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Abstract. These days genomic sequence analysis provides a key way of understanding the biology of an
organism. However, since these sequences contain much private information, it can be very dangerous to
reveal any part of them. It is desirable to protect this sensitive information when performing sequence
analysis in public. As a first step in this direction, we present a method to perform the edit distance
algorithm on encrypted data to obtain an encrypted result. In our approach, the genomic data owner
provides only the encrypted sequence, and the public commercial cloud can perform the sequence analysis
without decryption. The result can be decrypted only by the data owner or designated representative
holding the decryption key.
In this paper, we describe how to calculate edit distance on encrypted data with a somewhat homomorphic
encryption scheme and analyze its performance. More precisely, given two encrypted sequences of lengths
n and m, we show that a somewhat homomorphic scheme of depth O((n+m) log log(n+m)) can evaluate
the edit distance algorithm in O(nm log(n + m)) homomorphic computations. In the case of n = m, the
depth can be brought down to O(n) using our optimization technique. Finally, we present the estimated
performance of the edit distance algorithm and verify it by implementing it for short DNA sequences.

Keywords: Edit distance, Homomorphic encryption, Arithmetic circuit.

1 Introduction

In bioinformatics, the term “Sequence Analysis” refers to the process of arranging DNA, RNA, or peptide
sequences to understand their structures and features. Relationships between sequences are usually discovered
by aligning them appropriately and identifying the most closely matching subsequences. In this paper, we focus
on the well-known edit distance algorithm [25], which measures the dissimilarity of two strings. Calculating the
edit distance between public reference strings and patients’ DNA sequences can be used to solve the problem of
approximate string matching. In practice, there are deployed services to compare DNA sequences. For example,
the European Bioinformatics Institute (EBI) website [6] provides “Bic-SW Database Searches” where one can
apply a sequence analysis algorithm to any two DNA sequences (e.g., Smith-Waterman algorithm).

Privacy Threats from Exposing Genomic Data. There are many projects to collect DNA information from
participants in order to discover genomic sequences associated with disease susceptibility. The Personal Genome
Project (PGP) displays genotypic and phenotypic information in a public database [21] and the HapMap Project
has developed a public repository of genome sequences [12], which means that genomic data has become publicly
accessible. However, even anonymized genomic data can leak significant information about the participants (see
for example [7, 9, 23]). In fact, in 2012, an artist created portrait sculptures from analyses of genetic material
collected in public places [24]. From some samples, he could infer physical characteristics of strangers such as
the gender, eye color, nose size and so on. Secondly, even if DNA sequences are not associated with explicit
identifiers such as name, sex, date of birth, or address, one can recover such personal data using re-identification
methods: genotype-phenotype inference [19], location-visit patterns [20], family structure [10], and dictionary
attacks. Thus, DNA sequences are sensitive and valuable enough that we should not reveal our own sequences
even when performing sequence analysis.

Privacy through Encryption. In this work, we consider the potential for using homomorphic encryption
to protect privacy in genomic computations. Compared with MPC protocols based on recent optimizations of
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garbled circuit techniques [14, 11], homomorphic encryption is often considered to be slower and less efficient.
But homomorphic encryption has a number of other advantages, allowing for more flexible scenarios and func-
tionality and requiring less interaction, thereby reducing communication complexity. Typically no interaction
is required for applications of (single-key) homomorphic encryption. Also, homomorphic encryption schemes
have become more practical recently, due to a number of improvements, including techniques which avoid the
costly bootstrapping procedure for fixed computations, such as using leveled or somewhat homomorphic en-
cryption (SWHE) schemes.

Scenarios. Homomorphic encryption allows the data owner to upload encrypted data to a cloud service. The
cloud service can operate on the encrypted data without requiring the decryption key or any interaction with the
data owner. The service returns the encrypted results to the data owner, who can decrypt using the secret key.
A cloud provider could thus provide Direct-to-patient services in encrypted form, such as the service mentioned
above provided by EBI.

Fig. 1: Scenario of proposed system

As an extension to the scenario, additional functionality
can be achieved using public key homomorphic encryption
schemes by allowing third parties to upload data directly to
the cloud service, encrypted using the public key of the data
owner. This scenario could be of interest in situations rele-
vant to genomic computation: for example the data owner is
a hospital or clinic, and the third parties are patients or other
healthcare providers for those patients. The hospital would
like to use the cloud service for analyzing lots of patients.
Auxiliary data (from tests, genome sequencing, etc) can be
uploaded to the service using the public key of the hospital.
Computations on the encrypted data, such as comparing DNA
sequences, output encrypted results which can be decrypted
by the hospital or clinic. The secrecy of DNA sequences in the cloud can be protected under the semantic
security of homomorphic encryption scheme.

Our Contributions. In this paper, we first describe the homomorphic evaluation of the edit distance algorithm
which was suggested by Wagner and Fischer [25]. We show that the algorithm can be implemented on two
encrypted sequences of lengths n and m with a somewhat homomorphic scheme of depth O((n+m) log(log(n+
m))) in O(nm log(n + m)) homomorphic computations. Moreover, we introduce an optimization technique to
reduce the depth required to implement the algorithm: Divide the edit distance matrix into sub-blocks of size-
(τ + 1) and solve the edit distance problem in each block. We can compute each of them diagonally, consuming
O(τ) levels in one diagonal-round. Namely, evaluating the circuits in each cell can be processed by a somewhat
homomorphic encryption of a constant depth. In particular, in the case of n = m, it suffices to compute only a
little part of the sub-blocks, so the depth can be brought down to O(n).

Finally, we estimate the running time of the proposed algorithm for a large n and verify it by implementing
it for short DNA sequences. For two encrypted DNA sequences of length 50, we expect that the algorithm would
run in one day when estimated based on the recent CCK+ scheme [4]. We also demonstrate the experimental
result that it takes about 27.5 seconds for n = m = 8 using the GHS scheme [8].

Related works. Since Wagner and Fischer [25] introduced the problem of determining the edit distance between
two strings and presented an algorithm for calculating the distance, there have been a number of approaches
for private computation of the distance. In 2003, Atallah et al. [1] proposed a privacy-preserving protocol using
an additive homomorphic encryption scheme and oblivious transfers, which had expensive computational and
communication costs. Given two strings of lengths n and m, the number of iterations is equal to nm and
the total online computational cost is O(nm log(n + m)). In 2008, Jha et al. [14] presented a more practical
privacy-preserving protocol to compute the edit distance with Yao’s “garbled circuits” method [18, 26], and it
was improved by Huang et al. [11]. Their computation cost is tractable, but their protocol requires a lot of
interactions (e.g., O(nm log(n+m)) oblivious transfers for Protocol 2 in [14]).
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On the other hand, there is prior art on analyzing genomic data using homomorphic encryption. Some
of the work is based on additively homomorphic encryption schemes: Kantarcioglu et al. [15], Kolesnikov et
al. [16], and Ayday et al. [2]. In [15], they presented a novel cryptographic framework that allows organizations
to support data mining without violating the privacy of the genomic sequences, and in particular they used
the Paillier cryptosystem for experimental analysis. The garbled circuit protocols of [16] were given for secure
computation of the minimum distance (Hamming distance and Euclidean distance). In [2], they proposed a
“privacy-preserving disease susceptibility test” on encrypted genomic data using a modified Paillier cryptosys-
tem. Meanwhile, Cristofaro et al. [5] presented an efficient and secure protocol called “Size- and position-hiding
private substring matching” based on a multiplicative homomorphic ElGamal variant so as to check for the
presence of DNA markers. Finally, Yasuda et al. [27] gave a practical solution for computation of multiple
Hamming distance values using the LNV scheme [17], so that they could find the locations where a pattern
occurs in a text. By contrast, the aim of this paper is to compute edit distance on encrypted sequences under
somewhat homomorphic encryption schemes (which support additions and a limited number of multiplications
of encrypted inputs). Besides DNA sequence analysis, edit distance has many other applications such as spelling
correction or determining the longest common subsequences of two strings.

Outline. In Section 2, we review the main concept of homomorphic encryption and explain the edit distance
algorithm. Section 3 presents the basic circuit building blocks for equality, comparison, and addition. Next, in
Section 4, we describe our encrypted edit distance algorithm using these primitive circuits and give the analysis
of our method. We also introduce optimizations to reduce the depth of implementing the algorithm. Finally, in
Section 5, we estimate the performance of the proposed algorithm for large DNA sequences and present the real
performance for our implementation of the algorithm for short sequences.

2 Preliminaries

In this section, we briefly review the concept of homomorphic encryption and describe the edit distance algorithm
which is a measure to quantify the dissimilarity of two strings.

2.1 Homomorphic Encryption

We will encrypt bit-by-bit in this paper, so consider the concept of homomorphic encryption in this respect. For
x ∈ {0, 1}, we denote the encryption of x by x̄ or Enc(x). Let ⊕ and ∧ be the XOR and AND gate, each of which
corresponds to addition and multiplication over Z2, respectively. Also, we let + and × denote homomorphic
addition and multiplication over encrypted data. Then a homomorphic encryption Enc(-) satisfies the following
properties:

Enc(x⊕ y) = Enc(x) + Enc(y), Enc(x ∧ y) = Enc(x)× Enc(y).

In our paper, we focus on SWHE schemes for which additions are essentially free and a limited number of
multiplications are supported. In particular, SWHE schemes [3, 8] use a practical noise-management technique-
modulus switching, which scales down the ciphertext after every multiplication to reduce the noise by its scaling
factor. When we say the (multiplicative) depth D(C) of a circuit C under homomorphic encryption, it means
the total number of reduced levels in the circuit that is being evaluated homomorphically.

2.2 Edit Distance

Assume that there are two strings α = α1 . . . αn and β = β1 . . . βm over an alphabet Σ. One can make another
string with the same length by inserting spaces “− ”, called gaps, and consider a matrix having two rows with
these new strings. A gap in the first (resp. second) row is called Insertion (resp. Deletion). A column with the
same (resp. distinct) characters is called Match (resp. Mismatch). Then the edit distance between two strings is
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Algorithm Edit distance
Input: α = α1 . . . αn and β = β1 . . . βm
1: for i← 0 to n do
2: Di,0 ← i;
3: end for
4: for j ← 0 to m do
5: D0,j ← j;
6: end for
7: for i← 1 to n do
8: for j ← 1 to m do
9: t← (αi = βj)? 0 : 1;
10: Di,j ← min{Di−1,j−1 + t,Di,j−1 + 1, Di−1,j + 1};
11: end for
12: end for
13. return Dn,m

the minimum number of these edit operations needed to transform one string into the other. More specifically,
for two characters αi and βj , let us define ti,j as follows:

ti,j =

{
0 if αi = βj (Match),

1 if αi 6= βj (Mismatch).

In Algorithm 1, we describe the Wagner-Fischer edit distance algorithm [25], and the edit distance is simply
Dn,m.

3 Circuit Building Blocks

In this section, we present the basic circuit building blocks for computing the edit distance: equality circuit (for
checking the equality of two numbers so as to determine match/mismatch of two characters), comparison circuit,
and addition circuits. Since it may assume that we can evaluate homomorphic additions for free, it suffices
to count the number of multiplication gates sequentially in order to compute the depth of a homomorphic
encryption scheme. Thus, we focus on minimizing the number of sequential multiplication gates for circuits so
that we can implement them efficiently.

For a circuit C, we denote the number of homomorphic additions and multiplications by HA(C) and HM(C).
Note that addition with a constant is faster than a classical homomorphic addition, so those are not counted
in the number of the homomorphic additions. In Table 1,2, and 4, the depth of homomorphic encryption is
cumulative while the number of homomorphic computations is not cumulative.

We will express an unsigned µ-bit integer in its binary representation xµ . . . x1 and denote the i-th coordinate
of x by xi (or x[i]). Then the encryption of x means {x̄1, x̄2, . . . , x̄µ}.

3.1 Equality Circuit

A binary circuit for checking the equality of two µ-bit values is defined to have value 1 if the inputs are the
same and 0 otherwise. Then it can be written as an arithmetic circuit EQU(x, y) = ∧µi=1 (1⊕ xi ⊕ yi). Using a
binary tree, we give the required depth and complexity in Table 3 where log is the binary logarithm.

3.2 Comparison Circuit

For two unsigned µ-bit values x and y, the comparison circuit is defined by

COM(x, y) =

{
0 if x ≥ y,
1 otherwise,
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Table 1: Pseudocode of COM between two µ-bit values and its complexity

Comparison Circuit
Depth of

HA HM
Hom. Enc.

Input: fresh ciphertexts x̄i, ȳj 0
1. compute x̄i + 1 for i = 1, . . . , µ 0 − −
2. x̄i1 ← (x̄i + 1) + ȳi for i = 2, . . . , µ 0 µ− 1 −
3. x̄i2 ← (x̄i + 1)× ȳi for i = 1, . . . , µ

1 − µ
(in particular, let c̄1 ← x̄12)

4. c̄i ← x̄i1 + x̄i2 × c̄i−1 for i = 2, . . . , µ µ µ− 1 µ− 1
Total µ 2µ− 2 2µ− 1

and this is written recursively as COM(x, y) := cµ where ci = ((xi ⊕ 1) ∧ yi)⊕ ((xi ⊕ 1⊕ yi) ∧ ci−1) for i ≥ 2 with
an initial value c1 = (x1⊕1)∧y1. In Table 1, we provide a pseudocode description of this circuit together with an
approximation of the levels that it consumes during these operations. Unlike the other steps, the fourth cannot
be computed simultaneously for each i, so it consumes linear levels and we have D(COM) = µ. On the other
hand, the comparison circuit can be evaluated homomorphically with a logarithmic depth, which is formally
captured in Lemma 1 below.

Lemma 1 The Comparison circuit of Table 2 can be evaluated homomorphically on two µ-bits with a somewhat
homomorphic encryption of depth log(µ− 1) + 1 in O(µ logµ) homomorphic computations.

Proof. We consider the comparison circuit as the following expression:

COM(x, y) = d1 ⊕ d2 ⊕ . . .⊕ dµ

where di = (xi ⊕ 1)∧ yi ∧ (∧µj=i+1(xj ⊕ 1⊕ yj)). From now, the following arguments are underlying ciphertexts
for the above circuit. For simplicity, we denote zi := (x̄i + 1) + ȳi for i = 2, . . . , µ, and HMi the number of
homomorphic multiplications to evaluate

∏µ
j=i+1 zj for i = 1, . . . , µ− 2.

We first construct a binary tree of product with {z2, . . . , zµ}. Then the total number of multiplications to
proceed recursively with each of the two nodes is

1 + 2 + 4 + · · ·+ µ− 1

2
≈ µ− 2,

and it needs log(µ− 1) levels. We observe that
∏µ
j=i+1 zj has been computed if the number to be multiplied by

is in the form of powers of 2 or µ− 1.

Now, we consider the case of i ∈ {1, 2, · · · , µ− 2} with µ− i 6= 21, 22, · · · , 2b log(µ−1)c, µ− 1. It is true that
µ − i is uniquely written as 2ki1 + 2ki2 + · · · + 2kil where kij ’s are increasing nonnegative numbers. Denote

µir := µ−
(

2kil + 2kil−1 + · · ·+ 2kir+1 + 2kir
)

for 1 ≤ r ≤ l and µil+1
= µ, then we have

µ∏
j=i+1

zj =

l∏
r=1

(zµir+1zµir+2 · · · zµir+1
).

Since all zµir+1zµir+2 · · · zµir+1
’s have been computed as above, what we have to do is just to multiply them

each other, which requires log l levels and (l− 1) homomorphic multiplications. From these observations, we see
that ∑

2t−1<u−i<2t

HMi =

t−1∑
l=1

l ·
(
t− 1

l

)
= (t− 1) · 2t−2
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Table 2: Pseudocode of COM between two µ-bit values and its complexity

Comparison Circuit
Depth of

HA HM
Hom. Enc.

Input: fresh ciphertexts x̄i, ȳj 0

1. compute x̄i + 1 for 1 ≤ i ≤ µ 0 − −
2. d̄i ← (x̄i + 1)× ȳi for 1 ≤ i ≤ µ 1 − µ

3. zi ← (x̄i + 1) + ȳi for 2 ≤ i ≤ µ 0 µ− 1 −
4.
∏µ
j=i+1 zj for 1 ≤ i ≤ µ− 2 log(µ− 1) − (µ−1) log(µ−1)

2 − 2

5. d̄i ← d̄i ×
∏µ
j=i+1 zj for 1 ≤ i ≤ µ− 1 log(µ− 1) + 1 − µ− 1

6. COM(x, y)← d̄1 + · · ·+ d̄µ − µ− 1 −
Total log(µ− 1) + 1 2µ− 2 2µ− 3 +

(µ−1) log(µ−1)
2

for t ∈ {2, 3, . . . , b log(µ− 1)c}. So we have

µ−2∑
i=1

HMi =
∑

u−i=21,22,...,µ−1

HMi +
∑

t=2,3,...,b log(µ−1)c

 ∑
2t−1<u−i<2t

HMi


≈ (µ− 2) +

∑
t=2,3,...,b log(µ−1)c

(t− 1) · 2t−2

=
(µ− 1) log(µ− 1)

2
− 2.

Therefore, as described in Table 2, evaluating the COM circuit can be accomplished using

µ+

(
(µ− 1) log(µ− 1)

2
− 2

)
+ (µ− 1) = 2µ− 3 +

(µ− 1) log(µ− 1)

2

homomorphic multiplications with a SWHE scheme of depth log(µ− 1) + 1. ut

In the following, we show that the comparison circuit leads to the the minimal circuits.

Lemma 2 Given two µ-bit values x = xµ . . . x1 and y = yµ . . . y1, then z = zµ . . . z1 is the minimum value of x
and y where

zi = (COM(x, y) ∧ xi)⊕ (1⊕ COM(x, y) ∧ yi) .

Proof. Let us denote a multiplication over integers by “ · ”. Then it is true that

min{x, y} = COM(x, y) · x+ (1⊕ COM(x, y)) · y

= COM(x, y) ·
( µ∑
i=1

xi · 2i−1
)

+ (1⊕ COM(x, y)) ·
( µ∑
i=1

yi · 2i−1
)

=

µ∑
i=1

(
(COM(x, y) · xi) + ((1⊕ COM(x, y)) · yi)

)
· 2i−1,

where the inputs x and y can be written as binary representations in the second line. Since “COM(x, y) · xi” and
“(1⊕ COM(x, y)) · yi” cannot simultaneously be “1”, the lemma follows. ut

From Lemma 2, we define minimum circuits MIN2 = (MIN21, . . . , MIN
2
µ) by

MIN2i = (COM(x, y) ∧ xi)⊕ ((1⊕ COM(x, y)) ∧ yi) .
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Table 3: Complexity of primitive circuits between two µ-bit values

Circuit Depth of Hom. Enc. HA HM

EQU logµ µ µ− 1

COM log(µ− 1) + 1 2µ− 2 2µ− 3 + (µ−1) log(µ−1)
2

ADD µ− 1 3µ− 3 2µ− 3

Then one can evaluate these circuits homomorphically with a SWHE scheme of depth (log(µ− 1) + 2). We also
obtain a natural generalization of computing the minimum value between many numbers: apply repeatedly the
minimum circuits. Then this naive method has D(MIN2) = (log(µ− 1) + 2) · (log k).

On the other hand, we consider another way to compute the minimum value which requires circuits of lesser

depth: Given µ-bit values x1, . . . , xk, we define MINk = (MINk1 , . . . , MIN
k
µ) by MINki =

⊕k
j=1

(
cj ∧ xji

)
where

cj =


COM(x1, x2) ∧ · · · ∧ COM(x1, xk) if j = 1,(
1⊕ COM(x1, xj)

)
∧ · · · ∧

(
1⊕ COM(xj−1, xj)

)
∧ COM(xj , xj+1) ∧ · · · ∧ COM(xj , xk) if 2 ≤ j ≤ k − 1,(

1⊕ COM(x1, xk)
)
∧ · · · ∧

(
1⊕ COM(xk−1, xk)

)
if j = k.

It is easy to show that this method has

D(MINk) = log(µ− 1) + log(k − 1) + 2,

HM(MINk) =

(
2µ− 3 +

(µ− 1) log(µ− 1)

2

)
(k − 1)(k − 2)

2
+ k (k − 2 + µ) .

3.3 Addition circuits

For two unsigned µ-bit values x and y, we assume that their sum over the integers is less than 2µ, say s1 + · · ·+
sµ · 2µ−1. Then the standard method to add them is the Ripple-carry adder such that ADD(x, y) is defined by
(s1, . . . , sµ) satisfying

si =

{
x1 ⊕ y1 if i = 1,

xi ⊕ yi ⊕ ei−1 otherwise,
ei =

{
x1 ∧ y1 if i = 1,

(xi ∧ yi)⊕ ((xi ⊕ yi) ∧ ei−1) otherwise.

From now, the k-th value sk of the sum is denoted by ADD(x, y)[k]. Table 3 reports the required depth and its
complexity analysis.

4 Encrypted Edit Distance Algorithm

We now describe how to execute the homomorphic computation of the edit distance algorithm with regards to
the primitive circuits and analyze the performance of our encrypted edit distance algorithm.

Let |Σ| be the size of a alphabet and denote ω = dlog |Σ|e. As mentioned before, let α and β be two strings
over ω-bit alphabet. Then each character of the strings can be seen as an ω-bit value. Suppose that each of
them is given encrypted bit-by-bit through a homomorphic encryption.

4.1 Encrypted Edit Distance Algorithm

Since all the values Di,j ’s are less than n+m− 1, we may assume that they are dlog(n+m− 1)e-bits, say µ.
Suppose that we have computed Di−1,j−1, Di,j−1, Di−1,j , and ω-bit characters αi and βj . From the fact that
ti,j = EQU(αi, βj)⊕ 1, we know

(Di−1,j−1 + ti,j)[k] = ((ti,j ⊕ 1) ∧Di−1,j−1[k])⊕ (ti,j ∧ ADD(Di−1,j−1, 1)[k])

= (EQU(αi, βj) ∧Di−1,j−1[k])⊕ ((EQU(αi, βj)⊕ 1) ∧ ADD(Di−1,j−1, 1)[k])
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Table 4: Pseudocode of computing the encrypted value Di,j and its complexity (µ = log(n+m− 1))

Binary Circuit
Depth of

HA HM
Hom. Enc.

Input: Di−1,j−1, Di,j−1, Di−1,j , αi, βj

1. t← EQU(αi, βj) and compute t⊕ 1 D(EQU) HA(EQU) HM(EQU)

2. compute ADD(Di−1,j−1, 1), ADD(Di,j−1, 1), ADD(Di−1,j , 1) D(ADD) 3HA(ADD) 3HM(ADD)

3. for k = 1, . . . , µ,

Di−1,j−1[k]← (t ∧Di−1,j−1[k])⊕ ((t⊕ 1) ∧ ADD(Di−1,j−1, 1)[k]) 1 + D(ADD) µ 2µ

Di,j−1[k]← ADD(Di,j−1, 1)[k] D(ADD) − −
Di−1,j [k]← ADD(Di−1,j , 1)[k] D(ADD) − −
4. c1 ← COM(Di−1,j−1, Di,j−1) 1 + D(ADD) + D(COM) HA(COM) HM(COM)

c2 ← COM(Di−1,j−1, Di−1,j) 1 + D(ADD) + D(COM) HA(COM) HM(COM)

c3 ← COM(Di,j−1, Di−1,j) D(ADD) + D(COM) HA(COM) HM(COM)

5. c1 ← c1 ∧ c2, c2 ← (1⊕ c1) ∧ c3, c3 ← (1⊕ c2) ∧ (1⊕ c3) 2 + D(ADD) + D(COM) − 3

6. for k = 1, . . . , µ,
3 + D(ADD) + D(COM) 2µ 3µ

Di,j [k]← (c1 ∧Di−1,j−1[k])⊕ (c2 ∧Di,j−1[k])⊕ (c3 ∧Di−1,j [k])

Total 3 + D(ADD) + D(COM)
HA(EQU) + 3HA(ADD) HM(EQU) + 3HM(ADD)

+3HA(COM) + 3µ +3HM(COM) + 5µ+ 3

for 1 ≤ k ≤ µ and

ADD(Di−1,j−1, 1)[k] =

{
Di−1,j−1[1]⊕ 1 if k = 1,

Di−1,j−1[k]⊕
(
∧k−1l=1Di−1,j−1[l]

)
if 2 ≤ k ≤ µ.

In the same way as in Section 3.2, ADD(Di−1,j−1, 1) can be implemented with a SWHE scheme of depth log(µ− 1)

in µ homomorphic additions and
(

(µ−1) log(µ−1)
2 − 2

)
homomorphic multiplications since we only need to com-

pute
∏k−1
l=1 Enc(Di−1,j−1[l]). From these observations, Di,j = min{Di−1,j−1 + ti,j , Di,j−1 + 1, Di−1,j + 1} can

be written as arithmetic circuits using the above circuits. Hence, given ciphertexts Enc(Di−1,j−1), Enc(Di,j−1),
Enc(Di−1,j), Enc(αi), and Enc(βj), one can apply these operations so as to compute the encryption of Di,j .
Continuing this way, we obtain the encrypted edit distance Enc(Dn,m).

4.2 Performance Analysis of Encrypted Edit Distance Algorithm

In Table 4, we describe a pseudocode for obtaining the encrypted value Di,j , and provide an approximation of
the levels and computational complexity during homomorphic operations. By the building block algorithms of
COM (in Lemma 1) and ADD (in Section 4.1), the one diagonal-round circuits have

D = 2 log(µ− 1) + 4, HA = 15µ+ ω − 6, HM = 3(µ− 1) log(µ− 1) + 11µ+ ω − 13.

It is possible to compute Di,j ’s simultaneously when i+ j is a fixed value from 1, 2, ..., (n+m− 1), so we expect
to consume (2 log(µ−1) + 4) · (n+m−1) levels for computing them diagonally, which requires (15µ+ω−6)nm
homomorphic additions and (3(µ − 1) log(µ − 1) + 11µ + ω − 13)nm multiplications in total. In other words,
given two encrypted sequences of lengths n and m, a SWHE scheme of depth O((n + m) log(log(n + m))) can
evaluate the edit distance algorithm in O(nm log(n+m)) homomorphic computations.

Remark 1 Lemma 1 shows that we can compare two µ-bits with a circuit of depth logµ using a homomorphic
bit-encryption scheme. If we consider a large integer ring Zt as a message space instead of a binary field, an
addition is performed with a degree-1 circuit. However, one can compute the equality circuit via the following
method: EQU(x, y) = 1− (x− y)t−1 for a prime t. Then this circuit has D(EQU) ≈ log t ≈ log(n+m) using the
square-and-multiply algorithm. Moreover, the comparison algorithm seems to require a circuit of at least depth
log t. This implies that a large message space increases the depth of one diagonal-round circuits to O(log(n+m)),
so the edit distance algorithm can be evaluated with a SWHE scheme of depth O((n+m) log(n+m)).
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4.3 Optimization of Encrypted Edit Distance Algorithm

We present an optimization to reduce the depth during the homomorphic evaluations of the algorithm. Let us
consider the 3× 3 block B in Figure 2.

Di−2,j−2 Di−2,j−1 Di−2,j

Di−1,j−2 Di−1,j−1 Di−1,j

Di,j−2 Di,j−1 Di,j

T

B

L R

Fig. 2: Block of size 3

It is true that if we have computed the top and left values of this block, Di−2,j−2, Di−2,j−1, Di−2,j , Di−1,j−2,
Di,j−2, then all other values can be expressed in terms of them. For example, Di,j is the minimum value between
the following 7 numbers:

Di−2,j−2 + ti−1,j−1 + ti,j , Di−2,j−1 + ti−1,j + 1, Di−2,j−1 + ti−1,j + 1,

Di−1,j−2 + ti,j−1 + 1, Di−1,j−2 + ti,j−1 + 1, Di−2,j + 2, Di,j−2 + 2.

In general, we consider a block of size-(τ + 1) which consists of the following sets:

top : T = {Di−τ,j−τ , Di−τ,j−τ+1, . . . , Di−τ,j},
left : L = {Di−τ,j−τ , Di−τ+1,j−τ , . . . , Di,j−τ},

right : R = {Di−τ,j , Di−τ+1,j , . . . , Di,j},
bottom : B = {Di,j−τ , Di,j−τ+1, . . . , Di,j}.

Then all the values of R and B are expressed in terms of values of T and L.
More precisely, consider the grid shown in Figure 3. One can only move one unit right or down on the grid:

if moving right from Di−k,j−l, then ti−k+1,j−l+1 is added to the value and we obtain Di−k,j−l+ ti−k+1,j−l+1. In
the case of moving one unit down, “1” is added to it. We note that the number of shortest paths from Di−τ,j−k to

Di−τ+l,j is l!
k!(l−k)! =

(
l
k

)
for some l ≥ k since the paths include k steps in the x axis and (l−k) steps in y axis. It is

seen as the the number of the functions of Di−τ+l,j in terms of Di−τ,j−k. From these observations, Di−τ+l,j is the

minimum between
∑l
k=0

(
l
k

)
= 2l values. In particular, Di,j is the minimum between 2 ·

∑τ
k=0

(
τ
k

)
−τ = 2τ+1−τ

values because the set of all the paths of Di,j is symmetric with respect to the line from Di−τ,j−τ to Di,j . We
know that the minimum circuits consume the largest number of levels than others (equality circuit or addition
circuits), and it needs O(log k) levels to evaluate the minimum circuits MINk that compute the minimum value

Di−τ,j−τ

Di−τ,j−τ+1

Di−τ,j−τ+2 Di−τ+l,j

Di−τ,j−k

Di−τ,j

Di,j

R

T

Fig. 3: Grid of size-(τ + 1) block
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between k numbers, which requires O(k2) homomorphic computations. Thus, one can compute a block of size-
(τ + 1) by evaluating the circuits with a SWHE of depth O(log(2τ+1 − τ)) ≈ O(τ) in∑

k=2,22,...,2τ−1

O(k2) +O((2τ+1 − τ)2) ≈ O(22τ )

homomorphic operations. From the fact that all the blocks of size-(τ + 1) can be computed diagonally while
shares of the values of T and L have been computed, we can conclude that the edit distance algorithm can be
implemented using O(22τ · nmτ2 ) homomorphic operations with a SWHE scheme of depth O(τ · (n+mτ − 1)) ≈
O(n + m) for given two encrypted sequences of lengths n and m. Hence, this optimization reduces the depth,
but the entire computation increases as τ becomes larger. In particular, in the case of n = m, we can implement
the algorithm with lesser depth circuits. The essence of the idea is formally captured in Lemma 3 below.

Lemma 3 Let σj denote the elementary symmetric polynomial of degree j in x1, x2, . . . , xn and σ̃j the binary
circuit which is a conversion of σj by the following rules: + 7→ ⊕ and · 7→ ∧. Also, let µ := d log ne. Then
the addition circuits ADDn convert the sum of n one-bit xi’s into a µ-bit integer, defined by (S[1], S[2], . . . , S[µ])
satisfying

S[i] =
⊕

1≤j≤n

(
⊕

1≤k≤j
k[i]=1

[(
j

k

)]
2

) ∧ σ̃j .

Proof. Denote Sn the symmetric group on the n letters and

Xk :=
∑
ζ∈Sn

(
xζ(1) · · ·xζ(k) · (xζ(k+1) + 1) · · · (xζ(n) + 1)

)
.

Let us cj denote a coefficient of σj in Xk over integers. We show that cj ·
(
n
j

)
=
(
n−k
j−k
)
·
(
n
k

)
. More precisely, the

number of monomials of degree j in Xk is cj ·
(
n
j

)
because

(
n
j

)
can be seen as the number of the monomials of σk.

Note that for a fixed ζ ∈ Sn, the number of monomials of degree j in
(
xζ(1) · · ·xζ(k) · (xζ(k+1) + 1) · · · (xζ(n) + 1)

)
is
(
n−k
j−k
)
. Since the number of such polynomials is

(
n
k

)
, we have cj =

(
j
k

)
and Xk =

∑
cjσj =

∑
k≤j≤n

(
j
k

)
· σj .

Now let us consider the binary circuit X̃k, that is,

X̃k =
⊕
ζ∈Sn

(xζ(1) ∧ · · · ∧ xζ(k) ∧ (xζ(k+1) ⊕ 1) ∧ · · · ∧ (xζ(n) ⊕ 1)),

so we have X̃k = ⊕k≤j≤n(
[(
j
k

)]
2
∧ σ̃j). Hence, we can conclude that

S[i] =
⊕

1≤k≤n

(X̃k ∧ k[i]) =
⊕

1≤k≤n

 ⊕
k≤j≤n

[(
j

k

)]
2

∧ σ̃j

 ∧ k[i]

=
⊕

1≤k≤j≤n
k[i]=1

[(
j

k

)]
2

∧ σ̃j =
⊕

1≤j≤n

 ⊕
1≤k≤j
k[i]=1

[(
j

k

)]
2

 ∧ σ̃j .
The first equality follows since only k values of x1, . . . , xn can be “1” (i.e.,

∑n
i=1 xi = k) if and only if X̃k = 1.

ut

The lemma implies that if we have computed “⊕
[(
j
k

)]
2
” satisfying 1 ≤ k ≤ j and k[i] = 1 (for 1 ≤ i ≤ µ

and 1 ≤ j ≤ n), then Si’s are expressed in terms of the symmetric polynomials with degree no more than n.
The following proposition follows from Lemma 3.
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Proposition 4 Encrypted Edit distance algorithm can be implemented on two sequences of length n over an
ω-bit alphabet with a somewhat homomorphic scheme of depth

d logωe+ d log ne+ d log
(
blog(n+ dn

2
e − 1)c

)
e+ d log (n′) e+ 2

where n′ = −dn2 e − 1 + 2
∑dn2 e−1
i=0

(
n
i

)
.

Proof. Let us consider a size-(n+1) block. Since Dn,n = Dn is less than n and Di,0, D0,i are greater than 2i, Dn

can be expressed as a function of D0,0, D1,0, . . . , Ddn2 e−1,0, D0,1, . . . , D0,dn2 e−1, and ti,j ’s satisfying |i− j| ≤ dn2 e,
as shown in Figure 4 (which means that it is enough to compute only a little part of the block).

D0,0

D0,1

D0,2

·
·
·

D0,dn
2
e−1

Dn

D1,0

D2,0

Ddn
2
e−1,0

·
·
·

Fig. 4: Grid of (n+ 1)-block

Firstly it needs d logωe levels to compute ti,j ’s with the equality circuits over ω-bits. Next, from the fact that
the number of the functions of Dn with respect to Di,0 is

(
n
i

)
, the edit distance Dn is the minimum between

n′ = −dn2 e+ 2
∑dn2 e−1
i=0

(
n
i

)
values which have the following form:

Di,0 + ti1,j1 + ti2,j2 + · · ·+ tin−k,jn−k + i = 2i+ ti1,j1 + ti2,j2 + · · ·+ tin−k,jn−k

where 1 ≤ i1 ≤ i2 ≤ · · · ≤ in−k ≤ n and 1 ≤ j1 ≤ j2 ≤ · · · ≤ jn−k ≤ n. In particular, “t1,1 + t2,2 + · · · + tn,n”
has binary circuits which consume the largest levels to be evaluated, and from Lemma 3 we expect that it needs
d log ne levels. We note that all the values to be compared are less than n+ dn2 e − 1 and they are considered to
be of blog(n+ dn2 e − 1)c+ 1-bit, so we have D(COM) = d log

(
blog(n+ dn2 e − 1)c

)
e+ 1. Finally, the proposition

follows that
D(ti,j) + D(t1,1 + · · ·+ tn,n) + D(COM) + D(MINn

′
)

= (d logωe) + (d log ne) +
(
d log(blog(n+ dn

2
e − 1)c)e+ 1

)
+ (d log (n′) e+ 1) .

ut

The result of Proposition 4 tells us that we can reduce the depth of computing edit distance to O(log n′) ≈
O(log(2 · 2n2−1)) ≈ O(n). In particular, if n = m = 8, then the number of levels consumed by the edit distance
algorithm is approximately 16.

5 Implementation and Discussions

In the following we give an estimated performance of the encrypted edit distance algorithm over DNA sequences
and provide concrete timings for homomorphic evaluation of the algorithm with Shoup’s NTL library [22] and
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Halevi-Shoup’s HE library [13] over GMP. A complete description of this scheme is given in [8]. We may assume
that ω = 2 from the fact that Σ = {A,G,C,D}.

In our scenario, the third parties first partition their own DNA sequences into segments of length n or m.
Then each of the DNA sequences is expressed in a binary representation. After that, each bit is encrypted as
a different ciphertext with a homomorphic encryption scheme. For parallel computation, we use an encryption
scheme with plaintext space Z`2 supporting SIMD operations with ` slots. Then one party sends the ciphertexts
which hold the ` segments together to a cloud. Finally, the cloud service computes the edit distances of ` different
sequence pairs simultaneously. The amortized time is computed as the total time of this algorithm evaluation
divided by `.

5.1 Estimates

In addition to the modulus switching method, there is another noise-management technique-bootstrapping which
evaluates the decryption circuit of homomorphic encryption scheme using the decryption key. This results in a
different encryption of the ciphertext with reduced noise, so the number of homomorphic operations becomes
unlimited, called fully homomorphic encryption (FHE).

If the length of DNA sequences is large, our encrypted edit distance algorithm requires large depth. So for
sufficiently long sequences, we estimate the algorithm using an FHE scheme instead of an SWHE scheme. In
particular, we present the estimated performance using the batch DGHV scheme [4]. Since bootstrapping is
more costly than other operations and this scheme performs a bootstrapping right after each multiplication,
the number of homomorphic multiplications directly affects the total evaluation performance. We note that the
edit distance algorithm in Section 4.3 needs many more multiplications than the one in Section 4.1. For these
reasons, the latter is more suitable for being evaluated via FHE.

We assume that the length of DNA sequence segments is less than 100 because a single DNA sequencer
can generate millions of short DNA sequences with 100-120 nucleotides. We first count the total number of
homomorphic multiplications in the edit distance algorithm up to size (100, 100), which can be seen as the
number of bootstrapping operations during the evaluations. Then it is multiplied by the timing for a single
bootstrapping operation with their results (using the same parameters as in [4]). We present the estimates of
the proposed algorithm in Table 5.

(n,m) Toy Small Medium Large

Security 42 52 62 72

# of slots 10 37 138 531

pk size 647kB 13.3MB 304MB 5.6GB

(1, 1) 0.108s 0.297s 0.891s 3.402s

(2, 2) 1.104s 3.046s 9.107s 34.776s

(3, 3) 3.996s 11.025s 32.962s 2min 5s

(4, 4) 7.104s 19.600s 58.599s 3min 44s

(6, 6) 22.032s 1min 1s 3min 2s 11min 34s

(8, 8) 39.168s 1min 48s 5min 23s 20min 34s

(10, 10) 1min 18s 3min 35s 10min 43s 40min 57s

(20, 20) 6min 19s 17min 26s 52min 8s 3h 19min

(30, 30) 14min 13s 39min 14s 1h 57min 7h 27min

(50, 50) 46min 30s 2h 8min 6h 23min 1day 24min

(100, 100) 3h 34min 9h 50min 1day 5h 4days 16h

Table 5: Estimates of amortized timing for homomorphic edit distance computation using a FHE scheme [4]
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5.2 Experimental result

Using the optimization techniques as described in Section 4.3, we can evaluate the edit distance algorithm
homomorphically with low depth circuits for small DNA sequences. Taking 80-bits of security, we used many
different parameters for several level parameters L according to the length of the two DNA sequences, that is,
we chose SWHE scheme so as to support the depth which are incurred by the computations for each case. In
the set up stage, we determine the parameters of a SWHE scheme and generate a secret/public key pair and
the modulus switching data.

We implemented the encrypted edit distance algorithm for two sequences of length n and m. In our imple-
mentation, we use τ = n = m as mentioned before. The implementation results are described in Table 6. For
example, it takes 27.5 seconds to obtain the encrypted edit distance from the two encrypted DNA sequences of
length 8. This is about 45 times faster than the result of Section 5.1, which is expected to take 20 minutes for
72-bits of security.

(n,m) Depth of Ring Modulus ` Key Encryption Total Amortized

Hom. Enc. Φd Generation time time

(1,1) 1 d = 4369 256 1.4761s 0.1118s 0.0693s 0.0003s

(2,2) 2 d = 4369 256 1.8358s 0.2844s 0.2532s 0.0009s

(3,3) 8 d = 8191 630 7.0162s 1.7117s 34.3091s 0.0544s

(4,4) 9 d = 8191 630 7.4489s 2.4154s 67.5116s 0.1071s

(6,6) 16 d = 13981 600 16.1076s 9.9498s 26min 33s 2.6555s

(8,8) 19 d = 15709 682 27.5454s 16.4524s 4h 50min 25.4366s

Table 6: Timing of an implementation of homomorphic edit distance on an Intel Xeon i7 2.3GHz, 192GB (80 bit security)

6 Conclusion

In this paper, we proposed an algorithm to perform the edit distance algorithm on encrypted genomic sequences.
More precisely, upon input two encrypted sequences of lengths n and m by a SWHE scheme, our algorithm out-
puts an encrypted value of their edit distance. We show that this can be done in O(nm log(n+m)) computations
with a SWHE scheme which can homomorphically evaluate any circuit of depth O((n + m) log(log(n + m))).
With our optimization technique, we can reduce the depth of computing edit distance to O(n + m) and the
implementation shows that it takes 27.5 seconds for n = m = 8 using the Halevi-Shoup code [13].

Currently we could not implement our algorithm for larger parameters due to large memory requirements,
but if one can manage large memory or improve the scheme to reduce the memory requirements, it is expected
that the algorithm would run in one day for n = m = 50 when estimated based on the recent CCK+ scheme [4].

The proposed algorithm enables us to perform any sequence analysis over encrypted genomic sequences
without worrying about privacy leakage. It would be very interesting to make our algorithm practical for larger
parameters by improving the algorithm with the help of more efficient homomorphic encryption.
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