RECURRENT DEEP-STACKING NETWORKS FOR SEQUENCE CLASSIFICA TION
Hamid Palangi!, Li Deng?, Rabab K Ward!

'University of British Columbia, Vancouver, BC, Canada
’Microsoft Research, Redmond, WA, USA

ABSTRACT connections in each module of a DSN; therefore, the tempo-
ral dependencies in the input data are not learnt effegtinel

Deep Stacking Networks (DSNSs) are constructed by stackin SNs

shallow feed-forward neural networks on top of each other
) . Recurrent Neural Networks (RNNs) are models that are
using concatenated features derived from the lower module T .
. eep in time and are used to model dynamical systems and
of the DSN and the raw input data. DSNs do not have "Slime sequences by directly using recurrent connect[dr®[7
current connections, making them less effective to modal an q y y 9 '

classify input data with temporal dependencies. In thispa It is well known that RNNs have difficulty in training us-
P PO ep - I thiepap ing Back Propagation Through Time (BPTT), due to vanish-

we embed recurrent connections into the DSN, giving rise t(l)n and exploding aradient problems and slow converaence

Recurrent Deep Stacking Networks (R-DSNs). Each modul 9 P 99 P g

i . . In fact, getting good results with BPTT is not trivial. A
of the R-DSN consists of a special form of recurrent neura remendous amount of engineering effort is required to make
networks. Generalizing from the earlier DSN, the use of lin- 9 9 q

earity in the output units of the R-DSN enables us to deriveBPTT work, as seen ”ﬂlmlz]' .
In this paper, to model input data having temporal depen-

a closed form for computing the gradient of the cost funct|ondencies more effectively, we introduce the Recurrent Deep

with respect to all netyvork matrlces.w!thc.)ut_ backprop Wl Stacking Network (R-DSN) that combines the strengths of
errors. Each module in the R-DSN is initialized with an echo K . .
both DSNs and RNNs while overcoming their weaknesses.

state network, where the input and recurrent weights ard fixel_he proposed R-DSN has recurrent (temporal) connections
to have the echo state property. Then all connection Weightt

within the module are fine tuned using batch-mode gradlenf.]at are missing in t.he .DSN' In the R pSN, eagh module is a

. . single-layer RNN with linear output units. To train each mod
descent where the gradient takes an analytical form. Exper- AT .
) le, we do not use BPTT. Instead, we initialize the weights
iments are performed on the TIMIT dataset for frame-leve

phone state classification with 183 classes. The resulis shg'>'"9 @ special type of RNN known as the Echo State Net-

. . e work (ESN), and then fine tune them using batch-mode gra-
that the R-DSN gives higher classification accuracy over a. :
. ) . ient descent based on a closed-form formulation to compute
single recurrent neural network without stacking.

the gradients. After each epoch of fine tuning, the echo state
Index Terms— Recurrent Neural Network, Stacking, property is forced to be satisfied.

Deep Learning, Sequence Classification In Sectior 2 we describe the ESN and the related RNN as

1. INTRODUCTION a basic module of t_he R-DSN. Sectioh 3 Qescri_bes the learn-

ing method for the input and recurrent weights in ESNs. The

Deep Neural Networks (DNNs) have proven to yield exce|_stacl_<ing and Iearr_1ing mgthod for the_ entire R-DSN architec-
lent performance in many pattern classification and recognfure is presented in _SeCt'Eh 4. Experimental results fonéra
tion tasks[[1L 2, 13]. To fine tune DNNSs, the stochastic gr(.jm”enlevellphone recognition on the TIMIT datas_et are presemted i
descent method is often used. This makes it difficult to parSectiorlb. Sectiol6 presents the conclusions.

allelize the learning across different machines. As one way 2. THE ECHO STATE NETWORK

to overcome this problem, Deep Stacking Networks (DSNs)

have been proposed|[4, 5]. Motivated by the stacking conEcho State Networks (ESNs) are a specific type of the general
cept of [6], (where complex functions are learnt by stacking RNNs that have the echo state property. Similar to RNNs,
number of simple functions), a DSN is constructed by stackESNs have recurrent connections, in addition to the input-t
ing feed-forward neural networks with one hidden layer havhidden and the hidden-to-output connections. A sample ESN
ing a non-linear activation function for the hidden unitglan architecture is shown in Fid] 1. In this figure;, h; andy;

a linear activation function for the output units[4]. Trig  represent the input, hidden and output vectors at disdreee t
each module is performed independently of other moduleg, = i. The connections between the input)(and hidden
and there is no need to back propagate the error from thgh,;) layer are denoted byV. The connections between the
output to the input layers. There are however no tempordiidden layer and outpug() are denoted byJ. The tempo-



each time step are calculated usifg (1). Aftgk,., time
v v v u steps, the hidden state vectors are stacked in mdire.
[ n Fwep e Fwepl hy Fwee “Wep| Dy |
W W W W H = [h;, .. hi .41 hyl 4)
where N is the number of time steps. To calculate the out-

(@) (b) © -

. o put weightsU, we stack the desired outputs corresponding to
Fig. 1. An ESN unfolded over time

input signakx; as a matrixT; i.e.,

: . T = [tisrane Citrans+1 - - - tN] (5)
ral connections betwedn; andh;,; are denoted by matrix
W..cc. In Fig. [ the direct connections from the input to the SinceH is known (computed using known quantitieg) can
output layers form a part of matriJ; i.e., it is equivalentto then be obtained by minimizing the following mean-square-
concatenating the input layer with the hidden layer. error cost function:
ESNs are proposed to resolve the difficulty in training - ) T - -
RNNs [13,[14]. In ESNsW andW,... are not learned but E=[|U'H.—T |[p=tr[(U H.—T)(U H.—T)"] (6)
are carefully predetermined. Only hidden layer to outputco

: . . . -~ whereF’ is the Frobenius nornty(.) is the trace and
nections and the direct connections from input to outpet, i.

U, are trained. H. = [H X]

Since the output units in an ESN have a linear activation e _ ()

. . . . . . . X = [Xltransxltrans+1 . XN]
function and assuming the hidden units have a sigmoid acti-
vation function, the formulations for Fif] 1 are: Minimizing (@) by setting the gradient df to zero results in:
hit = o(Wlxip 1 + W hy) (1) U= HH)"'HTT (8)
3. LEARNING ONE MODULE OF THE R-DSN
yit1 =UTh; (2)

whereo(z) = 2. ESN is designed such that it has the The ESN described above is a special type of the RNN, where

echo state property [L4. 13,115]. The echo state property infhe output units are linear and the parameters of the ESN are
plies that the hidden units’ states of the network can be delot learned except the output weight maftix In this sec-
termined uniquely based on the current and previous inpufon, we describe an effective way of learning all ESN param-
and outputs provided the network has been running for a suft€rs, based on and extending the earlier technique dexelop
ficiently long time. The formal definition of echo states is for the DSN. After the learning, the resulting RNN performs
described in[[T4]. Assuming that the maximum eigenvalué)ener than the ESN and it forms one “module” of the many
of W,. iS Amasr and the activation function of the hidden modules via stacking, to be presented in the next section.
units is the sigmoid, if Amae |< 4 then the network has Assuming the memory of j[he netwprk exten_d_s backito
echo states [14]. This is similar to the sufficient conditiontime steps, we use the following notation to facilitate tiee d
presented in [16] to prevent the exploding gradient problenyelopment of the learning method for input weight maiik

for recurrent weights in general RNNs.

Training ESNs has mainly three steps: forming a networkXl = DXy Xamr ] Xo = [Xe Xz Xoma
with the echo state property, computing the hidden unitstht = 1 By oy ] Ho = [ho By oz,
states and findindJ using a closed form formulation. To T1 = [t1 tit1 tomyr ... ], To = [t2 tpyo tomya ... ], ...
form a network with the echo state property, the input wesight 9

matrix W is randomly generated and usually scaled based on , . _
the type of input. Then the sparse recurrent weights matrid "erefore, equationi(1) arid (2) can be written as:
W.... is randomly generated and normalized as follows: Hi = U(WTXi+1 + W, H,) (10)

Wiee = )\% (3) Yi+l = UTHi+1 (11)

max

To find the gradient of the cost functidii with respect
where) < 4 for sigmoid activation function and is predeter- to W and learn the input weighfsV we take into account
mined based on the given dats,,.. is the maximum eigen- the dependency betwedh andW, H andW and the time
value of W,..... dependency oh;; on h; at every time step. We briefly

To find the hidden units’ states, the hidden states are inidescribe the gradient formulations and learning methods fo

tialized to zero or to another initial state. Then the networ the input and recurrent weights of one of the modules of R-

runs freely fori;.q..s time steps where the hidden states of[D-S]N in this section. Detailed derivations are presented in
.



3.1. Learning Input Weights andA is calculated usind (14) based ®h, andT,,.
. . . Only the non-zero entries of the sparse maWv... are
The gradient of the cost functidi w.r.t W can be written as updated using{17) and the gradient calculated® (19). To
oE 0 T T T T T . make sure that the network has the echo state property after
OW aWtT(U HH, U-U"Ho T —ToH, U+TeTy ) oqch epoch, the entries ®,... are renormalized such that
o _ (12)  the maximum eigenvalue d#W,.. is A. This renormaliza-
SubstitutingU = (HyH3 )~ 'H,T3 and calculating the gra- tjon also prevents the gradient explosion problem for recur

dient for one time step dependency we have: rent weights from happening.
or T, T s T T T 4, LEARNING THE RECURRENT DEEP STACKING
ﬁ - _[Xl[H (1 - H )Wrec o H (1 - H2 ) ° A] NETWORK

+X3[Hj o (1-Hj) o Al N . .
The RNN described in the preceding section can be stacked

13 ) ) . X
(13) into multiple modules. The architecture of a R-DSN with
where three modules is shown in Figl 2. Inthe R-DSN, the output of
— T T Ty\—1
A = 2T2 T2H2 (H2H2 ) 14 ) ‘ ‘
T Ty—1 T T T\—1 (14) 3 £ *
- 2H2 (H2H2 ) H2T2 T2H2 (H2H2 ) vl Y Y WO= W@ we® W)
This gradient formulation can be generalized for an arbjtra ¢ Wam wfm%’w“ - %Vi,» |, Wa=Ro R W)
2 vv o Wﬁ) W\ 9w wp® w Wiina®= Rec?
=

mmm mm-J

number of time steps as follows:

n (1) Y](z ><1
-} _xici] (15)

o~ @ = (2) (2)

i=1 B BB e - —vv,.«’%* W= (WA w,@

) . g w (4, ) (- wa@ Wi ®= [Ry W¥]

wheren is the number of time steps and e Wonore®= R

E3] ;
Ci = [Hz—' e} (1 — H?)Wrec] (e] Cz-i—l ,fOT 7= 1 -1 E U?n Uu) Jm)
Cn _ HZ o (1 _ Hz) o A é Wmmwmcm, e Woe Hy D
(16) wo wo wo
il

To calculateA using [14),H,, andT,, are used. After cal-
culating the gradient of the cost function w¥YX, the input
weightsW are updated using the following update equation

0 each module is part of the input of the upper module. There-
Wit =W; — o‘awi + (Wi = W) A7) fore, the dimensionality of the input of the upper modules is
more than that of the lower modules. In this work, we have

Fig. 2. lllustration of an R-DSN architecture with three mod-
ules shown with different colors

B = [Mold. not used RBM or temporal RBM[20] to initialize the weights
Mnew (18) of the lowest module. Instead, we have used random initial-
— 14+ /1+4m2, ization. The only constraint is tha¥ ... be initialized such
new 2 that echo state property holds; i.e., the maximum eigeevalu

where« is the step size and the initial value fot,;; and  of W,... is kept less thad.

Maew 1S 1. The third term in[(2l7) helps the algorithm to con- ~ The training method we have implemented for the two
verge faster and is based on the FISTA algorithm proposed imodules of architecture in Figl 2 is as follows:

[18] and used in[19] and [17].

. ) e Training the first (i.e the lowest) module:
3.2. Learning Recurrent Weights

— Input and recurrent weights are initialized using an ESN ar-

To learn the recurrent weights, the gradient of the cost-func chitecture
tion w.r.tW,.. should be calculated: — Hidden units’ stateHl(.l), i=1,...,m are calculated using
(10)
Z W"iH. 1C; (19) — The method described in sectibh 3 is used to compute gradi-
6W rec T i (1 &)
rec ents of the cost function w.rW ) andW ...

i=1
~ WO andW'l), are updated using{1L7) arld118)

Entries of W ... are renormalized such that the network has
C, = HZ o(1-— Hz) oA 20 the echo state property usirg (3)

C,=H ' o(1-H)oCiy,y (20) - UW is calculated usind18)

whereH,, includes the initial hidden states and



e Training the second module: e .
9 Table 1. Frame level phone classification error rates (Err%)

— Input weights corresponding to output of the first module for the ESN on the TIMIT core test set as a function of the
W are initialized randomly R, in Fig. [2) and input  hidden layer’s size (nHid)
weights corresponding to the input training data are iiital

to the fine tuned input weights from the previous module nHid | 300 | 500 | 1000 | 2000 | 4000 | 10000 | 20000 | 40000
(W) in Fig.[2) Ern% | 71.9 | 70.1 | 66.9 | 63.8 | 60.9 | 57.1 54.8 52.7

— Recurrent WeightﬁNS?c are initialized with a random sparse
matrix whose sparsity pattern is different from that of the-p

) @) e
vious moduleRyc. in Fig.[2) Table 2. Frame level phone classification error rates for the

— Entries ofW2), are normalized such that the echo state prop- R-DSN on the TIMIT core test set as a function of the number
erty holds of modules for the fixed 4000 or 10000 neurons in the hidden

— All weights are fine tuned using the method described for thelayer

first module Hidden Modules LearningW andW ... LearningW andW ...
Units in R-DSN withm =1 withm = 3
To resolve the exploding gradient problem for input weights[—,5, 1 50.5% 50.0%
we have used the renormalization method proposedin [16]. 555 2 19.9% 19.5%

All modules higher than two in the R-DSN are trained in a 500 3 49.5% 49.1%
similar way.tc.> the second step above. The number of epc_>c'n 10000 1 18.0% 16.6%
used in trqlnlng all m“odules are _caf,efully tun_ed to provide[ ;500 5 47 2% 26.0%
regularization via the “early stopping” mechanism. 10000 3 7 0% 7%

5. EXPERIMENTS

The standard 462-speaker training set is used in our eXpG.)rli:'SN is stacked with multiple modules in the way that is de-

ments. A separate dev set of 50 speakers is used for Uningibed in Section 4. The set of results are summarized in

hyper parameters. Results are reported using the 24'3pealﬁ%ble|3 for the various R-DSNs with the hidden layer sizes of

core test set, which has no overlap with the dev set. Sigr‘%'ooo and 10000 and with the stacking modules up to three.
processing for raw speech waveforms is the standard short-

time Fourier transform with a 25-ms Hamming window and

with a fixed 10-ms frame rate. the standard Mel Frequency 6. DISCUSSION AND CONCLUSION
Cepstral Coefficients (MFCCs) are then generated, alorg wi
their first and second temporal derivatives. All speech dat
are normalized so that each vector dimension has a zero me
and unit variance before feeding them to a DNN that extract ; S
higher-level features. In our experiments, 183 targetsclas e RNN using stacking, in the same way that the DSN uses

labels are used with three states for each of 61 phones. .%acking to form multiple modules of a_simple, non-recurren
prepare the R-DSN targets during training, a high-quality t feed-forward neural network. Alternatively, the R-DSN can

phone HMM is trained with the training data set, which is thenbe \_/|eV\_/ed as a general|z:_:1t|on of the DSN, whc_ere the gen-
alization lies in embedding recurrent connections irheac

used to generate state-level labels based on the HMM forced dule that issin in th lier DSN. Th in tech
alignment. A context window of 3 frames for all experimentsmo u'e that were missing In the eartier - 1ne main tech-

(resulting in the input vectors withx 39 — 117 entries). The nical contribution of the work reported in this paper is the
step size  in (T7)) is tuned to be.07 development of closed-from formulas for the gradient com-

putation based on the special structure of the R-DSN, and the

The task was to classify each frame in the TIMIT core - .
test set into one of 183 phone states. For the ESN describggtCh_mOde training method for all parameters in the R-DSN

in Section 2, we have evaluated the effects of the size of th%apnahzmg on these formula_s. o
Our experiments are designed to test the capability of the

hidden !ayer on th.e classification accuracy. The re§ults pr?Q-DSN for time-series data that have strong temporal depen-
sented in TablEl1 illustrate very poor performance (i.e hwit dency, for which we chose the TIMIT speech data for the

a high error rate) of the ESN when the hidden layer size ISrelatively simple frame-level classification task. Theules

small. However, as the size increases, the error rate drops . . .
considerably lljaresented in Section 5 demonstrate the effectiveness &-the

. SN with multiple modules over one single module. Future
Our further results show that when the input and recurren? P 9

weight matrices of the ESN are learned using the method dé,\-lork 's planned on extending the evaluation tasks to more

scribed in Section 3, substantial error reduction is addev Complex continuous phone and word recognition tasks and

Even greater error reduction is obtained when this |eame8eyondthe speech data.

he main focus of this paper was on a novel deep learning ar-

itecture, the R-DSN, which extends the earlier RNN and
é‘ N models. The R-DSN constructs multiple modules of
t
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