Available online at www.sciencedirect.com

[Ompu’rer
Networks

www.elsevier.com/locate/comnet

’ ScienceDirect

ELSEVIE

Q5.
R Computer Networks 51 (2007) 632-654

Improving the quality of alerts and predicting intruder’s
next goal with Hidden Colored Petri-Net ™

Dong Yu *, Deborah Frincke

Department of Computer Science, University of Idaho, Moscow, ID 83844-1010, United States

Received 3 August 2005; received in revised form 27 January 2006; accepted 19 May 2006
Available online 22 June 2006

Responsible Editor: Christos Douligeris

Abstract

Intrusion detection systems (IDS) often provide poor quality alerts, which are insufficient to support rapid identification
of ongoing attacks or predict an intruder’s next likely goal. In this paper, we propose a novel approach to alert postpro-
cessing and correlation, the Hidden Colored Petri-Net (HCPN). Different from most other alert correlation methods, our
approach treats the alert correlation problem as an inference problem rather than a filter problem. Our approach assumes
that the intruder’s actions are unknown to the IDS and can be inferred only from the alerts generated by the IDS sensors.
HCPN can describe the relationship between different steps carried out by intruders, model observations (alerts) and tran-
sitions (actions) separately, and associate each token element (system state) with a probability (or confidence). The model is
an extension to Colored Petri-Net (CPN). It is so called “hidden” because the transitions (actions) are not directly obser-
vable but can be inferred by looking through the observations (alerts). These features make HCPN especially suitable for
discovering intruders’ actions from their partial observations (alerts) and predicting intruders’ next goal. Our experiments
on DARPA evaluation datasets and the attack scenarios from the Grand Challenge Problem (GCP) show that HCPN has
promise as a way to reducing false positives and negatives, predicting intruder’s next possible action, uncovering intruders’
intrusion strategies after the attack scenario has happened, and providing confidence scores.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Intrusion detection; Alert correlation; Hidden Colored Petri-Net

1. Introduction

* This is an extended and enhanced version of the work
published in the International Conference on Applied Crypto-
graphy and Network Security, Yellow Mountain, China, 2004
[39].

* Corresponding author. Tel.: +1 425 707 9282; fax: +1 425 706
7329.

E-mail addresses: dongyu@csds.uidaho.edu (D. Yu),
frincke@cs.uidaho.edu (D. Frincke).

One of the most important requirements of a
good intrusion detection system (IDS) is the genera-
tion of high quality alerts. Unfortunately, IDS sen-
sors usually generate massive amount of alerts [1],
especially if those sensors have high sensitivity to
potential misuse, as can be the case with tightly
tuned anomaly based sensors. In the distributed

1389-1286/$ - see front matter © 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2006.05.008

mailto:dongyu@csds.uidaho.edu
mailto: frincke@cs.uidaho.edu

D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654 633

case, the situation is compounded because there are
more sensors (and hence more data), and greater
chance of time delay before sensor alerts are consol-
idated — with commensurate risk that some informa-
tion will be inaccurate or stale. To make things
worse, only 1% of the enormous amount of alerts
generated by most IDS corresponds to unique
attacks [1-3]. The remainders are false positives
(i.e., alerts on non-intrusive actions), repeated warn-
ings for the same attack, or alert notifications arising
from erroneous activity or configuration artifacts.

Many ways are available to improve the quality
of alerts. For example, we may achieve the goal
by using better sensors, signatures, or analysis algo-
rithms. In this paper, we focus on algorithms, and
propose a novel alert correlation approach. In other
words, our approach aims to reduce the false posi-
tives and false negatives by postprocessing (i.e., cor-
relating) the alerts in a novel way: inferring an
intruder’s actions with a model named Hidden Col-
ored Petri-Net (HCPN). The architecture of our sys-
tem is depicted in Fig. 1. Raw audit data collected
by sensors are first analyzed to generate alerts.
These alerts, which contain large amounts of false
positives, are then fed into our HCPN-based alert
correlators to remove most of false positives and
repetitions. Confidence scores of alerts from the
HCPN components installed at different sites are
then fused with our extended Dempster-Shafer
theory of evidence to further improve the quality
of alerts before they are sent to the active responser
to make the reaction decision.

Alert correlation [1,4-20]is used to (a) reduce the
number of alerts that an IDS would generate to

Active Reactor

Final Alerts

Confidence Fusion

Confidences

Alerts

10SUSG —» I0JB[LI0)
10SUDG — 10JB[01I0)
10SUSG | 10JB[01I0))
10SUSG ¥ 10JB[01I0)

Fig. 1. Raw audit data collected by sensors are first analyzed to
generate alerts. These alerts, which contain a large amount of
false positives, are then fed into the alert correlators. Confidence
scores provided by the alert correlators located at different sites
are fused before being sent to the active responser to make the
reaction decision.

more manageable levels while still retaining strong
detection capacities, (b) improve IDS correctness
by reducing the false positives and negatives in the
alerts generated by the IDS sensors, and (c) unveil
an intruder’s intrusion strategy after the attack has
happened.

One way to look at the alert correlation problem
is to extract “true” alerts (or filter out the false
alerts) from the raw alerts generated by the IDS sen-
sors by utilizing relationships (e.g., similarities,
sequential relationships, etc.) among alerts. This fil-
ter view of alert correlation, which will be discussed
further in Section 5, has been taken by Cuppens
et al. [13,14] and Ning et al. [17-19], to name a
few. Approaches based on this filter view can
remove (or filter out) large percentage of false posi-
tives. However, this formulation of the problem
works directly upon the alerts. It does not distin-
guish between alerts and intruders’ actions in the
correlation process, and usually does not use infor-
mation such as false negative rate and false positive
rate to improve the correlation results.

In this paper, we take a different view and con-
sider alert correlation as the problem of inferring
an intruder’s actions based on partial observations —
alerts, progressively. Based on this perspective, we
propose a novel methodology for analyzing alerts.
Our approach is based on a theoretical model
named Hidden Colored Petri-Net (HCPN). Based
on this inference view, we assume an intruder’s
(either an actual intruder or an insider who is mis-
using the system) actions are unknown to the IDS
and can be inferred only from the enormous
amount of low quality alerts generated by the
IDS sensors. We demonstrate that HCPN, as an
extension to Colored Petri-Net [22,33,34], can
describe the relationship between different steps
carried out by intruders, model observations
(alerts) and transitions (actions) separately, and
associate each token element (system state) with a
probability (or confidence). The model is called
“hidden” because the transitions (actions) are mod-
eled as hidden variables (i.e., not directly observa-
ble by the analyzer) in HCPN. However, it can
look through the observations (alerts) to infer the
transitions (actions). When no training data are
available, HCPN behaves in a similar way as other
alert correlation approaches that solely depend on
the precondition—postcondition relationship. When
training data are available, it can learn from the
data and further improve the alert correlation
result.

634 D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654

We report experimental results on the DARPA
2000 DDoS evaluation datasets and attack scenar-
ios from the Grand Challenge Problem (GCP) pro-
vided by DARPA’s Cyber Panel Program [21]. Our
experiments' show that HCPN can significantly
reduce false positives and negatives, effectively pre-
dict intruder’s next possible action, uncover intrud-
ers’ intrusion strategies after the attack scenario has
happened, and provide confidence scores.

The remainder of the paper is organized as fol-
lows. In Section 2, we propose the HCPN frame-
work to predicting attacks and understanding
alerts. In Section 3, we discuss the basic computa-
tions underneath the operation of the HCPN model.
We describe the model parameter estimation and
action inference algorithms of HCPN in Section 4,
describe the confidence fusion algorithm in Section
5, and report experimental results in Section 6. We
discuss related work in Section 7, and conclude
the paper in Section 8.

2. Hidden Colored Petri-Net: our framework

Our alert correlator is built upon a theoretical
framework named Hidden Colored Petri-Net
(HCPN). The model has been evolved through sev-
eral stages. At the very beginning, we used CPN to
model the preconditions and postconditions for
misuse detection [25] since CPN allows unordered
and/or concurrent event to be encoded in the net-
work structure. Later on, we applied CPN to a
higher level to improve the alert quality for scenario
attacks by using the preconditions and postcondi-
tions built into the CPN. This is the time when we
noticed that what encoded in the CPN are the pre-
conditions and postconditions of ACTIONS instead
of alerts. Although actions and alerts are highly cor-
related they are different (i.e., an alert is just an
observation of an action). This suggests the separa-
tion of the alerts and actions in the model: the
actions are hidden and the alerts are observable by
the correlator. This separation of the actions and
alerts evolved CPN into HCPN.

! DARPA datasets are the best labeled datasets we have access
to, and have been used by many other researchers [17,18,37].
However, we would like to warn readers on the limitations of the
DARPA datasets as indicated by McHugh [42] and others when
interpreting our results.

2.1. Definition of HCPN

Definition 1. An HCPN is an 11-tuple HCPN =
(2,0,D,4,0,G,E, 11y, Z,T',E), where:

o X={c¢li=1,...,N.} (color set) is a non-empty
finite set of agents (normal wusers and/or
intruders);

e O=1{qli=1,...,N,} (place set) is a finite set of
states (e.g., a resource has been taken over);

e D={dli=1,...,N,} (transition set) is a finite
set of actions agents might take;

e A (arc set) is a finite set that 4 = A; U A,, where
Ay C(Q x D) is the set of precondition links, and
A> C (D x Q) is the set of postcondition links. We
use I(d) to denote the set of places of which the
arc {(q,d) € Ay, and use O(d) to represent the set
of places of which the arc (d,q) € Ay;

e O={oj]i=1,...,N,} (observation set) is a set of
observations. It can be alerts or raw audit/traffic
data. In this paper, observations are alerts;

e G (precondition function set) is a set of precondi-
tion functions associated with arcs A4;, such that
G={g: 41 — Sux)}, where S5 is the superset
of the multiset M(2) [22]. Precondition functions
represent the conditions to be met before an
action can be conducted by the agents;

e E (postcondition function set) is a set of postcon-
dition functions associated with arcs A4,, such
that E= {e: 4> — Syqx)}. Postcondition func-
tions represent the agent-resource ownership
change due to an action;

e [I, (initial marking distribution) is the initial (or
default) agent-resource ownership probability
distribution H() = P()(Q, SM(Z)) = {TC . (Q, SM(Z)) —
[0,11};

e 7 (transition probability) is the probability that
an action d will be conducted given that the pre-
conditions of the transition are satisfied (or, in
other words, if the transition d is enabled):

A = {P(d € D will fire next|d is enabled)}
={z:D—[0,1]}.

Note that, if the preconditions are not satisfied,
the probability that an action will be taken is 0;

e [(observation probability) is the probability that
O is observed given action D and is defined as
I'= P(0|D) = {7(D, 0) — [0,1};

e = (tolerance) is the tolerance function used to
determine whether two states are indistingui-
shable.

D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654 635

HCPN is an extension to the Colored Petri-Net
(CPN) first introduced by Jensen [23] and hence
inherits many concepts and notations from CPN.
Besides the key elements inherited from CPN (e.g.,
places, tokens, colors, and transitions), HCPN
introduces an additional element called observa-
tions. The advantage of HCPN as compared to
CPN is the ability to provide probabilities, and to
model transitions and the observations separately.

Fig. 2 illustrates how HCPN can be used in the
alert correlation task: colors represent agents; places
represent resources; observations represent alerts;
transitions represent actions; input arcs represent
preconditions of the action; and output arcs repre-
sent postconditions of the action. Note that when
an action is known to have been taken (from other
information), we can deduce that the preconditions
of the action are satisfied. In other words, there
should be an output arc from the action to each of
the input places in the HCPN to indicate this effect.
For this reason, there is always a matched implicit
output arc for each input arc in HCPN. With these
implicit arcs, HCPN has the potential to recover
the false negatives (i.e., those missing alerts).

In HCPN, a token element (g,c) stands for the
fact that the agent ¢ has access to resource ¢. An
action is enabled if the preconditions of the
corresponding action are satisfied. The marking M
represents the agent-resource ownership. The mark-
ing distribution IT = P(Q, Spys) = {n: (O, Sux) —
[0,1]} represents the agent-resource ownership
probability. 7(q,c) represents the probability that
at time ¢ resource ¢ has been taken over by agent
c¢. The transition firing probability A represents the
probability that each action will be taken next.
0,d, c) represents the probability that at time ¢ the
action d will be taken next by agent c¢. The progress
of intrusion is represented by the change of marking

Postcondition
—
/S —
RN

W
v

Fig. 2. Hidden Colored Petri-Net. In HCPN, colors represent
agents; places represent resources; observations represent alerts;
transitions represent actions; input arcs represent preconditions
of the action; and output arcs represent postconditions of the
action.

distribution along time. The input of HCPN is the
alerts, and the output of HCPN is the resources
compromised by intruders. If the change of marking
distribution between the current state and the initial
state exceeds the tolerance, it is considered that a
remarkable progress has been made by the agent.
If the token element (¢,c) is in a marking M
(which is a multiset), agent ¢ has access to (or owns)
resource ¢. Multiple token elements (g, ¢) would not
affect the agent-resource ownership. For this rea-
son, we need to consider only the probability that
the multiset M is greater than (or contains) the mul-
tiset {(¢,¢)}, i.e., {(¢,¢)} < M [22]and do not distin-
guish between one single token element and multiple
ones. All precondition functions used in this paper
thus have the same form: {(¢,c)} < M, and the post-
conditions of any action d have the same form:

M=M+ quO(d){(qa C)}
2.2. Examination of HCPN with examples

We use two examples to describe how the
HCPN-based approach works. The first example is
the classic local-to-root (L2R) attack scenario from
[24,25], and the second example is the remote-
to-local (R2L) and L2R attack scenario from
[26]. These examples involve several steps and are
described here just to show how HCPN works. A
real world attack scenario may be far more compli-
cated than the examples shown here.

The L2R attack scenario from [24,25] involves
four actions: copy, chmod, touch, and mail. Each
action would grant the intruder access to one
resource. Fig. 3 depicts the HCPN model of this
L2R attack. There are five named transitions in the
graph: one for each action: copy, chmod, touch,
and mail; and a special extra transition named ‘“‘nor-
mal” whose preconditions are always satisfied and
there is no postcondition to model the un-intrusive
actions. (Note that our approach is to identify
attacks by associating each alert with an action.) If
an alert is inferred to be associated with the “nor-
mal” action, the alert is considered as a false posi-
tive. Six named places are used in the figure to
represent resources (or attack states) involved. The
place gl is used to model the resource accessible to
all agents. Arcs describe the preconditions and post-
conditions of actions. For example, an intruder
needs to hold both q4 and g5 to be able to conduct
the mail action. After the mail command is issued,
the intruder would be able to hold q6. Each action
might be identified by the IDS sensors as different

636 D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654

N
N

YN AN
touch 0y \\\“\‘%“\‘\‘\‘ “\.\‘\‘ \\\\
o RN

Alert2 VO 8 \
\ ! L

NEESRVERY
ey B WYY

‘\“‘

Fig. 3. An example HCPN model for an L2R attack. There are
five transitions in the graph: transitions used to model the actions
copy, chmod, touch, and mail, and the special “normal”
transition used to model the un-intrusive actions. Six places are
used in the figure to represent resources involved. The place ql is
a special place to model the resource that would be accessible to
all users. Arcs in the figure describe the preconditions and
postconditions of actions. Each action may be observed as
different alerts with different probabilities. Note that resources
and actions related to other attacks are also part of the whole
HCPN.

alerts with different probabilities. These alerts (Alert
1 to Alert N), which might be reported by sensors at
the host level or network level, are observations in
the HCPN model. For example, the normal action
might trigger different alerts in IDS, whose false
positive rate is high. Note that, we only name the
places, transitions, and arcs related to this L2R
attack scenario in Fig. 3. The complete system would
include additional elements (indicated as other
resources and other actions in Fig. 3) associated with
other attack scenarios. This specific L2R attack
would then be only one path in the complete system.

The second example is the attack scenario from
[26]. In this example, there are two hosts in a LAN.
Host 2 has a database installed. Ftp service is run-
ning on both host 1 and 2, and ssh service is running
on host 1. The intruder’s goal is to compromise the
information in the database stored on host 2.

Four actions (sometimes called atomic attacks)
are available to the intruder in this scenario. The
first action is a remote-to-root attack named Sshd
Buffer Overflow (SBO). This attack immediately
gives a remote user a root shell on the vulnerable
machine (host 1 in our example). The precondition
of this action is that the intruder has user-level priv-
ilege at the source host, and the target host is run-
ning a vulnerable version of sshd. The second
action, named ftp-rhost (ftpR) attack, exploits an
ftp vulnerability that allows an intruder to create a

.rhosts file in the ftp home directory which estab-
lishes a remote login trust relationship between the
source host and the target host. The precondition
of this action is that the intruder has user-level priv-
ilege on the source host, and the target host is run-
ning a vulnerable ftp service. The third action is
called remote login (rlogin) attack. In this attack,
the intruder logs into the target host using an exist-
ing remote login trust relationship between two
hosts. The fourth action is a local buffer overflow
(LBO) attack. In this attack, the intruder already
has the user-level privilege of the target host and
gains the root privilege by exploiting the local setuid
buffer overflow vulnerability.

An HCPN model for this attack scenario would
include a normal action transition and a transition
for each action described above. Note that since
the precondition functions in the HCPN can take
parameters, we do not need to have a separate tran-
sition and/or place for different hosts. The host
(identified by the IP address) can be a parameter
in the model conditions.

The intruder can have many strategies to com-
promise the database on the host 2. An example
strategy is to use SBO attack to get the root privi-
lege of host 1, use the ftpR attack to generate the
trust relationship between host 1 and 2, use the
login attack to gain the user-level privilege on host
2, and then launch the LBO attack to gain the root
privilege.

It is obvious that the remote login is not con-
ducted by an attacker most of the time. For this rea-
son, you would see many warnings on non-intrusive
remote login if an alarm is issued for each remote
login. Using HCPN, most remote login alerts would
be automatically associated with the special normal
action transition, so no alarm would be issued for
those remote login requests. However, HCPN
would likely issue alarms if the previous steps have
been conducted by the intruder. It may also issue
an alarm if the next steps are perceived to have been
conducted with high confidence.

HCPN behaves differently from the filter-based
alert correlation approaches. Here we describe these
differences with the L2R example we just described.
To make discussion easier, we use alert_actionName
to represent the alert related to the action named
actionName.

First, instead of assuming a one-to-one mapping
between alerts and actions in the filter-based alert
correlation approaches, the HCPN models assume
that the sensors may observe each action as different

D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654 637

alerts with different probabilities (named observa-
tion probabilities). These probabilities can be
deduced from the false positive rate and false nega-
tive rate of each action, which will be discussed in
Section 4. For example, the copy action might be
correctly observed by IDS as alert_copy, missed
by IDS (i.e., the action is observed as a normal
behavior), or incorrectly identified as alert_touch
with some low probability.

By using the observation probability, HCPN can
determine with high accuracy whether the touch
action really happened when an alert_touch was
issued. Obviously, three possible conditions exist
when the alert_touch was observed. The first possi-
bility is that the touch action really happened. The
second possibility is that alert_touch is just a false
positive and is corresponding to a normal action.
The third possibility is that a different action (such
as the copy action) has happened since the sensors
have small probability to mistakenly observe the
copy action as touch and issue the alert touch.
HCPN would choose the best explanation based
on all the information available at the current stage.
Similarly, HCPN would not always think that the
agent did not have access to the resource g3 just
because alert_copy was not observed since the IDS
sensors might miss the copy action (i.e., a false neg-
ative). The (implicit) output arcs from the action
chmod to the resource q3 would allow HCPN to
infer that q3 was accessible by the agent if the
chmod action is believed to have been conducted
from other information.

In brief, the correlation results in HCPN are
determined by the alerts, the preconditions and
postconditions of actions, the observation probabil-
ities, the transition probabilities, and the number of
each kind of alert. We can informally show that the
information used in HCPN is a superset of features
used by filter-based approaches and thus HCPN can
potentially provide equivalent or better correlation
results.

We now show that filter-based alert correlation
approaches can be represented as special construc-
tions of HCPN. For example, we can build an
HCPN model for alert correlation approaches
based ONLY on the preconditions and postcondi-
tions of malicious actions (a real filter-based system
might be more complicated). To convert such a sys-
tem to an HCPN-based system, we first construct a
CPN (without the observation layer) that describes
the same preconditions and postconditions of mali-
cious actions with input and output arcs respec-

tively. We then add the observation layer to make
it an HCPN and set the observation probabilities to

Plojd) = { (1)

1 i=/,
0 otherwise,

to indicate that alerts and actions are treated exactly
the same (as in those systems). We further set the
transition probabilities (i.e., the probability that an
action will be taken given that all its preconditions
are satisfied) to 1. With these settings, the HCPN be-
haves the same as the original filter-based model:
For each new alert o, only the corresponding action
d (with which P(o|d) = 1) is likely to be taken since
for any other transition d’, P(o|d’) = 0. If the precon-
ditions are not satisfied, the probability that the ac-
tion has been taken is 0 (which is the same as to
say that the alert is false if the preconditions are
not satisfied). If the preconditions are satisfied, the
probability that the action is taken is 1 (which is
the same as to say that the alert is true if the precon-
ditions are satisfied). If the alert is considered to be
true, the action’s postconditions are set to be true.

Second, HCPN presents the compromised
resources instead of alerts of actions to administra-
tors and/or active reactors. Because the number of
compromised resources is usually smaller than the
number of actions, this can effectively reduce the
amount of data passed to the administrators and
active reactors. Presenting the resources compro-
mised by the intruders can also help administrators
and active reactors to make better decisions on what
to do to minimize further damage.

Third, HCPN not only presents the compromised
resources but also indicates the probability that a
specified resource has been compromised by a spe-
cific intruder.

3. Basic algorithms

The initial state of HCPN is determined by the
initial probabilities. After that, HCPN reevaluates
its state (i.e., the marking distribution I1,) after
receiving each alert from the sensors. To reevaluate
the state, HCPN needs to first determine the proba-
bilities that each action is enabled (i.e., the precon-
ditions of the action are satisfied). Given these
probabilities, HCPN can determine which action is
most likely to be taken next and thus which
resources are in danger. It can also determine which
action is most likely to have happened given the new
alert, and thus which resources have been taken
over by the agent. To make the equations easier to

638 D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654

places

transition

Fig. 4. An action is enabled if and only if all preconditions are
satisfied.

read, agent c¢ is always assumed and is removed
from all the equations from now on.

Computation 1. In HCPN, an action is enabled if
and only if all preconditions are satisfied (Fig. 4). In
other words, given a marking distribution I7,, the
probability that an action d € D is enabled with
respect to agent ¢ can be estimated using Eq. (2).
Note that by definition, the relationship between all
preconditions is conjunctive. If a disjunctive rela-
tionship is needed, a duplicate action (possibly with
a different ID and is treated as a different action)
needs to be represented in the HCPN. Computation
1 is used to determine how likely each of the actions
are ready (all preconditions are satisfied) to be taken
by an agent at time ¢.

P(E(d)|,) = P(d is enabled|I,)
:P(A<m@>>Gm=@¢m)

q€l(d)
= (¢,d)))

%HPH, > Gla
Hn, (2)

q€l(d)
qel(d

Computation 2. Given a marking distribution I1,, the
probability that an action d € D will be taken next
without knowing the alert can be determined by
Egs. (3) and (4). At any given time, multiple actions
might be enabled (with different probabilities). This
computation predicts the likelihood that each action
will be taken next by the agent before receiving any
new alert. As you can see, this computation depends
on Computation 1 to calculate P(E(d)|I1,).

5/(d) = P(D = d|IT)
= P(d will fire next|E(d))P(E(d)|II,) (3)

0 11 0

@
o) == Sy

transitions

place

Fig. 5. A resource ¢ will be compromised by agent ¢ if and only if
it is compromised by ¢ already or at least one of the action is to be
taken next.

Computation 3. Given the state S,=(I1,4,) and
without knowing the alert, a resource g will be com-
promised by agent c if and only if it is already com-
promised by c or at least one of the actions (whose
postcondition is to compromise resource ¢) is to be
taken (Fig. 5). If we assume that the probability that
each action is taken is independent with each other,
the probability that resource ¢ will be compromised
by agent ¢ can be calculated with Eq (5). This
computation is used to predict which resources are
likely to be compromised next without receiving
the next alert. From (5), we can see that Com-
putation 3 depends on Computation 2 to calculate

odd).

P({(g,¢)} < M|S, 1)
~l—(1-ma(q) [(1-d(a). (5

q€0(d)

Computation 4. Given a state S,_; = (Il,_1,4,_1)
and an alert O,, the probability that the action d is
taken is denoted as P(D,=d|S;_1,0,) and can be
determined as

P(D,=4d,0,|S,-
P(D,Zd‘St_l,Ol)Z (t) t| t 1)

P(O,|S,-1)
_ P(D, =d|S, 1)P(OD, = d, 5,))
P(Ol‘Slfl) '

Since P(D, = d|S,_) = 6,_1(d), and O, only depends

on D,, it becomes:

_ 0,1(d)P(O|D;, =d)
P(O,|S,1)

i-1(d)7,(O|d)
l(d/>Vt(Ot|d)

-1(d)7(0,|d)

Zd’ED = l(d/) (0z|d/)

Zd’eD

D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654 639

This computation is used to estimate the likeli-
hood that an action has just been taken by an agent
given the current state and the newly received alert.

Computation 5. Given a state S,_; = [I,_1,4,_1),
an alert O,, and action d is guessed to be taken,
the probability of the next state is denoted as

,S,.1,0,D,=d) and can be determined as in
(8) and (9). This computation is used to estimate
the likelihood that each resource will be taken by
an agent after receiving a new alert.

P({(q € O(d),c)} <M,|S;1,0,D,=d) = 1— (1 —m_1(q))
0r-1(d)y(0,]d)
) (1 “Saoa@nioi M >)

q'cl(d)
P({(q g O(),C } = Mf‘StflaOtth = d) = nffl(q g O(d))

©)

We have just described five basic computations
used in HCPN. The HCPN starts with an initial
state determined by the initial probabilities. At each
state, the HCPN estimates the likelihood that each
action’s preconditions have been satisfied (i.e., the
action is enabled) using Computation 1. It then
evaluates the probability that each action will be
taken by the agent next. In other words, it predicts
the agent’s next possible action using Computation
2. The HCPN can also estimate which resources are
likely to be taken over by the agent using Computa-
tion 3. After receiving a new alert, the HCPN
reevaluates the state by first calculating the proba-
bility that each action has just been taken using
Computation 4, and then updating the state (i.e.,
probability that each resource has been taken over
by an agent) using Computation 5.

Note that these computations are specific to our
HCPN model to derive the information we need.
The basic ideas behind these computations, how-
ever, have been applied to many areas.

4. Parameter estimation and action inference

To infer agents’ actions with HCPN, we need to
answer two questions: how to determine the model’s
parameters based on labeled datasets, and how to
infer an agent’s most probable action sequence
given the model and the alerts. These questions
are usually referred to as parameter estimation
problem and action inference problem. In this sec-
tion, we describe the algorithms to these problems.
These algorithms serve as the basis of our approach
to alert correlation.

4.1. Parameter estimation

The purpose of parameter estimation is to find
the set of model parameters that best explains the
known alerts O;, 0,,---,0, and associated actions
given the model structure. Specific to our model,
we need to estimate the observation probabilities
and transition probabilities. These probabilities are
estimated from all data available (not specific to a
particular agent) so that probabilities estimated
from past incidences can be used to detect attacks
and intruders in the future. Note that, during the
alert correlation process, the alerts are separated
into different streams based on the agent identity.

The observation probabilities can be directly esti-
mated with Maximum Likelihood (ML) principle
[41]. The likelihood of alerts given the observation
probability y(o|d) is defined as

d) :Z In(P(O,]y,d
= Z Iny+ Z In(1 —

O;#o0
=Nlny+Lin(l —y), (10)

where N is the number of instances that O is issued
by IDS sensors when action d is taken and L is the
number of instances that O is NOT issued by IDS
sensors when action d is taken. The best estima-
tion of the observation probability is the one that
maximizes the above likelihood as shown in Eq.

(11):

oL(y,)_Jj_izo
oy 7 11—y
= (N+L)yy=N
N
11
== (N+L) (11)

This estimation is intuitive. It says that the obser-
vation probability equals to the relative frequency
that a specific alert is issued by the IDS sensors
when the action is taken. Note that the observation
probability is a property of the IDS sensors. It indi-
cates how likely an action would cause the IDS to
raise a specific alert. For example, the observation
probability p(O;| normal action) is the probability
that a normal action causes the IDS to raise the
alert O; (note that it is different from the probability
p(Oy traffic data, normal action) in which case
the traffic data value is also known), and
S~V p(O;] normal action) is the false positive rate.
Similarly, p(no alert|D;) is the false negative rate

640 D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654

given the action D;. Since false positive and false
negative rates are encoded in the HCPN, they are
used in the inference process to correlate alerts.
The observation probability is hardly affected by
the intruders’ behavior given that it is an intrinsic
property of the IDS sensors.

The estimation of the transition probabilities is a
little bit trickier. In this paper, we strived to solve
this problem using an Expectation Maximum
(EM) based algorithm [27]. The EM algorithm con-
sists of two major steps: an expectation step (E-
Step), followed by a maximization step (M-Step).
In the E-Step, the unobserved data (actions in
HCPN) is estimated based on the current model
parameters A,. In the M-Step, Maximum Likeli-
hood (ML) estimation is used to estimate model
parameters ;4 using estimated data. This process
is iterated until the parameters are fixed.

The likelihood of action taking given the transi-
tion probability 0 = d(d) can be defined as

L(d) = Z In(P(D,|é, Ei(d)))
=Y In(6xEd)) + > In(l = 5% Ei(d)),

DiFd

(12)

where E{(d) is the probability that action d is en-
abled at step i. The transition probability is chosen
to maximize the above likelihood.

ALB) 1 E(d)
0 T Aus AT onE@

. (13)
=9

= Ei(d) ’
ZD.-;éd T_0+Ei(d)

where N is the number of times that action d is taken
(or |d]). Since there is no close form solution for d in
(13). The transition probability is calculated itera-
tively with the initial 6 = d(d) set to the value from
the last EM step as indicated in the following steps:

1. Estimate E{d) for each action d at each step i
using Computation 1 in Section 3 based on the
current model parameters.

2. Fix E{d) and re-estimate ¢ iteratively using (14).

N
5k+1 = 75(11) (14)

ZDi?éd]7(3,:*E,»(d)

3. Exit if the change of transition probability is
small enough, or go to step 1 otherwise.

Note that, the transition probability is the condi-
tional probability that a transition will be taken if
the preconditions of transition are satisfied, and is
relatively consistent. It is different from the proba-
bility that the transition will be taken next given
the current state, which changes case by case (and
can be estimated using Computation 3 in Section
3). The transition probability has also served as
the key element of other probabilistic alert correla-
tion frameworks such as the one proposed by Zhai
et al. [40].

Unlike anomaly based sensors, HCPN does not
adapt the transition probabilities completely unsu-
pervised, and so it is not easy for an intruder to mis-
lead the system. An extremely skilled intruder,
however, may still behave differently from the tran-
sition probabilities learned from normal intruders
and cheat the system to some extent.

4.2. Probability smoothing

The well-known law of large numbers assures us
that the relative frequency is a good estimate of the
probability (i.e. (11)) if the number of counts is very
large. However, estimating the probability with (11)
has two problems. First, the total number of occur-
rences of each action is usually not large enough in
the training data, so the theory of large number
does not hold. Second, some events may rarely hap-
pen, so it is seen only once or 0 times in the training
data. In other words, not seeing an event in the
training data does not mean the probability of it is
0. For the same reason, the probability of an event
that happens only once is likely to be overestimated.

The question is what probability we should
assign to events that occurs 0 or 1 time and whether
the probability of an event that happens n times
should really be n/m times as large as the probability
of an event that happens m times.

Our answer to the above question is based on the
Good-Turing estimate [28], which can be derived by
a variety of methods. The Good-Turing estimate
states that the probability assigned to all the unob-
served events is equal to the total probability that
would have been assigned to singleton events by a
relative frequency formula, i.e.,

- n

Pono =7 (15)
where p, is the probability assigned to unobserved
events, no is the total number of events that do
not happen, n; is the total number of singleton

D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654 641

events, and N is the total number of event occur-
rences. The smoothed estimation of the probabilities
is thus:

@% i=0.1,....M,

~ n;

D= ; (16)
OCN]> y

where p; and n; are the estimated probability and the
number of events observed j times respectively. The
normalization factor o is equal to

o= X pndty N =30 iy
Sty N =30 i

M is usually a small to moderate integer. In our
case, we choose M to be 4.

Probability smoothing is very important to reli-
ably estimating the probabilities, especially when
the training data size is small. Without proper prob-
ability smoothing, some probabilities will be 0 and
may lead to bad inference result.

; (17)

4.3. Action inference

The purpose of action inference is to find the
most probable action sequences taken by the agent
given the alerts. In other words, the inference prob-
lem, or the correlation process in our model, can be
stated as follows: given alerts O = 0,0,,---,0,,
and the model parameter 4, which action sequence
D= Dy,D»,---,D, is most likely to have led to the
sequence of alert O from A? That is to say, we want
to optimize the criteria indicated in (18):

(18)

Since the term P(O|/) is not related to D, we can dis-
card it when selecting the best path, i.e., we need to
only optimize:

arg mgx[P(O|D, 2)P(D|A)] = arg max P(0,D|4).
(19)

We solve this problem with dynamic program-
ming by defining w,(j) as the maximum score of a
length 7 state sequence ending in action j and pro-
ducing the first ¢ alerts from O, as shown in (20):
(U,(J) = max P(Ol, ey Ot,Dl, e ,D,_l,Dt :j|/b)

Dy--Dyy

(20)

Thus, the overall maximum probability is

max max max
J CUT(]) Dy Dy
(01, ceey OT,Dl, e 7DT—]7DT :]|}V)
= mgxP(O,DM) (21)

and
(,l)t(_]) = Dm%x P(Ol, ey Ot7l)17 . 7Dt—17Dt :J|)‘)

Dy_y

:Dmax P(O]7 Or—l;D1a~--aDt—1M)

1 1

P(D, = j|S;-1,4)P(O,|D, = j,)

—max[max P(Oy,...,0,1,Dy,...,D, =i|A)
-2

P(Dt :j|Stfla}")P(0t|Dt =/ ;)}
~ max|o- (1)9; 1 ()0,

where & _,(j) ~ P(D, = j|S,_,,2) and S|_, is the state
corresponding to w,_;(i). From this inference pro-
cess, we can see why HCPN has potential to reduce
false positive and false negative rates: given the alert
sequence, HCPN can infer the most possible action
sequence using the precondition—postcondition
relationship, the observation probability, and the
transition probability. For example, if the best ac-
tion sequence deduced by HCPN for the alert
sequence:

alert_attackl, alert_attackl, alert_attack?2,
alert_attacks, alert_attack3, alert_attacks5 is

attackl, attackl, attack2, normal, attack3, normal.

HCPN would indicate that attackl, attack2, and at-
tack3 have all been taken by the agent. However
alert_attack5s are considered false positive alerts
since they are associated with the normal action.
In the inference algorithm, we calculate w,(j) for
each alert O, and each action j. Note that we need to
select the maximum value from all N, (the number
of actions) values of [, (i)d_,(j)7(O,|/)] when cal-
culating w,(j). In other words, the time complexity
of the action inference is O(N? - N,), where N, is
the total number of alerts issued by the IDS sensors.
The efficiency of the algorithm can be further
improved considering that most of the observation
probabilities y(O,|j) are close to 0, in which case
we can simply assign a fixed floor probability for
the related w,(j). Since each action is usually misrec-
ognized as less than 10 (independent of N,) other
actions (i.e., the number of significant y(O,|j) for
each j is less than 10), the time complexity of the

642 D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654

algorithm after the simplification can be reduced to
approximately O(N,; - N,), which is at least as good
as any other approaches surveyed in Section 7.1.
Note that the time complexity is not related to the
number of attack steps.

5. Alert confidence fusion

The false positive and false negative rates can
be further reduced by alert confidence fusion tech-
nologies (confidence fusion component in Fig. 1).
The way to combining the confidence scores, how-
ever, is tricky for several reasons. First, alerts pro-
vided by different sensors should not be trusted
equally. For example, information provided by
remote sensors and analyzers is considered less
trustworthy than that provided by local sensors
and analyzers as noted earlier [29]. Second, sensors
(and analyzers) installed at different locations may
have different detection capabilities even if the sen-
sors are of the same type since the raw events cap-
tured by these sensors are different. For example, a
sensor installed in a LAN usually receives less
external traffic but more internal traffic than a sen-
sor installed at the DMZ zone. Third, different
kinds of sensors and analyzers may detect the
same type of attack with a different level of accu-
racy. For example, a sensor may detect a misuse
activities such as Distributed Denial of Service
(DDoS) attacks with 90% accuracy but detect
escalation of privilege, such as (Local-to-Root)
L2R attacks with only 50% accuracy. Another,
perhaps host-based, sensor may not detect DDoS
at all, but be quite accurate in detecting escalation
of privilege.

To take into consideration all these factors, we
have extended the Dempster—Shafer’s (D-S) Theory
of Confidence [30] into Exponentially Weighted
Dempster—Shafer’s (EWDS) Theory of Confidence
[31] to fuse the confidence scores from different alert
analyzers. In the basic D-S theory, the confidence
combination rule is

o > snc—p™i (B)ma(C)

miz(H) = Zzzmc#¢m1(3)m2(c) 7

(22)

where B, C, and H are hypotheses. m(H) is the con-
fidence that observer O; believes that hypothesis H
is true and m,(H) is the combined confidence.

The EWDS theory incorporates a weighted view
of evidence from different sources with the following
modified combining rule:

_ Sieconlm (B)]" [ma(C)]"
gl (B)] (O

where w; is the weight for observer O, When
wy; = w, = 1, (23) reduces to the basic D-S combin-
ing rule.

Since we are interested in whether an alert Ay is
true (a true positive) or false (a false positive), the
frame of discernment [30] is @y = {Ay,—A;}. The
possible hypotheses are

29 = {¢, {Ai}, {4}, {41, 4}) (24)
It is clear that
m,—({Ak, _\Ak}) = 0, (25)
mi({=A) = 1= m({A}). (26)
The combining rule then becomes:

_ P({4i})
") = B + P 2

_ P({~4i})

e =Py 1 PAD) 2
where
PX) = [m (X" [ma (X)]™ (29)

In our system, we use the transition probability esti-
mated for the action 4, by the ith HCPN alert cor-
relator as the confidence values m({A;}).

The weights can be estimated by minimizing the
Mean Square Error (MSE) defined as

S (me ({Ae}) —)
MSE — < ,

where N is the total number of samples in the train-
ing set, m,; is the jth combined observation score,
and r; is the real (or true) value of the jth obser-
vation.

{ 1 if A4, is true,

0 otherwise.

(30)

(31)

}"j =
We used the standard gradient descending algo-
rithm to search for the best weights, i.e.,

OMSE
Wf}:l = W;,k — 4 ’ (32)

aw,‘,k

where / is the step size. Note that for each alert type
A and each observer i, there is a weight w;. In
other words, if observer one is good at detecting
alert A4, but is not good at detecting alert 4;, wy
is large but w, ; is small.

There are two practical considerations in our
implementation.

D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654 643

First, when m{H) is close to 0, log(m {H)) might
be very small. This may result in computational
underflow. To prevent underflow from happening,
all the probabilities in the system have a floor value
of 0.01. If the confidence of a hypothesis is less than
0.01, we set it to be 0.01.

Second, an HCPN alert correlator reports to the
alert confidence fusion component only if the per-
ceived state of a resource has been changed, so alert
correlators send the state change information asyn-
chronously. To deal with this problem, we store every
correlator’s last reported evidence. When a new
report regarding alert 4, comes in, we update the cor-
responding evidence and re-estimate the combined
confidence for the alert 4. We thus gauge confidence
based on evidence “in hand,” and increase/reduce
confidence when new information arrives. Note that,
the fusion process produces derived information
from multiple sources. However, it does not damage
information stored at each source locations.

6. Experiments and evaluation

We have developed an off-line alert correlation
system based on our HCPN framework and per-
formed two sets of experiments: one on the DARPA
2000 DDoS evaluation datasets [32], and one on the
attack scenarios from the Grand Challenge Problem
(GCP) provided by DARPA’s Cyber Panel Program
[21]. The HCPN model used in our experiments con-
sists of 23 places (resources), 34 transitions (33 mali-
cious actions+ 1 normal action), and 33 alerts
(corresponding to malicious actions) for both
experiments.

6.1. Quality of alerts

Quality of alerts is usually measured with the
total number of alerts (TNA), the detection rate
(DR), the false positive rate (FPR), the false nega-
tive rate (FNR), and the repeated true alert rate
(RTR):

Number of True Attacks Reported

DR = Number of Total Observable Attacks’ (33)
Number of True Alerts Reported

FPR=1- Number of Alerts Reported ’ (34)

FNR =1 — DR, (35)

RTR — Number of True Alerts — Number of True Attacks

Number of True Attacks
(36)

The reason above measures are reasonable is that
for each true intrusive action taken by an agent,

we want to produce only one alert. However,
though one cannot reduce both the false positives
and the false negatives at the same time, these qual-
ities are not necessarily functions of one another
either. It is thus difficult to compare different ap-
proaches based on one measure alone. In this paper,
we define quality of alerts as

Definition 2. The Quality of Alerts (QoA) is defined
as

fp + fn + rt
QoA = 100% — %, (37)

where fp is the number of false positives, fn is the
number of false negatives, rt is the number of re-
peated true alerts, and ta is the number of intrusive
actions (or expected alerts). Note that the QoA
value can be negative (which means the number of
incorrect and/or redundant alerts exceeds the num-
ber of true attacks) and the best QoA value is 100%.
QoA is a combined score to measure the alert qual-
ity. It is borrowed from the speech recognition com-
munity where a speech recognizer may make
insertion errors (similar to false positives and re-
peated true alerts in IDS), and deletion errors (sim-
ilar to false negatives in IDS).

Sometimes, the cost incurred by different types of
alerts is different. For example, the cost incurred by
the repeated true alerts is often less than that
brought by the false positives, which, in turn, is
usually less than that from the false negatives. To
incorporate the cost information, we introduce the
concept of Weighted Quality of Alerts (WQoA):

Definition 3. The Weighted Quality of Alerts
(WQoA) is defined as

Wep - Ip + wen - f 4wy - 1t

WQOoA = 100% — o

where wg, > 0 is the weight for the false positives,
wg, = 0 1s the weight for the false negatives, and
wy = 0 is the weight for the repeated true alerts.
WQoA reduces to QoA when wg, = wg, = wy = 1.

Note that the weights in the WQoA are usually
different in different systems. For this reason, we use
QoA instead of WQOA in our experiments.

6.2. Experiments on the DARPA DDoS
evaluation dataset

Our first set of experiments was conducted on the
DARPA 2000 intrusion detection evaluation data-

644 D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654

sets [32]. The dataset includes the network traffic
data collected from both the DMZ and the inside
part of the evaluation network. In the dataset, an
intruder probes, breaks-in, installs the DDoS dae-
mon, and launches a DDoS attack against an off-
site server (Table 1). In this set of experiments, alerts
are generated using RealSecure Network Sensor 6.0
with the maximum coverage policy which forced the
Network Sensor to save all the reported alerts. We
choose data produced by RealSecure Network Sen-
sors because attack signatures used in RealSecure
Network Sensor 6.0 are well documented, and we
could draw upon Ning et al. [19] for the precondi-
tion—postcondition rule set.

The alerts are first separated into two parts: those
alerts generated at the DMZ and those generated
inside the network. Each part is then separated into
the training set and the testing set. The training set
was used to estimate the HCPN model parameters,
and the testing set was used to evaluate the effective-
ness of the model. Each set has about 900 alerts.
The training takes less than 5s and the inference
takes about 1 s (without speed up approximation)
on a 2.8 GHz PC.

As mentioned in Section 2, our HCPN system
outputs resources compromised. For example, it
reports whether a daemon has been installed instead
of the intruder’s action that leads to the installation
of the daemon, although the action itself is available
to the administrators and/or reactors if needed.
Tables 2 and 3 list the correlation results for the
inside network traffic and DMZ network traffic,
respectively.

Table 4 shows the actions detected by the HCPN-
based alert analyzer along the time. After the action
is inferred to have happened, the alert analyzer auto-
matically estimates the new perceived state of the sys-
tem, and infers the next goal of the intruder. In this

Table 1
Steps of the DDoS attack

Step # Attack

1 IPsweep for live host IPs from a remote site

2 Probe with SadmindPing the identified live
IPs for sadmind daemon running on Solaris hosts

3 Compromise target hosts via the sadmind vulnerability
(SadmindBOF)

4 Install the Trojan mstream DDoS software on
compromised hosts

5 Register DDoS Trojan to the master computer

6 Launch the DDoS from compromised hosts

against target

Table 2

Correlation result for the inside network traffic

Host State Probability

172.016.112.010 SystemCompromised 1.00
VulnerableSadmind 0.66
Daemonlnstalled 0.55

ReadyToLaunchDDOSAttack 0.95

172.016.112.050 SystemCompromised 1.00
VulnerableSadmind 0.66
DaemonlInstalled 0.55

ReadyToLaunchDDOSAttack 0.95

172.016.115.020 SystemCompromised 1.00
VulnerableSadmind 0.66
Daemonlnstalled 0.80
131.084.001.031 DDoSHappened 0.90

Table 3

Correlation result for the DMZ traffic

Host State Probability

172.016.112.010 SystemCompromised 1.00
VulnerableSadmind 0.66
DaemonlInstalled 0.55

172.016.112.050 SystemCompromised 1.00
VulnerableSadmind 0.66
DaemonlInstalled 0.55

172.016.114.010 SystemCompromised 1.00
VulnerableSadmind 0.66

172.016.114.020 SystemCompromised 1.00
VulnerableSadmind 0.66

172.016.114.030 SystemCompromised 1.00
VulnerableSadmind 0.66

172.016.115.020 SystemCompromised 1.00
VulnerableSadmind 0.66
Daemonlnstalled 0.80

experiment, our HCPN-based alert analyzer pre-
dicted intruder’s next goals with 100% accuracy. This
indicates that our HCPN-based alert analyzer can
not only understand an intruder’s progress but also
predict an intruder’s next possible action and goal.
If the whole attack scenario has been completed,
HCPN potentially uncovers the intruder’s intrusion
strategy. Note that the accuracy of the action and
goal prediction is directly related to the perplexity
of the HCPN model and the knowledge about the
actions and their preconditions and postconditions.
When many actions might be enabled at the same

D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654 645
Table 4
Actions detected along the time from the inside network traffic
Step Host Action State Next goal
1 172.016.115.020 Sadmind_Ping VulnerableSadmind SystemCompromised
2 172.016.112.010 Sadmind_Ping VulnerableSadmind SystemCompromised
3 172.016.112.050 Sadmind_Ping VulnerableSadmind SystemCompromised
4 172.016.115.020 Sadmind_BOF SystemCompromised DaemonlInstalled
5 172.016.112.010 Sadmind_BOF SystemCompromised DaemonlInstalled
6 172.016.112.050 Sadmind BOF SystemCompromised Daemonlnstalled
7 172.016.115.020 Rsh Daemonlnstalled ReadyForDDoS
8 172.016.112.050 Rsh Daemonlnstalled ReadyForDDoS
9 172.016.112.010 Rsh Daemonlnstalled ReadyForDDoS
10 172.016.112.050 Mstream Zombie ReadyForDDOS LaunchDDoS
11 172.016.112.010 Mstream_Zombie ReadyForDDOS LaunchDDoS

The step number indicates the order in which the malicious action is detected by our HCPN alert analyzer. The state column indicates the
state change after the action is detected. The next goal is the predicted intruder’s next goal after the detected action.

time for a given agent (as in a very big IDS system),
the action prediction accuracy will likely decline.
Table 5 illustrates the detection rate, false posi-
tive rate, and QoA for RealSecure Network Sensor
6.0 and our HCPN-based system. In the table, Raw
and Raw2 are results from RealSecure sensors. The
difference between Raw and Raw?2 is the way the
number of attacks is calculated. Each attempt of
the same attack from the same agent is considered
as a different attack in Raw (which is used by Ning
et al. [19]), while all attempts of the same attack is
considered as one attack in Raw2. In Raw2, an
attack is considered detected as long as one of the
alerts corresponding to the attack has been
reported. Note that Raw2 provides a higher detec-
tion rate but lower QoA comparing to Raw due to
the decrease of the number of true attacks. DMZ-
uniform and Inside-uniform are results of the
HCPN model without training (i.e., the transition
probabilities are set to 1, and the observation prob-
abilities are set according to Eq. (1)). This is corre-
sponding to the simple precondition—postcondition

based correlation approaches. DMZ-HCPN and
inside-HCPN are results of HCPN after the param-
eter estimation.

From the table, we can see that HCPN-based
alert analyzer can greatly reduce the number of
alerts presented to the administrators and active
reactors. Without using our alert analyzer, about
900 alerts are reported at both the DMZ and the
inside network sites. With our HCPN-based alert
analyzer, the total number of alerts reported is
reduced to less than 20 at each site. Note that, our
system can not only reduce the total number of
alerts but also improve the quality of the alerts.
With our HCPN-based approach, the false positive
rate is decreased from 94% to 20% at the DMZ site
and from 95% to 0% at the inside network site.
From the table, we can also see that comparing with
the default parameters, both the detection rate and
the false positive rate are improved after the train-
ing. In other words, HCPN can improve the
QoA even without training data. When training
data are available, however, HCPN can utilize the

Table 5

Detection and false alert rates for RealSecure Network Sensor 6.0 and the HCPN-based system

Setting NOA NA NTAD DR (%) NRA FPR (%) RT RAR (%) QoA (%)
DMZ-Raw 89 891 51 57.30 57 93.60 6 11.8 —887
DMZ-Raw2 12 891 12 100 57 93.60 45 375 —7225
DMZ-uniform 12 42 11 91.7 11 73.8 0 0 —167
DMZ-HCPN 12 15 12 100.00 12 20 0 0 75.0
Inside-Raw 60 922 37 61.67 44 95.23 7 18.9 —1413
Inside-Raw?2 13 922 12 92.31 44 95.23 32 267 —7483
Inside-uniform 13 30 11 84.6 11 63.3 0 0 —61.5
Inside-HCPN 13 12 12 92.31 12 0 0 0 92.3

NOA = Number of observable attacks, NA = number of alerts, NTAD = number of true attacks detected, DR = detect rate,
NRA = number of real alerts, FPR = false positive rate, RT = repeated true alerts, RTT = repeated true alert rate.

646 D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654

information to further improve the correlation
results. Note that while HCPN with the default
parameters (as when no training data is available)
can reduce the false positives, it may decrease the
detection rate at the same time as shown in Table 5.

When we use QoA as the performance measure-
ment, the improvement is also very significant. In
the DMZ zone, the QoA is —887% for the Raw set-
ting, —7225% for the Raw2 setting, —167% for the
uniform setting, and 75% for the HCPN setting.
In the inside network, the QoA is —1413% for the
Raw setting, —7483% for the Raw2 setting, —62%
for the uniform setting, and 92% for the HCPN set-
ting. Under both conditions, HCPN performs much
better than the system without alert correlation and
the system without separating alerts and actions.
Please note, however, the DARPA evaluation data-
set has some limitations as indicated by McHugh
[42]. The improvements in QoA for other datasets
may not be as significant as what we have got for
the DARPA dataset.

Our HCPN model after training is not perfect.
As indicated in Table 5, there are still false negatives
and false positives after using HCPN.

An example of false negative can be observed in
Table 2, where we can see that the intruder has
installed daemons on hosts 172.016.112.010,
172.016.112.050, and 172.016.115.020, and is ready
to launch the DDoS attack. Note, however, our sys-
tem does not detect that the intruder is ready to
launch DDoS attack on host 172.016.115.020.

An example of false positive is shown in Table 3.
According to the description of the dataset, the intru-
der tried Sadmind_BOF towards the targets 172.016.
114.010, 172.016.114.020, and 172.016.114.030. No
additional attacks were carried out against these
hosts. This suggests that the Sadmind_BOF attacks
had failed. However, since our rules indicate that
the postcondition of the Sadmind_BOF attack is Sys-
temCompromised, our HCPN would report that
these hosts are compromised as indicated in Table 3.

In these experiments, we used different default
initial probabilities from 0.01 to 0.05 and get the
same results.

6.3. Test on attack scenarios from the GCP

Our second set of experiments was conducted on
attack scenarios from the GCP. Note that the access
to the original GCP dataset is very restrictive. How-
ever, we have managed to generate the scenarios
using our own simulation tool. To generate the

alerts, we used a program to simulate the behavior
of an intruder and another program to simulate
the noise. The simulated intruder picks the next step
based on the precondition—postcondition relation-
ship and predefined probabilities. The noise genera-
tor randomly generates noise traffic at random time
intervals. The traffic generated from both programs
is merged together based on the time stamp. Using
the simulation tool, we have generated both the
training set and the testing set. The attack steps of
the scenario used in this experiment are summarized
in Table 6.

Table 7 shows the quality of alerts with and with-
out HCPN. In the DMZ zone, the QoA is —954%
for the Raw setting, —6829% for the Raw?2 setting,
—71% for the uniform setting, and 93% for the
HCPN setting. In the inside network, the QoA is
—1224% for the Raw setting, —9686% for the
Raw2 setting, —29% for the uniform setting, and
93% for the HCPN setting. It is obvious that our
HCPN model can greatly improve the QoA by
reducing the false positive rate and increase the
detection rate for this task.

A phenomena not observed in the DARPA
DDoS experiment but happened in this experiment
is the potential of HCPN to recover from the missing
alerts. The attacks of IllegalFileAccess are missed in
the raw alerts at DMZ. However, with the implicit
output arcs in the HCPN model, HCPN correctly
deduced that the files have been illegally accessed.

The inference time for the DMZ traffic is about
2 s and the inside network traffic is about 3 s on a
2.8 GHz PC if the speed up approximation is not
used. Note that the inference time is O(N3 - N,) if
speed up approximation is not used as indicated in
Section 4.3. In other words, the inference time is
proportional to the total number of alerts reported
by the sensors, and the square of the total number
of possible actions encoded into the HCPN. It is
not related to the number of atomic attacks taken
by an agent. We have generated variable length of
alerts with variable length of (artificial) attack steps
as test data, and our experiments shown in Table 8
confirmed our estimation.

6.4. Alert confidence fusion

Ideally, the confidence score should be equal to
the probability, i.e., reflect the likelihood that the
alert is true. For this reason, the effectiveness of
the confidence fusion can be measured with the
cross entropy between the confidence score and

D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654 647

Table 6
Attack steps in the attack scenario from GCP
Step Host Action Description

1 129.0.1.8 Port_Scan Scan the ports to detect FTP service

2 129.0.1.7 Port_Scan Scan on a different host

3 129.0.1.13 Port_Scan Scan on a different host

4 129.0.1.11 Port_Scan Scan on a different host

5 129.0.1.12 Port_Scan Scan on a different host

6 129.0.1.9 Port_Scan Scan on a different host

7 129.0.1.13 FTP_Globbing Attack Get root access to the host using the

FTP Globbing buffer overflow attack

8 129.0.1.13 Agentlnstall Download malicious code to the host

9 129.0.1.13 IllegalFileAccess Illegally collects information from the host
10 129.0.1.13 Loki Upload sensitive information to the external server
11 129.0.1.11 FTP_Globbing_Attack Attack a different host
12 129.0.1.13 Agentlnstall Attack a different host
13 129.0.1.11 IllegalFileAccess Attack a different host
14 129.0.1.11 Loki Attack a different host
Table 7
Quality of alerts with and without HCPN
Setting NOA NA NTAD DR (%) NRA FPR (%) RT RTR (%) QoA (%)
DMZ-Raw 87 980 58 66.7 63 93.6 5 8.6 —954
DMZ-Raw2 14 980 12 85.7 63 93.6 51 425 —6829
DMZ-uniform 14 34 12 85.7 12 64.7 0 0 —714
DMZ-HCPN 14 15 14 100 14 6.7 0 0 93.3
Inside-Raw 98 1384 77 78.6 86 93.8 9 11.7 —1224
Inside-Raw?2 14 32 14 100 86 56.3 72 514 —9686
Inside-uniform 14 32 14 100 14 56.3 0 0 —28.6
Inside-HCPN 14 15 14 100 14 6.7 0 0 93.3

NOA = number of observable attacks, NA = number of alerts, NTAD = number of true attacks detected, DR = detect rate,
NRA = number of real alerts, FPR = false positive rate, RT = repeated true alerts, RTT = repeated true alert rate.

Table 8

Inference time in HCPN

of Alerts 1054 1384 1868 2568 2568 2568 2568 2568

of Attack 14 14 14 14 20 26 30 35
steps

Time (s) 1.8 31 40 74 83 171 73 8.1

the true distribution of the attacks. However, since
our ultimate goal is to reduce the false positive
and false negative rates, we evaluate the effective-

ness of the confidence fusion with QoA in this
paper.

Table 9 compares the result with and without the
alert confidence fusion for the DARPA DDoS eval-
uation dataset. Note that the detection and false
alert rate reported in Table 9 is different from that
in Table 5 because in Table 5 we focus on the per-
formance of individual analyzers, so the detectable
alerts in Table 5 are specific to the information
available to that analyzer. In Table 9, however, we
focus on the performance of the whole fused system,

Table 9

Detection and false positive rates of our HCPN-based system with and without alert confidence fusion

Setting NOA NA NTAD DR (%) NRA FPR (%) QoA (%)
DMZ 16 15 12 75.0 12 20 56.3
Inside 16 12 12 75.0 12 0 75.0
Confidence fusion 16 15 15 93.8 15 0 93.8

NOA = number of observable attacks, NA = number of alerts, NTAD = number of true attacks detected, DR = detect rate,

NRA = number of real alerts, FPR = false positive rate.

648 D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654

=]
o
h
[

| Observer 2
O Ext. D-S

@ Observer 1
O Basic D-S

e o
~ o0
i 1

e
[N
T
[

Accuracy
o o
il
[1
| |
| |

o e
= o W
——

=]
N
[

3
Data set

Fig. 6. Comparison of classification accuracy based on confidence scores from observer 1, observer 2, the combined confidence with the
basic D-S theory, and the combined confidence with our extended D-S theory.

so the number of detectable alerts is subject to infor-
mation available to the whole system. Table 9 shows
that with the alert confidence fusion technologies,
the overall detection rate can be increased from
75% at each site to 94%, while keeping the false
positive rate low on the DARPA DDoS evaluation
dataset. The QoA is increased from 56% using the
DMZ zone alerts alone and 75% using the inside
network alerts alone, to 94% using the fused confi-
dence scores.

We have run the confidence fusion experiments
on other simulation data. In these experiments, con-
fidence scores from alert correlation components are
simulated and separated into the training and the
test sets. Fig. 6 compares the classification accuracy
(whether an alert should be reported) on confidence
scores from observer 1, observer 2, the combined
confidence with the basic D-S theory, and the com-
bined confidence with our extended D-S theory. It
1s not difficult to see that in most cases, confidence
fusion with our extended D-S theory outperforms
the basic D-S theory as well as observations from
individual observations.

Alert Aggregation

7. Related work

7.1. Alert correlation as a filter and an inference
problem

Alert correlation in IDS has been an active
research area. Most existing alert correlation
approaches consider the alert correlation problem
as the problem of extracting the true alerts (i.e., fil-
tering out the false positive alerts) directly from the
alerts generated by the IDS sensors based on the
relationships (e.g., similarities, sequential relation-
ships, etc.) among alerts. These approaches are
often implemented in two steps: alert aggregation
(also known as fusion or clustering) and intention
recognition (also known as plan recognition).
Fig. 7 shows the full correlation process based on
alert aggregation and plan recognition.

Conceptually, alert aggregation is simple: by
aggregating alerts into meta-alerts (or hyper-alerts)
based on feature similarities, researchers have found
that they can reduce the total number of alerts pre-
senting to the administrators and/or AR [1,4-

Plan Recognition

S

Fig. 7. A typical alert correlation process. Alerts are first grouped into hyper-alerts through alert aggregation component. Hyper-alerts are
then processed through plan recognition component which utilizes the precondition—postcondition information of the attack actions. The

number of alerts decreases after each step.

D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654 649

7,9,11,12]. The aggregation process usually involves
merging features of the two alerts. For example,
alerts from the same sensor and belonging to the
same attack (identified by the same source and tar-
get IP address) are considered similar alerts [11]. In
alert aggregation, alerts are first classified into alert
clusters that correspond to the same occurrence of
an attack based on similarity. Each cluster is then
merged and a new, global alert is generated to rep-
resent the whole cluster [6,9]. The main purpose of
the alert aggregation is to reduce the number of
alerts to be provided to the administrators. In other
words, the alert aggregation approach can improve
the quality of the alerts (defined in Section 5) by
reducing the number of repeated alerts. Alert aggre-
gation itself, does not directly address false nega-
tives or false positives. False negatives occur when
an attack is “missed”, so aggregating alerts alone
will not be of assistance. False positives may be
reduced somewhat — for instance, if a set of alerts
tied to acceptable behaviors is flagged as misuse,
aggregation will produce only one meta-alert (which
will be a false positive) rather than the full collection
of raw false positive alerts. However, this does not
truly eliminate the fact that something is raising a
false positive, only reducing the number of times it
is reported.

To filter out false positives, researchers have pro-
posed using plan recognition [8,13-15,17,18,20,24]
after the alert aggregation step. Plan recognition uti-
lizes the precondition—postcondition relationships
between activities. The concept is that in a given
attack scenario, system misusers perform a sequence
of steps to violate system security policies, with ear-
lier steps preparing for the later ones. An alert is
likely to be true if the precondition steps and/or
postcondition steps are also reported in the alerts.
By keeping only those alerts, we can potentially
remove part of the false positives, and hence
improve the quality of the alerts. Plan recognition
seeks to recognize an intruder’s intention from the
alerts. The emphasis here is to give administrators
and active reactors better understanding of ongoing
activities so that they can make appropriate
responses. The importance of intention recognition
is not so much in the “average” generic attack on
a system, but for instances where it is important
to more fully identify complex, multistage scenarios.
Detecting an intruder’s plan at an early stage would
make it easier to prevent the intruder from achiev-
ing his/her goal. Intention recognition is also aimed
to reduce some false positives during correlation;

further, it should be possible to increase true posi-
tives (therefore reducing false negatives) by inferring
the existence of attacks during correlation.

In this paper, we have taken a different view and
considered the problem of alert correlation as the
problem of INFERRING an agent’s actions (which
is not directly observable) from the alerts, instead of
filtering out false alerts from all alerts reported by
sensors. Note that this is a completely different view
comparing to the filter view of the problem. Here,
we consider and treat alert and action as two differ-
ent entities. The agent’s actions are unknown. How-
ever, their actions may be partially observed by IDS
and reported as alerts that contain incomplete and
false information. The task of alert analysis is not
to find those “good” alerts but to infer the most
possible actions taken by the agent given the obser-
vations. During the inference process, information
such as the false positive rate, false negative rate,
and the number of same alert issued can all be used
and integrated into the process as discussed in the
previous sections. When no training data are avail-
able, HCPN behaves the same as the filter-based
approaches that rely on only the precondition—post-
condition relationship. When training data are
available, the model parameters can be tuned and
better correlation results can be achieved.

7.2. Probabilistic framework for IDS

Zhai et al. [40] proposed a Bayesian network
based probabilistic framework to integrate and rea-
son about complementary intrusion evidence such
as alerts generated by IDS and reports by system
monitoring or vulnerability scanning tools. In their
framework, the basic conditional probability table
is the same as the transition probability used in
HCPN. The difference between their approach and
HCPN is that HCPN also uses the observation
probabilities in the inference process, while their
approach integrates additional information from
system monitoring or vulnerability scanning tools
to improve the alert quality.

7.3. Colored Petri-Net

A CPN [22,33,34] model of a system provides an
explicit description of both the states and actions of
the system. CPN has strong modeling ability to
model systems with concurrent and distributed
events and has been widely used in modeling the
Discrete Event Dynamic System.

650 D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654

Petri-Net has also been introduced to model the
intruder’s misuse behaviors [25,35,36]. Kumar and
Spafford [35,36] proposed to use CPN as the model
to match misuse patterns. In their model, “Guards
define the context in which signatures are matched.
The notion of start and final states, and paths
between them define the set of event sequences
matched by the net. Partial order matching can also
be specified in this model. The main benefits of the
model are its generality, portability and flexibility.”
Ho et al. [25] suggested combining partial order
planning and executable Petri-Net to detect misuse
intrusions. The main benefit of their approach is
to allow unordered event to be encoded in the intru-
sion signature. They argue that traditional state
transition analysis which is based on strictly ordered
and non-overlapping sequence of events is not flex-
ible to model the real misuse scenario. For this rea-
son, they “use a partial ordering of events. A partial
order of events specifies that some events are
ordered with respect to each other while others are
unordered. A partial order state transition analysis
allows more than one sequence of events in the state
transition diagram.” Thus, using Petri-Net to model
the partial order relationship between steps, they
can represent the set of all intrusion attempts with
one diagram.

The advantage of HCPN as compared to CPN is
the ability to provide probabilities, and to model
transitions and the observations separately. More
specifically, HCPN differs from CPN in the follow-
ing two ways.

First, in CPN, each place either contains exactly
N tokens or not. For example, if the statement that
“place A contains one token’ is true, the statement
that “place A contains two tokens” is false, and vice
versa. In HCPN, however, each token element is
associated with a probability (or confidence). For
example, a place may have a probability of 0.4 to
hold one token, a probability of 0.2 to hold two
tokens, and a probability of 0.4 to contain no token.
Thus, HCPN is a statistical model that represents
the probability of the system being in different states
as opposed to a representational model that maps
precisely to a particular state of affairs.

Second, no concept of observation exists in CPN.
In other words, observations and transitions are
considered the same in CPN. In HCPN, however,
observations are explicitly separated from transi-
tions. Each transition can be observed only as a
specific observation with some probability. The
transitions (actions) are not directly observable

and can be inferred only through the observations
(alerts). This property makes HCPN especially suit-
able for alert correlation task since the true action
might be observed as different alerts by IDS as we
have indicated in Section 2.2.

8. Discussions and conclusion

In this paper, we compared two different ways of
looking at the alert correlation problem. We argued
that approaches based on the filter view of the prob-
lem carry with intrinsic limitations. The main limita-
tion comes from the ignorance of the difference
between alerts and the actions during the correla-
tion process. A better view of the problem is to con-
sider it as an inference problem, where we seek to
infer an intruder’s actions based on the alerts.

We described our novel framework named
HCPN to predict attacks and understand alerts
based on our new take of the problem. We showed
that HCPN has promise as a way to reducing the
false positive and false negatives in IDS.

8.1. Effectiveness of HCPN

The HCPN-based approach has several advanta-
ges to make it a promising approach to improving
the quality of alerts in IDS. First, it uses the knowl-
edge on actions’ preconditions and postconditions
in the correlation process. This knowledge provides
additional information for the system to more reli-
ably determine whether an alert issued by the IDS
sensors is true or not. The false alerts are removed
when they are associated to the special transition
named ‘“‘normal action” in the inference process.
Second, it uses information such as the false positive
rate, and the false negative rate naturally in the cor-
relation process (since this information is encoded in
the observation probabilities). Note that false posi-
tive rate and false negative rate of a specific alert
type indicate the reliability of alerts in that type.
The usage of this information can thus help to fur-
ther reduce the false alerts. Third, it presents
resources compromised (instead of actions) to show
the progress of an attack. Since the number of
resources compromised is much smaller than the
number of raw alerts, HCPN can further reduce
the total number of alerts shown to the administra-
tors and active reactors. Fourth, the HCPN-based
approach has potential to reduce the false negatives.
This is due to the fact that there is an arc from a
resource back to an action (whose postconditions

D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654 651

include compromising that resource) in the HCPN
model. If later alerts (whose preconditions include
the compromise of that resource) are confirmed to
be true with high probability, the probability that
a missing action has happened will be increased.
Fifth, it provides confidence scores to the detection
result by assigning probabilities to each mark indi-
cating how likely an intruder has compromised a
resource. This confidence score is very useful for
the confidence fusion components to further
improve the quality of the alerts. Sixth, HCPN
works with and without training data. If training
data are not available, HCPN behaves the same as
the filter-based approaches that rely on only the pre-
condition—postcondition relationship. If training
data are available, the model parameters can be
tuned and better correlation results can be achieved.

The HCPN model is a generic model not tied to a
specific attack. It uses an attack action’s precondi-
tion and postcondition information to remove false
alerts and recover missing attacks. In other words,
HCPN targets on the scenario attacks in which pre-
vious steps prepare for the later ones (a non-sce-
nario attack can be considered as a one-step
scenario attack). Note that, HCPN does not need
to see all possible attack scenarios from the training
data. Instead, possible attack scenarios are auto-
matically derived from the preconditions and post-
conditions. The HCPN is especially effective to
remove the false alerts whose preconditions are
not satisfied. As long as the knowledge about the
attacks is available, the gain we have seen in the
experiments is very likely to be extended to other
scenario attacks and other datasets.

HCPN can be deployed to different locations and
at different levels. For example, there can be one
HCPN for the DMZ zone, one for the inside net-
work, and one for each host. Alternatively, there
can be only one HCPN that analyzes alerts from
all different sources. It is easy to see that recovering
missing alerts is much harder than removing false
alarms. This is endorsed by our experiments. For
this reason, it is a good idea to optimize the detec-
tion rate in the sensors and rely on HCPN to
remove false alerts. Under this setting, we expect
90% false positive rate reduction with HCPN.

8.2. Assumptions and limitations in HCPN
In HCPN, we have made several assumptions.

The applicability of the model is limited under the
conditions that the assumptions do not hold.

First, we assume that malicious actions’ precon-
ditions and postconditions are known as domain
knowledge. This assumption is not new to HCPN.
Almost all filter-based alert correlation approaches
rely on this assumption and include this knowledge
as rules in a database (e.g. [13]). This knowledge is
usually available when the attacks are analyzed
and alerts are designed into the IDS sensors. Alter-
natively, we can use statistical approaches to get this
knowledge [37]. HCPN heavily depends on this
knowledge to build the links between resources
and actions. If this knowledge is not available or
is incorrect, the effectiveness of the model will be
greatly affected.

Second, we assume that the initial probability of
resources owned by the users and/or intruders can
be estimated by the system. For example, the privi-
lege of a user can be determined by the logon cre-
dential (e.g., anonymous user) he/she originally
uses when entering the system. However, informa-
tion available to the system is incomplete and so
probabilities determined this way may be incorrect.
For example, an intruder may already gain access to
some resources with other approaches (e.g., social
engineering) before entering the system and the
IDS would not know this. To deal with this situa-
tion, we can assign a small floor probability to all
agent/resource pairs to indicate that each resource
may be accessible by an intruder through unknown
approaches. From our experiments, HCPN is not
sensitive to the floor probability chosen as long as
it is within a reasonable range such as 0.01-0.05.
Note that other precondition—postcondition based
alert correlation approaches also require informa-
tion about the initial state.

Third, the inference process deduces agent’s
actions using observation probabilities and transi-
tion probabilities. Although these probabilities are
hard to be affected by agent’s behaviors as discussed
in Section 4, it is still possible that an extremely
skillful intruder may mislead the system and cause
incorrect results.

Fourth, we assume that malicious users do not
cooperate with each other. With this assumption,
we can treat each agent (indicated by a different
source IP and/or user ID) separately. This assump-
tion is valid for many intrusion cases since most
attacks are isolated and script-based (e.g., most
worms). However, this assumption is not valid for
sophisticated intrusions, where a skilled intruder
controls several agents and attacks the same system
at the same time, as for instance the case of a bot

652 D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654

network [38]. To handle attacks launched by coop-
erating agents, we need to enhance the model to
automatically correlate cooperating agents as
“one” agent. In other words, the augmented model
needs to test whether two agents are cooperating
with each other, and combine the agents if the
answer is yes. A possible approach to testing
whether two agents are actually one is to compare
the likelihood quotient ¢ with a threshold.

p(one agent, raw alerts)

We consider this as one of the future work
items.

Acknowledgements

Authors would like to thank members in Center
for Secure and Dependable Software in University
of Idaho for the valuable discussion. Thanks are
also given to anonymous reviewers for their great
comments and suggestions in improving this

9= (39)

p(two agents, raw alerts)

Appendix

paper.

Actions, alerts, and resources used in the experiments

Actions Alerts Resources

Admind Alert_Admind SystemExists
DNS_HInfo Alert DNS_ HInfo CiscoCatalyst3500XL
Email Almail Overflow Alert_Email Almail Overflow ActiveXEnabled Browser
Email_Debug Alert_Email Debug SystemCompromised
Email Ehlo Alert_Email Ehlo GainInformation

Email Turn Alert_Email Turn JavaEnabledBrowser
FTP_Pass Alert FTP_Pass MailLeakage

FTP_Put Alert FTP Put SMTPSupportEhlo
FTP_Syst Alert_FTP_Syst SMTPSupportTurn
FTP_User Alert FTP_User VulnerableCGIBin
HTTP_ActiveX Alert HTTP_ActiveX VulnerableAIMailPOP3Server
HTTP_Cisco_Catalyst _Exec Alert HTTP_Cisco_Catalyst_Exec VulnerableSadmind
HTTP Java Alert HTTP Java DNS_HInfo
HTTP_Shells Alert HTTP_Shells DDOSHappened
Mstream_Zombie Alert_Mstream_Zombie ExistService

Port_Scan Alert Port_Scan SendMaillnDebugMode
RIPAdd Alert RIPAdd ExistFTPService
RIPExpire Alert_RIPExpire ReadyToLaunchDDOSAttack
Rsh Alert_Rsh GainTerminalType
Sadmind_Amslverify_Overflow Alert_Sadmind_Amslverify_Overflow Daemonlnstalled
Sadmind_Ping Alert_Sadmind_Ping SensitiveInfoAccessed
SSH_Detected Alert SSH Detected SensitiveInfoLeaked
Stream_DoS Alert_Stream DoS Agentlnstalled
TCP_Urgent_Data Alert_TCP_Urgent_Data

TelnetEnvAll Alert_TelnetEnvAll

TelnetTerminaltype Alert_TelnetTerminaltype

TelnetXdisplay Alert_TelnetXdisplay

UDP_Port Scan
EventCollector_Info
IllegalFileAccess

Loki

Agentlnstall
FTP_Globbing_Attack
Normal Action

Alert UDP Port Scan
Alert_EventCollector Info
Alert_IllegalFileAccess
Alert_Loki
Alert_AgentInstall

Alert FTP_Globbing_Attack

D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654 653

References

[1] K. Julisch, M. Dacier, Mining intrusion detection alarms for
actionable knowledge, in: Proceedings of the 8th ACM
International Conference on Knowledge Discovery and Data
Mining, July 2002, pp. 366-375.

[2]J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, E.
Stoner, State of the practice of intrusion detection technol-
ogies, Technical Report CMU/SEI-99-TR-028, 1999.

[3] S. Axelsson, The base-rate fallacy and its implications for the
difficulty of intrusion detection, in: 6th ACM Conference on
Computer and Communications Security, November 1999,
pp. 1-7.

[4] K. Julisch, Mining alarm clusters to improve alarm handling
efficiency, in: Proceedings of the 17th ACSAC, New Orleans,
December 2001, pp. 12-21.

[5] R.C. de Boer, A Generic architecture for fusion-based
intrusion detection systems, Master Thesis, Erasmus Uni-
versity Rotterdam, October 2002.

[6] F. Cuppens, Managing alerts in a multi-intrusion detection
environment, in: 17th Annual Computer Security Applica-
tions Conference, New Orleans, USA, December 2001, pp.
22-31.

[71 H. Debar, A. Wespi, Aggregation and correlation of
intrusion—detection alerts, in: Proceedings of the 4th Inter-
national Symposium on Recent Advances in Intrusion
detection (RAID), 2001, pp. 87-105.

[8] R.P. Goldman, W. Heimerdinger, S. Harp, C.W. Geib, V.
Thomas, R. Carter, Information modeling for intrusion
report aggregation, in: Proceedings of the DARPA Infor-
mation Survivability Conference and Exposition II (DIS-
CEX-II), June 2001, pp. 329-342.

[9] P.A. Porras, M.W. Fong, A. Valdes, A mission-impact-
based approach to INFOSEC Alarm correlation, in: Pro-
ceedings Recent Advances in Intrusion Detection, October
2000, pp. 95-114.

[10] P.A. Porras, P.G. Neumann, EMERALD: event monitoring
enabling responses to anomalous live disturbances, in: 1997
National Information Systems Security Conference, October
1997, pp. 353-365.

[11] A. Valdes, K. Skinner, Probabilistic alert correlation, in:
Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection (RAID), 2001, pp. 54-68.

[12] N. Ye, J. Giordano, J. Feldman, Q. Zhong, Information
fusion techniques for network intrusion detection, in: 1998
IEEE Information Technology Conference, Information
Environment for the Future, 1998, pp. 117-120.

[13] F. Cuppens, F. Autrel, A. Miege, S. Benferhat, Correlation
in an intrusion detection process, Internet Security Commu-
nication Workshop (SECI’02), September 2002, pp. 153—
172.

[14] F. Cuppens, A. Miege, Alert correlation in a cooperative
intrusion detection framework, in: 2002 IEEE Symposium
on Security and Privacy, May 2002, pp. 202-215.

[15] C. Geib, R. Goldman, Plan recognition in intrusion detec-
tion systems, in: DARPA Information Survivability Confer-
ence and Exposition (DISCEX), June 2001, pp. 46-55.

[16] M.-Y. Huang, T.M. Wicks, A Large-scale distributed
intrusion detection framework based on attack strategy
analysis, in: Web Proceedings of the First International
Workshop on Recent Advances in Intrusion Detection
(RAID98), 1998, pp. 2465-2475.

[17] P. Ning, Y. Cui, D.S. Reeves, Analyzing intensive intrusion
alerts via correlation, in: Proceedings of the 5th International
Symposium on Recent Advances in Intrusion Detection
(RAID 2002), LNCS, vol. 2516, October 2002, pp. 74—
94.

[18] P. Ning, Y. Cui, D.S. Reeves, Constructing attack scenarios
through correlation of intrusion alerts, in: Proceedings of the
9th ACM Conference on Computer & Communications
Security, November 2002, pp. 245-254.

[19] P. Ning, D.S. Reeves, Y. Cui, Correlating alerts using
preconditions of intrusions, Technical Report, TR-2001-13,
North Carolina State University, Department of Computer
Science, December 2001.

[20] S.J. Templeton, K. Levitt, A requires/provides model for
computer attacks, in: Proceedings of the 2000 workshop on
New security paradigms, 2001, pp. 31-38.

[21] J. Haines, D.K. Ryder, L. Tinnel, S. Taylor, Validation of
sensor alert correlators, IEEE Security and Privacy 1 (1)
(2003) 46-56.

[22] K. Jensen, An introduction to the theoretical aspects of
coloured petri nets, in: J.W. de Bakker, W.-P. de Roever, G.
Rozenberg (Eds.), A Decade of Concurrency, LNCS, vol.
803, Springer-Verlag, 1994, pp. 230-272.

[23] K. Jensen, Coloured Petri Nets and the invariant
methodTheoretical Computer Science, vol. 14, North-Hol-
land, 1981, pp. 317-336.

[24] K. Ilgun, R. Kemmerer, P. Porras, State transition analysis:
a rule-based intrusion detection system, IEEE Transactions
on Software Engineering 21 (3) (1995) 181-199.

[25] D. Frincke, D. Tobin, Y. Ho, Planning, Petri Nets, and
intrusion detection, in: Proceedings of the 21st National
Information Systems Security Conference (NISSC’98), 1998,
pp. 346-361.

[26] Somesh Jha, Oleg Sheyner, Jeannette M. Wing, Minimiza-
tion and reliability analyses of attack graphs, Technical
Report, CMU-CS-02-109, February 2002.

[27] T. Moon, The expectation—-maximization algorithm, IEEE
Signal Processing Magazine (1996) 47-60.

[28] I.J. Good, The population frequencies of species and the
estimation of population parameters, Biometrika 40 (Parts 3
and 4) (1953) 237-264.

[29] D. Frincke, Balancing cooperation and risk in intrusion
detection, ACM Transactions on Information and System
Security (TISSEC) 3 (1) (2000) 1-29.

[30] G. Shafer, A Mathematical Theory of Evidence, Princeton
University Press, Princeton, 1976.

[31] D. Yu, D. Frincke, Alert Confidence fusion in intrusion
detection systems with extended Dempster—Shafer theory,
in: Proceedings of ACMSE 2005.

[32] Lincoln Lab, MIT. DARPA 2000 intrusion detection eval-
uation datasets, 2000. Available from: <http://ideval.ll.
mit.edu/2000index.html>.

[33] K. Jensen, Colored Petri-Nets—Basic Concepts, Analysis
Methods, and Practical Use, second ed., vol. 1, Springer-
Verlag, New York, 1996.

[34] L.M. Kiristensen, S. Christensen, K. Jensen, The practi-
tioner’s guide to coloured Petri nets, International Journal
on Software Tools for Technology Transfer 2 (1998) 98—
132.

[35] S. Kumar, E.H. Spafford, A pattern-matching model for
intrusion detection, in: Proceedings of the National Com-
puter Security Conference, 1994, pp. 11-21.

http://ideval.ll.mit.edu/2000index.html
http://ideval.ll.mit.edu/2000index.html

654 D. Yu, D. Frincke | Computer Networks 51 (2007) 632-654

[36] S. Kumar, E. Spafford, A Pattern matching model for misuse
intrusion detection, in: 17th National Computer Security
Conference, 1994, pp. 11-21.

[37] X. Qin, W. Lee, Statistical causality analysis of INFOSEC
alert data, in: Proceedings of the 6th International Sympo-
sium on Recent Advances in Intrusion Detection (RAID),
2003, pp. 73-93.

[38] D. Dittrich, Dissecting distributed malware networks.
Auvailabel from: <http://security.isu.edu/ppt/pdfppt/Core02.
pdf>.

[39] D. Yu, D. Frincke, A Novel framework for alert correlation
and understanding, in: International Conference on Applied
Cryptography and Network Security (ACNS), Springer’s
LNCS series, vol. 3089, 2004, pp. 452-466.

[40] Y. Zhai, P. Ning, P. Iyer, D.S. Reeves, Reasoning about
complementary intrusion evidence, in: Proceedings of 20th
Annual Computer Security Applications Conference,
December 2004, pp. 39-48.

[41] J.W. Harris, H. Stocker, Maximum likelihood method
§21.10.4, in: Handbook of Mathematics and Computational
Science, Springer-Verlag, New York, 1998, pp. 824.

[42] J. McHugh, Testing intrusion detection systems: a critique of
the 1998 and 1999 DARPA off-line intrusion detection
system evaluation as performed by Lincoln laboratory,
ACM Transactions on Information and System Security 3
(4) (2000).

Dong Yu holds a Ph.D. degree in com-
puter science from University of Idaho,
an MS degree in computer science from
Indiana University/Bloomington, an MS
degree in electrical engineering from
Chinese Academy of Sciences, and a BS
degree (with honor) in electrical engi-
neering from Zhejiang University
(China). He has been working in
Microsoft since 1998. His research
interests are in speech processing, com-
puter and network security, and machine learning. He has pub-
lished dozens of refereed journal and conference papers in the
above areas. He is a senior member of IEEE and a member of
ACM.

Deborah Frincke is Chief Scientist of the
CyberSecurity groups at Pacific North-
west National Laboratory. Prior to
joining PNNL, she was a member of the
University of Idaho faculty, departing as
a Full Professor. She co-founded one of
the first NSA Centers of Academic
Excellence in Information Assurance,
through University of Idaho’s Center for
Secure and Dependable Systems. Her
mid-90s research served as the basis for
TriGeo Network Systems’ commercial product. Her research
spans a broad cross section of computer security, including very
large system defense, security risk/benefit analysis, alert consoli-
dation, and computer security education. She has published over
eighty articles and technical reports. She received her Ph.D. in
computer science with a focus on computer security from Uni-
versity of California, Davis in "92.

http://security.isu.edu/ppt/pdfppt/Core02.pdf
http://security.isu.edu/ppt/pdfppt/Core02.pdf

	Improving the quality of alerts and predicting intruder " s next goal with Hidden Colored Petri-Net
	Introduction
	Hidden Colored Petri-Net: our framework
	Definition of HCPN
	Examination of HCPN with examples

	Basic algorithms
	Parameter estimation and action inference
	Parameter estimation
	Probability smoothing
	Action inference

	Alert confidence fusion
	Experiments and evaluation
	Quality of alerts
	Experiments on the DARPA DDoS�evaluation dataset
	Test on attack scenarios from the GCP
	Alert confidence fusion

	Related work
	Alert correlation as a filter and an inference problem
	Probabilistic framework for IDS
	Colored Petri-Net

	Discussions and conclusion
	Effectiveness of HCPN
	Assumptions and limitations in HCPN

	Acknowledgements
	Appendix
	References

