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Abstract—A novel deep architecture, the Tensor Deep Stacking Network (T-DSN), is presented. The T-DSN consists of multiple,
stacked blocks, where each block contains a bilinear mapping from two hidden layers to the output layer, using a weight tensor to
incorporate higher-order statistics of the hidden binary ([0, 1]) features. A learning algorithm for the T-DSN’s weight matrices and
tensors is developed and described, in which the main parameter estimation burden is shifted to a convex sub-problem with a closed-
form solution. Using an efficient and scalable parallel implementation for CPU clusters, we train sets of T-DSNs in three popular
tasks in an increasing order of the data size: handwritten digit recognition using MNIST (60k), isolated state/phone classification and
continuous phone recognition using TIMIT (1.1m), and isolated phone classification using WSJ0 (5.2m). Experimental results in all
three tasks demonstrate the effectiveness of the T-DSN and the associated learning methods in a consistent manner. In particular,
a sufficient depth of the T-DSN, a symmetry in the two hidden layers structure in each T-DSN block, our model parameter learning
algorithm, and a softmax layer on top of T-DSN are shown to have all contributed to the low error rates observed in the experiments for
all three tasks.

Index Terms—Deep learning, stacking networks, tensor, bilinear models, handwriting image classification, phone classification and
recognition, MNIST, TIMIT, WSJ

✦

1 INTRODUCTION

RECENTLY, a deep classification architecture built
upon blocks of simplified neural network modules,

each with a single nonlinear hidden layer and linear
input and output layers was proposed, developed and
evaluated [1], [2]. It was called the Deep Convex Net-
work, since learning the upper-layer weights could be
formulated as solving a convex optimization problem
with a closed-form solution, after having initialized the
lower-layer weights of each block with a fixed restricted
Boltzmann machine. The network was later renamed the
Deep Stacking Network (DSN) [3], emphasizing that the
mechanism in this network for establishing the deep
architecture shares the same philosophy as “stacked
generalization” [4]. This name also recognizes that the
lower-layer weights are in practice learned for greater
effectiveness in classification tasks, so the overall weight
learning problem in the DSN is no longer convex. In
Section 2.1 of this paper, we provide a short review of the
previous DSN as the background for the current work.

The new deep architecture presented in this paper,
which we call the Tensor Deep Stacking Network (T-
DSN), improves and extends the earlier DSN architecture
in two significant ways. First, information about higher-
order, covariance statistics in the data, which was not
represented in DSN, is now embedded into the T-DSN
via a bilinear mapping from two hidden representations
to predictions using a third-order tensor. Second, while
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the T-DSN retains the same linear-nonlinear interleaving
structure as DSN in building up the deep architecture, it
shifts the major learning problem from the lower-layer,
non-convex optimization component to the upper-layer,
convex subproblem with a closed-form solution.

Modeling covariance structure directly on raw speech
or image data, rather than on the more compact binary
([0, 1]) hidden feature layers as achieved in T-DSN, was
previously proposed in an architecture called mcRBM
[5]–[7]. One key distinction is the different domains in
which the higher-order structure is represented: one in
the visible data as in the mcRBM and another in the
hidden units as in our T-DSN. In addition, mcRBM
can only be used in one single bottom layer in deep
architectures and cannot be easily extended to deeper
layers. This is due to the model and learning complexity
that are incurred by the the factorization, required to
reduce the cubic growth in the size of the weight pa-
rameters. Factorization incurs very high computational
cost, which, together with the high cost of Hybrid Monte
Carlo in learning, makes it impossible to scale up to
very large data sets. These difficulties are removed in
the proposed T-DSN presented in this paper. Specifically,
the same interleaving nature of linear and nonlinear
layers inherited from DSN makes it straightforward to
stack up deeper layers, and the closed-form solution
for the upper-layer weights enables efficient, parallel
training. Because of the relatively small sizes in the
hidden layers, no factorization is needed for the T-DSN’s
tensor weights. The mcRBM and T-DSN differ in other
ways; in particular, the mcRBM is a generative model
optimizing a maximum likelihood objective, while the T-
DSN is a discriminative model optimizing a least squares
objective. The preliminary work that introduced the T-
DSN and its key advantages was described previously
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in [8]. This paper significantly expands the work and
contains comprehensive experimental results plus details
of the learning algorithm and its implementation.

One major motivation for developing the recent DSN
is the lack of scalability and parallelization in the learn-
ing algorithms for the Deep Neural Network (DNN)
[9]–[11] which have achieved high success in large vo-
cabulary speech recognition (e.g., [10]). In [1]–[3], it
was shown that all computational steps of the learning
algorithm for DSN are batch-mode based, and are thus
amenable to parallel implementation on a cluster of CPU
(and/or GPU) nodes. The same computational advan-
tage is retained for the T-DSN architecture introduced in
this paper: we are able to parallelize all computations
necessary for training and evaluation and thus scale
our experiments to larger training sets using a cluster.
The ability to continue to benefit from increasingly large
batch sizes leads the T-DSN training to use parallelism in
a very different way from that of [12], which in contrast
distributes asynchronous computation of mini-batch gra-
dients for training a deep sparse autoencoder. Unlike
the DNN and other deep architectures which demand
GPUs in learning, all results presented in this paper are
obtained using exclusively CPU-based clusters.

The organization of this paper is as follows. In Section
2 we provide a brief review of the DSN and discuss how
the T-DSN generalizes the DSN. Section 2 also presents
an overview of the T-DSN architecture and its bilinear
structure that uses tensor weights to make predictions
from two hidden representations of the input data. In
Section 3, we describe a solution, including its deriva-
tion, to the T-DSN learning problem from the algorithmic
perspective. A parallel implementation of the learning
algorithm for practical applications is detailed in Section
4, which for comparison also includes a computational
analysis of sequential learning time complexity. Section
5 presents three sets of evaluation experiments, from
a smaller scale (MNIST with 60k training samples for
image classification), to a larger scale (TIMIT with 1.12m
training samples for both isolated phone classification
and continuous phone recognition), and to a still larger
scale (WSJ with 5.23m training samples for phone clas-
sification). We show the experimental results that con-
sistently demonstrate the effectiveness of the T-DSN
architecture and related learning methods.

2 TENSOR DEEP STACKING NETWORK: AN
OVERVIEW
In this section, we first briefly review the DSN as it
relates to the T-DSN, and then describe the general
architecture of the T-DSN and its key properties.

2.1 Deep Stacking Networks: A Review
The Deep Stacking Network (DSN) is a scalable deep
architecture amenable to parallel weight learning [1]. It is
trained in a supervised, block-wise fashion, without the

need for back-propagation over all blocks as is common
in other popular deep architectures [13]. The DSN blocks,
each consisting of a simple, easy-to-learn module, are
stacked to form the overall deep network.

Each DSN block, as developed in [1], [2] and which
also forms the basis of the T-DSN, is a simplified mul-
tilayer perceptron with a single hidden layer. It consists
of an upper-layer weight matrix U that connects the
logistic sigmoidal nonlinear hidden layer h to the linear
output layer y, and a lower-layer weight matrix W that
links the input and hidden layers. Let the target vectors
t be arranged to form the columns of T, let the input
data vectors x be arranged to form the columns of X,
let H = σ(WTX) denote the matrix of hidden units,
and assume the lower-layer weights W are known. The
function σ performs the element-wise logistic sigmoid
operation σ(x) = 1/(1 + exp(−x)). Then learning the
upper-layer weight matrix U can be formulated as a
convex optimization problem:

min
UT

f = ‖UTH−T‖2F , (1)

which has a closed-form solution:

(2)

At the bottom block, X contains only the raw input
data, but for higher blocks of the DSN (as well as the T-
DSN), the input data are concatenated with one or more
output representations (typically y) from the previous
blocks. The lower-layer weight matrixW in a DSN block
can be optimized using an accelerated gradient descent
[14] algorithm to minimize the squared error objective
in Eqn. 1. Embedding the solution of Eqn. 2 into the
objective and deriving the gradient, we obtain

∇Wf = X
[
HT ◦ (1−HT ) ◦Θ

]
, (3)

where 1 is the matrix of all ones, ◦ denotes element-wise
multiplication, and

Θ = 2H†(HTT )(TH†)−TT (TH†). (4)

To train a DSN block one iteratively updates W using
the gradient in Eqn. 3, which by design takes into
consideration the optimal U; after W has been estimated
the closed-form U is computed once, explicitly.

It is to be emphasized that a key element of the
standard DSN is that each block outputs an estimate of
the final label class (expressed as the vector y) and this
estimate is concatenated with the original input vector to
form the expanded “input” vector for the next block of
the DSN. Because the original input is retained for each
higher block, it is guaranteed to perform better on the
training set than the previous block. In contrast to other
deep architectures (e.g. the deep belief network [9]),
the DSN does not aim to discover transformed feature
representations. Due to this restrictive nature of building
hierarchical structures as well as to the simplicity of each
block, the core of the DSN is considerably simplified and
optimizing network weights is naturally parallelizable.
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Fig. 1. An example T-DSN architecture with three stack-
ing blocks, where each block consists of three layers, and
superscript is used to indicate the block number. Inputs
(X) and outputs (Y(i−1)) are concatenated to link two
adjacent blocks. The hidden layer in each block has two
parallel branches (H(i)

(1) and H
(i)
(2)).

It is noteworthy that for purely discriminative tasks
experiments have shown that DSN, despite its simplicity,
performs better than the deep belief network [3].

It is also to be clarified that the estimate of the label
class, vector y, is continuous valued, computed as a
linear combination of the hidden layer in each block. The
classification decision is made at the top block where the
index of the maximal value in vector y determines the
label. At the lower blocks of the DSN, the output vector
y is not used for decision but used to concatenate with
the original input vector to feed to its immediately upper
block. All these attributes have been inherited to the T-
DSN to be presented next.

2.2 T-DSN: An Architectural Overview
The DSN just reviewed is a special case of the T-DSN
we describe now. In Fig. 1, we illustrate the modular
architecture of a T-DSN, where three complete blocks are
stacked one on another. The stacking operation of the T-
DSN is exactly the same as that for the DSN described
in [1]. Unlike the DSN, however, each block of the T-
DSN has two sets of lower-layer weight matrices W(1)

and W(2). They connect the input layer X with two
parallel branches of sigmoidal hidden layers H(1) and

H(2) shown in Fig. 1. Each T-DSN block also contains a
three-way, upper-layer weight tensor U that connects the
two branches of the hidden layer with the output layer.

Note if the T-DSN is used for regression or for clas-
sification, then the basic architecture shown in Fig. 1 is
sufficient. However, if the T-DSN is to be interfaced with
a hidden Markov model (HMM) for structured predic-
tion such as continuous phonetic or word recognition,
it is desirable to convert the final output in Fig. 1 into
posterior probabilities via an additional softmax layer
(the softmax operation applied to a vector exponentiates
each entry and then normalizes the vector’s entries to
sum to one, yielding a distribution). One set of the
experiments reported in Section 5.2 are obtained with
an additional softmax layer added to the top of Fig. 1.

2.3 Bilinear Prediction from Parallel Hidden Layers
Whereas each block of the DSN produces a single hidden
representation of the data and linearly maps from the
hidden representation to predictions, each block of the
T-DSN uses two hidden representations and combines
them bilinearly to produce the predictions. A map F(u, v)
is bilinear if it is linear in u for every fixed v, and
linear in v for every fixed u [15]. We will see that the
T-DSN generalizes the single block structure, replacing
a linear map from hidden representation to output with a
bilinear mapping, while retaining its desirable modeling
and estimation properties. That is, we have a generaliza-
tion from the mapping of RL → R

C in the DSN to the
mapping of RL1 × R

L2 → R
C in the T-DSN.

As illustrated in Fig. 1, the first step in the T-DSN
operation is to map an input data vector x ∈ R

D to two
parallel branches of hidden representations, h(1) ∈ R

L1

and h(2) ∈ R
L2 . Conceptually, these represent two dif-

ferent views of the data (see Appendix C for an analysis
of these views). Each hidden representation is obtained
non-linearly from the input data according to h(j) =
σ(WT

(j)x), where W(1) ∈ R
D×L1 and W(2) ∈ R

D×L2 are
two weight matrices to be estimated. The interactions
between these two hidden-layer branches and the pre-
diction vector y are modeled by a third-order weight
tensor, U ∈ R

L1×L2×C . Specifically, in the second step,
the two hidden representations are bilinearly mapped
to the prediction vector via U . In tensor notation, the
operation is

U(h(1),h(2)) � (U ×1 h(1))×2 h(2) = y, (5)

where ×i denotes multiplying along the ith dimension
(mode) of the tensor [16]. In more common notation,

yk =

L1∑
i=1

L2∑
j=1

Uijkh(1)ih(2)j = hT
(1)Ukh(2), (6)

where Uk ∈ R
L1×L2 denotes the (matrix) slice of U

obtained by fixing the third index to k and allowing the
first two indices to vary.
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It is instructive to link the T-DSN’s behavior to that
of the DSN, which we can accomplish by manipulat-
ing the bilinear notation above. First, define h̃ to be
h̃ = h(1)⊗h(2) ∈ R

L1L2 , where ⊗ denotes the Kronecker
product: the ((i−1)L2+j)th element of h(1)⊗h(2) is equal
to h(1)ih(2)j , for i ∈ {1, 2, . . . , L1}, j ∈ {1, 2, . . . , L2}.
By definition, h̃ contains all pairs of products between
elements in h(1) and elements in h(2). One can then
vectorize Uk to create ũk = vec(Uk) ∈ R

L1L2 using the
ordering that matches h̃; that is, if the �th element of h̃
is h(1)ih(2)j then the �th element of ũk is Uijk. Then

yk =

L1∑
i=1

L2∑
j=1

Uijkh(1)ih(2)j = ũT
k h̃. (7)

Arranging all ũk, k = 1, 2, ..., C, into a matrix Ũ =
[ũ1ũ2 · · · ũC ], the overall prediction then becomes

y = ŨT h̃. (8)

Thus the bilinear mapping from the two hidden-layer
branches can be viewed as a linear mapping from a
single, implicit hidden representation, h̃. The linear map-
ping uses matrix Ũ, which contains all of the elements
of the tensor U unfolded into a matrix. Aggregating the
implicit hidden representations h̃ for each of the N
training data points into the columns of an L1L2 × N
matrix H̃, we obtain

Y = ŨT H̃. (9)

This leads to the same prediction equation as in the
DSN, but with an implicit hidden representation h̃ that
contains pairwise multiplicative interactions between
h(1) and h(2), incorporating second-order statistics of
the input data in a parsimonious manner. In Fig. 2 we
present an equivalent architecture to the bottom block
of Fig. 1, illustrating how the two hidden layers are
expanded into an implicit hidden layer. The relationship
between the matrices of explicit, lower-dimensional hid-
den units, H(1) = σ(WT

(1)X) and H(2) = σ(WT
(2)X), and

matrix of implicit hidden units, H̃, is

H̃ = H(1) �H(2).

The � operation is the Khatri-Rao product [16], which
performs a column-wise Kronecker product.

3 LEARNING T-DSN WEIGHTS – ALGORITHM
Because the architectures shown in Figures 1 and 2
are equivalent, learning the second layer weights given
the implicit hidden representation is the same least
squares problem encountered by the DSN. Specifically,
the Tikhonov regularized optimization problem (with
training target matrix T),

min
ŨT

‖T− ŨT H̃‖2F + λ‖U‖2F , (10)

has the closed-form solution of

ŨT = TH̃‡ = TH̃T (H̃H̃T + λI)−1. (11)

Fig. 2. Equivalent architecture to the bottom block of
Fig. 1, where the tensor is unfolded into a large matrix.

Substituting the constraint of Eqn. 11 into the overall
objective of Eqn. 10, we can make the full learning more
effective by coupling the lower weight matrices with
the upper weight matrix. In other words, as with the
DSN, the upper-layer weights of a T-DSN block are de-
terministically computed given the lower-layer weights
and thus they do not need to be learned separately and
independently. This contrasts with the standard neural
network learning algorithms, where both sets of weights
are updated incrementally with no direct constraints on
each other. Such constraints are available for T-DSN due
to the use of linear output layers in each block, and not
available for standard neural networks with nonlinear
output layers.

We now address the more difficult learning problem
for the two lower weight matrices W(1) and W(2), since
H̃ is a deterministic function of the lower layer weights.
In this work, we adopt the strategy of optimizing W(1)

andW(2) using methods requiring only first-order oracle
information, i.e. those requiring only objective function
evaluations and the gradients of the objective function
with respect to W(1) and W(2). Note that this includes
approximate second-order optimization methods such as
L-BFGS. The derivation of these gradients has common-
ality to the DSN case, with an extra step necessitated
by the Khatri-Rao product. To simplify the notation
throughout the paper we assume λ = 0 in Eqn. 10
(a detailed derivation of the gradient for arbitrary λ is
provided in Appendix A).

With notation analogous to Eqn. 4, let Θ̃ denote

Θ̃ = ∇H̃T f = 2H̃†(H̃T
T
)(TH̃†)−TT (TH̃†). (12)

By the chain rule, we obtain

[
∇H(1)

f
]
in

= 〈Θ̃T ,EL1×N
(i,n) �H(2)〉 (13)

=

L2∑
k=1

H(2)knΘ̃((i−1)L2+k),n (14)
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[
∇H(2)

f
]
jn

= 〈Θ̃T ,H(1) �EL2×N
(j,n) 〉 (15)

=

L1∑
k=1

H(1)knΘ̃((k−1)L1+j),n, (16)

where Em×n
(i,j) denotes an m × n matrix with entry (i, j)

equal to one and all other entries zero. Let Ψ(1) ∈ R
L1×N

and Ψ(2) ∈ R
L2×N denote the matrices ∇H(1)

f and
∇H(2)

f , respectively. Then, following the derivation of
the DSN, we obtain

∇W(1)
f = X(HT

(1) ◦ (1−HT
(1)) ◦Ψ(1)).

and

∇W(2)
f = X(HT

(2) ◦ (1−HT
(2)) ◦Ψ(2)). (17)

The Ψ(1) and Ψ(2) matrices above have the effect of
bridging the high dimensional representation used in
Θ̃ with the low dimensional representation in H(1) and
H(2), and are needed due to the Khatri-Rao product.

Using the above gradients one can train a T-DSN block
using a number of algorithms; in our experiments, we
use the L-BFGS and gradient descent implementations in
the Poblano optimization toolbox [17]. Our experience
suggests that training a T-DSN block requires around
10-15 iterations of L-BFGS, with up to 7 gradient eval-
uations per iteration for line search. In our experiments
the weight matrices W(1) and W(2) are initialized with
random values in a range that is tuned using the vali-
dation set.

From Eqns. 12 and 17, it is clear that the bulk of the
gradient computation is in matrix operations, including
matrix multiplications and element-wise matrix prod-
ucts. To bypass memory limitations and to speed up
training, we parallelize these matrix operations to run
on a CPU cluster. The ability to parallelize training in
this manner is key for the scalability of T-DSN training.

3.1 Connections between T-DSN and DSN

We show here that the DSN is in fact a special case of the
T-DSN. To distinguish this special case from the general
case, we will use Ĥ and Û to denote the T-DSN’s H̃

and Ũ, respectively. As before, let h(1), h(2) denote the
two hidden representations in a T-DSN block and let h
denote the (only) hidden representation in a DSN block.
Let W(1), W(2) and W denote the corresponding first-
layer weight matrices. A DSN is then a special case of
a T-DSN when L1 = 1, L2 = L, W(1) = 0 and W(2) =
W ∈ R

L×N . Then h(1) = σ(0Tx) = 1/2 and h(2) = h,
and it follows that

Ĥ = H(1) �H(2) =
1

2
H. (18)

In this case, the pseudo-inverse is

Ĥ† = ĤT (ĤĤT )−1 =
1

2
HT (

1

4
HHT )−1 = 2H†. (19)

giving the least squares solution ÛT = TĤ† = 2TH†.
Hence the T-DSN and DSN predictions are identical:

ÛT Ĥ =
(
2UT

)(1

2
H

)
= UTH = Y. (20)

In Appendix B, we show that under these same condi-
tions, gradients ∇W(2)

f and ∇W are identical as well.
While the DSN is a special, extremely asymmetric, case

of the T-DSN, we have found that the closer the two
hidden-layer branches’ dimensions are, the better the
classification performance (see Section 5.2 for empirical
evidence). In the non-degenerate cases (L1 ≈ L2 � 1),
the T-DSN dramatically shifts the balance of parameters
from the lower-layer weights to the upper-layer weights.
Whereas the DSN has D × L lower-layer (explicit) pa-
rameters and L × C upper-layer (implicit) parameters,
the T-DSN has D × (L1 + L1) lower-layer parameters
and L1 × L2 ×C upper-layer parameters. We conjecture
that the observed advantages of using equal numbers of
hidden units is because the symmetric case maximizes
the ratio of implicit feature dimension L1L2 over explicit
feature dimension L1+L2, and thus makes the best use of
the closed-form upper-layer parameters. The key advan-
tage of the non-degenerated T-DSN over the degenerated
one (i.e., DSN) is the new ability to capture higher-order
feature interactions via the cross product.

4 LEARNING T-DSN WEIGHTS – PARALLEL
IMPLEMENTATION
Stochastic mini-batch training is commonly employed
in deep learning training. Empirically, researchers often
observe diminishing returns in classification accuracy
performance for gradient methods as the mini-batch
size increases. In contrast, due to the embedded least
squares problem, T-DSN’s accuracy in classification tasks
continues to improve as the mini-batch size increases.
For this reason, it is desirable to use the largest pos-
sible amount of training data at each iteration. In this
section we analyze the time and space complexities of
our T-DSN training algorithm, and introduce a parallel
training method that allows us to scale to large training
sets.

4.1 Sequential Training Computational Complexity
In order to learn the T-DSN weights, we need to evaluate
both the objective function and its gradients with respect
to W(1) and W(2) at each iteration. Let L = L1L2 denote
the number of implicit hidden units. Then, computing
the gradients defined by Eqn. 17 involves a sequence
of cached intermediate steps with the time complexities
listed in Table 1, and has an overall space complexity
of O((L + D + C)N) (due to the need to store X , H̃ ,
and H̃† in memory). Evaluating the objective function
in Eqn. 10 has a time complexity of O(NL(C+D)) with
the same space complexity. In practice, for large enough
N this space complexity will exceed the main memory of
a single machine, making the ability to parallelize over
many machines crucial for handling very large data sets.
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Quantity Complexity
H̃† O(DN(L1 + L2) +NL2 + L3)

Θ̃ O(LNC)
Ψ(i) O(NL)

∇W(i) O(DNLi)
Total O(NL2 + L3 +NLC +DN(L1 + L2))

TABLE 1
Gradient computational complexity, assuming the earlier
expressions are cached for use in the later expressions.

4.2 Parallelizing Matrix Operations
There are well known techniques for parallel matrix mul-
tiplication of the formA = BCT ∈ R

q×r; in general, they
breakB ∈ R

q×N andC ∈ R
r×N into submatrices that can

be combined to produce A. Because our multiplies will
involve instances where common dimension of B and
CT (i.e., the number of training samples) is significantly
larger than both q and r, we use the following basic
matrix multiplication parallelization strategy:

A =

P∑
k=1

B〈k〉C〈k〉T . (21)

Where B〈k〉 denotes the kth sub-block of matrix B that
has been divided into P sub-blocks along the second
dimension:

B =
[
B〈1〉 B〈2〉 · · · B〈P 〉

]
(22)

And likewise, we have for matrix CT :

CT =

⎡
⎢⎣

C〈1〉T

...
CT 〈P 〉

⎤
⎥⎦ (23)

Decomposing the large matrix operations into many
small submatrix operations is the key to parallelizing
the gradient and objective function computation.

4.3 Parallel Pipeline
Given current values for the T-DSN parameters W′

(1)

and W′
(2), we use the above parallelization strategy

to compute the objective function value and gradients.
Our parallelization is over training data points: we split
any matrix M with a second dimension N into P sub-
matrices M〈k〉, each of which has Nk columns.

The computation pipeline is broken into a large num-
ber of jobs, as illustrated by the directed acyclic graph in
Fig. 3. The arrows denote dependence: a job can run once
all of the jobs feeding into it have completed. The results
of each job in Fig. 3 are cached and used in subsequent
processing. There are three qualitatively different kinds
of jobs, denoted by the different shapes in the figure.
The green three-dimensional boxes each denote a set of
P jobs, where the individual jobs process a fraction of
the total dataset (the kth batch). The orange rectangle
jobs are accumulators, and need only to sum over the

Variable Dimension Operation
H
〈k〉
(i)

Li ×Nk σ(WT
(i)

X〈k〉)

H̃
〈k〉
(i)

L×Nk H
〈k〉
(1)

�H
〈k〉
(2)

B[k] L× L H̃〈k〉H̃〈k〉T

F[k] L× C H̃〈k〉T〈k〉T

B L× L
∑P

k=1 B
[k]

F L× C
∑P

k=1 F
[k]

H̃†〈k〉 Nk × L H̃〈k〉TB−1

U L× C B−1F

D[k] C × L T〈k〉H̃†〈k〉

D C × L
∑P

k=1 D
[k]

s[k] 1× 1 ‖UTX〈k〉 −T〈k〉‖2
F

s 1× 1
∑P

k=1 s
[k]

Θ̃T 〈k〉 L×Nk 2H̃†〈k〉FD−T〈k〉TD

Ψ
〈k〉
(1)

L1 ×Nk Ψ(1)in = 〈EL1×N

(i,n)
�H

〈k〉
(2)

, Θ̃T 〈k〉〉

Ψ
〈k〉
(2)

L2 ×Nk Ψ(2)jn = 〈H
〈k〉
(1)

�E
L2×N

(j,n)
, Θ̃T 〈k〉〉

G
[k]
(i)

D × Li X〈k〉(H
〈k〉
(i)

◦ (1−H
〈k〉
(i)

) ◦Ψ
〈k〉
(i)

)

G[k] D × (L1 + L2) [G
[k]
(1)

G
[k]
(2)

]

G D × (L1 + L2)
∑P

k=1 G
[k]

TABLE 2
The variables computed in the parallel pipeline, their
dimension and the mathematical operations required to
produce them. Variables with a dimension equal to Nk

are recomputed each time; others are cached to disk.

P individual files on which they depend. Because they
begin accumulating the sum of their ancestors as each
one finishes, they introduce minimal delay into the
pipeline. The jobs marked with red octagons cannot be
run until all ancestor jobs have been finished, since they
require synchronizing over the P batches.

Table 2 lists the full set of intermediate variables
that must be computed to construct the gradient and
evaluate the function; it is a superset of the variables
listed in Fig. 3. Note that no variable that is dependent
on the data set size (i.e. has a dimension equal to Nk)
is cached. These variables are recomputed according to
their definitions each time, as the cost of caching these
variables to the disk was found to exceed the cost of
recomputing them.

At the conclusion of the parallel pipeline, the vari-
able s denotes the objective function f evaluated at
f(W′

(1),W
′
(2)), and the variable G denotes the concate-

nation of the gradients, ∇W(i)
f .

4.3.1 Parallel Timings
Our original and primary motivation for the parallel
implementation was to allow us to scale beyond the
memory limit of a single machine. We also measure the
effect of parallelization on speed. As usual, there is cost
associated with parallelization; namely, the inter-process
communication time. Because our implementation uses
network disk to store and load cached variables, this
cost is non-trivial. Fig. 4 measures empirical wall-clock
run-times over repeated single instances of the parallel
pipeline (i.e., each computing the gradient and evalu-
ating the objective) on the TIMIT data (1.12m training
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Fig. 3. T-DSN parallel pipeline. The 3D boxes denote sets
of P parallel jobs, rectangles denote accumulator jobs
and octagons denote sequential jobs. All other values
from Table 2 are recomputed as needed.

samples). Specifically, the mean and the upper and lower
95% confidence intervals are plotted. To produce the tim-
ing results in this figure, we use hidden representations
of dimension L1 = L2 = 40, and repeat a single instance
of the parallel pipeline eight times over the number
of machines, P , across which the parallel training is
distributed. On each machine processing is parallelized
over eight cores. A fixed, additional overhead associ-
ated with initializing the data is also included in the
presented times; in practice these overhead costs would
become negligible over the course of training a multiple-
block T-DSN. The minimum value for P is four, since
lower values caused the compute nodes’ memory to be
exceeded. For this dataset, the lowest average times are
achieved in the range between P = 10 and P = 25 (80-
200 cores). After this, there is a gradual rise in the total
computation times, as improvements in computation
time are outpaced by the additional disk access and
communication costs. In practice, because the speedup is
relatively insensitive to the degree of parallelization, we
simply set P to be sufficiently large that training does
not exceed the compute nodes’ memory limits. Note that
the stacking nature of the T-DSN means that one cannot
parallelize over blocks, only within blocks. Because in
practice the number of blocks is limited and the bulk
of the computation is spent within blocks, this does not
prove to be a major obstacle to training.

5 EVALUATION EXPERIMENTS
In this section, we detail the experiments and present the
results aimed to evaluate the effectiveness of the T-DSN
architecture described in the preceding sections. Three
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Fig. 4. Empirical wall-clock timings by number of cores
for completing the parallel pipeline, repeating eight runs
with L1 = L2 = 40 for each degree of parallelization
measured. Upper and lower 95% confidence intervals are
plotted in blue; average time is dashed white.

well-known image and speech databases for benchmark-
ing are used: MNIST, TIMIT, and WSJ.

5.1 MNIST Handwriting Image Recognition
In the first set of experiments, we evaluate the T-DSN
architecture and the learning algorithms on the MNIST
database of binary images of handwritten digits [18].
The digits have been size-normalized while preserving
their aspect ratio. Each original image is centered by
computing and translating the center of mass of the
pixels, yielding a 28 × 28 image. The task is to classify
each 28 × 28 image into one of the 10 digits. The
MNIST training set is composed of 60,000 examples from
approximately 250 writers. The test set is composed of
10,000 patterns. The sets of writers of the training set and
test set are disjoint. In the experiments, a small fraction
of the training data are held out as a validation set to
tune hyper-parameters in the T-DSN. The properties of
the validation and test sets in MNIST are found to be
very similar to each other.

The architecture of the T-DSN used in the MNIST ex-
periment was shown in Fig. 1, except with four stacking
blocks instead of three. The input layer at the bottom
block consists of 784 units, one for each black-white
pixel in the 28 × 28 image. Each of the two hidden
layers consists of L1 and L2 sigmoidal units, denoted by
L1×L2 as its hidden-layer configuration. All blocks have
the same hidden-layer configuration in all experiments
reported in this section. The prediction layer of all blocks
has 10 linear units, corresponding to 10 digit output
classes. The input layer at the non-bottom blocks is a
concatenation of the raw input data and the prediction
layer’s output from the previous block, thus having the
dimensionality of 794.

Figure 5 shows the training objective (mean square
error) between the prediction layer’s output and the
zero-one target averaged over the full training set, as
a function of each T-DSN block and also as a function
of epochs in the batch-mode gradient-decent training for
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Fig. 5. MNIST: Training objective (mean square error) at
each of the training epochs for each block of the T-DSN
with hidden-layer configuration of 90× 90.
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Fig. 6. MNIST: Test-set error rate as a function of training
epochs at each block of the T-DSN with hidden-layer
configuration of 90× 90.

each T-DSN block. The corresponding test-set classifica-
tion error rate is shown in Figure 6. The hidden-layer
configuration of the T-DSN used here is L1×L2 = 90×90.
The two sets of input matrix weights to the two hidden
layers in each T-DSN block are initialized with small
uniform random numbers for parallel gradient-decent
training.

The results in Figures 5 and 6 show that when a
new block is added to the T-DSN, both the training
objective function and the test error rate are reduced
even if the training in the previous block already reached
near convergence. Further, we observe in Figure 5 that as
more blocks are added, the training objective continues
to drop to close to zero, and, although not shown in the
figure, the error rate for the training set drops to zero as
well. There is no obvious rise in errors observed for the
test set (Figure 6).

In Table 3, we show the relationship between the test
error rate and the hidden-layer configuration. The error
rate is obtained at the convergence of the training with
the optimal number of blocks and several other hyper

TABLE 3
MNIST: Test-set error rate at convergence as a function

of hidden-layer configuration.

Configuration Test Error Rate
100× 100 1.21%
90× 90 1.22%
100× 81 1.30%
180× 45 1.38%
60× 60 1.50%
90× 40 1.65%
50× 50 1.70%
40× 40 1.95%
1600× 1 2.70%
30× 30 2.20%
900× 1 3.25%

parameters (learning rates, size of the initial random
weights, etc.) determined on the validation set. We ob-
serve that with the same number of implicit hidden
units, the symmetric configuration is significantly better
than non-symmetric configurations. Also, the hidden
layers should be sufficiently large to produce low error
rate, which is possibly limited by the amount of training
data and can be determined on the validation set.

As an extreme case, when one of the two hidden layers
in each block reduces to a single unit, the corresponding
T-DSN behaves like a DSN with a significantly higher
error rate — e.g., 30 × 30 vs. 900 × 1 — as shown in
Table 3.

The MNIST website provides the results of 68 classi-
fiers. A very large and deep convolutional neural net-
work gives the state-of-the-art error rate of 0.39% [19].
The use of distortions to augment the training data is
important to achieve this lowest error rate. Without the
use of the distortions, which is impractical in real appli-
cations, the error rate was increased to 0.53%. Without
the use of convolutional structure and distortions or any
other types of special pre-processing, the lowest error
rate, 0.83%, was reported in [3] by a carefully tuned
and optimized DSN. The error rate of 1.21% reported
in this paper is comparable to that achieved using the
deep belief network as reported in [9]. It was obtained
without careful tuning, without passing of the learned
weights from one block to another and without pre-
training of weights using restricted Boltzmann machines,
which were all exploited in [3].

5.2 TIMIT Phone Classification and Recognition
In the second set of experiments, the TIMIT database is
used for evaluating the T-DSN. The training set consists
of 462 speakers. The total number of frames in the
training data is 1,124,589. The validation set provided
by the database contains 50 speakers, with a total of
122,488 frames. Results are reported using the standard
24-speaker core test set consisting of 192 sentences with
7,333 phone tokens and 57,920 frames.

The speech data is analyzed using standard Mel fre-
quency cepstral coefficients (MFCCs). All experiments
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used a context window of 11 frames. This gives a total
of 39 · 11 = 429 elements in each feature vector as
the raw input to T-DSN. This window size was shown
to be optimal for the TIMIT phone recognition task in
different kinds of deep networks published earlier (e.g.,
[20]) and has not been customized for the T-DSN in
this study. For the prediction at each layer of the T-
DSN, we use 183 target class labels (i.e., three states for
each of the 61 phones), which we call “phone states,”
with a zero-one (also called one-hot) encoding scheme.
Phone boundaries are labeled in the corpus; we obtain
the phone state labels by a state-frame alignment using
a strong GMM-HMM system, as is common for recent
deep learning work for speech recognition.

The results reported in this section are obtained using
the main T-DSN architecture illustrated in Fig. 1, where
the number of stacking blocks is between 8 to 13 as
determined on the validation set. In some experiments,
additional one or more hidden layer(s) and a softmax
layer are added to the top of the T-DSN for computing
frame-level state posterior probabilities. This latter step
is needed for phone recognition task when a further
dynamic programming step is used to reach the phone
recognition decision. Only symmetric hidden-layer con-
figurations are used, and we tune configurations be-
tween L1 × L2 = 70× 70 and 100× 100.

In Table 4 (a) and (b), we compare the Frame-level
State classification Error Rates (F-SER) with (b) and
without (a) using a trained softmax layer on top of
the T-DSN. Obtaining the results of F-SER requires no
additional post-processing, making the TIMIT experi-
ment as simple as MNIST. Comparing (a) and (b), we
observe noticeable error reduction after the softmax layer
is added. In each case, we also compare T-DSN and its
corresponding DSN. Similar to the MNIST experiments,
the T-DSN gives lower errors, especially in the case of
softmax output (b). With the softmax output, we can
also evaluate using the cross entropy (CE) measure for
the test set. Cross entropy is the average of negative
log (base-e) posterior probabilities over all frames in the
test set, computed from the softmax layer. The lower the
cross entropy, the better the performance. In Table 4(b),
we further compare T-DSN with two versions [20], [21]
of deep neural nets (DNN), and show that the T-DSN
and DSN are both superior to DNN in both error rate
and cross entropy.

We now present a new set of TIMIT results, which
are more meaningful to speech researchers, after post-
processing of the T-DSN outputs in Table 5. The first
measure is framewise phone error rate, computed by: 1)
collapsing three sequential units (states) associated with
each phone into one single phone class using majority
voting over all frames within the phone boundaries in
each test sentence as provided by the TIMIT database;
and 2) collapsing a total of 183 output units into 39
phone-like units [22]. Using this new measure after col-
lapsing, we observe a lower error rate using T-DSN than
DSN and two versions of DNN. When the outputs of T-

TABLE 4
TIMIT: Comparing T-DSN (and DSN) before (a) and
after (b) adding softmax layers to produce posterior
probabilities, in terms of frame-level state error rate

(F-SER) and cross entropy value (CE)

(a) Linear Output
Model F-SER
TDSN 42.6%
DSN (mini-batch) 44.3%
DSN (full-batch) 42.7%

(b) Posterior Output
Model F-SER CE
TDSN 40.9% 2.02
DSN 41.8% 2.16
DNN 45.0% 2.28
MMI-DNN 43.0% 2.20

DSN are fed further to a 5-hidden-layer DNN, denoted
as “T-DSN + DNN” in Table 5, the framewise phone
error rate is dropped further.

The second measure (shown in the last column of
Table 5) is continuous phonetic recognition error rate.
This is computed by: 1) collapsing a total of 183 T-DSN
output units into 39 phone-like units, 2) normalizing
the softmax outputs of T-DSN by state priors so that
the posterior probabilities of states are converted to a
quantity proportional to data likelihoods for each state,
and 3) using a dynamic programming step across full
sentences to determine phone recognition errors (sub-
stitution, deletion and insertion errors). This last step
is also called “phonetic decoding”, where a standard
bigram phone-level “language” model is used with the
language model weight and insertion penalty tuned
using the validation data. The results in Table 5 using
this measure again demonstrate superior performance of
T-DSN, especially when the outputs of T-DSN are further
processed by a DNN.

The original motivation of this work was to make the
learning of deep networks scalable by replacing stochas-
tic gradient descent algorithm for fine tuning with the
parallelizable batch-mode learning. As both the DSN and
T-DSN do “fine tuning” only within the block rather
than through the entire deep network as carried out
for DNN, we expected at best a matching performance
to DNN. While DSN alone has not matched the low
phonetic recognition error rate achieved by DNN, T-
DSN produces a slightly lower error rate (22.8% vs.
22.9%). Further, for the measures of frame-level error
rates and cross entropy, both DSN and T-DSN outper-
form DNN and even MMI-DNN [20] . The state of the
art TIMIT phone recognition error rate is 20.1%, reported
and analyzed very recently in [23], lower than 22.8%
reported here. The differences are due to 1) the use of
specially designed convolutional structure; 2) the use
of filterband instead of MFCC features; and 3) very
expensive optimization using backpropagation. The first
two of these differences can be incorporated into the T-
DSN architecture (as future work).

For pure classification problems such as MNIST and
frame-level phone classification, we have found little
difference between mean square error and cross entropy
as the loss. However, for continuous phone recognition

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



SPECIAL ISSUE IN LEARNING DEEP ARCHITECTURES, IEEE TPAMI, 2012 10

TABLE 5
TIMIT: Comparing two versions of T-DSN, DSN, and
DNN in terms of frame-level phone error rate and of

continuous phone recognition error rate.

Networks Framewise Phone Err Rate Phone Rec Err Rate
T-DSN 21.0% 22.8%
T-DSN + DNN 20.2% 21.9%
DSN 22.9% 24.6 %
DSN + DNN 22.0% 23.5 %
DNN 23.5% 22.9 %
MMI-DNN 23.0% 22.2 %
GMM-HMM [24] - 28.6 %

requiring the use of an HMM to interface with the frame-
level classifier, the output needs to be in the form of
probabilities. In our experiments reported in the right
column of Table 5, we use cross entropy for learning,
which is substantially more expensive in computation
obtains good results.

5.3 WSJ Phone Classification
In the third set of experiments, we use another popular
but larger speech database, called 5k-WSJ0, designed for
speaker independent speech recognition tasks [25]. As
suggested by the name, the 5k-WSJ0 database uses a
5,000 word vocabulary. The training material from the
SI84 set (7077 utterances, or 15.3 hours of speech from
84 speakers) in the database is separated into a 6877-
utterance training set and a 200-sentence validation set.
Evaluation was carried out on the Nov92 evaluation data
with 330 utterances from 8 speakers. In this work, we
use the same MFCCs and their deltas as in the TIMIT
experiments for the short-time spectral representation of
the speech signal. With the 10 millisecond frame rate,
this database gives over 5-million frames (i.e., samples)
in the training data (5,232,244 to be exact), substantially
larger than MNIST and TIMIT. Further, unlike the TIMIT
database where the phone boundaries in training data
are provided by human annotators, no phone boundaries
are given in WSJ0. In this work, we generate the phone
labels and their boundaries in the training data from
the forced alignments using a tied-state cross-word tri-
phone Gaussian-mixture-HMM speech recognizer. Test
set labels are produced in the same way. These phone
labels, with a total of 40 of them, together with their
boundaries provide one-to-one mapping between each
speech frame with its phone label as the target for
training the T-DSN.

In Table 6, we show the performance of a single block
of the T-DSN, measured by the frame-level phone clas-
sification error rate. In the results presented in Table 6,
the two weight matrices W(1) and W(2) in Fig. 1 are
randomized and not learned via gradient descent. Learn-
ing is applied only to tensor U according to Eqn. 11.
Consistent with the MNIST and TIMIT results, we also
observe here that larger (and symmetric) hidden layers
are better than smaller ones in the T-DSN. Further, a

TABLE 6
WSJ: Frame-level phone classification error rate

achieved with only one block and with random weight
matricesW(1) andW(2) in Fig. 1, as a function of

hidden-layer configuration and of the input window size.

Configuration WinSz1 WinSz7 WinSz11
160× 160 31.1% 29.0% 28.6%
150× 150 31.6% 29.4% 29.1%
140× 140 32.8% 30.3% 29.9%
130× 130 33.4% 30.7% 30.3%
120× 120 34.0% 31.3% 31.0%
110× 110 34.5% 32.2% 32.0%
100× 100 35.3% 32.9% 32.7%
90× 90 36.8% 34.5% 33.8%
80× 80 37.2% 35.2% 34.7%
70× 70 37.5% 35.9% 35.6%
60× 60 37.8% 37.1% 36.8%
50× 50 38.0% 37.6% 37.1%
40× 40 38.8% 38.4% 38.0%
30× 30 42.3% 40.4% 39.2%

TABLE 7
WSJ: Frame-level phone classification error rate, after
stacking five blocks and training weight matricesW(1)

andW(2) for each block, as a function of hidden-layer
configuration and of the input window size.

Configuration WinSz1 WinSz7 WinSz11
160× 160 23.0% 21.6% 18.9%
150× 150 23.5% 21.9% 19.2%
140× 140 24.9% 22.4% 20.0%
130× 130 25.5% 23.3% 20.8%
120× 120 26.0% 24.2% 21.5%
110× 110 27.1% 24.9% 22.2%
100× 100 28.4% 25.6% 22.8%
90× 90 29.5% 26.0% 23.6%
80× 80 30.0% 26.8% 24.9%
70× 70 30.3% 27.4% 25.5%
60× 60 30.6% 28.2% 26.4%
50× 50 30.7% 28.8% 28.0%
40× 40 31.6% 30.5% 29.4%
30× 30 34.5% 32.5% 30.6%

window size of 11 gives a noticeably lower error rate
than 7, which in turn gives a further lower error rate
than a single frame.

In Table 7, frame-level phone classification error rates
are shown after five blocks of T-DSN are built, where
each block runs gradient-decent learning until conver-
gence with details described in Sections 3 and 4. No
softmax layer is added to top of the T-DSN. Again, at
the learning convergence, the T-DSNs with larger hidden
layer sizes and larger input window sizes are superior
to those using smaller ones. Importantly, each entry
in Table 7 shows a significantly lower error rate than
the corresponding entry in Table 6, demonstrating the
effectiveness of building deep T-DSN and of the learning
algorithms with its parallel implementation described in
Sections 3 and 4.
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6 DISCUSSIONS AND CONCLUSION
A new architecture for deep learning is presented, the
T-DSN, generalizing the earlier DSN architecture. The
principal novelty is to split the original large hidden
layer (in each block) into two smaller ones, and through
their multiplicative outer product and the associated
tensor weights, to create a bilinear model exploiting
the higher-order covariance structure in binary ([0, 1])
hidden feature interactions.

The T-DSN retains the computational advantage of
the DSN in parallelism and scalability during learning
all parameters, including the second layer tensor and
the first layer projection weight matrices. Note that the
parallelism in learning the T-DSN can be implemented
either in a CPU cluster (as carried out in the current
study) or in a GPU cluster. A single GPU parallelization
speed up over CPU can be between 10-100× but CPU
programming is easier and CPUs are much more afford-
able than GPUs. All the experimental results presented
in this paper have been obtained by parallel implemen-
tation of the learning algorithm described in Section 4,
using a cluster of CPUs exclusively.

In addition to the above main strengths, the T-DSN
has another advantage over the earlier DSN architecture
(an advantage shared by the deep tensor neural network
[26] over the DNN), in its potential to explicitly incorpo-
rate speaker and/or environmental factors, by training
one of the hidden representations to encode speaker or
environmental information, while effectively gating the
other hidden-to-output mapping. Moreover, the T-DSN
is equipped with the new stacking mechanism where
the more compact dual hidden representations can be
concatenated with the input data in stacking the T-DSN
blocks. The significantly smaller hidden representation
size in the T-DSN than DSN has the effect of bottle-
necking the data, aiding “stackability” in the deep ar-
chitecture by providing flexibility in stacking choices.
One can concatenate the raw input data x with h(1)

and h(2) instead of the output y which may potentially
be very large in some applications. The bottle-necking
effect would permit the T-DSN to pass more information
between the blocks without dramatically increasing the
input dimension in the higher-level blocks.

With the parallelized implementation of T-DSN al-
ready in place, we expect meaningful improvements in
real-world speech recognition and other pattern recogni-
tion tasks. Further, encouraged by our recent results of
DNN and DSN in applications of speech understanding
[27] and in speech attribute detection [28], we expect
greater success with the use of T-DSN in these and other
applications.

APPENDIX A
T-DSN GRADIENT DERIVATION
In this appendix we derive the gradients used for train-
ing our lower level weight matrices, W(1) and W(2)

under the most general conditions.

A.1 Finding the optimal UT

Given a fixed implicit hidden representation matrix H̃,
consider the Tikhonov regularized least squares objec-
tive:

f = ‖UT H̃−T‖2F + λ‖U‖2F (24)

The well-known closed-form solution to this problem is

UT = TH̃‡, H̃‡ = H̃TA−1, A = (H̃H̃T + λI) (25)

We reserve the notation H̃† for that pseudo-inverse of
H̃, which is clearly equal to H̃‡ when λ = 0.

A.2 Deriving ∇H̃T f

We can substitute the closed form solution for UT given
in Eqn. 25 into the objective function. Our ultimate
goal is to express this as a function of W(1) and W(2),
and compute the gradients with respect to these lower
level weight matrices. As an intermediate step, we first
compute the gradient of the objective with respect to H̃T .

A.2.1 General gradient

f = ‖UT H̃−T‖2F + λ‖U‖2F

= Tr
(
(UT H̃−T)(UT H̃−T)T

)
+ λTr

(
UUT

)
(26)

Denote the first term of Eqn. 26 by α(H̃) and the second
term by β(H̃). First, we derive∇H̃Tα(H̃). By the linearity
of trace, we obtain

∇H̃Tα(H̃) = ∇H̃T Tr
(
TH̃‡H̃H̃T H̃‡TTT

)
+ −2∇H̃T Tr

(
TH̃‡H̃TT

)
(27)

Before we can evaluate ∇H̃T f , let us introduce five
lemmas.

Lemma A.1: Let A denote (H̃H̃T + λI)−1, as before,
and let Z denote an arbitrary real N ×N matrix. Then

∇H̃T Tr
(
A−1H̃ZH̃T

)
= (I− H̃‡H̃)(Z+ ZT )H̃‡ (28)

When Z is symmetric, this simplifies to

∇H̃T Tr
(
A−1H̃ZH̃T

)
= 2(I− H̃‡H̃)ZH̃‡ (29)

Proof: Let P denote the constant matrix that is the
result of evaluating A−1 with a fixed H̃. Let Q denote
the constant matrix that is the result of evaluating H̃ZH̃T

with a fixed H̃. It follows that

∇H̃T Tr
(
A−1H̃ZH̃T

)
= ∇H̃T Tr

(
PH̃ZH̃T

)
+∇H̃T Tr

(
A−1Q

)
(30)

Using Eqn. 107 from [29], and noting A’s symmetry, we
can evaluate the first term in Eqn. 30:

∇H̃T Tr
(
PH̃ZH̃T

)
= ∇H̃T Tr

(
ZH̃TPH̃

)
= ZT H̃TA−1 + ZH̃TA−1

= (Z+ ZT )H̃‡. (31)
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Using Eqn. 114 from [29] we can evaluate the second
term in Eqn. 30:

∇H̃T Tr
(
A−1Q

)
= −H̃TA−1(H̃ZH̃T + H̃ZT H̃T )A−1

= −H̃‡H̃(Z+ ZT )H̃‡. (32)

Substituting Eqns. 31 and 32 into Eqn. 30 completes the
first part of the lemma. The second part is trivial: for
symmetric Z we have Z+ ZT = 2Z.

Lemma A.2:

∇H̃T Tr
(
TH̃‡H̃H̃T H̃‡TTT

)
= 2(I− H̃‡H̃)H̃T H̃‡TTTTH̃‡

+2(I− H̃‡H̃)TTTH̃‡H̃H̃‡. (33)

Proof: Let P denote the constant matrix that is the
result of evaluating TH̃‡H̃ for a fixed H̃, then using
Lemma A.1,

∇H̃T Tr
(
TH̃‡H̃H̃T H̃‡TTT

)
= ∇H̃T 2Tr

(
PTTH̃‡H̃

)
= ∇H̃T 2Tr

(
A−1H̃PTTH̃T

)
= 2(I− H̃‡H̃)H̃T H̃‡TTTTH̃‡

+2(I− H̃‡H̃)TTTH̃‡H̃H̃‡.

Lemma A.3:

∇H̃T Tr
(
TH̃‡H̃TT

)
= 2(I− H̃‡H̃)TTTH̃‡ (34)

Proof: This follows from Lemma A.2 and the fact that
Tr(PQ) = Tr(QP ):

∇H̃T Tr
(
TH̃‡H̃TT

)
= ∇H̃T Tr

(
TH̃TA−1H̃TT

)
= ∇H̃T Tr

(
A−1H̃TTTH̃T

)
= 2(I− H̃‡H̃)TTTH̃‡. (35)

Lemma A.4:

∇H̃Tα(H̃) = 2(I− H̃‡H̃)H̃T H̃‡TTTTH̃‡

+2(I− H̃‡H̃)TTTH̃‡H̃H̃‡

− 4(I− H̃‡H̃)TTTH̃‡ (36)

Proof: This follows from Eqn. 27 and Lemmas A.2
and A.3

Lemma A.5:

∇H̃T

1

λ
β(H̃) = ∇H̃T Tr

(
UUT

)
=

2TTTH̃‡A−1 − 2H̃‡
(
H̃TTTH̃‡ + H̃‡TTTTH̃T

)
A−1

(37)

Proof: Let P denote a constant matrix that is the
result of evaluatingUTA−1 with a fixed H̃. LetQ denote
a constant matrix that is the result of evaluating H̃TT

with a fixed H̃. It follows that

∇H̃T Tr
(
UUT

)
= ∇H̃T 2Tr

(
PH̃TT

)
+∇H̃T 2Tr

(
UTA−1Q

)
. (38)

The first term of Eqn. 38 is

∇H̃T 2Tr
(
PH̃TT

)
= ∇H̃T 2Tr

(
H̃TTP

)
= 2TTTH̃‡A−1. (39)

The second term of Eqn. 38 is

∇H̃T 2Tr
(
UTA−1Q

)
= −2H̃‡(QUT +UQT )A−1

= −2H̃‡(H̃TTTH̃‡ + H̃‡TTTTH̃T )A−1 (40)

where the first equality comes from Eqn. 114 of [29].
Substituting Eqns. 39 and 40 into Eqn. 38 proves the
lemma.

Theorem A.6:

∇H̃T f = 2(I− H̃‡H̃)H̃‡H̃TTTH̃‡ (41)

+2(I− H̃‡H̃)TTTH̃‡H̃H̃‡

− 4(I− H̃‡H̃)TTTH̃‡

+λ2TTTH̃‡A−1

−λ2H̃‡
(
H̃TTTH̃‡ + H̃‡TTTTH̃T

)
A−1

Proof: This follows from Eqn. 26 with Lemmas A.4
and A.5.
We use Θ to denote ∇H̃T f throughout this paper.

A.2.2 Simplified gradient
When no regularization is used in the objective (i.e.
λ = 0), the gradient can be simplified. Importantly, in
this case H̃‡ = H̃† (the pseudo-inverse). Recall that
H̃†H̃H̃† = H̃† and H̃H̃†H̃ = H̃. Under these conditions,

∇H̃T f = 2(I− H̃†H̃)H̃†H̃TTTH̃† (42)

+2(I− H̃†H̃)TTTH̃†H̃H̃†

− 4(I− H̃†H̃)TTTH̃†

= 2H̃†H̃TTTH̃† − 2TTTH̃†. (43)

Note this is the particular form ofΘ in Eqn. 12 presented
in Section 3 earlier.

A.3 Deriving ∇W(i)
f

In order to train our model, we need to compute ∇W(1)
f

and ∇W(2)
f . We employ the chain rule (e.g. as stated in

Eqn. 126 of [29]):

[∇Qf(P)]
ij
= Tr

(
(∇Pf(P))

T ∂P

∂Qij

)
= 〈∇Pf(P),

∂P

∂Qij

〉

(44)
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The notation 〈·, ·〉 denotes matrix inner product: it is an
element-wise multiplication followed by a sum.

First we find ∇H(i)
f . It follows from Eqn. 44 that

[
∇H(1)

f(H̃)
]
in

= 〈ΘT ,
∂H̃

∂H(1)in
〉 (45)

By the definition of the Khatri-Rao product, we get

∂H̃

∂H(1)in
= EL1×N

(i,n) �H(2) (46)

where, as used earlier in the paper, EL1×N
in denotes an

L1 × N matrix that is zero everywhere except 1 in the
(i, n)th position. Let Ψ(1) denote the matrix ∇H(1)

f(H̃).
Similarly, we use Ψ(2) to denote ∇H(2)

f(H̃), where[
∇H(2)

f(H̃)
]
jn

= 〈ΘT ,H(1) �EL2×N
(j,n) 〉. (47)

Let Z(i) denote WT
(i)X. By another application of the

chain rule, we get

[
∇Z(i)

f(H(i))
]
jk

= 〈Ψ(i),
∂H(i)

∂Z(i)jk
〉. (48)

Recall that H(i) = σ(ZT
(i)). The partial derivative is

∂H(i)

∂Z(i)jk
= ELi×N

jk ◦H(i) ◦ (1−H(i)) (49)

where 1 ∈ R
LI×N is the matrix of all ones. Since this

fully decomposes over elements, we have

∇Z(i)
f(H(i)) = H(i) ◦ (1−H(i)) ◦Ψ(i) (50)

Finally, let Ω(i) denote ∇Z(i)
f(H(i)). Then

[
∇W(i)

f(Z(i))
]
jk

= 〈Ω(i),
∂Z(i)

∂W(i)jk
〉. (51)

The matrix ∂Z(i)

∂W(i)jk
is an Li × N matrix that is zero

everywhere except for the jth row, which contains the
kth row of X. Thus taking the element-wise product of
Ω and ∂Z(i)

∂W(i)jk
and then summing is equivalent to taking

the inner product between the jth row of X and the k
row of Ω (i.e. the kth column of ΩT ). Repeating this for
all j and k can be expressed succinctly as a matrix-matrix
product:

∇W(i)
f = XΩT = X

(
HT

(i) ◦ (1−H(i))
T ◦ΨT

(i)

)
. (52)

This gives us an expression for the gradients ∇W(i)
f ,

which we can use to train a T-DSN block.

APPENDIX B
T-DSN AND DSN GRADIENT EQUIVALENCE
Under the conditions described in Sec. 3.1, namely that
W has dimension D×1 and is entry-wise zero, we show
that the gradients ∇W(2)

f and ∇Wf are equivalent. Let

Θ̂ = ∇Ĥf be defined analogously to Eqn. 12. Using the
simplified gradient, it follows that

Θ̂ = 2
(
Ĥ†(ĤT

T
)(TĤ†)−TT (TĤ†)

)
= 4

(
H†(HTT )(TH†)−TT (TH†)

)
= 2Θ. (53)

Then because each entry of Ĥ(1) is 1/2,

Ψ̂(2)in = 〈Θ̂, Ĥ(1) �EL2×N
(i,n) 〉 ⇒ Ψ̂(2) =

1

2
Θ̂ = Θ (54)

Which gives us the following gradient

∇W(2)
f = X(ĤT

(2) ◦ (1− ĤT
(2)) ◦Θ) = ∇Wf. (55)

The gradients are identical under these conditions. For
them to remain identical, W(1) must be clamped to zero.

APPENDIX C
COMPLEMENTARITY OF THE HIDDEN VIEWS
In the T-DSN, an input vector x ∈ R

D is mapped
simultaneously to two different hidden representations,
h1 ∈ R

L1 and h2 ∈ R
L2 , via

h1 = σ(WT
1 x), h2 = σ(WT

2 x).

In all cases considered in this work, L1 = L2 � D, so
the two linear maps WT

i ∈ R
Li×D have full row rank,

but a D−Li dimensional null space. The D-dimensional
row spaces of Wi, which we’ll denote Ri, can be used to
characterize the linear map - it identifies which dimen-
sions of the input space are preserved (and implicitly,
which are destroyed). To assess the degree to which these
two hidden representations capture different views of
the data, we took a pair of matrices W1 and W2 trained
on the TIMIT task (Section 5.2), where L1 = L2 = 90
and used two notions of similarity of subspaces to infer
whether the T-DSN does indeed push towards extracting
different views of the data.

C.1 Measuring “Mass” Lost
Method
To measure the similarity between the two row spaces,
we first consider the following score:

sim(W1,W2) =
∑
i

√∑
j

(
BT

1iB2j

)2

Where B1i ∈ B
D denotes the ith basis vector in some

basis of R1, and B2j ∈ R
D likewise denotes the jth basis

vector in some basis of R2. Assuming Wi has singular
value decomposition UiΣiV

T
i , then in detail the process

of computing sim is:
1) Take the ith basis vector B1i and translate it into
R2 via U2, producing UT

2 B1i.
2) Take the �2 norm of UT

2 B1i. If ‖UT
2 B1i‖2 equals 1,

then no mass has been lost during the change of
basis; i.e. B1i is in the rowspace, R2. If it is equal
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to 0, then all mass has been lost; i.e. B1i is in the
null space of W2.

3) sim is the sum over i of the scores computed in
(2) above, aggregating the amount of “mass” that
was preserved or lost in the change of basis, and
thus characterizing the similarity between the two
spaces.

The maximum value sim can attain is D, if R1 = R2;
the minimum value it can attain is 0, if the two spaces
are orthogonal.

Results
For our pair of learned matrices, W1,W2 ∈ R

785×90, we
measured sim and obtained the result of 30.41 (out of
90 possible). We also randomly generated 10, 000 pairs
of orthonormal basis for 90-dimensional subspaces of
R

785, and computed the corresponding sim values. On
average, sim was 31.09, with a standard deviation of
0.21, putting sim(W1,W2) over three standard devia-
tions below the mean. Thus, while the two mappings
do not capture mutually exclusive information from in
the input, they extract more dissimilar information that
would be expected by random chance, suggesting that
they do in fact push towards extracting complementary
views of the data.

C.2 Measuring Canonical Angles
We can also use canonical angles to assess subspace
similarity.

Method
The cosine of the kth canonical angle can be defined
recursively as the largest inner product between a basis
vector of R1 and a basis vector of R2, excluding all
basis vectors that have already been “used” in previous
steps (e.g. were part of a larger inner product). The
cosine of canonical angles θ1, θ2, . . . θD between two D-
dimensional subspaces can be computed as the singular
values ofUT

1 U2, where the columns ofUi form a basis of
Ri. One way to measure similarity is to sum the cosines
of canonical angles; this notion of similarity too has a
maximum value of D (if the spaces are equal) and a
minimum value of 0 (if the spaces are orthogonal).

Results
For the same particular pair of estimated matrices,
W1,W2 ∈ R

785×90, we measured the sum of canonical an-
gles and obtained the result of 26.20 (out of 90 possible).
We also randomly generated 10, 000 pairs of orthonormal
basis for 90-dimensional subspaces of R

785, and com-
puted the corresponding sum-of-canonical-angles val-
ues. On average, this was 26.71, with a standard devia-
tion of 0.20, putting sim(W1,W2) roughly 2.5 deviations
below the mean. This also suggests that the two sub-
spaces are being pushed to capture different information,
but again, they are far from orthogonal.

C.3 Discussion
This analysis provides evidence in support of the notion
that the T-DSN learns “different” views of the data.
These different views capture a more diverse set of
dimensions in the input that would occur by random
chance, but are far from orthogonal.
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