. So Popt must be a binary tree. 

Proof of sub-claim (2): Given a join plan tree T,  

||||||||||)( 1 N

InLnIn

RRnnnTC +++=+= ∑∑∑
∈∈∈

L where I and L 

are the set of internal nodes and leaf nodes respectively. Note that 
the second term is a constant so to minimize C(T) is to minimize 
the first term ∑

∈
=′

In

nTC ||)( . Let P be f(T). Note that 

)(2||2)( TCnPC
In

′⋅== ∑
∈

. So if we can find the optimal Group 

By plan Popt with minimal C(Popt), let Topt=f--1(Popt), then 
C(Topt)=0.5×C(Popt)+|R1|+…+|RN| is minimal. QED. 


