

Efficient Computation of Multiple Group By Queries
Zhimin Chen Vivek Narasayya

Microsoft Research

{zmchen, viveknar}@microsoft.com

ABSTRACT
Data analysts need to understand the quality of data in the
warehouse. This is often done by issuing many Group By queries
on the sets of columns of interest. Since the volume of data in
these warehouses can be large, and tables in a data warehouse
often contain many columns, this analysis typically requires
executing a large number of Group By queries, which can be
expensive. We show that the performance of today’s database
systems for such data analysis is inadequate. We also show that
the problem is computationally hard, and develop efficient
techniques for solving it. We demonstrate significant speedup
over existing approaches on today’s commercial database
systems.

1. INTRODUCTION
Decision support analysis on data warehouses influences
important business decisions and hence the accuracy of such
analysis is crucial. Understanding the quality of data is an
important requirement for a data analyst [18]. For instance, if the
number of distinct values in the State column of a relation
describing customers within USA is more than 50, this could
indicate a potential problem with data quality. Other examples
include the percentage of missing (NULL) values in a column, the
maximum and minimum values etc. Such aggregates help a data
analyst evaluate whether the data satisfies the expected norm.
This kind of data analysis can be viewed as obtaining frequency
distributions over a set of columns of a relation; i.e., a Group By
query of the form: SELECT X, COUNT(*) FROM R GROUP
BY X, where X is a set of columns on relation R. Note that X may
sometimes contain derived columns, e.g., LEN(c) for computing
the length distribution of a column c. For example, consider a
relation Customer(Lastname, FirstName, M.I., Gender, Address,
City, State, Zip, Country). A typical scenario is understanding the
distributions of values of each column, which requires issuing
several Group By queries, one per column. In addition, it is
sometimes necessary to also understand the joint frequency
distributions of sets of columns, e.g., the analyst may expect that
(LastName, FirstName, M.I., Zip) is a key (or almost a key) for
that relation. We note that some data mining applications [15]
also have similar requirements of computing frequency
distributions over many sets of columns of a relation.

This kind of data analysis can be time consuming and resource
intensive for two reasons. First the number of rows in the relation
can be large. Second, the number of sets of columns over which

Group By queries are required can also be large. A naïve
approach is to execute a different Group By query for each set of
columns.

In some commercial database systems, an extension to the
GROUP BY construct called GROUPING SETS is available,
which allows the computation of multiple Group By queries using
a single SQL statement. The multiple Group By queries are
specified by providing a set of column sets. For example
specifying GROUP BY GROUPING SETS ((A), (B), (C), (A,C))
would cause the Union All of all four Group By queries to be
returned in the result set. The query optimizer has the ability to
optimize the execution of the set of queries by potentially taking
advantage of the commonality among them. However, as the
following experiment on a commercial database system shows,
GROUPING SETS functionality is not optimized for the kinds of
data analysis scenarios discussed above.

Example 1. Consider a scenario where the data analyst wishes to
obtain single-column value distribution for each character or
categorical column in a relation. For example, there are 12 such
columns in the lineitem table of the TPC-H database (1GB) [24].
We used a single GROUPING SETS query on a commercial
database system to compute results of these 12 Group By queries.
We compared the time taken to execute the GROUPING SETS
query with the time taken using the approach presented in this
paper. Using our approach was about 4.5 times faster.

The explanation for this is that GROUPING SETS is not
optimized for scenarios where many column sets with little
overlap among them are requested, which is a common data
analysis scenario. In Example 1, where we request 12 single
column sets only, the plan picked by the query optimizer is to first
compute the Group By of all 12 columns, materialize that result,
and then compute each of the 12 Group By queries from that
materialized result. It is easy to see that such a strategy is almost
the same as the naïve approach of computing each of the 12
Group By queries from the lineitem table itself. In contrast, our
solution consisted of materializing the results of the following
Group By queries into temporary tables: (1) (l_receipdate,
l_commitdate) (2) (l_tax, l_discount, l_quantity, l_returnflag,
l_linestatus); and computing the single column Group By queries
of these columns from the respective temporary tables. The Group
By queries for each of the remaining columns were computed
directly from the lineitem table.

An important observation, illustrated by the above example, is
that materializing results of queries, including queries that are not
required, can speed up the overall execution of the required
queries. It is easy to see that the search space, i.e., the space of
queries that are not required, but whose results, if materialized,
could speed up execution of the required queries, is very large.
For example, for a relation with 30 columns, if we want to
compute all single column Group By queries, the entire space of
relevant Group By queries to consider for materialization is 230.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

We note that previous solutions to the above problem, including
GROUPING SETS, were designed for efficient processing of the
(partial) datacube e.g., [2,14,16,21], as a generalization of CUBE
and ROLLUP queries. Unlike the kind of data analysis scenarios
presented above, these solutions were geared towards OLAP like
scenarios with a small set of Group By queries typically having
significant overlap in the sets of columns. Hence, most of these
previous solutions to this problem assume that search space of
queries can be fully enumerated as a first step in the optimization.
Thus, these solutions do not scale well to the kinds of data
analysis scenario described earlier.

Our key ideas and contributions can be summarized as follows.
First, we show that even a simple case of this problem, where we
need to compute n single-column Group By queries of a relation
is computationally hard. Second, unlike previous solutions to this
problem, our algorithm explores the search space in a bottom up
manner using a hill-climbing approach. Consequently, in most
cases, we do not require enumerating the entire search space for
optimizing the required queries. This allows us to scale well to the
kinds of data analysis scenarios mentioned above. Third, our
algorithm is cost based and we show how this technique can be
incorporated into today’s commercial database systems for
optimizing a GROUPING SETS query. As an alternative, we
show how today’s client data analysis tools/applications can take
advantage of our techniques to achieve better performance until
such time that GROUPING SETS queries are better optimized for
such scenarios. Finally, we have conducted an experimental
evaluation of our solution on real world datasets against
commercial database systems. These experiments indicate that
very significant speedups are possible using our techniques.

The rest of this paper is structured as follows. In Section 2, we
discuss related work. Section 3 formally defines the problem and
establishes the hardness of the problem. We present our algorithm
for solving this problem and analyze key properties of the
algorithm in Section 4. In Section 5 we discuss how our solution
can be implemented both inside the server for optimizing a
GROUPING SETS query as well as on the client side (i.e., using
just SQL queries). Section 6 presents results of our experimental
evaluation and Section 7 discuses extensions to the basic solution
to handle a broader class of scenarios. We conclude in Section 8.

2. RELATED WORK
Our problem can be viewed as a multi-query optimization
problem for Group By queries. The first body of related work
proposes techniques for efficiently computing a (partial) data
cube. The GROUPING SETS support in commercial database
systems such as IBM DB2 and Oracle provide exactly the
required functionality, i.e., the ability to compute the results of a
set of Group By queries. However, as discussed in the
introduction, the performance of GROUPING SETS does not
scale well if a large number of non-overlapping Group By queries
is provided as input, which is the kind of data analysis scenarios
we described earlier. The work that is closest to ours is the work
on partial CUBE computation [14,16]. This work proposes a
technique for materializing new nodes (Group By queries) to help
reduce the cost of computing other queries. A key difference is
that their solution (which is an approximation algorithm to the
Minimum Steiner Tree problem), assumes that the search lattice
has been constructed. However, it is easy to see that if we need to
compute all single column Group By queries of a table with many

columns, the above solution does not scale, since the step of
constructing the search lattice itself would not be feasible. In
contrast, our approach constructs only a small part of the lattice in
a bottom-up manner, interleaved with the search algorithm
(Section 4). This allows us to scale to a much larger inputs. We
note that once the set of queries to be materialized is determined,
several physical operators, e.g., PipeHash, PipeSort [14,16],
Partitioned-cube, Memory-Cube [16], etc. for efficiently
executing a given set of queries (without introducing any new
queries) can be used. This problem is orthogonal to ours, and
these techniques can therefore be leveraged by our solution as
well. The basic ideas is to take advantage of commonality across
Group By queries using techniques such as shared scans, shared
sorts, and shared partitions [2,8,15,16,21]. We note that work on
efficient computation of a CUBE (respectively ROLLUP) query is
a special case of the partial cube computation discussed above
where the entire lattice (resp. a hierarchy) of queries needs to be
computed. In contrast our work can be thought of as introducing
logically equivalent rewritings of a GROUPING SETS query in a
cost based manner.

The second category of work is creation of materialized views for
answering queries. The paper [17] studies the problem of how to
speed up update/creation of a materialized view V by creating
additional materialized views. They achieve this by creating a
DAG over logical operators by considering various equivalent
expressions for V (e.g., those generated by the query optimizer);
and then determining an optimal set of additional views (sub-trees
of the DAG) to materialize. Similarly, the work in [10,11]
explores the problem of which views to materialize in a data
warehouse to optimize the (weighted) sum of the cost of
answering a set of queries as well as the cost of materializing the
views themselves. However, the solution assumes that the graph
G (a DAG) containing all possible candidate views to materialize
is provided as input. In both the above studies, the proposed
solution requires the DAG to be constructed prior to optimization.
Once again, this approach does not scale for our scenario since the
size of the DAG is exponential in the number of input queries.

The idea of introducing a new query/view to answer a given set of
queries (used in this paper) is not novel, and has been proposed in
several contexts before [2,10,17]; including the ideas of: (a)
merging views in [3,25] as well as building a common subsumer
expression in [9]. However, in [3,14,25], the goal is to pick a set
of materialized views to optimize the cost of executing a given set
of queries, and the cost of materializing the chosen views is not
part of the objective function. Thus a naïve adaptation to our
problem is not possible. In [9], the exact space of common
subsumer views that would be considered for a given set of Group
By queries is not defined.

In [15], a modification to GROUPING SETS syntax is proposed
(called the Combi operator) to allow easy specification of a large
number of Group By queries as input (e.g., all subsets of columns
up to size k). Such a syntactic extension would be useful for the
kinds of data analysis scenarios presented in this paper where e.g.,
all single-column and two-column Group By queries over a
relation are required. Finally, there has been work in multi-query
optimization for join queries e.g., [19]. In these papers, the focus
is on reusing results of join expressions, unlike our case, where
we focus on sharing work done by different Group By queries
referencing the same single table/view.

3. PROBLEM STATEMENT and
HARDNESS
3.1 Definitions
We assume a relation R(c1, … cm) with m columns. Let C be the
set of columns in R, i.e., C = {c1, …cm}. Let S = {s1, s2, … sn},
where each si is a subset of columns of R, represent a set of Group
By queries over R. Thus each si is a Group By query:

SELECT si COUNT(*) FROM R GROUP BY si

In the rest of this paper, we assume that all queries require only
the COUNT(*) aggregate. In Section 7 we discuss extensions
when different aggregates are needed by different queries.

Search DAG

Suppose we are given a relation R, and a set S = {s1, s2, … sn} of
Group By queries over R. Let G = (V, E) be a directed acyclic
graph (DAG) that is defined as follows. A node in the graph
corresponds to a Group By query. The set of nodes V contains all
elements of the power set of s1 ∪ s2 ∪ … sn,. Note that s1, s2, … sn
themselves will be nodes in the graph. We refer to the nodes in S
as required nodes, since we are required to produce the results for
these nodes. The edge set E contains a directed edge from node u
to v iff, u ⊃ v. We refer to u as the ancestor of v, and v as the
descendant of u. In addition, there is one distinguished node
called the root node, which represents the relation R itself. The
root node has an outgoing edge to every other node in V (since it
is an ancestor of every other node). We call G the Search DAG.

Example 2. Suppose R(A,B,C,D), and S = {(A), (B), (C), (A,C)}.
The search DAG for this example is shown in Figure 1.

Logical plan for computing a set of Group By queries

Let P be a logical plan for computing S, i.e., for computing all
queries s1, … sn. P is a directed tree over the Search DAG, rooted
at R, and including all required nodes. This tree can also be
viewed as a partial order of SQL queries. An edge from node u ->
v in the tree means that v is computed as a Group By query over
the table u. Note that if u ≠ R, (i.e., u is an intermediate node in
the tree) then u will need to be materialized as a temporary table
before v can be computed from it. Our notion of a logical plan is
different from the notion of physical execution plan used in a
query optimizer since the “operators” in our plan are SQL Group
By queries rather than physical operators.

Figure 2 shows two different logical plans for the input S = {(A),
(B), (C), (AC)}. The required nodes are shaded. In logical plan

P1, all the required nodes are computed from the root node, i.e.,
base relation R. In plan P2, (A,B) is computed from R, its results
are materialized, and both (A) and (B) are computed from it.
Likewise, (A,C) is computed directly from R , its results
materialized, and (C) is computed from the results of (A,C).

A sub-plan is a sub-tree of a logical plan whose root node is
directly pointed to by R. For example, in Figure 2 in P2, the sub-
trees rooted at (AB) and (AC) are both sub-plans. But the sub-tree
rooted at (A) is not a sub-plan since its parent is not R.

Finally, given a logical plan (a tree), there is the issue of how
much additional storage (disk space) is consumed for
materializing the intermediate nodes of the tree. Note that
depending on the sequence (i.e., depth first or breadth first) in
which the queries in the logical plan are executed, the maximum
storage consumed by that plan may be different. In Section 4.4 we
show how to sequence the execution of queries in the tree so that
at any point during the execution of the logical plan, the storage
taken up by intermediate nodes is as small as possible.

3.2 Cost Model
Our goal is to efficiently compute all Group By queries in S, i.e.,
find an efficient logical plan for S. Therefore we now discuss the
issue of what metric to use to compare two different logical plans.
We note that our techniques do not depend on the specific cost
model used, although they do rely on the ability to compute a cost
for a given logical plan (or sub-plan) P. In this paper we consider
two cost models. We denote the cost of a plan P as Cost(P).

3.2.1 Cardinality Cost Model
This cost model assumes that the cost of an edge from u -> v in
the Search DAG is the number of rows of the table u, denoted by
|u|. Intuitively, this simple cost model captures the cost of
scanning the relation u, which is often a reasonable indicator of
the cost, particularly when there are no (relevant) indexes on the
table u. Of course, in general, this cost model can be inaccurate --
e.g., it does not capture how “wide” the relation u is; it does not
account for presence of indices on u etc. However, due to its
simplicity, it is more amenable for use in analyzing the problem
and its solutions, and has been used in previous work related to
this problem e.g., [10,14].

We note that to use the Cardinality cost model, we still need to be
able to estimate the cardinality of a Group By query, which is a
hard problem. For this, we assume that known techniques for
estimating number of distinct values such as [13] may be used.

3.2.2 Query Optimizer Cost Model
This cost model takes advantage of the fact that the logical plan
is, in fact, a set of SQL queries. Thus, we can use the query

AC

A B C

AB

R

Figure 1. A search DAG for the input {(A), (B),
(C), (AC)}

ABC

BC

AB AC

A B C

R

Figure 2. Two logical plans P1 and P2 for the
input S = {(A),(B),(C),(AC)}

AC

A B C

R

P1 P2

optimizer of the DBMS itself (which is capable of estimating the
cost of an individual query) as the basis of the cost model. More
precisely, we model Cost (P) as the sum of the optimizer
estimated cost of each SQL query in P. This cost model has a
couple of advantages over the Cardinality cost model (Section
3.2.1). First it captures the effects of the current physical design in
the database. For example, if a query can take advantage of an
existing index in the database, then this effect will automatically
be reflected in the optimizer estimated cost. Second, cost models
used by the optimizer in today’s database systems are already
quite sophisticated, and are able to take advantage of database
statistics (e.g., histograms, distinct value estimates) for producing
accurate estimates for many cases.

We note that in order to be able to use this cost model, we need
the ability to cost a query such as u -> v when u is not the base
relation R, i.e., u does not actually exist as a table in the database.
For this purpose, we take advantage of the capabilities of “what-
if” analysis APIs in today’s commercial query optimizers. These
APIs allow us to pretend (as far as the query optimizer is
concerned) that a table exists, and has a given cardinality and
database statistics. Details of these APIs vary with each
commercial system and can be found e.g., in [5,25].

The accuracy of this cost model is a function of the available
database statistics. Collecting statistics can be expensive;
however, the optimizer can create multiple statistics from one
sample, and the cost of creating a statistics can be amortized
because the same statistics can be used to optimize many other
queries. Even we ignored the effect of amortization, the
experiments in Section 6.7 suggests that for large data sets, the
time to create statistics is only a small fraction compared to the
savings in running time resulting from a better logical plan.

Finally, we note that the cost of materializing a temporary table
can also be handled in this model in a straightforward way. For a
query u -> v, where v needs to be materialized, we construct the
query as a SELECT … INTO v … (or equivalently INSERT
INTO v SELECT …), which can also be submitted to the query
optimizer for cost estimation.

3.3 Problem Statement
Given a relation R, and a set of Group By queries on R denoted by
S = {s1,… sn} find the logical plan for S having the lowest cost,
i.e., find a logical plan P that minimizes Cost (P).

We refer to the problem in the rest of this paper as the Group By
Multi-Query Optimization problem or GB-MQO for short. In
general, any cost function Cost (P) may be used to measure the
cost of an execution plan.

3.4 Hardness Results
It has previously been noted [2] that the GB-MQO problem is NP-
Complete when the cost function can take on arbitrary values.
The reduction is from the Minimum Steiner Tree problem over
DAGs. In this paper, we show that even a very special case of the
problem, namely the problem of computing even the single
column Group By queries over a relation is also NP-Complete.
This result is pertinent since as discussed in the introduction, this
special case is a common occurrence in data analysis for
understanding data quality or in certain data mining applications.

Claim: The GB-MQO problem is NP-Complete even if we
restrict the input set S to include only single column Group By
queries and use the Cardinality cost model (Section 3.2.1).

Proof: The reduction is from the problem of finding the optimal
bushy execution plan for a cross product query over N relations
[22]. See Appendix A for details.

4. SOLUTION
In Section 3 we defined the Group By Multi-Query Optimization
(GB-MQO) problem, where the goal is to find a logical plan (a
partial order to execute SQL queries) such that the cost of the plan
(as determined by a cost model) is minimized. Given the hardness
results presented in Section 3.4, it is unlikely that an efficient
algorithm exists that can compute an exact solution to this
problem. Moreover, it is important to note that even if efficient
approximation algorithms exist for our problem (e.g., by adapting
solutions to the Minimum Steiner tree problems), the input to
such a solution would be the Search DAG (see Section 3.1). This
would require constructing the Search DAG, whose size is
exponential relative to the size of the input set of Group By
queries S. In this section, we therefore present a heuristic solution
to the above problem that scales well with the size of the input set
S, while still producing a good logical plan as output.

Our algorithm starts with the “naïve” logical plan where each si ∈
S is computed directly from R, and uses the idea of combining
two sub-plans (see Section 3.1) P1 and P2 as the basic operator
for traversing the space of logical plans. In Section 4.1, we
present the operator for combining two logical sub-plans. In
Section 4.2, we present and analyze our overall algorithm. In
Section 4.3, we present two pruning techniques that significantly
speed up our algorithm in practice. In Section 4.4, we present that
given a logical plan, how to execute it to minimize the storage
taken up by the intermediate nodes.

4.1 Merging Two Sub-Plans
We use the idea of merging two logical sub-plans P1 and P2 as the
basic operation for generating new logical sub-plans as described
below. We refer to this operator as the SubPlanMerge operator.
The SubPlanMerge operator (described below) has the desirable
property that the root node of each new sub-plan output by the
operator is the node with minimal cardinality from which the sub-
plans P1 and P2 can be computed.

Consider a pair of sub-plans P1 and P2 as shown in Figure 3. The
set of new sub-plans introduced by merging P1 and P2 is shown in
Figures 4 (a)-(d). We refer to the merging operator as
SubPlanMerge(P1, P2) and it returns a set of sub-plans as output.
Note that in each case, the root node of the new sub-plan is v1 ∪
v2, which is the smallest relation from which both v1 and v2 can be
computed. For example, if v1 is (A,B) and v2 is (A,C), then v1 ∪
v2 is (A,B,C).

Figure 4(a) creates a sub-plan where the children of v1 and v2 are
computed directly from the parent, thereby avoiding the cost of
computing and materializing both v1 and v2. Of course, this sub-

p1 pk

v1

…… q1 ql

v2

……

P1 P2

Figure 3. Two sub-plans P1 and P2.

plan is only generated when neither v1 nor v2 is a required node.
On the other hand Figure 4 (b) creates a plan where both v1 and v2
are computed and materialized. This plan can be considered
whether or not v1 and v2 are required nodes. Intuitively, the sub-
plan (a) can be good, when the size of v1 ∪ v2 is not much larger
than the size of v1 or v2, whereas (b) can be good when the size of
v1 ∪ v2 is much larger than the size of v1 and v2. The former is
more likely when the values of v1 and v2 are highly correlated,
whereas the latter is more likely when v1 and v2 are independent.

Sub-plans (c) and (d) can be beneficial when either one (but not
both) of v1 and v2 are much smaller than v1 ∪ v2. Thus for
example if v1 ∪ v2 has only a slightly higher size than v2 but
significantly higher size than v1, then in sub-plan (c) could be the
best plan. This is because although sub-plans q1…ql will incur a
higher cost since they are now computed from v1 ∪ v2 instead of
from v2, the increased cost may be more than offset by the
reduced cost of not computing and materializing v2. On the other
hand, for sub-plans p1…pk it may be more beneficial to compute
them from v1 even after paying the cost of computing and
materializing it.

If there is a subsumption relationship between v1 and v2 (which is
common in practice), (b) (c) and (d) in Figure 4 degenerate into
one case in which we compute v2 from v1, and then compute
q1…ql from v2 (assuming v2 ⊆ v1).

4.2 Algorithm for the GB-MQO problem
Our algorithm for computing the logical plan for a given input set
S = {s1, … sn} on a relation R is shown in Figure 5. The algorithm
starts with the “naïve” plan where each si is computed directly
from R and improves upon the solution until it reaches a local
minimum. Observe that unlike previous algorithms for this
problem [2,10,14,21], our algorithm does not require the Search
DAG as input. Instead it constructs logical plans in a bottom-up
manner. This allows it to scale for large input sizes, e.g., for the
common case of computing all single column Group By queries
over a relation with many columns.

Analysis of Running Time: Let |S| = n. A naïve implementation
of the above algorithm would call SubPlanMerge O(n3) times,
since each iteration of the loop does O(n2) merges and there are
O(n) iterations in the worst case. However, it is easy to see that if
we are willing to store the logical sub-plans that have been
computed in previous iterations (which incurs a memory cost of
storing O(n2) sub-plans), then the algorithm needs to call
SubPlanMerge only O(n2) times. This makes the algorithm
scalable both in terms of running time as well as memory
requirements for relatively large input sizes (e.g., up to 100’s of
Group By queries).

Restriction of search space to binary trees only: Given the
above algorithm and the four different kinds of sub-plans returned
by SubPlanMerge, it is easy to see that in general, the shape of the
logical plan can be an arbitrary tree. As discussed earlier, an
important special case of data analysis scenarios is computing all
single column Group By queries. This special case has the
property that all inputs are non-overlapping, i.e., no pair of inputs
have any columns in common, e.g., S = {(A),(B),(C),(D)}. In this
case, we have observed empirically (see Section 6.5) that
restricting the search space to only binary trees can save a
considerable amount of optimization time and still give very good
logical plans in practice. This restriction is analogous to the
restricted search space of left deep trees considered by many
query optimizers today. Note that since our algorithm only
considers merging pairs of sub-plans in any step, for the above
case, restriction of the space of logical plans to binary trees can be

p1 pk ……
q1 ql ……

v1∪v2

v1∪v2

p1 pk

v1

……
q1 ql

v2

……

v1∪v2

p1 pk

v1

……

q1 ql ……

v1∪v2

p1 pk ……

q1 ql

v2

……

(a)

(b)

(c)

(d)

1. Let P be the naïve plan, i.e., where each si ∈S is a
sub-plan, i.e., computed directly from relation R.

2. Let C = Cost(S, P).
3. Do
4. Let MP = Set of all plans obtained by invoking
 SubPlanMerge on each pair of sub-plans in P.
5. Let P’ be the lowest cost plan in MP, with cost C’.
6. BetterPlanFound = False
7. If C’ < C Then
8. P = P’; C = C’; BetterPlanFound = True
9. End If
10. While (BetterPlanFound)
11. Return P

Figure 5. Algorithm for finding a logical plan
for a given set S of Group By queries.

Figure 4. Space of new sub-plans introduced by
SubPlanMerge operator

done by limiting the SubPlanMerge operator to produce only
plans of type (b).

4.3 Pruning Techniques
In this section, we present two techniques for pruning the space of
execution plans considered by our algorithm for the GB-MQO
problem (Section 4.2). These two pruning techniques are
developed under the cardinality cost model and with the
restriction of applying SubPlanMerge type (b) in Figure 4 only,
and hence are heuristics for the general case; however, they
appear to perform well in practice across several real data sets that
we have tried in our experiments (Section 6.6). These pruning
techniques significantly reduce the running time of the algorithm
with relatively small impact on the cost of the logical plan
produced.

4.3.1 Subsumption Based Pruning
In the algorithm presented in Section 4.2, we consider merging
any two pairs of sub-plans in Step 4. The pruning technique is
based on the intuition that it should be less expensive to compute
Group Bys from a closer ancestor: in step 4 of the algorithm,
given two sub-plans rooted at two nodes vi and vj, if there are any
two sub-plans rooted at vx and vy such that (vi ∪ vj) ⊃ (vx ∪ vy),
then do not consider merging vi and vj, i.e., do not consider the
sub-plan rooted at (vi ∪ vj). For instance, if there are 3 sub-plans
rooted at (A,B), (B,C) and (C,D) respectively, then do not
consider merging sub-plans rooted at (A,B) and (C,D) because
(A,B)∪(C,D) ⊃ (A,B)∪(B,C).

Claim: Suppose vi and vj are non-overlapping and so are vx and
vy. The above pruning technique is sound (i.e., the answer found
by our algorithm is not affected) when using the Cardinality cost
model and restricting SubPlanMerge to type (b) in Figure 4.

Proof: Let us denote the cost of sub-plan Tu rooted at node u as
Cost(u). Let Child(u) denote the set of children of u. Let R denote
the base relation. So Cost(u)+Cost(v)-cost(u ∪ v) is the benefit of
merging two sub-plans rooted at u and v. For the pruning
technique to be sound, we need to show that: Cost(vx)+Cost(vy)-
Cost(vx ∪ vy) ≥ Cost(vi)+Cost(vj)-Cost(vi ∪ vj), since this would
ensure that the algorithm would pick merging of vx and vy over
merging of vi and vj. Using the cardinality cost model we know
that:

Cost (vi)+Cost (vj)= 2|R|+ ∑c ∈ Child(vi) Cost(c)+ ∑ c ∈ child(vj) Cost(c)

Cost (vi ∪v j)=|R|+2|vi ∪ vj| + ∑c∈Child(vi) Cost(c)+ ∑c∈child(vj)

Cost(c)

Thus, Cost (vi)+Cost (vj)-Cost (vi ∪ vj)=|R|-2| vi ∪ vj| ……….(1)

Likewise, Cost (vx)+Cost (vy)-Cost (vx ∪ vy)=|R|-2| vx ∪ vy| …(2)

Since (vi ∪ vj) ⊃ (vx ∪ vy) we know that | vi ∪ vj|≥| vx ∪ vy|. Thus
(2) ≥(1), which proves the claim.

4.3.2 Monotonicity Based Pruning
This pruning technique is based on the same intuition as the
pruning technique used in the Apriori algorithm for frequent
itemset generation [1]. Given two sub-plans rooted at vi and vj if
SubPlanMerge(vi,vj) does not result in a lower cost sub-plan, then
do not consider merging any two sub-plans vx and vy such that vi

∪ vj ⊆ vx ∪ vy. For instance, if SubPlanMerge((A), (B)) does not
result in a lower cost sub-plan, then later on do not consider
merging sub-plans like (A,C) and (B,D). Since our algorithm
enumerates the plans in a bottom-up manner, we can take

advantage of the above technique to prune out a potentially large
space of plans from consideration, with the cost of storing the pair
of sub-plans that cannot be merged in an n×n array.

Claim: Suppose vi and vj are non-overlapping and so are vx and
vy. The above pruning technique is sound when using the
Cardinality cost model and restricting SubPlanMerge to type (b)
in Figure. 4.

Proof: We need to show that given two sub-plans rooted at vi and
vj, if Cost(vi) + Cost(vj) ≤ Cost (vi ∪ vj), then for any sub-plans
rooted at vx and vy such that (vi ∪ vj) ⊆ (vx ∪ v y), then Cost(vx) +
Cost(vy) ≤ Cost(vx ∪ vy).

From the cardinality cost model, it follows that:

Cost (vi)+Cost (vj)= 2|R|+ ∑c ∈ Child(vi) Cost(c)+ ∑ c ∈ child(vj) Cost(c)

Cost(vi ∪vj)=|R|+2|vi ∪ vj| +∑c ∈ Child(vi)Cost(c)+∑ c ∈ child(vj) Cost(c)

Since Cost (vi) + Cost (vj) ≤ Cost (vi ∪ vj), it follows that |R| ≤ 2|vi

∪ v j|. Furthermore, since vi ∪ v j ⊆ vx ∪ v y, we know that

|vi ∪ vj| ≤ |vx ∪v y|. Thus, |R| ≤ 2|vx ∪v y| ………………… (1)

Likewise, we have

Cost(vx)+Cost(vy)=2|R|+∑c∈Child(vx)Cost(c)+∑c∈child(vy)Cost(c) ..(2)

Cost(vx∪vy)=|R|+2|vx∪vy|+∑c∈Child(vx)Cost(c)+∑c∈child(vy)Cost(c)
(3)

Comparing the expanded terms (2) and (3), and using the result
from (1), we get: Cost(vx) + Cost(vy) ≤ Cost(vx∪vy). QED.

4.4 Intermediate Storage Considerations
Each node in the logical plan corresponds to a SQL Group By
query, and for an intermediate node, the results of the query need
to be materialized into a temporary table. We focus here on two
constraints that might be interesting to the users: minimizing the
storage consumed, at any point during execution, by the
intermediate nodes when executing a given logical plan, and
constraining plan space with user-specified maximum storage
consumed by intermediate temporary tables. Such constraints can
be easily incorporated into today’s commercial optimizer’s query
hints framework.

4.4.1 Minimizing Intermediate Storage
In general, the SQL statements corresponding to a given
execution plan tree P can be generated using either a breadth first
or depth first traversal of the tree. When all children of a node u
have been computed from it, then the intermediate table
corresponding to u can be dropped, thereby reducing the required
storage. However, the manner in which the execution plan tree is
traversed for generating the SQL can affect the required storage
for intermediate nodes.

The example in Figure 6 illustrates this issue. Consider node
(ABCD). If we use a depth-first traversal strategy, we need to
execute the entire sub-tree rooted at (ABC) followed by the entire
sub-tree rooted at (BCD) before we can delete the temporary table
(ABCD). Thus the maximum storage consumed using this
strategy is 20 (10+6+4), which corresponds to the storage for
simultaneously materializing (ABCD), (ABC) and (AB). If a
breadth-first strategy is used, the maximum storage is 18
(10+6+2), which corresponds to the storage for (ABCD), (ABC)
and (BCD). Thus, in this example, a breadth-first traversal results
in lower maximum required storage. It is easy to see that in other

cases, a depth-first traversal may be preferable. Thus, for each
node, one of these strategies will be better, depending only on the
storage requirements on nodes in the subtree.

Let u be any node, and let d(u) denote the storage required for
materializing node u. Let Storage(u) denote the minimum storage
required for the intermediate nodes (among all possible ways in
which the tree can be executed) for the sub-tree rooted at u. Let
v1, …, vk be the children of node u. Then the minimum storage for
the sub-tree rooted at u can be written using the following
recursive formula:

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

+

+
=

=

=
∑

)(max)(

)()(
min)(

..1

1

iki

k

i
i

vStorageud

vdud
uStorage

The first term represents the required intermediate storage if a
breadth-first traversal is applied at node u, whereas the second
term represents the required intermediate storage if a depth first
traversal is applied at node u. Given the above formula, we can
compute Storage (u) for any node in the tree in a bottom-up
manner, and thereby determine at each node, whether a breadth-
first (BF) or depth-first (DF) traversal is preferable. In particular,
we mark a node as ‘BF’ or ‘DF’ depending on whether the first
term or the second term in the formula is smaller in value. Once
each node in the tree is marked in this manner, we traverse the
tree obeying this marking and compute the nodes in that order.
This traversal ensures that the storage consumed during execution
of the plan is minimized.

It should be noted that such an optimization may affect the time to
return the first result tuple though the time to complete the
computation of the whole result set is the same, and therefore it
may not be applicable to the case in which the user desires the
first tuple is returned as early as possible. It should also be noted
that the term d(u) is an estimate from the query optimizer; its
accuracy is also subject to the accuracy of optimizer’s statistics.

4.4.2 Constraint on Intermediate Storage
In section 4.4.1, we described how to determine the order of
execution of queries in a given logical plan so as to minimize the
storage consumed by intermediate tables for that plan. It is also
possible to specify as part of the GB-MQO problem (Section 3.3)
a constraint on the maximum storage consumed by intermediate
tables for a plan. A simple method for solving the constrained
problem is to combine the algorithm in Figure 5 with the

algorithm to determine the minimum storage in Section 4.4.1: for
each plan in MP in Step 4 it also computes its minimum
intermediate storage, and only retains the plans that meet the
specified constraint.

5. IMPLEMENTATION
In Section 5.1, we outline how the optimization techniques
presented in the paper can be integrated with the query optimizer
of a DBMS for optimizing a GROUPING SETS query. An
alternative is to use these techniques in the client, i.e., in the
application itself. This allows today’s applications to potentially
leverage the benefits of these optimizations on today’s existing
database systems (Section 5.2).

5.1 Integration with Query Optimizer
Our techniques presented in Section 4.2 can be implemented
inside the query optimizer for optimizing a GROUPING SETS
query. Today’s query optimizers use algebraic transformations to
change a logical query tree to an equivalent logical query tree [6].
In a Cascades style optimizer [12], these transformations are
applied in a cost based manner. The algorithm presented in
Section 4.2 can be viewed as a method for obtaining equivalent
rewritings of the original GROUPING SETS query. For example,
Figure 7 shows two equivalent logical expressions for computing
GROUPING SETS ((A), (B)). The sub-tree labeled Expr in the
figure is the logical expression for the rest of the GROUPING
SETS query (e.g., base relation, joins, selections etc.). Each
iteration of the GB-MQO algorithm in Figure 5 considers
different logically equivalent expressions, each of which is
equivalent to the input GROUPING SETS query. Furthermore,
these expressions can be compared in a cost based manner. Note
that costing of plans can be easily implemented in a query
optimizer since these optimizers are already cost based, and we
only require the ability to estimate the cardinality and average row
size of the result of any Group By query. This capability is
already present in today’s query optimizers. We note that the
capabilities of estimating statistics over query expressions [4]
containing Group By queries can also help improve accuracy of
cost estimation in this context.

No new physical operators are required by our techniques. In
principle, besides the standard Sort and Hash operators, any
techniques described for efficient (partial) cube computation (e.g.,
PipeSort, PipeHash [2,21]) can be used. These operators use the
basic ideas of shared scans and sharing sorts [2,8,15,16,21]. The
ability to materialize intermediate results is provided by the Spool
operator -- also available in today’s DBMSs.

Union All

Gr-By A Gr-By B

Expr

Union All

Gr-By A Gr-By B

Expr

Gr-By AB

ABC BCD

A B C

ABCD

Figure 6. A sub-tree of an execution plan. The numbers
are the storage required to materialize a node.

D

10

6 2

AB 4 BC BD 1 4 CD AC

Figure 7. Two logically equivalent expressions of
the GROUPING SETS query ((A),(B))

5.1.1 GROUPING SETS query with Selections and
Joins
In general, a GROUPING SETS query may be defined over an
arbitrary SQL expression, rather than a single base relation.
Transformations to commute selection and join [7] with Group By
can be extended to the GROUPING SETS construct. It is easy to
see that selection can be pushed below the GROUPING SETS
(e.g. as part of Expr in Figure 7).

The transformation to commute join and group by in [7] is also
applicable to GROUPING SETS with little change. For example,
consider a GROUPING SETS query over the inner join of two
relations R and S (joining column is A). Suppose, we are
interested in computing the GROUPING SETS ((B), (C)). For
simplicity assume both B and C are columns in R. Then the
transformation shown in Figure 8 is possible, wherein the
Grouping Set computation is “pushed down” below the join of R
and S. Note that the pushed down Group By queries over R will
need to include the join attribute in the grouping (to allow
subsequent joining with S) as the coalescing grouping
transformation in [7]. Observe that our optimization techniques
can once again be leveraged as shown in the figure by introducing
the Group By (A,B,C) on R. An important point to note is that the
Union-All below the Join returns a single result set of all Group
Bys below it. Thus we need to ensure that the Group Bys above
the Join get only the respective relevant rows. This can be done
by introducing the notion of a Grp-Tag (i.e., a new column) with
each tuple that denotes which Group By query it is a result of.
This tag can be used to filter out the irrelevant rows. This
transformation can be thought of as a generalization of the idea in
[7] to multiple Group By queries.

5.2 Client Side Implementation
As mentioned earlier, a client side implementation can be useful
until such time that database servers begin to provide efficient
GROUPING SETS implementation for certain kinds of data
analysis scenarios. In this context, our algorithm in Figure 5 can
be viewed as a method for determining which additional Group

By queries need to be executed (and materialized) to efficiently
execute the input set of Group By queries.

Given a logical plan (i.e., the output of our algorithm), the
application can execute the plan as follows. Consider any edge
u->v in the logical plan. Assume that the name of the table
corresponding to a node x is Tx (if x is the root of the logical plan,
then the table is R). If the node v is an intermediate node (and
therefore needs to be materialized), generate a query: SELECT v,
COUNT(*) AS cnt INTO Tv FROM Tu GROUP BY v. If v is a
leaf node, then generate the query: SELECT v, COUNT(*) AS cnt
FROM Tu GROUP BY v. Note that if Tu is an intermediate node
(and not R), then we need to replace COUNT(*) with SUM(cnt).

6. EXPERIMENTS
As mentioned earlier, we have done a client side implementation
of the algorithm presented in Section 4.2 on top of a commercial
DBMS, using the query optimizer cost model (Section 3.2.2). In
this section we present the results of experiments that show: (1)
that our algorithm performs significantly better than GROUPING
SETS for certain data analysis scenarios over real and synthetic
data sets (2) the quality of GB-MQO plan compared to the
optimal plan (3) that our algorithm scales well with the number of
columns (and hence number of Group By queries) in the table (4)
the impact of restricting the plan space to binary trees (Section
4.2) (5) the impact of the pruning techniques presented in Section
4.3 (6) the overhead of creating statistics (Section 3.2.2) (7) the
impact of skew in the data (8) the impact of physical design of the
database.

Table 1. Datasets used in experiments

Dataset #rows size # columns used

1g TPC-H (lineitem) 6M 1G 12

10g TPC-H (lineitem) 60M 10G 12

SALES 24M 2.5G 15

NREF (neighboring_seq) 78M 5G 10

The experiments are run on a Windows XP professional box with
a 3GHz Pentium4 CPU and 1 GB RAM. All experiments are run
on top of Microsoft SQL Server except those depicted in section
6.1. The synthetic datasets used are the lineitem relation in TPC-H
10GB and 1GB datasets[24]. The real world datasets is a
proprietary sales data warehouse dataset and the PIR-NREF [20]
dataset in which we use the biggest relation neighboring_seq.
Table 1 summarizes the data sets used and their characteristics.
For the TPC-H datasets in Section 6.1, 6.2, 6.3, 6.5, 6.6 and 6.7
we use a standard physical design in the benchmark test: a
clustered index on l_shipdate, a non-clustered index on
l_orderkey, and a non-clustered index on the combination of
l_suppkey and l_partkey.

6.1 Comparison with GROUPING SETS
We test the performance of our algorithm relative to GROUPING
SETS supported by the commercial database system on the TPC-
H database. We test GROUPING SETS for two kinds of inputs. In
the first scenario we need to compute many single column Group
By queries (we call this SC). Thus, in this case, there are no
overlapping columns in the inputs. The second input is one in
which there are many containment relationships among queries in
the input, which is the kind of scenario for which GROUPING
SETS is designed (we call this CONT for short). For ease of

Grp-Tag=AB Grp-Tag=AC

R.A=S.A

Union-All

GB B GB C

Select Select

Join

S Union-All

GB AB GB AC

GB ABC

R

Figure 8. Logical expression for GROUPING SETS
query ((B), (C)) over the view Join(R, S).

implementation, the GB-MQO plan (which is a series of Group
By queries) reported in Table 2 is obtained by running our
algorithm on top of Microsoft SQL Server against the same
dataset with the same physical design. We note that ideally the
reported GB-MQO plans should be obtained using the what-if
API native to the DBMS which executes the plan. However, we
expect that the reported plans should be less favorable in
performance than the ones obtained via “ideal” methodology
because the native what-if API is in tune with the optimizer and
the query execution engine, which should result in better GB-
MQO plans.

In the SC case, the input was all single column Group By queries
except on the floating point columns (l_extendedprice, l_tax,
l_discount). Thus the input was 12 single column Group By
queries. From Table 2 it can be seen that for SC our approach
significantly outperformed GROUPING SETS. By looking at the
plan produced for the GROUPING SETS query for SC, we see
that the plan cannot arrange any sharing in the processing of the
12 Group Bys except for grouping all the 12 columns and
computing all 12 Group Bys from this result. Because the
intermediate result of grouping 12 columns is almost as big as the
base table, such an optimization is inadequate. On the other hand,
our algorithm introduced 2 subsuming Group By queries and
performs 7 out of 12 Group Bys on these two much smaller
intermediate result sets. As a result, our algorithm was 4.5 times
faster than using GROUPING SETS.

For CONT, the input was {(l_shipdate), (l_commitdate),
(l_receiptdate), (l_shipdate, l_commitdate), (l_shipdate,
l_receiptdate), (l_commitdate, l_receiptdate)}. In this case
GROUPING SETS and our algorithm result in comparable
performance. The GROUPING SETS plan takes advantage of the
idea of shared sorts to speed up processing relative to the naïve
approach of using one Group By per input query, since many
containment relationships hold in the inputs; i.e., it arranges the
sorting order so that if a grouping set subsumes another, the
subsumed grouping is almost free of cost. Our algorithm did not
introduce any new Group By, but arranged the singleton grouping
sets to use index or the smallest result set of the two-column
grouping-sets. We note that our implementation is on client side;
so we are limited to issuing SQL queries. When implemented
inside the server our approach can also potentially benefit from
shared sorts as above. Thus, in a server side implementation, we
would expect even greater speedup over GROUPING SETS.

Table 2. Speedup over GROUPING SETS

Query GrpSet Time (s) GB-MQO Time (s) Speedup

CONT 213 167 1.2

SC 1230 270 4.5

6.2 Evaluation on different datasets
We studied the performance of our algorithm compared to the
naïve approach on synthetic and real world datasets. We
computed single column (denoted SC) as well as two-column
Group By queries (denoted TC) on all columns in each data set.
Table 3 summarizes the running times. We see that our approach
consistently outperforms the naïve approach (where each input
query is run against the original table) with a speedup factor from
1.9 to 4.5. Although we omit the numbers, we observed that once
again GROUPING SETS performance was almost the same as the
naïve approach in most of these cases.

Table 3. Speedup over naïve plan on different datasets

Datasets
Sales
(SC)

NREF
(SC)

10g
(SC)

1g
(SC)

Sales
(TC)

NREF
(TC)

10g
(TC)

1g
(TC)

#GrBys 15 11 12 12 105 44 66 66

Speedup 1.9 1.4 2.3 2.3 4.5 1.7 2.3 2.0

6.3 Comparison with Optimal Plan
To empirically study how the quality of the GB-MQO plans
differs from that of the optimal plans, we implemented an
exhaustive search algorithm to find the optimal plan under the
Microsoft SQL Server optimizer’s cost model. Due to the
exponential nature of the exhaustive search, we restricted the
number of columns to 7. We randomly generated 10 queries,
labeled from Q0 to Q9, by randomly choosing 7 columns out of
the 12 non-floating-point columns of the TPC-H 1G data set and
then computing single column Group Bys on these 7 columns.
Figure 9 summarized the running time reduction ratio of the GB-
MQO plans and of the optimal plans against the naïve plans. From
the figure we can see most of the times the quality of the GB-
MQO plans are close to that of the optimal one.

0%

10%

20%

30%

40%

50%

60%

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

R
at

io
 o

f
R

ed
u

ct
io

n
 in

 R
u

n
n

in
g

 T
im

e

A
g

ai
n

st
 N

aï
ve

 P
la

n

GB-MQO

exhaustive

6.4 Scaling With Number of Columns
In this experiment, we investigate the scalability of our algorithm
for the case where we want all single column Group By queries,
and the number of columns in the table is increased. We start with
the projection of the 1GB TPC-H lineitem relation on its 12 non-
floating-point columns, and widen it by repeating all 12 columns.
We put aside the time of creating statistics because the cost can be
amortized by using them to optimize many queries other than this
grouping-sets query. Since now the optimization overhead is
dominated by calling the query optimizer to cost the queries, we
use the number of optimizer calls as the metrics for the cost of
optimization. We also report the running time of our algorithm
compared to the naïve plan. Because of its quadratic nature, our
approach scales reasonably well on wide table as seen in Figure
10. Thus optimizing 48 single-column Group By queries can be
accomplished within 100 seconds. Once again, we note that if
implemented inside the server, this optimization can be done even
faster since we do not incur overhead of creating dummy
intermediate tables as well as invoking the query optimizer
repeatedly during optimization.

Figure 9. Ratio of run time reduction of GB-MQO plans
and optimal plans.

443

2440

6633

12607

0

2000

4000

6000

8000

10000

12000

14000

12 24 36 48
Columns

O
pt

im
iz

at
io

n
C

os
t

0

20

40

60

80

100

120

12 24 36 48

#columns

O
p

ti
m

iz
at

io
n

 T
im

e
(s

ec
o

n
d

s)

(a) (b)

0

500

1000

1500

2000

2500

3000

3500

4000

12 24 36 48

#Columns

R
u
n
n
in

g
 T

im
e

(s
)

naïve time

GB-MQO time

 (c)

6.5 Impact of Restricting To Binary Tree Plan
We studied the impact of restricting the plan space searched by
our algorithm to binary trees when computing all single column
Group By queries over TPC-H and Sales databases. Specifically,
we compared the optimization cost and the running time of the
plan found by applying only SubPlanMerge (b) in Figure 4 vs.
that found with all four ways of merging. As in Section 6.4, we
use the number of queries sent to optimizer to cost as the
optimization cost metrics. We found that for both these datasets
the number of optimizer calls reduced by 30%, while the
difference in the execution times was less than 10%. The reason is
that our algorithm obtains much of its benefit by merging sub-
plans with small intermediate results. Thus even though the binary
tree introduces additional queries to be materialized (compared to
a k-way (k>2) tree), the costs of materialization are relatively
small.

6.6 Impact of Pruning Techniques
In this experiment we used the TPC-H 1G dataset and the Sales
dataset to evaluate the effect of the pruning heuristics in Section
4.3 on the quality of plan and the efficiency of the algorithm. We
computed all the single-column and two-column Group By
queries and compared the cost of optimization (measured by
number of calls to the query optimizer) and the running time of
the plan with one or both pruning techniques enabled.

From Figure 11 we can see that both the Subsumption based
pruning technique (denoted by S in the figure) as well as the
Monotonicity Based pruning technique (M) can dramatically
reduce the search space in the two-column cases, and combined
together, can cut the number of calls to the optimizer by as much
as 80%, while the optimized plan can still reduce the running time
of naïve approach by more than 65%.

0

5000

10000

15000

20000

25000

30000

tpc-h 1g(sc) tpc-h 1g(tc) sales(sc) sales(tc)

O
p

ti
m

iz
at

io
n

 C
o

st

None

M

S

S+M

(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

tpc-h 1g (sc) tpc-h 1g (tc) sales (sc) sales (tc)R
u

n
n

in
g

 T
im

e
R

ed
u

ct
io

n
 C

o
m

p
ar

ed
 t

o
 N

ai
ve

None

M

S

S+M

(b)

6.7 Overhead of Statistics Creation
In this experiment we studied the overhead of statistics creation,
which is defined as the time to create statistics as a percentage of
the savings in running time. We computed all single column and
two-column Group By queries over TPC-H 1G and 10G datasets.
We assumed there was no existing statistics on the base table at
the very beginning and the algorithm in Figure 5 (with
subsumption based pruning enabled) created a statistics on the
grouping columns of a Group By query if it encountered that
Group By for the first time. From Figure 12 we can see that
creating statistics is just a small fraction compared to the running
time savings of the GB-MQO plans over the naïve plans. In
general, the statistics creation overhead appears to become
smaller as the dataset becomes larger.

15%

9%

3%
1%

0%

5%

10%

15%

tpc-h 1g (sc) tpc-h 1g (tc) tpc-h 10g (sc) tpc-h 10g (tc)

S
ta

tis
tic

s
cr

ea
tio

n
tim

e
vs

. r
un

ni
ng

 ti
m

e
sa

vi
ng

6.8 Varying Data Skew
In this experiment we examine how the effect of data skew affects
our algorithm. We generated TPC-H 1GB datasets with varying
Zipfian distributions of skew factor 0, 0.5, 1, 1.5, 2, 2.5, 3, and
compared the execution time of our algorithm with the naïve plan.

Figure 13 is the plot of the speedup factor vs. data skew. The
increase in speedup comes from the fact that as a column become

Figure 11. (a) Number of calls to the query optimizer
(b) Execution Time

Figure 12. Statistics creation time versus savings in
running time.

Figure 10. (a) Number of calls to the query optimizer (b)
Optimization time (c) Running time relative to naïve plan.

more skewed, it becomes more sparse (fewer number of distinct
values). This typically tends to make merging of sub-plans more
attractive.

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

Zipf constant

S
pe

ed
up

6.9 Impact of Physical Database Design
One attractive property of our algorithm (Section 4.2) is that it
assumes no knowledge of the physical design. In this experiment
we examine how it performs on different physical designs (on
TPC-H 1GB database). Starting with a clustered index on the
combined primary key l_orderkey and l_linenumber, we built
non-clustered indices on l_receiptdate, l_shipdate, l_commitdate,
l_partkey, l_suppkey, l_returnflag, l_linestatus, l_shipinstruct,
l_shipmode, l_comment, one per step in the above order, and
compare the running time after each step.

0

50

100

150

200

250

1 NC 2 NC 3 NC 4 NC 5 NC 6 NC 7 NC 8 NC 9 NC 10 NC

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

We can see from Figure 14 that our approach automatically
benefits from the addition of indices, especially for the highly
dense column which cannot be merged with other Group Bys
(e.g., l_comment). Further examining the plans we see that the
plans generated can adapt to the physical design. For instance,
before an index on l_receiptdate is built l_shipdate and
l_receiptdate are combined together, while after the index is built,
l_receiptdate remains a singleton and l_shipdate gets merged with
other columns. Such ability to adapt to physical design is not
surprising since the optimizer cost model automatically captures
the influence of different access plans.

7. EXTENSIONS
7.1 Using CUBE and ROLLUP
The definition of a node in a logical plan is a Group By query.
However, in some cases it may be beneficial to also consider
CUBE and ROLLUP queries in the plan. For example, suppose
the nodes (AB), (A) and (B) are required nodes. Then instead of
having a sub-tree of Group By queries, it may be less expensive to
have a plan consisting of a single CUBE query on (AB), which
would also give the same results. However, consider a case where
only (A) and (B) are required nodes. In this case, the naïve plan of
directly computing (A) and (B) from the relation R using Group
By queries may be more efficient than using the CUBE operator

(since the work done for computing (A,B) may be more than any
benefit it provides). A similar argument applies for the ROLLUP
query. For example, a ROLLUP A, B query will compute (A,B)
as well as (A), but not (B). Thus, it can be more beneficial than
using CUBE or simply Group By queries for certain cases.
Incorporating the use of CUBE and ROLLUP queries into the
algorithm (Figure 5) can be done as follows. When merging two
sub-plans, in addition to the alternatives considered in Figure 4,
we also consider replacing (v1 ∪ v2) with CUBE (v1 ∪ v2) or
ROLLUP (v1 ∪ v2). Once again, these alternatives plans can be
considered in a cost based manner since the query optimizer is
capable of costing CUBE and ROLLUP queries similar to regular
Group By queries.

7.2 Handling Different Aggregates
Thus far we have assumed that all queries contain the same
aggregate COUNT(*). Our solution can be extended to other
aggregates such as MIN(X), MAX(X) and SUM(X). One way to
handle multiple aggregates in the SubPlanMerge module (see
Section 4.1) is by taking the union of all aggregates of nodes v1
and v2. The downside of such an approach is that it can potentially
lead to a blowup in the size (specifically number of columns) of
the node (v1 ∪ v2), thereby making it less attractive to materialize.
Thus, in principle, it may be beneficial to consider materializing
multiple copies of (v1 ∪ v2) each with only a subset of the
aggregates required. The downside of the latter approach is that
the cost of computing these copies and materializing them can be
high. Once again, the decision of which method to use can be
done in a cost based manner. We omit details due to lack of space.

8. CONCLUSION
We present an optimization technique for GROUPING SETS
queries for common data analysis scenarios such as computing all
single column Group By queries of a relation. Unlike previous
approaches, we use a bottom up approach that does not require the
entire search DAG as input. Our cost based approach is important
since it enables easier integration with today’s query optimizers as
well as efficient implementation from a client application. We see
significant performance improvements compared to the naïve
approach or even using available GROUPING SETS functionality
in today’s commercial DBMSs. Developing transformations for
optimizing a GROUPING SETS query with other relational
operators is an interesting area of future work.

9. REFERENCES
[1] Agrawal, R., Ramakrishnan, S. Fast Algorithms for Mining

Association Rules in Large Databases. In Proc. of VLDB
1994, 487-499.

[2] Agrawal et al. On the Computation of Multidimensional
Aggregates. In Proc. of VLDB 1996, 506-521.

[3] Agrawal, S., Chaudhuri, S., and Narasayya, V. Automated
Selection of Materialized Views and Indexes for SQL
Databases. In Proc. of VLDB 2000, 496-505.

[4] Bruno, N. and Chaudhuri, S. Exploiting Statistics on Query
Expressions for Query Optimization. Proc. of SIGMOD
2002, 263-274.

[5] Chaudhuri, S., and Narasayya, V. AutoAdmin ‘What-If’
Index Analysis Utility. In Proc. of SIGMOD 1998, 367-378.

[6] Chaudhuri, S. An Overview of Query Optimization in
Relational Systems. In Proc. of PODS 1998, 34-43.

Figure 13. Speedup vs. Varying Data skew (Zipfian)

Figure 14. TPC-H 1GB Variation with physical design.

[7] Chaudhuri S., and Shim K. Including Group-By in Query
Optimization. In Proc. of VLDB 1994, 354-366.

[8] Dalvi N., Sanghai S, Roy P., and Sudarshan S. Pipelining in
Multi-Query Optimization. In Proc. of PODS 2001.

[9] Wolfgang Lehner, et al. fAST Refresh Using Mass Query
Optimization. In Proc. of ICDE 2001, 391-398.

[10] Gupta, H. Selection of views to materialize in a data
warehouse. In Proc. of ICDT 1997, 98-112.

[11] Gupta H., and Mumick, I.S. Selection of Views to
Materialize Under a Maintenance-Time Constraint. In Proc.
of ICDT 1999, 453-470.

[12] Graefe G. The Cascades Framework for Query Optimization.
In Data Engineering Bulletin (Sept 1995), 19-29.

[13] Haas P., Naughton J., Seshadri S., and Stokes L Sampling-
based estimation of the number of distinct values of an
attribute. In Proc. of VLDB 1995, 311-322.

[14] Harinarayan V., Rajarama A., and Ullman J. Implementing
Data Cubes Efficiently. In Proc. of SIGMOD 1996, 205-216.

[15] Hinneburg A., Habich D., and Lehner W. COMBI-Operator
– Database Support for Data Mining Applications. In Proc.
of VLDB 2003, 429-439.

[16] Ross K., and Srivastava D. Fast Computation of Sparse
Datacubes. In Proc. of VLDB 1997, 116-125.

[17] Ross K., Srivastava D, and Sudarshan S. Materialized View
Maintenance and Integrity Constraint Checking: Trading
Space for Time. In Proc. of SIGMOD 1996, 447-458.

[18] Jack Olsen. Data Quality: The Accuracy Dimension. Morgan
Kaufmann Publishers, 2002.

[19] Roy P., et al. Efficient and extensible algorithms for multi
query optimization. In Proc. of SIGMOD 2000 249-260

[20] Protein Information Resource (PIR) web site.
http://pir.georgetown.edu/

[21] Sarawagi S., Agrawal R., and Gupta A. On Compressing the
Data Cube. IBM Technical Report.

[22] Scheufele, W., and Moerkotte, G.: On the Complexity of
Generating Optimal Plans with Cross Products. In Proc. of
ACM PODS 1997, 238-248.

[23] Sellis T., "Multiple Query Optimization", ACM TODS,
13(1) (March 1988), 23-52.

[24] TPC Benchmark H. Decision Support. http://www.tpc.org
[25] Zilio D. et al. Recommending Materialized Views and

Indexes with IBM’s DB2 Design Advisor. In Proc. of ICAC
2004, 180-188.

APPENDIX A: Hardness Result
Claim: The GB-MQO problem is NP-Complete even if we
restrict the input set S to include only single column Group By
queries and use the Cardinality cost model (Section 3.2.1).

Proof: We show a reduction from the problem of determining the
optimal bushy plan for the cross product query of N relations
(referred to as the XR problem), which is known to be NP-
Complete[22] to the GB-MQO problem.

In XR, the cost of a cross product of two relations Ri and Rj is
assumed to be |Ri|·|Rj|, called the table cardinality cost model.
Given N relations R1, ..., RN, without loss of generality, we can
assume that all of them have just one column and all tuples are
distinct. (We can make this true by constructing a new Ri' from Ri
by concatenating a unique row id with all the columns belonging
to the same tuple in Ri). Without loss of generality we can also
assume that |Ri|>1 because under the table cardinality cost model,

such single-tuple relations do not change the cost of the cross
product.

Let R = R1×...×RN. Observe that Qi = select ci from R Group By ci
is indeed Ri and Q = select c1, …, cN from R Group By c1, …, cN
is R. Let f be a mapping from a bushy cross product plan to a
logical plan to compute all single column Group By queries from
relation R defined as follows.

An internal node n in the cross product plan representing

kii RR ×× ...
1

 is mapped to Qn = select c(1), ..., c(k) from QP

Group By c(1), ..., c(k) , where QP is R if n is the root , or the
mapping of n’s parent P otherwise, and a leaf node representing Rj
is mapped to Q = select cj from QP Group By cj. It is easy to see
that f is reversible.

Let T be the space of all cross product plans in XR. We need to
show that (1) the optimal logical plan Popt for GB-MQO is in the
space of f(T) and (2) f -1(Popt) is the optimal join plan for XR.

Proof of sub-claim (1) by contradiction: it is equivalent to show
that the optimal logical plan for GB-MQO consists of 2 sub-plans
and both sub-plans are binary tree plans. First if there is only one
sub-plan, the root of the sub-plan must be {c1, …, cN}, which
implies Popt is sub-optimal because the edge pointing from the
root to R is redundant. If there are more than 2 sub-plans, we
apply SubPlanMerge (b) to merge the first two sub-plans, and get
a new plan P. Let n1 and n2 be the root of the first two sub-plans
and cx be a column not contained in either n1 or n2. We have

0|)|2)(||(

||||||2||||2

)(||)(||

)()(||2||)()(

)()(

)()1()(
21

21

21

21

21

21

≤−≤

−=−∪=

−−−−

++∪+=−

∏

∏

∑∑

∑∑

∪∈

∪∈

∈∈

∈∈

x

nni

i

N

nni

i

TeTe

TeTe
opt

RR

RRRRnn

ewRewR

ewewnnRPCPC

L

where w(e) equals to |u| for an edge e pointing from u to v. The

last inequality comes from the fact that 2||)(≥xR . This
contradicts Popt being the optimal plan. So Popt must have two and
only two sub-plans. Likewise, if Popt has a node n which has m
children where m>2. Let n1 and n2 denote the first two children.
We can create a new plan P with lower cost by introducing n1 ∪
n2 as a child of n and making n1 and n2 be the children of n1 ∪ n2.

0)||2)(||(||||2)()(
)(

)()(
21

2121

≤−=−∪=− ∏∏
∪−∈∪∈ nnnj

j

nni

i
opt RRnnnPCPC

The last inequality holds because n - n1 ∪ n2 is not empty and any
|R(i)|≥2. So Popt must be a binary tree.

Proof of sub-claim (2): Given a join plan tree T,

||||||||||)(1 N

InLnIn

RRnnnTC +++=+= ∑∑∑
∈∈∈

L where I and L

are the set of internal nodes and leaf nodes respectively. Note that
the second term is a constant so to minimize C(T) is to minimize
the first term ∑

∈
=′

In

nTC ||)(. Let P be f(T). Note that

)(2||2)(TCnPC
In

′⋅== ∑
∈

. So if we can find the optimal Group

By plan Popt with minimal C(Popt), let Topt=f--1(Popt), then
C(Topt)=0.5×C(Popt)+|R1|+…+|RN| is minimal. QED.

