
1

Optimal Coding Rate Control for Scalable Streaming Media

Cheng Huang1∗, Philip A. Chou2, Anders Klemets2
1 Department of Computer Science and Engineering,

Washington University in St. Louis, MO, 63130
2 Microsoft Corporation, One Microsoft Way, Redmond, WA, 98052

1cheng@cse.wustl.edu, 2{pachou, anderskl}@microsoft.com

Abstract— Perhaps the major technical problem in stream-
ing media on demand over the Internet is the need to adapt
to changing network conditions. In this paper, we investigate
the problem of coding rate control, or equivalently quality
adaptation, in response to changing network conditions such
as the onset of congestion. Using the theory of optimal
linear quadratic control, we design an efficient online rate
control algorithm. Extensive analytical and experimental
results show that three goals are achieved: fast startup (about
1 s delay without bursting), continuous playback in the face of
severe congestion, and maximal quality and smoothness over
the entire streaming session. We argue that our algorithm
complements any transport protocol, and we demonstrate
that it works effectively with both TCP and TFRC transport
protocols.

I. I NTRODUCTION

Perhaps the major technical problem in streaming media
on demand over the Internet is the need to adapt to
changing network conditions. As competing communica-
tion processes begin and end, the available bandwidth,
packet loss and packet delay all fluctuate. Network out-
ages lasting many seconds can and do occur. Resource
reservation and quality of service support can help, but
even they cannot guarantee that network resources will
be stable. If the network path contains a wireless link,
for example, its capacity may be occasionally reduced
by interference. Thus it is necessary for commercial-
grade streaming media systems to be robust to hostile
network conditions. Moreover, such robustness cannot be
achieved solely by aggressive (nonreactive) transmission.
Even constant bit rate transmission with retransmissions
for every packet loss cannot achieve a throughput higher
than the channel capacity. Some degree of adaptivity to
the network is therefore required.

End users expect that a good streaming media system
will exhibit the following behavior: content played back on
demand will start with low delay; once started, it will play
back continuously (without stalling) unless interrupted by
the user; and it will play back with the highest possible
quality given the average communication bandwidth avail-
able. To meet these expectations in the face of changing
network conditions, buffering of the content at the client
before decoding and playback is required.

Buffering at the client serves several distinct but simul-
taneous purposes. First, it allows the client to compensate

∗Supported in part by NSF Grants CCR-TC-0209042 and ANI-
0322615

for short-term variations in packet transmission delay (i.e.,
“jitter”). Second, it gives the client time to perform packet
loss recovery if needed. Third, it allows the client to
continue playing back the content during lapses in network
bandwidth. And finally, it allows the content to be coded
with variable bit rate, which can dramatically improve
overall quality.1 By controlling the size of the client buffer
over time it is possible for the client to meet the above
mentioned user expectations. If the buffer is initially small,
it allows a low startup delay. If the buffer never underflows,
it allows continuous playback. If the buffer is eventually
large, it allows eventual robustness as well as high, nearly
constant quality. Thus, client buffer management is a key
element affecting the performance of streaming media
systems.

The size of the client buffer can be expressed as the
number of seconds of content in the buffer, called the
buffer duration. The buffer duration tends to increase as
content enters the buffer and tends to decrease as content
leaves the buffer. Content leaves the buffer when it is
played out, at a rate ofν seconds of content per second
of real time, whereν is the playback speed(typically 1
for normal playback, but possibly more than 1 for high
speed playback or less than 1 for low speed playback).
Content enters the buffer when it arrives at the client
over the network, at a rate ofra/rc seconds of content
per second of real time, wherera is the arrival rate,
or average number of bits that arrive at the client per
second of real time, andrc is thecoding rate, or average
number of bits needed to encode one second of content.
Thus the buffer duration can be increased by increasing
ra, decreasingrc, and/or decreasingν (and vice versa
for decreasing the buffer duration). Although the buffer
duration can be momentarily controlled by changingra

(cf. “Fast Start” in Windows Media 9 [1]) or changing
ν (cf. “Adaptive Media Playout (AMP)” in [2]), these
quantities are generally not possible to control freely for
long periods of time. The arrival ratera on average is
determined by the network capacity, while the playback
speedν on average is determined by user preference. Thus
if the network capacity drops dramatically for a sustained
period, reducing the coding raterc is the only appropriate

1Note that even so-called constant bit rate (CBR) coded content is
actually coded with variable bit rate within the constraints of a decoding
buffer of a given size. The larger the decoding buffer size, the better
the quality. The required decoding buffering is part of the larger client
buffer.

2

way to prevent arebuffering eventin which playback stops
(ν = 0) while the buffer refills.

Thus, adaptivity to changing network conditions re-
quires not only a buffer, but also some means to adjust the
coding raterc of the content. In this paper we assume that
this can be done with fine grained scalable (FGS) coding.
A companion paper [3] deals with multi bit rate (MBR)
coding, which is more prevalant in today’s commercial
streaming media systems [4], [1].

Our work focuses on the problem ofcoding rate control,
that is, dynamically adjusting the coding rate of the content
to control the buffer duration. Outside the scope of our
work is the problem of transmission rate control. The
transmission raterx is the rate at which the sender
application injects bits into the transport layer and is equal
to the arrival ratera on average if the transport is lossless.
By transmission rate controlwe mean congestion control
as well as any other mechanisms affecting the transmission
rate such as bursting, tracking the transmission rate to the
available bandwidth, and so on. Thus we control the buffer
duration by adjusting the coding raterc at which bits leave
the buffer, while letting the the arrival ratera at which bits
enter the buffer be determined by other means.

In addition to factoring the problem of network adapta-
tion into transmission rate control and coding rate control,
the novelty of our approach lies in the following two
aspects. First, we formulate the problem of coding rate
control as a standard problem in linear quadratic optimal
control, in which the client buffer duration is controlled
as closely as possible to a target level while keeping the
coding rate (and hence the quality) as constant as possible.
To our knowledge this is the first use of optimal control
theory for client buffer management. Second, we explicitly
take into consideration, using a leaky bucket model, the
natural variation in the instantaneous coding rate that
occurs for a given average coding rate. We incorporate
the leaky bucket model into the control loop so that the
changes in buffer duration due to natural variation in the
instantaneous coding rate are not mistaken for changes
in buffer duration due to network congestion. To our
knowledge this is also the first use of a leaky bucket to
model source coding rate constraints during client buffer
management beyond the initial startup delay.2

II. PROBLEM FORMULATION

A. Temporal Coordinate Systems

It will pay to distinguish between the temporal coor-
dinate systems, or clocks, used to express time. In this
paper,media timeτ refers to the clock running on the
device used to capture and timestamp the original content,
while client timet refers to the clock running on the client
used to play back the content. The conversion from media

2Ribas, Chou, and Regunathan use a leaky bucket to model source
coding rate constraints to reduce initial startup delay [5], while Hsu,
Ortega and Reibman use a leaky bucket to model transmission rate
contraints [6].

encoder
buffer

encoder network decoder
decoder
buffer

A B C D

Fig. 1. Communication pipeline.

A B C D

b
its

media time

Fig. 2. Schedules at which bits in the coded bit stream pass the points
A, B, C, and D in the communication pipeline.

time to client time can be expressed

t = t0 +
τ − τ0

ν
, (1)

where t0 and τ0 represent the time of a common initial
event (such as the playback of frame 0), andν is the
playback speed.

B. Leaky Bucket Model

For the moment we revert to a scenario in which both
the encoder and the decoder run in real time over an
isochronous communication channel. In this case, to match
the instantaneous coding rate to the instantaneous channel
rate, anencoder bufferis required between the encoder
and the channel and adecoder bufferis required between
the channel and the decoder, as illustrated in Figure 1.
A scheduleis the sequence of times at which successive
bits in the coded bit stream pass a given point in the
communication pipeline. Figure 2 illustrates the schedules
of bits passing the points A, B, C, and D in Figure 1.
Schedule A is the schedule at which captured frames are
instantaneously encoded and put into the encoder buffer.
This schedule is a staircase in which thenth step rises
by b(n) bits at time τ(n), where τ(n) is the time at
which frame n is encoded, andb(n) is the number of
bits in the resulting encoding. Schedules B and C are the
schedules at which bits respectively enter and leave the
communication channel. The slope of these schedules is
R bits per second, whereR is the communication rate of
the channel. Schedule D is the schedule at which frames
are removed from the decoder buffer and instantaneously
decoded for presentation. Note that Schedule D is simply
a shift of Schedule A. Note also that Schedule B is a
lower bound to Schedule A, while Schedule C is an upper
bound to Schedule D. Indeed, the gap between Schedules
A and B represents, at any point in time, the size in bits
of the encoder buffer, while the gap between Schedules C
and D likewise represents the size of the decoder buffer.
The encoder and decoder buffer sizes are complementary.

3

media time

bi
ts

τ(n)τ(n−1)

Fd

Fe D

g(n−1)

R[τ(n)−τ(n−1)]

B

slo
pe

 R
b(n)

g(n)
Fd(n)

Fig. 3. Buffer tube containing a coding schedule.

Thus the coding schedule (either A or D) can be contained
within abuffer tube, as illustrated in Figure 3, having slope
R, height B, and initial offsetF d from the top of the
tube (or equivalently initial offsetF e = B −F d from the
bottom of the tube). It can be seen thatD = F d/R is the
startup delaybetween the time that the first bit arrives at
the receiver and the first frame is decoded. Thus it is of
interest to minimizeF d for a givenR.

A leaky bucketis a metaphor for the encoder buffer.
The encoder dumpsb(n) bits into the leaky bucket at time
τ(n), and the bits leak out at rateR. A leaky bucket with
leak rateR, bucket sizeB, and initial bucket fullnessF e

thus corresponds to a straight buffer tube bounding the
coding schedule as in Figure 3. Each stream in the media
file has a coding schedule; thus each stream corresponds
to a straight buffer tube with slopeR equal to the average
coding raterc of the stream.

In the sequel we will need to consider the gapg(n)
at framen between the buffer tubeupper boundand the
coding schedule, as depicted in Figure 3. Note that the
decoder buffer fullness before framen is put into the
bucket can be expressed

F d(n) = b(n) + g(n) = g(n− 1) +
rc(n)
f(n)

, (2)

wheref(n) = 1/[τ(n) − τ(n − 1)] is the instantaneous
frame rate at framen, andrc(n) is the coding rate of the
buffer tube, now taking into account that different frames
may lie in different buffer tubes with different coding rates
as coding rate control is applied and streams are switched.

C. Rate Control Model

Assume for the moment that bits arrive at the client at a
constant ratera. Then framen (having sizeb(n)) arrives
at the clientb(n)/ra seconds after framen−1. Indeed, the
index of a bit is proportional to its arrival time. Dividing
the vertical scale of the schedules in Figure 3 byra, we
obtain the schedules in terms of client time, rather than
bits, as shown in Figure 4. The coding schedule divided by
ra becomes thearrival schedule, which provides for each
n the time ta(n) of arrival of framen at the client. The
buffer tube upper bound (in bits) divided byra becomes
the buffer tube upper bound (in time), which provides for

media time

cl
ie

nt
 ti

m
e

τd(n)

td(n)

slo
pe

 1/
v

tT(n)

tb(n)

ta(n)

playback deadline
target schedule
upper bound

arrival schedule

Fig. 4. Arrival schedule and its upper bound in client time. The
upper bound is controlled to the target schedule, which is increasingly
in advance of the playback deadline to provide greater robustness over
time.

eachn the timetb(n) by which framen is guaranteed to
arrive. In the same plot we show theplayback deadline,
which is the timetd(n) at which framen is scheduled
to be played (after instantaneous decoding). Thus the gap
between a frame’s arrival time and its playback deadline is
the client buffer duration at the time of the frame arrival.
This must be non-negative to allow continuous playback.

In reality the arrival rate is not constant. Ifta(n − 1)
and ta(n) are the arrival times of framesn and n − 1
respectively, then we may define

ra(n) =
b(n)

ta(n)− ta(n− 1)
(3)

to be theinstantaneous arrival rateat framen. In practice
we estimate the average arrival rate at framen by an
exponentially weighted moving averager̃a(n) of previous
values of ra(n). Hence using (3) we may express the
arrival time of framen in terms of the arrival time of
framen− 1 as

ta(n) = ta(n− 1) +
b(n)
ra(n)

(4)

= ta(n− 1) +
b(n)
r̃a(n)

+ v(n), (5)

where thev(n) term is an error term that captures the
effect of using the slowly moving averagẽra(n) instead
of the instantaneous arrival ratera(n). From (2), however,
we have

b(n) =
rc(n)
f(n)

+ g(n− 1)− g(n), (6)

whence (substituting (6) into (5)) we have

ta(n) = ta(n−1)+
rc(n)

f(n)r̃a(n)
+

g(n− 1)
r̃a(n)

− g(n)
r̃a(n)

+v(n).

(7)
Now defining the buffer tube upper bound (in time) of
framen as

tb(n) = ta(n) +
g(n)
r̃a(n)

, (8)

so that

tb(n)−tb(n−1) = ta(n)−ta(n−1)+
g(n)
r̃a(n)

− g(n− 1)
r̃a(n− 1)

,

(9)

4

we obtain the following update equation:

tb(n) = tb(n− 1) +
rc(n)

f(n)r̃a(n)
+ w(n− 1), (10)

where

w(n− 1) =
g(n− 1)
r̃a(n)

− g(n− 1)
r̃a(n− 1)

+ v(n) (11)

is again an error term that captures variations around a
locally constant arrival rate.

Using (8), the client can computetb(n − 1) from the
measured arrival timeta(n− 1), the estimated arrival rate
r̃a(n− 1), andg(n− 1) (which can be transmitted to the
client along with the data in framen − 1 or computed
at the client fromg(n − 2) and r̂c(n − 1)). Then using
(10), the client can control the coding raterc(n) so that
tb(n) reaches a desired value, assuming the frame rate and
arrival rate remain roughly constant. From this perspective,
(10) can be regarded as the state transition equation of a
feedback control system and it is thus possible to use a
control-theoretic approach to regulate the coding rate.

D. Control Objective

With the state transition equation defined in (10), un-
interrupted playback can be achieved by regulating the
coding rate so that the client buffer does not underflow.
To introduce a margin of safety that increases over time,
we introduce atarget schedule, illustrated in Figure 4,
whose distance from the playback deadline grows slowly
over time. By regulating the coding rate, we attempt to
control the buffer tube upper bound so that it tracks the
target schedule. If the buffer tube upper bound is close
to the target schedule, then the arrival times of all frames
will certainly be earlier than their playback deadlines and
thus uninterrupted playback will be ensured. Note that
controlling the actual arrival times (rather than their upper
bounds) to the target would result in an approximately
constant number of bits per frame, which would in turn
result in very poor quality overall. By taking the leaky
bucket model into account, we are able to establish a
control that allows the instantaneous coding rate to fluctu-
ate naturally according to the encoding complexity of the
content, within previously established bounds for a given
average coding rate.

Although controlling the upper bound to the target
schedule is our primary goal, we also wish to minimize
quality variations due to large or frequent changes to the
coding rate. This can be achieved by introducing into the
cost function a penalty for relative coding rate differences.

Letting tT (n) denote the target for framen, we use the
following cost function to reflect both of our concerns:

I =
N∑

n=0

((
tb(n)− tT (n)

)2 + σ

(
rc(n + 1)− rc(n)

r̃a(n)

)2)
,

(12)
where the first term penalizes the deviation of the buffer
tube upper bound from the target schedule and the second
term penalizes the relative coding rate difference between

frame0 5 10

playback
deadline target

schedule

target
buffer

duration

tT(5) S(5): slope
at frame 5

x x x
x

x
x

x
x

x
x

x
x

*

*

*

*

*

*

*

*

tT(6)

cl
ie

nt
 ti

m
e

Fig. 5. Target schedule design.

successive frames.N is the control window size andσ is
a Lagrange multiplier or weighting parameter to balance
the two terms.

E. Target Schedule Design

Figure 5 shows an illustrative target schedule. The gap
between the playback deadline and the target schedule is
the desired client buffer duration (in client time). If the
gap is small at the beginning of streaming, then it allows
a small startup delay, while if the gap grows slowly over
time, it gradually increases the receiver’s ability to counter
jitter, delays, and throughput changes.

We choose the target scheduletT so that the client buffer
duration grows logarithmically over time. Specifically, if
td is the playback deadline, then for eachtd greater than
some start timetd0,

tT = td − b

a
ln(a(td − td0) + 1), (13)

where td = td0 + (τd − τd0)/ν by (1). Settingb = 0.5
implies that the client buffer duration will grow initially
at two times real time. Further settinga = 0.15 implies
that the buffer duration will be 7.68 seconds after 1 minute,
15.04 seconds after 10 minutes, and 22.68 seconds after
100 minutes.

III. O PTIMAL CONTROL SOLUTION

Recall from (10) the fundamental state transition equa-
tion, which describes the evolution of the buffer tube upper
boundtb(n) in terms of the coding raterc(n):

tb(n + 1) = tb(n) +
rc(n + 1)

f r̃a
+ w(n). (14)

Here we now assume that the frame ratef and the average
arrival rater̃a are relatively constant. Deviations from this
assumption are captured byw(n).

We wish to control the upper bound by adjusting the
coding rate. As each frame arrives at the client, a feedback
loop can send a message to the server to adjust the coding
rate. Note, however, that by the time framen arrives
completely at the client, framen + 1 has already started
streaming from the server. Thus the coding raterc(n + 1)

5

for framen+1 must already be determined by timeta(n).
Indeed, at timeta(n), frame n + 2 is the earliest frame
for which the controller can determine the coding rate.
Hence at timeta(n), the controller’s job must be to choose
rc(n + 2). We must explicitly account for this one-frame
delay in our feedback loop.

For simplicity, we linearize the target schedule around
the time that framen arrives. The linearization is equiva-
lent to using a line tangent to the original target schedule
at a particular point as an approximate target schedule.
Thus we have

tT (n + 1)− 2tT (n) + tT (n− 1) = 0. (15)

Rather than directly control the evolution of the upper
bound, which grows without bound, for the purposes of
stability we use an error space formulation. By defining
the error

e(n) = tb(n)− tT (n), (16)

we obtain

e(n + 1)− e(n)
= (tb(n + 1)− tT (n + 1))− (tb(n)− tT (n)) (17)

= (tb(n + 1)− tb(n))− (tT (n + 1)− tT (n)) (18)

=
rc(n + 1)

fr̃a
− (tT (n + 1)− tT (n)) + w(n), (19)

from which we obtain in turn

(e(n + 1)− e(n))− (e(n)− e(n− 1))
= [rc(n + 1)− rc(n)]/fr̃a

−(tT (n + 1)− 2tT (n) + tT (n− 1))
+(w(n)− w(n− 1)) (20)

=
rc(n + 1)− rc(n)

f r̃a
+ (w(n)− w(n− 1)). (21)

We next define the control input

u(n) =
rc(n + 2)− r̂c(n + 1)

r̃a
, (22)

wherer̂c(n+1) is a possibly quantized version ofrc(n+1)
(as defined in Section IV-A) and we define the disturbance

d(n) =
r̂c(n)− rc(n)

f r̃a
+ w(n)− w(n− 1). (23)

Then (21) can be rewritten

e(n + 1) = 2e(n)− e(n− 1) +
u(n− 1)

f
+ d(n). (24)

Therefore, defining the error vector

e(n) =

e(n)
e(n− 1)
u(n− 1)

 =

tb(n)
tb(n− 1)

rc(n+1)
r̃a

−

tT (n)
tT (n− 1)

r̂c(n)
r̃a

 ,

(25)
the error space representation of the system can be ex-
pressed

e(n + 1) =

2 −1 1
f

1 0 0
0 0 0

 e(n) +

0
0
1

 u(n) +

1
0
0

 d(n),

(26)

or e(n + 1) = Φe(n) + Γu(n) + Γdd(n) for appropriate
matricesΦ, Γ andΓd.

Assuming the disturbanced(n) is a pure white noise,
and assumingperfect state measurement(i.e., we can mea-
sure all components ofe(n) without using an estimator),
the disturbanced(n) doesnot affect the controller design.
Thus we can use a linear controller represented by

u(n) = −Ge(n), (27)

where G is a feedback gain. By the time framen is
completely received, all elements ofe(n) are available
at the client andu(n) can thus be computed. The ideal
coding rate for framen + 2 can then be computed as

rc(n + 2) = r̂c(n + 1)−Ge(n)r̃a. (28)

Finding the optimal linear controller amounts to finding
the feedback gainG∗ that minimizes the quadratic cost
function defined in Section II-D. Before continuing with
the design, we first check the systemcontrollability matrix
C,

C =
[
Γ ΦΓ Φ2Γ

]
=

0 1
f

2
f

0 0 1
f

1 0 0

 , (29)

which has full rank for any frame ratef . Thus, the
system iscompletely controllableand the statee(n) can
be regulated to any desirable value. Now recall that the
cost function defined in Section II-D is

I =
N∑

n=0

{(
tb(n)− tT (n)

)2

+ σ
(rc(n + 1)− rc(n)

r̃a

)2}

(30)

=
N∑

n=0

{
e(n)T Qe(n) + u(n− 1)T Ru(n− 1)

}
, (31)

where Q = CT C (with C = [1 0 0]) and R = σ.
Then, the original control problem of tracking the target
schedule while smoothing the coding rate fluctuations (i.e.,
minimizing the cost functionI) is converted to a standard
regulator problem in the error space. LettingN →∞, the
infinite horizon optimal control problem can be solved by
applying the results in [7, Section 3.3] to obtain an optimal
regulator in two steps: 1) solving, to getS, the discrete
algebraic Riccati equation(DARE)

S = ΦT {S − SΓ[ΓT SΓ + R]−1ΓS}Φ + Q, (32)

and 2) computing the optimal feedback gain

G∗ = [ΓT SΓ + R]−1ΓT SΦ. (33)

The existence and uniqueness ofS (and in turn ofG∗)
is guaranteed whenQ is nonnegative definite andR is
positive definite, which is straightforward to verify in our
case.

To compute the optimal regulator, it is necessary to
choose a value forσ in (12) or (30)-(31). This can be
done by following the following four steps: 1) pick aσ
value to balancee(n) and u(n); 2) compute the optimal
feedback gain; 3) plot the closed-loop root locus (to check

6

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

3.14

2.83

2.51

2.2

1.88
1.57

1.26

0.942

0.628

0.314

3.14

2.83

2.51

2.2

1.88
1.57

1.26

0.942

0.628

0.314

Root Locus

Real Axis

Im
a

g
 A

xi
s

-20

-10

0

10

20

30

40

50

60

70

G.M.: 12.6 dB
Freq: 3.14 rad/sec
Stable loop

Bode Diagram

M
a

g
n

itu
d

e
 (

d
B

)

10
-2

10
-1

10
0

10
1

-180

-150

-120
P.M.: 51.6 deg
Freq: 0.517 rad/sec

Frequency (rad/sec)

P
h

a
se

 (
d

e
g

)

closed-loop poles

Fig. 6. Root locus and Bode diagram.

stability) and bode diagram (to check robustness); and
4) perform time domain simulations to verify transient
response. Several iterations may be needed to determine a
suitableσ value.

Following the above steps in this paper we select
σ = 50. The corresponding optimal feedback control gain
is then G∗ = [0.6307 − 0.5225 0.5225], for which
the closed-loop system has poles at0.7387 + 0.1999i,
0.7387−0.1999i and0, which are all inside the unit circle.
Therefore, the closed-loop system is asymptotically stable.
Figure 6 shows the closed-loop root locus and the bode
diagram with the optimal feedback. We can again verify
the stability of the closed-loop system since all poles are
inside the unit circle. Also, the system has again margin
(GM) of 12.60 dB and aphase margin(PM) of 51.59
degrees. The GM and PM are usually good indicators of
system robustness. In our case, the PM is much larger
than 30 degrees, which is often judged as the lowest
adequate value [8, Section 6.4]. And this PM is close
to 60 degrees, the best PM an optimal controller could
achieve if continuous time feedback control was allowed.
Therefore, the system achieves good robustness. Finally,
Figure 7 provides the time response simulation results,
which show good tracking properties with a fairly stable
coding rate.

IV. PRACTICAL ISSUES

A. Choosing a Stream Given a Coding Rate

When the client requests a coding raterc(n), the server
complies by choosing a stream (or substream of a scalable
stream) having coding ratêrc(n) approximately equal to
rc(n). There are several reasons thatr̂c(n) may differ from
rc(n). The first reason is that there are only a finite number
of streams (or substreams) in the media file, even if fine
grain scalable coding is used. Thus there may be no stream
in the media file with average coding rate exactly equal to
rc(n). The second reason is that, even if there is a stream
in the media file with average coding rate exactly equal to
rc(n), the buffer tube for the stream may be too large to
allow switching to the stream without risk of client buffer

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

no
rm

al
iz

ed
 r

at
e

media time (s)

arrival rate
coding rate

(a) rate vs. time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140

cl
ie

nt
 ti

m
e

(s
)

media time (s)

playback deadline
target schedule
arrival schedule

(b) schedule vs. time

Fig. 7. Time response simulation.

underflow. In fact, whenever the stream switches, there is
generally a discontinuity in the upper bound, which may
be either positive or negative. A positive shift in the upper
bound is illustrated in Figure 8, which, if large, could
cause the client buffer to underflow either immediately
or eventually.

Thus the server must choose a stream that causes the
upper bound to shift up no more than some amount
∆gmax(n − 1) supplied to it by the client. The client
supplies∆gmax(n− 1) to the server in its feedback along
with rc(n), shortly after client timeta(n−2) (after frame
n − 1 has already begun streaming). Upon receiving the
feedback, the server selects a stream with coding rate
r̂c(n) as high as possible such thatr̂c(n) ≤ rc(n) and,
if r̂c(n) > r̂c(n − 1) (i.e., if it is a switch up in rate),
thengnew(n− 1)− gold(n− 1) ≤ ∆gmax(n− 1), where
gnew(n − 1) and gold(n − 1) are illustrated in Figure 8.
The constraint given by∆gmax(n− 1) is not applied if it
is a switch down in rate.

The client chooses∆gmax(n−1) to limit what the upper
bound would be at timeta(n− 1) if the new coding rate
were in effect. Specifically, it chooses∆gmax(n−1) such
that this hypothetical upper boundtnew

b (n−1) is no more
than fractionp of the way from the targettT (n − 1) to
the playback deadlinetd(n − 1). In our experiments, we
choosep = 1/3.

When a frame with a new average coding rater̂c(n)

7

framen-1

rc old

rc
ne

w

gold(n-1)
gnew(n-1)

switch
rate

ta(n-1)

ta(n)

send
feedback

nn-2

td(n-1)

cl
ie

nt
 ti

m
e

tT(n-1)

 g(n-1)

ta(n-2)

Fig. 8. Buffer tube change and control target adjustment.

arrives at the client at timeta(n), the upper bound shifts
by approximately∆g(n − 1)/r̃a, where ∆g(n − 1) =
gnew(n− 1)− gold(n− 1), as illustrated in Figure 8. This
shift can be on the order of seconds and hence, rather than
being negligible, can be confusing to the controller. Our
solution is to introduce a simultaneous shift in the control
target schedule equal to∆g(n − 1)/r̃a. The server can
send this value to the client along with framen. If there
is no stream change, this value is simply zero.

If the control target schedule is adjusted whenever the
coding rate changes, it will no longer follow the designed
target schedule. We refer to the adjusted target schedule
as thecontrol target schedule to distinguish it from the
designed targetschedule (or simply thetarget schedule).
The control target schedule, of course, must eventually
attempt to return to the designed target schedule. The
basic idea is to decrease the slope of the control target
schedule when it is above the designed target schedule
and to increase the slope when it is below. For details, see
[9].

V. PERFORMANCEEVALUATION

In this section, we evaluate the performance of the
optimal rate control system when streaming a fine grained
scalable (FGS) video stream.

The test video is a 3-minute clip, which we obtain by
six repetitions of the concatenation of the three MPEG
standard test sequencesAkiyo, Stefan, andForemanin that
order. The test video is downsampled to QCIF, 10 fps, for
a total of 1800 underlying QCIF frames.3 The test video
is coded using a variant of MPEG-4 FGS [10], with a
10-second I-frame distance and no B frames. Using rate-
distortion optimization, from the FGS stream we extract
50 substreams whose average coding rates are uniformly
spaced in the log domain between log 50 kbps and log
1000 Kbps.

3The original Akiyo and Stefan test sequences are 300 frames, which
we downsample to 100 frames each. The original Stefan test sequence
is 400 frames, from which we extract the first 300 frames before
downsampling to 100 frames.

5 Mbps
5 ms

5 Mbps
5 ms

5 Mbps
5 ms

2.4 Mbps 50 ms

sn

s i

.

..

.

..

video
sink

 FTPi
sink

5 Mbps
5 ms

5 Mbps
5 ms

5 Mbps
5 ms rn

.

..

.

..

r1

R

s1

L

 FTPn
sink

video
source

 FTPi
source

 FTPn
source

r i

Fig. 9. ns-2 Simulation network setup.

client time # of FTPs fare share BW

Constant Bandwidth 0–180 s 5 400 Kbps

0–30 s 2 800 Kbps
30–60 s 5 400 Kbps

Variable Bandwidth 60–90 s 11 200 Kbps
90–130 s 5 400 Kbps
130–180 s 2 800 Kbps

TABLE I

BANDWIDTH AVAILABLE TO THE STREAMING SESSION

Using the popular network simulator ns-2 [11], we set
up a simple network environment as shown in Figure 9.
Video traffic is streamed from nodes1 to noder1 while
competing FTP cross traffic (FTPi) is transmitted nodesi

to noderi (2 ≤ i ≤ n). By adjusting the number of FTP
flows and their beginning/ending times, we can create both
constant and variable available bandwidth scenarios for the
streaming session, as specified in Table I. Experiments are
carried out using both TCP and TFRC [12] as alternative
transport layer protocols.

A. Basic Performance

Figures 10 and 11 show results using TCP as the
transport protocol, under constant and variable bandwidth
conditions, respectively. Figures 10(a) and 11(a) show the
evolution of the arrival and coding rates over time, while
Figures 10(b) and 11(b) show the number of seconds in
the client buffer between the playback deadline and 1) the
arrival time, 2) the buffer tube upper bound, 3) the control
target, and 4) the ideal (logarithmic) target, respectively.

In both constant and variable bandwidth conditions, in
the startup phase, the coding rate is about half of the arrival
rate, which allows fast startup and helps to build the client
buffer quickly. The coding rate catches up smoothly with
the arrival rate and tracks it smoothly despite fluctuations
in the available bandwith. As the result of coding rate
adjustments, the client buffer is well maintained around the
logarithmic target schedule, ensuring that no frame misses
its playback deadline.

All of the above performance figures show significant
deviation of the buffer tube upper bound from the control
target, which is especially obvious in the variable band-
width case. We can reduce this deviation by decreasing the
value ofσ. A smaller value ofσ value implies a relative
larger penalty on the deviation term in the cost function
and thus forces the upper bound to track the target more
closely. This, however, happens at the cost of sacrificing

8

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140 160 180

ra
te

 (
K

bp
s)

media time (s)

fair share bw
arrival rate
coding rate

(a) rate vs. time

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180

cl
ie

nt
 b

uf
fe

r
du

ra
tio

n
(s

)

media time (s)

buffer duration
target from deadline

ctrl target from deadline
upper bound from deadline

(b) buffer vs. time

Fig. 10. Constant bandwidth over TCP.

coding rate smoothness, since the corresponding term in
the cost function will be weighted less. Figure 12 shows
simulation results withσ = 500 under the same network
conditions as in Figure 10. It is clear that while the buffer
tube upper bound deviates only slightly from the control
target, the coding rate has undesirable oscillations.

On the other hand, a largeσ value will certainly yield
smoother coding rates, but might also incur client buffer
underflow since the buffer tube upper bound is allowed
to deviate significantly away from the control target.
Therefore, a good choice ofσ should take into account
this trade-off. In our implementation, we chooseσ = 4000
when the coding rate switches up andσ = 2000 when
it switches down. Note that we allow a slightly more
aggressive strategy in the latter case to further reduce the
chance of client buffer underflow. It is straightforward to
verify that this choice ofσ maintains a stable closed-loop
and good gain/phase margins; this is not repeated here.

Using TFRC instead of TCP produces similar results,
showing that TFRC is not really necessary for streaming
media on demand given that the client is able to use
a sufficiently large buffer. For further information and a
detailed experimental evaluation, see [9].

B. Performance Comparison

We compare our buffer management algorithm to two
existing algorithms.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180

ra
te

 (
K

bp
s)

media time (s)

fair share bw
arrival rate
coding rate

(a) rate vs. time

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180

cl
ie

nt
 b

uf
fe

r
du

ra
tio

n
(s

)

media time (s)

buffer duration
target from deadline

ctrl target from deadline
upper bound from deadline

(b) buffer vs. time

Fig. 11. Variable bandwidth over TCP.

As a benchmark, the first is the windowing algorithm in
[13] (which is part of the rate-distortion optimized sender-
driven streaming algorithm therein). In the benchmark
algorithm, the server maintains a sending window, which
contains the range of frames that are potentially in the
client buffer. The sending window slides forward to mimic
the playback (consumption) of frames at the client. At
each transmission opportunity, the sender selects from the
window a data unit that most decreases the distortion at
the client (per transmitted bit). The sliding window looks
ahead based on a logarithmic function (similar to the
logarithmic target schedule herein), which starts small and
grows slowly over time. Hence, the client can have low
startup delay and can gradually increase its buffer over
time.

Although conceptually simple and sound, the bench-
mark algorithm has two disadvantages. First, it does not
send out data units in the order in which they appear
in the media file (i.e., decoding order). This demands
resources (e.g., caching large segments of data) that may
be incompatible with high performance streaming. Second
and more importantly, until the window becomes large
enough to accommodate constant quality streaming (about
25 seconds for typical movies), the benchmark algorithm
demands, essentially, constant bit rate streaming. This is
because the duration of the client buffer is determined
by the logarithmic function. In contrast, in our algorithm,

9

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140 160 180

ra
te

 (
K

bp
s)

media time (s)

fair share bw
arrival rate
coding rate

(a) rate vs. time

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180

cl
ie

nt
 b

uf
fe

r
du

ra
tio

n
(s

)

media time (s)

buffer duration
target from deadline

ctrl target from deadline
upper bound from deadline

(b) buffer vs. time

Fig. 12. Constant bandwidth over TCP,σ = 500. The upper bound
tracks the control target more closely, while the coding rate is less
smooth, compared to Figure 10.

only a portion of the client buffer duration (namely the
safety zone between the target and the playback deadline)
is determined by the logarithmic function. The remainder
of the client buffer duration is determined by the leaky
bucket state when processing the video content.

The second is the CBR algorithm, a simple rate con-
trol mechanism that takes advantage of the ability of
to truncate an FGS encoded frame at any point. Thus
it is possible to control the rate by sending the media
data in real time, but truncating each frame to match
to available transmission rate. If the transmission rate is
constant, this yields a constant number of bits per frame.
The algorithm is simple and effective in the sense that it
successfully avoids any risk of rebuffering by matching
the instantaneous coding rate to the transmission rate.
However, without taking into account the variable bit rate
nature of constant quality coding, this algorithm results in
high quality for smooth content (which is easy to encode),
and low quality for high-action content (which is hard to
encode).

To compare the rate-distortion performance of all afore-
mentioned algorithms, experiments over a wide range
of available bandwidth (150-900 Kbps) are carried out.
Each experiment sets a constant available bandwidth for
the streaming session and TCP protocol is used for all

 30

 35

 40

 45

 50

 55

 150 300 450 600 750 900

P
S

N
R

 (
dB

)

bandwidth (Kbps)

optimal
benchmark

CBR

Fig. 13. Rate-Distortion comparison.

experiments. The average distortion in terms of PSNR
over each session is computed on the client side and
plotted in Figure 13. Note that frames over the first 40
s (media time) are excluded from the average distortion
computation. These frames correspond roughly to the time
period (about 30 s in client time) when the client buffer
is built up by streaming at lower coding rates than the
available bandwidth. The quality sacrifice during the initial
period will be easily amortized over streaming sessions of
reasonable length and it is appropriate not to be considered
in this rate-distortion comparison (where each session is
just 3 minutes long).

From the reported results, we can see that the optimal
coding rate control algorithm has better rate-distortion
performance than the benchmark and the CBR algorithms.
Over the wide range of bandwidth, the optimal coding
rate control algorithm yields about 2-3 dB PSNR gain
over the benchmark algorithm. The reason that the CBR
algorithm has worse performance than the benchmark
algorithm is clear. The CBR algorithm can be regarded
as an extreme case of the benchmark algorithm, where the
sending window maintained on the server side contains
only one frame data at any time. Hence, the limited ability
of the benchmark algorithm to smooth quality is further
reduced in this case.

VI. RELATED WORK

Hsu, Ortega and Reibman [6] address the problem of
joint selection of source and channel rates (which are
notions analogous to coding and transmission rates in this
paper) for VBR video. They propose a rate-distortion opti-
mization solution that maximizes receiving quality subject
to end-to-end delay guarantees. Luna, Kondi and Kat-
saggelos [14] pursue this direction further by introducing
network cost as an optimization objective and balancing
the trade-off between user satisfaction and network cost.
Both approaches assume networks that offer QoS support
while using various policing mechanisms (such as a leaky
bucket model) to constrain network traffic. The algorithms
in these papers can be modified to address the problem,
which we deal with in our paper, where the channel rate
is completely determined by network conditions and not

10

subject to choice. However, a drawback of these algorithms
compared to our optimal control mechanism is that they
require complete knowledge of channel ratesa priori,
which makes them less practical for streaming media
applications, where dynamic rate adjustment is required on
the fly. Moreover, these algorithms have higher complexity,
even with fast approximation variations [15]. The algo-
rithms are good, however, for determining performance
bounds in offline analysis.

To our knowledge, the most closely related contempo-
raneous work is that by de Cuetos and Ross [16], which
also decouples the transmission rate and the coding rate.
They assume that the transmission rate is determined by
the network transport protocol (TCP or TFRC), which is
the same assumption that we make in our paper. They
develop a heuristic real time algorithm for adaptive coding
rate control and compare its performance to an optimal
offline coding rate control policy if the transmission rate
is given prior to streaming. Our work differs from theirs
in two ways. One is that our rate control algorithm is
optimal in a control theoretic sense, in addition to being a
low complexity real time algorithm. The other is that we
take into account the variable instantaneous bit rate of the
media coding and thereby further improve and stabilize
the receiving quality.

The work of Rejaie, Handley and Estrin [17] proposes
a scheme for transmitting layered video in the context
of unicast congestion control, which basically includes
two mechanisms. One mechanism is a coarse-grained
mechanism for adding and dropping layers (changing the
overall coding rate and quality). The other is a fine-grained
interlayer bandwidth allocation mechanism to manage the
receiver buffer (not changing the overall coding rate or
quality). A potential issue with this approach is that
it changes the coding rate by adding or dropping one
(presumably coarse) layer at a time. If the layers are fine-
grained, as in the case of FGS coded media, then adding or
dropping one (fine-grained) layer at a time typically cannot
provide a prompt enough change in coding rate. Moreover,
since the adding and dropping mechanism is rather empir-
ical, the mechanism may simply not be suitable for FGS
media.

The work of Q. Zhang, Zhu and Y-Q. Zhang [18]
proposes a resource allocation scheme to adapt the coding
rate to estimated network bandwidth. The novelty of their
approach is that they consider minimizing the distortion (or
equivalently maximizing the quality) of all applications,
such as file-transfers and web browsing in addition to au-
dio/video streaming. However, their optimization process
does not include the smoothness of individual streams
and might lead to potential quality fluctuations. In our
paper, we explicitly take into account the smoothness of
the average coding rate over consecutive frames in our
optimal controller, which yields a higher and more stable
quality as network conditions change.

VII. SUMMARY

In this paper, we propose and verify an optimal online
rate control algorithm for scalable streaming media. Our
extensive analytical and experimental results show that
three goals are achieved: fast startup (about 1 s delay
without bursting), continuous playback in the face of
severe congestion, and maximal quality and smoothness
over the entire streaming session. We also show that our
algorithm works effectively with both TCP and TFRC
transport protocols.

REFERENCES

[1] W. Birney, “Intelligent streaming,” May 2003, http://-
www.microsoft.com/windows/windowsmedia/howto/articles/-
intstreaming.aspx.

[2] M. Kalman, E. Steinbach, and B. Girod, “Adaptive media playout
for low delay video streaming over error-prone channels,”IEEE
Trans. Circuits and Systems for Video Technology, to appear.

[3] C. Huang, P. A. Chou, and A. Klemets, “Optimal control of
Multiple Bit Rates for streaming media,” inProc. Picture Coding
Symposium, San Francisco, CA, Dec. 2004.

[4] G. Conklin, G. Greenbaum, K. Lillevold, A. Lippman, and
Y. Reznik, “Video coding for streaming media delivery on the
Internet,” IEEE Trans. Circuits and Systems for Video Technology,
vol. 11, no. 3, pp. 269–281, Mar. 2001, special issue on Streaming
Video.

[5] J. Ribas-Corbera, P. A. Chou, and S. Regunathan, “A generalized
hypothetical reference decoder for H.264/AVC,”IEEE Trans. Cir-
cuits and Systems for Video Technology, vol. 13, no. 7, July 2003.

[6] C.-Y. Hsu, A. Ortega, and A. Reibman, “Joint selection of source
and channel rate for VBR video transmission under ATM policing
constraints,”IEEE Journal on Selected Areas in Communications,
vol. 15, no. 5, pp. 1016–1028, Aug. 1997.

[7] B. D. O. Anderson and J. B. Moore,Optimal Control: Linear
Quadratic Methods. Prentice Hall, 1990.

[8] G. Franklin, J. Powell, and M. Workman,Digital Control of
Dynamic Systems, 3rd ed. Addison-Wesley, 1997.

[9] C. Huang, P. A. Chou, and A. Klemets, “Optimal coding rate
control for scalable and multi bit rate streaming media,” Microsoft
Research, Redmond, WA, Tech. Rep. MSR-TR-04-XXX, Dec.
2004, in preparation.

[10] F. Wu, S. Li, and Y.-Q. Zhang, “A framework for efficient progres-
sive fine granularity scalable video coding,”IEEE Trans. Circuits
and Systems for Video Technology, vol. 11, no. 3, pp. 301–317,
Mar. 2001.

[11] K. Fall and e. K. Varadhan, “Thens manual,” The VINT Project,
Tech. Rep., Dec. 2003, http://www.isi.edu/nsnam/ns/.

[12] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-
based congestion control for unicast applications,” inProc. Data
Communication, Ann. Conf. Series (SIGCOMM). Stockholm,
Sweden: ACM, Aug. 2000.

[13] P. A. Chou and Z. Miao, “Rate-distortion optimized streaming of
packetized media,”IEEE Trans. Multimedia, 2001, submitted.

[14] C. E. Luna, L. P. Kondi, and A. K. Katsaggelos, “Maximizing user
utility in video streaming applications,”IEEE Trans. Circuits and
Systems for Video Technology, vol. 13, no. 2, pp. 141–148, Feb.
2003.

[15] A. Ortega, K. Ramchandran, and M. Vetterli, “Optimal trellis-based
buffered compression and fast approximation,”IEEE Trans. Image
Processing, vol. 3, pp. 26–40, Jan. 1994.

[16] P. de Cuetos and K. W. Ross, “Adaptive rate control for streaming
stored fine-grained scalable video,” inProc. Int’l Workshop on
Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV), Miami Beach, FL, May 2002.

[17] R. Rejaie, M. Handley, and D. Estrin, “Layered quality adaptation
for Internet streaming video,”IEEE J. Selected Areas in Commu-
nications, vol. 18, no. 12, pp. 2530–2543, Dec. 2000.

[18] Q. Zhang, Y.-Q. Zhang, and W. Zhu, “Resource allocation for
multimedia streaming over the Internet,”IEEE Trans. Multimedia,
vol. 3, no. 3, pp. 339–355, Sept. 2001.

