
Data Services for E-tailers
Leveraging Web Search Engine Assets

Tao Cheng, Kaushik Chakrabarti, Surajit Chaudhuri, Vivek Narasayya, Manoj Syamala
Microsoft Research

Redmond, WA
{taocheng, kaushik, surajitc, viveknar, manojsy}@microsoft.com

Abstract—Retail is increasingly moving online. There are only
a few big e-tailers but there is a long tail of small-sized e-tailers.
The big e-tailers are able to collect significant data on user
activities at their websites. They use these assets to derive insights
about their products and to provide superior experiences for their
users. On the other hand, small e-tailers do not possess such user
data and hence cannot match the rich user experiences offered by
big e-tailers. Our key insight is that web search engines possess
significant data on user behaviors that can be used to help smaller
e-tailers mine the same signals that big e-tailers derive from their
proprietary user data assets. These signals can be exposed as data
services in the cloud; e-tailers can leverage them to enable similar
user experiences as the big e-tailers. We present three such data
services in the paper: entity synonym data service, query-to-entity
data service and entity tagging data service. The entity synonym
service is an in-production data service that is currently available
while the other two are data services currently in development at
Microsoft. Our experiments on product datasets show (i) these
data services have high quality and (ii) they have significant
impact on user experiences on e-tailer websites. To the best of
our knowledge, this is the first paper to explore the potential of
using search engine data assets for e-tailers.

I. INTRODUCTION

Retail is increasingly moving online[3]. Revenues of online
retailers, also known as e-tailers, follow a power-law dis-
tribution: there are a few giant-sized e-tailers like Amazon
and Buy.com while there is a long tail of small-sized e-
tailers. Big e-tailers like Amazon have many users visiting
and shopping at their websites. Their activities on websites
yield a “treasure trove” of data, e.g., queries they issue to
search for products, search results they click on, products
they actually buy. Big e-tailers mine such user data to offer
superior experience to their users. We describe two illustrative
examples of such experiences (We use the terms product and
entity interchangeably in this paper.):
● Recognizing Synonyms: Users search for products on e-
tailer websites using keyword queries, as they do in web search
engines. Consider the product search query “canon 650d” on
Amazon.com as shown in Figure 1(a). The product “Canon
EOS Rebel T4i 18.0 MP CMOS Digital SLR Camera”, which
is present in Amazon’s catalog, is also known as “canon 650d”.
However, neither the name nor the description of the product
has any mention of “canon 650d”. Despite that, Amazon is
able to correctly return it as the top result because Amazon
understands that “canon 650d” is a synonym for this specific
camera. This is an example of how big e-tailers leverage data
assets for user experience.

(a) (b)

Fig. 1. Features on Amazon: (a) Synonyms (b) Query Auto-completion

Lots of

users

Rich data assets

(e.g., query log)

Mine entity

information

Import the mined

entity information

Superior user

experience

Fig. 2. Virtuous Cycle in Big E-tailers

● Query Auto-completion: Like web search engines, Amazon
offers query auto-completion experience: it provides a list of
query completions with each key stroke of the user (as shown
in Figure 1(b)). This significantly reduces the typing effort of
its users. Big e-tailers are able to mine the knowledge of most
likely auto-completions from its query log.

These superior experiences make the sites more usable and
therefore bring in even more users, leading to even richer data
assets. This creates a virtuous cycle as depicted in Figure 2.

In contrast, small e-tailers cannot create the above virtuous
cycle. They have much fewer users, hence they do not have
the rich data assets possessed by the big e-tailers. Furthermore,
even when such data assets are available, they often lack the
mining expertise and the computing infrastructure to leverage
them. Hence, they cannot match the rich user experiences
offered by big e-tailers. For example, many successful camera
e-tailers do not have synonym information: they fail to return
“Canon EOS Rebel T4i 18.0 MP CMOS Digital SLR Camera”
for the query “canon 650d” in spite of it being present in its
catalog (as shown in Figures 3(a) and (b) of a prominent cam-
era e-tailer). Similar comments apply to query auto-completion
(as shown in Figure 3(c)).
Main idea and contributions: Over the last decade, search
engines have been continuously evolving, attracting more users

(a) (c)

(b)

Fig. 3. Lack of Features on a Prominent Camera E-tailer Website: (a) Catalog
Hit for Query “canon t4i” (b) No Hits for “canon 650d” Showing Lack of
Synonyms (c) No Query Auto-completion

and gathering more data about user activities. So far, the
benefit of their rich data assets is reaped only by the search
engine themselves. At the same time, most small-sized e-
tailers are suffering due to the lack of data assets. Our main
idea is to leverage user behavior data assets of web search
engines to offer superior user experiences to all e-tailers.
Furthermore, we propose that search engines should offer the
mined signals as data services on the cloud. An e-tailer can
subscribe to these data services and create superior experiences
for its users. For example, search engine can offer entity
synonyms as a data service; an e-tailer can use it to obtain the
synonyms for the products in its catalog. E-tailer can then use
such information for its product search (e.g., FAST Sharepoint
Search [2], Endeca [1]) to improve search quality.

Our contributions can be summarized as follows:
● We present a general API for data services for e-tailers.
The API enables e-tailers to subset the signals to the specific
products they are interested in (Section II).
● We present three data services for e-tailers: entity synonym
data service (Section III), entity tagging data service (Sec-
tion IV) and query-to-entity data service (Section V). All the
data services comply to the general API. For each data service,
we (i) define the data service, (ii) describe the algorithms to
mine the desired signals for the subset of the products an e-
tailer is interested in and (iii) discuss how the e-tailer can
consume the output and implementation details. The entity
synonym service is an in-production, publicly accessible data
service known as the Bing Synonyms API (https://datamarket.
azure.com/dataset/bing/synonyms) while the other two are
prototype data services accessible only within Microsoft.
● We perform extensive experiments on product datasets. Our
experiments show that the mined signals are of high quality
for all the three data services (Section VI).

II. API FOR DATA SERVICES FOR E-TAILERS

We have developed cloud-based data services that leverage
the search engine’s data assets to serve rich information useful
for products. Figure 4 shows the general API for a data service
for e-tailers. It takes one or more entities as input and returns
some information about each of those entities. We assume that
each input entity is specified by the canonical string used to

Web Search

Query Log
Web Crawl

Mine desired information for

each input entity

Names of

entities

(Entity, Info)

pairs

Fig. 4. API for Data Services for E-tailers

refer to the entity (say, the one used in its product catalog).
We refer to it as the entity reference string or simply entity
name. For example, the entity reference string for the entity
Canon EOS Rebel T4i Camera is “Canon EOS Rebel T4i
18.0 MP CMOS Digital SLR Camera”. We assume a 1:1
correspondence between the entity and entity reference string;
we use them interchangeably in this paper. This assumption
does not hold for ambiguous entities. While such entities are
very common for other domains (e.g., people names, location
names), it is relatively uncommon for product names. We focus
on unambiguous entities in this paper.

Although web search engines have many data assets, the
data services described in this paper focus on two data assets:
the query log which contains the queries issued on the search
engine and the links clicked by users for those queries and the
web crawl which contains a recent snapshot of all documents
on the web.

We present three cloud data services, namely entity syn-
onym data service, entity tagging data service and query-to-
entity data service, in the next three sections that are consistent
with the above API.

III. ENTITY SYNONYM DATA SERVICE

A. Problem Definition

People often use several alternative strings to refer to the
same named entity. For example, the product “Canon EOS T4i
Digital SLR Camera” is also referred to as “canon 650d” and
“canon kiss x6i”. As we saw in Figures 3(a) and (b), product
search fails to return the product entity named ”Canon EOS
T4i Digital SLR Camera” for query “canon 650d” if it does not
recognize that they are synonymous. Therefore, the knowledge
of synonyms of entities could significantly improve the users’
search experience. We develop an entity synonym data service
for this purpose. Specifically, the entity synonym data service
takes an entity reference string as input and outputs a set of
entity synonyms (each a string) for the input entity. Formally,
we define the problem as follows:

Definition 3.1: (Synonym Discovery Problem) Given en-
tity reference string re of entity e, discover the set Se of
synonym strings such that each string se ∈ Se in the set is
a synonym of entity e, i.e., string se refers to entity e. ◻

B. Mining Algorithm

The fact that different people use different ways to search
for the same entity is captured by search engines in their query

https://datamarket.azure.com/dataset/bing/synonyms
https://datamarket.azure.com/dataset/bing/synonyms

canon eos t4i
rebel 650d

rebel t4i

canon 650d

…

��

��

650d lens

��

nikon d7000

Fig. 5. Synonym Example

click log. Specifically, if two different search queries refer to
the same entity, there will likely be significant overlap among
the links clicked for the two queries. We thus leverage the
query log to identify the various synonyms of a given entity.

We use a two-step data driven approach to mine the syn-
onyms of a given entity.

Step 1: Candidate Generation: Given an entity, we first
identify web documents that would be good representative
documents of the entity. For example, for a camera, its page on
Amazon or dpreview.com is a good representative document.
We look for the entity reference string in the query log;
we treat the set of web documents clicked when the entity
reference string is issued as the query as the representative
documents for the given query. The queries that have clicked
on at least one of these web documents are treated as candidate
synonyms. Figure 5 shows the set of candidate synonyms of
”canon eos t4i”. A solid edge between a query and a document
represents a click on the document for that query.

Step 2: Candidate Filtering: Many synonyms are spelling
variants of the entity reference string (e.g., misspellings,
normalizations); hence, one can use string similarity functions
to identify such synonyms among the candidate synonyms.
However, a large fraction of synonyms are semantic in nature.
For instance, “canon 650d” and “canon eos t4i” are very
far away in terms of string distance and therefore cannot be
found using string similarity functions, although they represent
the same camera. Toward the goal of a general synonym
service which finds the broadest class of synonyms with good
precision and recall, we need to exploit features leveraging the
click information from query click log.

We now use the example in Figure 5 to illustrate how we
filter out false synonym candidates, such as “nikon d7000”
and “650d lens”, and obtain true synonyms such as “canon
650d”, “rebel t4i” and “rebel 650d”.

We begin by looking at click similarity. Specifically, we
examine the overlap and the difference between the clicked
documents. Intuitively, a true synonym would have a large
number of overlapped clicked documents with the corre-
sponding entity reference string. This will help to eliminate
candidates such as “nikon d7000” as it will have a small
number of overlapped click documents with the entity “canon
eos t4i”.

Often, many true synonyms of an entity are tail queries,
i.e, they are asked by very few users and thus there are few

clicked documents. They often would have few or no clicked
documents in common with entity. We illustrate this using the
“rebel 650d” candidate synonym in Figure 5 as an example.
“rebel 650d” is a tail query and has only one clicked document
in common (d2) with the representative documents for the
entity. Assuming the threshold is 2, “rebel 650d”, in spite of
being a true synonym, will not be adjudged a synonym. We
refer to it as the query log sparsity problem.

We propose the concept of pseudo document similarity
to address this sparsity problem. Just like the entity, we
represent a synonym candidate by the set of documents it
clicked on. In turn, each document is represented by the set
of words from all queries for which someone clicked on the
document. For instance, the document d1 in Figure 5 can be
represented by words “canon, 650d, rebel, t4i, lens”, which is
referred to as its corresponding pseudo document. This can be
matched with synonym candidates more easily. For instance,
candidate “rebel 650d” can be matched with document d1 via
containment checking. As a result, we can establish a link
shown by the dotted line in Figure 5 between document d1
and candidate “rebel 650d”. Specifically, the pseudo document
similarity from candidate string se to entity reference string
re is the percentage of re’s pseudo documents which contain
string se. This leads to much higher recall without sacrificing
precision.

One of the key challenges in synonym discovery is to
identify and eliminate strongly related yet false synonym
candidates such as “650d lens”. We notice that such candidates
are often of a different entity type with respect to the input
entity. In this case, the candidate is of the lens type whereas
the input entity is of the camera type. We use query context
similarity to filter out strongly related candidate synonyms
which are of a different entity type of the input entity. For
each entity and its candidate, we find longer queries that
contain those strings and obtain the tokens that frequently co-
occur with them (as prefixes or suffixes); we refer to them as
context words. We use the query log to obtain a set of context
words for an entity and its candidates by examining tokens
which frequently appear with the entity or the candidates in
queries. We observe that entities of different types typically
have very different context words, whereas entities of the same
type have similar context words. For instance, entities of the
type camera often come with context words such as “manual”,
“megapixel”, etc., whereas entities of the type lens come with
context words such as “filter”, “protector”, etc. As a result,
by checking the similarity between the context words, we can
further filter out candidates such as “650d lens” and improve
precision.

Finally, it is important to perform two way checking of
all similarity functions. This is due to the symmetric nature
of synonym relationship, which states that if a is a synonym
of b, then b is also a synonym of a. Specifically, we need to
check the similarity from entity reference string re to synonym
candidate se, and vice versa. More in depth discussion of this
aspect may be found in [8].

C. Consumption by E-tailers

There are two ways entity synonyms can be incorporated
into product search for e-tailers. We now discuss these two
ways of consumption.
Catalog Enrichment With Synonyms: E-tailers can use
the discovered synonyms to augment and enrich its product
catalog. For instance, an e-tailer can introduce an additional
attribute where the string “canon 650d” can be put to enrich the
information for entity “Canon EOS T4i Digital SLR Camera”.
The enriched catalog can be subsequently indexed and used
for capturing more queries. In this example, a user submitting
the query “canon 650d” can retrieve entity “Canon EOS T4i
Digital SLR Camera” in the search result.
Query Alteration Using Synonyms: Another way of leverag-
ing the generated synonyms is in query alteration. An e-tailer
will still use the synonym data service to obtain the synonyms
for its entities. Once these entity and synonym pairs are stored,
they can be used for query alteration. For instance, given the
stored synonym pairs, the product search engine can choose
to alter the query “canon 650d” to query “Canon EOS T4i
Digital SLR Camera”. The altered query can then retrieve the
right product. In fact, existing product search solutions like
Microsoft FAST Sharepoint Search have API for e-tailers to
specify their own synonym pairs offline, which is then used
for query alteration in online search.

D. Implementation

We now discuss implementation options for the entity syn-
onym data service. Since the mining algorithm deals with large
scale query log and involves sophisticated computation, we
leverage the MapReduce framework (specifically COSMOS, a
MapReduce framework based on Dryad [13]). Our implemen-
tation assumes that a snapshot of the query log already exists in
the MapReduce framework. It is straightforward to implement
both the candidate generation step and the candidate filtering
step of the mining algorithm using MapReduce.

One option is to submit a MapReduce job to generate the
set of entity synonyms when an input set of entities is given
by performing the mining algorithm described above for each
entity in the input set. This option, although an intuitive one,
involves running a batch MapReduce job, which is typically
time consuming. This means the e-tailer has to wait (typically
in the order of hours) for the output. Can we overcome
this inconvenience and offer e-tailers much faster turn-around
time?

The second option is motivated by the insight that the
entity reference strings of many entities are themselves web
search queries. If we simply treat each web search query as
an entity reference string, we can offline generate synonyms
for all queries. Although this process is extremely expensive
as it involves synonym generation for all queries, in practice
it can be done in a scalable MapReduce framework where the
computation can be highly distributed. Further, this job only
needs to be run periodically (say once every week). Computing
synonyms for all queries typically takes one day to finish over
two years of query click log. The computation output is a

synonym pairs file, or a synonym thesaurus, upon which very
efficient lookup can be performed. With this option, we can
generate the set of entity synonyms for a given set of entities
very efficiently, since it only involves dictionary lookup for
each of the input entity. This way, e-tailer can get the output
almost instantly. Our publicly available entity synonym data
service (https://datamarket.azure.com/dataset/bing/synonyms)
adopts this option which eliminates the need to run batch
MapReduce job given input.

While a large number of entity reference strings can be
directly found in web search queries, there exists many entity
references strings which cannot be directly matched. Such
entity reference strings are typically long entity reference
strings with extraneous tokens. To deal with such input en-
tity reference strings, approximate string matching techniques
(e.g., [9], [4]) can be leveraged to match such input strings
to queries in the query log.

IV. ENTITY TAGGING DATA SERVICE

A. Problem Definition

In Section III, we considered search for products using the
name of the product. While search-by-name is very popular,
users often search for products based on desired features.
Examples in the camera domain are “underwater disposable
camera”, “rugged camera” and “point and shoot camera”.
We refer to such queries as “search-entity-by-feature” (SEF)
queries. A recent study reports that about 42% of all product
queries are SEF queries [14].1 2

For SEF queries, searches over the product catalog often
miss relevant results as the feature-describing keywords are
often not present in the product information in the catalog
[5]. Consider a product catalog containing the name, technical
specifications and possibly a short description of each product.
For query “rugged camera”, Ricoh G600 Digital Camera is
a relevant product but its name, technical specifications or
short description in the catalog might not have the mention
of “rugged”. Hence, search over the above catalog would fail
to return this relevant product. If we can automatically assign
descriptive phrases to entities (e.g., assign “rugged”, “outdoor”
and “water resistant” to Ricoh G600 Digital Camera) and
augment the product catalog with them, search over the catalog
will be able to answer such SEF queries more effectively.

Tagging is very popular in web 2.0 sites (e.g., Flickr) where
users manually annotate items like images, videos and internet
bookmarks with phrases to enable effective browsing and
search. Those tags are free-form and have no fixed semantics.
Since our goal is to identify the tags automatically, we focus
on a restricted class of tags for entities: phrases that describe
features of the entity (e.g., “rugged”, “outdoor” and “water
resistant” for the entity Ricoh G600 Digital Camera). We
focus on this restricted class for several reasons. First, we

1 [14] reports that 19.9% of all web search queries are product
queries out of which 8.56% are SEF queries (referred to as general
product queries) while 11.35% are specific product name queries.

2The first three paragraphs of this subsection have been adapted
from our previous paper [7].

https://datamarket.azure.com/dataset/bing/synonyms

believe such tags would be most helpful in answering SEF
queries. Second, we show it is feasible to identify such tags
automatically with high quality across a wide variety of entity
domains. Third, we can systematically evaluate the quality of
our entity tagging system for the above class of tags. We refer
to such tags as entity tags or etags in short.

One option is to follow the synonym mining approach
and leverage the query click log. For example, one can
assign the etag “rugged” to Ricoh G600 Digital Camera if
there is significant overlap among the links clicked for the
queries “rugged camera” and “ricoh g600 digital camera” (or
a shorter synonym of the camera name, say “ricoh g600”).
This approach suffers from poor recall. Search engines may
not return specific pages about Ricoh G600 Digital Camera
in the top few results for the query “rugged camera”; they
might return general articles about rugged cameras (e.g., a cnet
article titled “Why rugged cameras are not as rugged as you’d
think”) or pages listing many rugged cameras. These pages
are unlikely to be returned as top results for the query “ricoh
g600 digital camera”; hence, the two queries are unlikely to
have significant overlap of clicks.

Our approach is based on the following insight: if t is an
etag truly associated with the entity e, t will occur in close
textual proximity of the name of entity e in a large number of
web documents. For example, the word “rugged” will appear
in close proximity of the string “Ricoh G600 Digital Camera”
in many web documents like reviews, blogs and expert advice
articles. There are several technical challenges. First, how do
we obtain the etags for a wide variety of domains? We observe
that the etags vary from one domain to another; etags for
cameras are quite different from etags for laptops which in turn
are very different from etags for shirts. How do we discover
etags of various entity domains with little or no manual effort
and with high precision and high recall? Second, how do we
associate the etags of a domain with entities of that domain
with high precision and high recall?

We formally define the problem. Let D denote a domain of
entities. An example domain is that of cameras. We assume
that, in text documents, each entity domain is referred to
by one or more alternative strings. Let ND denote the set
of strings used to refer to D; we refer to them as domain
name strings. For the camera domain, Ncamera is simply
{“camera”}. For the laptop domain, Nlaptop ={“laptop”,
“notebook”, “laptop computer”, “notebook computer”}. We
require this input from the domain expert. We typically expand
ND with both singular and plural forms of those alternative
names.

Definition 4.1: (Entity Tagging Problem) Given the set
ND of strings used to denote an entity domain D, a set W
of web documents3 and one or more entities E belonging to
domain D, find etags associated with each entity e ∈ E . ◻
B. Mining Algorithm

We adopt a two-step architecture. In the first step, we
discover etags for any entity domain. In the second step, we

3The set of documents can be either from a focused crawl of a
specific domain or a general crawl of the web.

Etag

Discovery

for Input

Domain

Web Crawl

Names of

entities

(of single

domain) +

domain

name

synonyms

(Entity,

ETag)

pairs

Entity Mention

Identification in

Web Documents
Entity-Etag

Association

Etags for

domain

Entity mentions

and contexts in

web documents

Fig. 6. Core Components of Entity Tagging Data Service

associate the etags of a domain with entities of that domain.
The architecture is shown in Figure 6. We describe the two
steps in further detail.
Step 1: Etag Discovery: Given the set ND of alternative strings
used to refer to the entity domain D and the set W of web
documents, the goal is to discover the etags TD for that
domain. The main challenge is to achieve this in a domain
independent manner while ensuring high precision and high
recall.
Step 2: Entity-Etag Association: Given the set TD of etags
for a domain (discovered in Step 1) and a set E of entities
belonging to the same domain, the goal is to associate an
etag t ∈ TD to an entity e ∈ E if t is truly associated with
e, i.e., t is a descriptive phrase for e. Since our association is
based on textual proximity between entities and etags, we first
need to identify where the entities in E are mentioned in web
documents. We refer to them as entity mentions. Subsequently,
we can look into the contexts of the entity mentions to find out
which entity-tag pairs appear in close proximity of each other
and aggregate evidence across all web documents. Hence, this
step has two software components:
(a) Entity Mention Identification in Web Documents: Given
the set E of entities belonging to domain D and the set W of
web documents, the goal is to identify the mentions of those
entities in those web documents. Document authors often miss
(unimportant) tokens, have additional tokens or use a different
ordering of tokens compared with the entity reference string in
E . For example, one might refer to Ricoh G600 Digital Camera
as “Ricoh G600” or “G600 10mp camera from Ricoh”. It is
critical to identify such approximate mentions of entities. The
main challenges are (i) to identify such approximate mentions
with high precision and recall and (ii) to scale to billions of
web documents.
(b) Entity-Etag Association Using Contexts: Given the set TD
of etags for a domain and the mentions of entities in E and
their contexts in web documents, the goal of this component
is to associate an etag t ∈ TD to an entity e ∈ E if t is a valid
etag for e. The challenge is to develop robust techniques that
performs this association with high precision and high recall.

Note that another alternative is to first identify occurrences
of the etags and then look for entity mentions in the context
of those occurrences. For many domains, the etags can be
commonly occurring terms (e.g., “cheap”, “light”, “small”,

“large”). In such cases, occurrence of entities is much more
selective than occurrence of etags. It is more efficient to
evaluate the more selective condition first. Hence we adopt
the former alternative.

We discuss the three components of etag discovery, entity
mention identification and entity-etag association in further
detail.
Etag Discovery
We use precise lexical patterns that identify etags for any entity
domain. Consider the domain of cameras. Suppose Ncamera

is {“camera”}. We look for patterns like “is a t camera”, “t
cameras such as” and “and other t cameras” in web documents.
These patterns are inspired by Hearst patterns but differ
from traditional Hearst patterns which identify class-instance
relationships. If there are sufficient number of web documents
containing the pattern, we identify t as an etag of the domain
D. This will discover tags like “rugged”, “ultracompact” and
“prosumer” for the camera domain. We formally define an etag
for a domain D.

Definition 4.2: (Etag for a Domain) A phrase t is an etag
for the domain D iff one of the following patterns occur δ or
more times in W:
(a) “is a t nD” (b) “is an t nD” (c) “t nD such as” (d) “and
other t nD” (e) “or other t nD” (f) “t nD including” (g) “t nD
especially”
where nD ∈ ND, “t nD” is a noun phrase and δ is an
application specified threshold (δ ≥ 1). ◻

The parameter δ is used to eliminate noise. The entity
tagging service currently uses δ = 5. Note that the only manual
effort for each domain is to provide the set of alternative
strings used to refer to the domain.
Entity Mention Identification in Web Documents
To detect approximate mentions of entities, we adopt the
definition of mentions proposed in [9]: a subsequence of
tokens s in a document is a mention of an entity e ∈ E iff
the similarity sim(s, e) exceeds a certain threshold θ. Both s
and e can be viewed as a set of tokens; then, the similarity
can be defined using Jaccard similarity. We only consider
subsequences up to length α.

We follow a generate-verify scheme. For each document,
we first generate candidates, i.e., identify subsequences of
documents which can potentially be a mention. To generate
candidates, we build an index on the entities as proposed in
[4]; we construct prefix filters on the entities and build an
inverted index on those prefix filters. We can then identify
candidate subsequences and the corresponding matching enti-
ties using this index; we refer to this index as the “approximate
match index”. Subsequently, we retrieve the corresponding
matching entities from the entity set E and verify whether
they are indeed mentions by checking the similarity condition
sim(s, e) > θ.

An alternative is to use the search engine API instead of
identifying entity mentions in web documents. We can issue
the entity reference string as the query and look for etags in
the snippets, titles and URLs returned by search engine. This
alternative has several limitations. First, this does not scale:
for a large set of entities, this approach could take a very long

time. Retrieving the body of the documents is an order of
magnitude slower and is hence totally infeasible. Second, the
amount of context information is small: snippets are small and
most APIs have a bound on the number of hits returned. This
adversely affects the quality of entity-tag association. Third,
the semantics of entity mentions in this case are not as rigorous
as the semantics defined in this paper. This might lead to poor
quality of association.
Entity-Etag Association
Our goal is to associate an etag to an entity iff (i) they occur in
close textual proximity of each other (e.g., within a window)
and (ii) they co-occur more than expected. We first describe
our co-occurrence analysis technique. Then we strengthen it
by leveraging proximity information and documents that are
exclusively about an entity.
Preliminaries: Co-occurrence Frequency Analysis: Recall that
W represent the collection of web documents. Let NW denote
the number of documents in the collection W . We denote the
frequency of an entity e and an etag t in the web document
collection W as follows:

● Freq(e): the number of documents in W where mention
of entity e is identified.

● Freq(t): the number of documents in W where etag t is
identified.

The observed co-occurrence frequency is the actual number
of documents in collection W which contain both etag t and
mention of entity e, defined as: (s refers to a mention of entity
e in document d): O(e, t) = ∑d∈W 1, subject to t ⊂ d, s ⊂ d.

The expected co-occurrence frequency is the expected num-
ber of documents in collection W which contain both etag
t and mention s of entity e, under the assumption that
etag t appears independently of entity e. It is defined as:
E(e, t) = Freq(e)

NW

Freq(t)
NW

NW = Freq(e)Freq(t)
NW

.
To compare the observed co-occurrence frequency with

the expected co-occurrence frequency, we perform standard
statistical testing using G-test of goodness-of-fit. The outcome
of the test identifies the significance of difference in helping
decide where etag t and entity e are positively correlated.
Specifically, G − test = 2Oln(O

E
) + 2(NW −O)ln(NW−O

NW−E) ≈
2Oln(O

E
). This describes G-test, where we use O and E as

shorthand for O(e, t) and E(e, t). Since both O(e, t) and
E(e, t) is insignificant when compared to NW under the
assumption that an entity and an etag will typically co-occur
in a small faction of documents of the entire corpus W ,
the second component in the G-test can be neglected as an
approximation. Different significance levels can be used as
thresholds to the result of G-test for selecting the associated
set of etags for an entity.
Leveraging Entity-Etag Proximity Information: We can im-
prove the co-occurrence analysis by incorporating the prox-
imity information between etag and mentions of entity. The
intuition here is that the closer entity e appears in proximity to
etag t in a document, it is more likely that they are associated.
We measure the proximity between an etag and a mention of
entity in a document as the number of tokens between them.

Therefore, rather than counting each entity-etag co-

occurrence in a document as 1, the co-occurrence is weighted
by the proximity between the entity mention and the etag in
the document. As a consequence, co-occurrences that appear in
closer proximity gain more weight. This idea has been shown
to be effective in supporting keyword searching of entities
[10], [11], [5]. In our implementation, we adopt the proximity
weighting scheme used in [11].
Leveraging Documents Exclusively About an Entity: A com-
mon problem in performing proximity based co-occurrence
analysis is the noise introduced by other entities occurring
near the target entity. Etags of other entities can sometimes get
incorrectly associated with the target entity. This is especially
true for listing pages where many entities in the same domain
are mentioned in a list, e.g., an Ebay listing page containing
a list of cameras, each with a short description.

One possible solution is to ignore the co-occurrence of
an entity mention and an etag if there are other entities of
the same domain mentioned between them. This requires a
comprehensive input list of entities for a domain. While it
may be feasible for small scale, closed domains, identifying
such a comprehensive list of entities for general domains is
very challenging.

We take an alternate approach. In order to identify etags
for entities robustly, we identify web documents that are
exclusively about an entity. This could be a review page
of a specific product, or a specification page of a product.
The insight here is that etags mentioned in such documents
are more likely to be valid etags for the specific entity.
We identify such documents by performing entity mention
identification over web documents’s url and title, leveraging
the entity mention identification technique described above.
We peform proper tokenization over urls to facilitate entity
mention identification over them. Subsequently, we give more
weights to co-occurrences identified on such documents. Note
that many entities do not have such exclusive pages. Therefore,
we adopt this exclusive document identification technique as a
boost to co-occurrence analysis of all matched co-occurrences,
rather than a replacement.

Other refinements we apply in enhancing association accu-
racy include: eliminating (i) the effect of mirroring documents
by counting duplicated documents only once in aggregation;
(ii) the effect of one specific tag or entity appearing multiple
times in a document, by only allowing the same (entity, etag)
pair output at most once by one document; (iii) the effect of
copy/pasting of segments of text, by building context signature
of etags (for instance, using the five left and right words as
signature). Etags with exact same contexts are likely caused
due to copy/pasting, and should only be counted once.

C. Consumption by E-tailers

The etags can be used to augment the product catalog. For
instance, an e-tailer can introduce an additional “tags” attribute
where the etags “rugged”, “outdoor” and “water resistant”
can be put to enrich the information for entity “Ricoh G600
Digital Camera”. The enriched catalog can be subsequently
indexed and used for capturing more queries. In this example,

a user submitting the query “rugged camera” can retrieve entity
“Ricoh G600 Digital Camera” in the search result.

D. Implementation

Both steps require processing of billions of web documents;
we leverage the MapReduce framework for scalable processing
of web documents. We describe the implementation for one
domain of entities; it is straightforward to extend it to multiple
domains. Our implementation assumes that a snapshot of the
web already exists in the MapReduce platform. Search engine
companies like Google and Microsoft have such snapshots;
such snapshots are also available publicly (e.g., the ClueWeb09
dataset).

We first consider the etag discovery. The lexical patterns
can be detected and the etags can be identified from each
document independently; hence, this task can be executed in
parallel using MapReduce. We need a single MapReduce job
for this task. The map step looks for the lexical patterns in each
document and, for each pattern found, outputs the key-value
pair ⟨t,1⟩ where t denotes the etag in the pattern (1 is the oc-
currence count). We look for lexical patterns by first detecting
exact occurrences of strings in ND in the web document (using
an exact multi-string matching algorithm like Aho-Corasick
algorithm); we then look for the remaining portion of the
lexical pattern in the left/right of those occurrences. The reduce
step simply sums up all the input values to obtain the number
of occurrences of each etag. We filter out etags that occur less
than δ times in web documents.

We now consider entity mention identification. We first
build the approximate match index on the set E of entities
using a MapReduce job. The index as well as the set E
of entities is then broadcast to all the nodes. Since the
mention identification can now be done independently for each
document, we perform it in parallel using another MapReduce
job. The Map step runs a sliding window over each docu-
ment (of size α) and identifies approximate mentions using
the generate-verify scheme described above. The reduce step
simply concatenates all the intermediate outputs.

We perform entity-etag association as part of the entity
mention identification job. After we identify an entity mention,
we can check the identified entity mention’s surrounding
context to look for etags. We aggregate the (entity, etag)
pairs across different documents using a reducer for the co-
occurrence frequency analysis.

V. QUERY-TO-ENTITY DATA SERVICE

A. Problem Definition

E-tailing begins with a catalog of product entities. Initially,
the query log is either missing, or is very limited. As a result,
many functionalities relying on query log cannot be enabled.
One such prominent functionality is the ability to support
query auto-completion. Query auto-completion interactively
shows the legitimate and popular query completions at every
key stroke of the user. This is a very popular feature adopted
universally by all search applications and product search por-
tals of e-tailers are no exception. To enable this functionality,

the e-tailer needs query log containing queries related to its
products and their popularity (typically captured by the query
frequency, i.e., how often users issue the query). Small e-tailers
often do not have a query log or have a very limited query
log. Hence, they cannot enable query auto-completion.

As we have discussed, most e-tailers do not natively have
rich query logs. In this section, we discuss how despite this
shortcoming, we can provide e-tailers with a set of queries
“related” to the products in its catalog, with a frequency of
each query reflecting its popularity in web search engines. For
the purpose of this section, we say that a query is related to
a product if the product search engine returns the product in
its top results for that query. Such a “related query” set can
help e-tailers enable query auto-completion. Thus, the query-
to-entity data service takes the entity reference string of an
entity as input and outputs a set of related queries (each a
string) along with frequency for the input entity. Formally, we
define the data service as follows:

Definition 5.1: (Query-to-Entity Discovery Problem)
Given entity reference string re of entity e, output a set of
related queries and their respective query frequency for the
entity. Each related query qe in the set is either a subset
synonym or hypernym of the entity reference string re. ◻

Here we restrict the related queries to subset synonym or
hypernym only. This means any output query qe has to be a
subset of the reference string re and is either a synonym or
a hypernym of the entity e. This guarantees that any query
generated will result in a hit on the entity. This is crucial
for enabling query auto-completion since any auto-completed
query must have at least one entity hit in its result.

B. Mining Algorithm

We employ a two-step approach on the query click log to
find such queries.

Step 1: Candidate Generation: Given the reference string
of an entity, e.g., “Canon EOS T4i Digital SLR Camera”, we
first subset to the set of queries whose tokens are subsumed by
the tokens in the input entity reference string. The subsumption
condition guarantees that each query will retrieve at least one
result entity, since the reference string (name) of an entity
is always indexed and is therefore searchable. Some example
queries subsumed by the reference string for the above entity
are: q1:“canon camera”, q2:“eos t4i camera”, q3:“digital”, etc.
While q1 and q2 are highly related with the entity, q2 is very
vague by itself and is not very selective in identifying the
entity. To reach such set of candidate queries, we leverage
search engine APIs to first retrieve a set of web documents
relevant with the entity by issuing the entity reference string
as query. Then we treat all the other queries which clicked on
these web documents and are subset of the entity reference
string as candidates.

Step 2: Candidate Filtering: The next step is to ensure
that we output only highly related queries that are among the
candidate queries. Our mining algorithm focuses on two types
of such highly related queries: synonyms or hypernym of the
entity. Both types are popular in search queries, as synonym

refers to the name of an entity whereas hypernym refers to the
category of an entity.

In this step, we leverage the query click log. Specifically,
we can check the intersection between the web documents
clicked in response to a search query “Canon EOS T4i Digital
SLR Camera” and candidate queries (e.g., q1, q2, q3), and
eliminate candidates (e.g., q3) that have very small intersection
of web documents. This small intersection indicates that the
candidate query is not highly related with the entity, since
most of its clicks land on other web documents not about
this entity. On the other hand, when there is large intersection
with these web documents, it often indicates the query is a
subset synonym of the entity (e.g., “canon eos t4i” for “Canon
EOS T4i Digital SLR Camera”), and when there is moderate
intersection with these web documents, it often indicates the
query is a hypernym of the entity (e.g., “canon digital camera”
for “Canon EOS T4i Digital SLR Camera”). A threshold is
set on the extent of this intersection in order to filter out non-
related queries, and return related queries which are either
subset synonyms or hypernyms. The query frequency from the
search query log is used as a good proxy for the popularity of
the query. This frequency is typically used to rank the set of
auto-completed queries so that popular queries appear as top
completions.

It is worth noticing that the related query generation algo-
rithm is different from that of synonym discovery discussed
in Section III. In fact, the subset synonym mining algorithm
presented here will not ensure that the two way checking of
pseudo document similarity presented in Section III will suc-
ceed. The focus for query-to-entity mapping is on entities with
very long reference strings. Such reference strings typically
cannot be matched to any query in the log and therefore do
not have their respective pseudo documents. The insight here
is that the constraint on subsets makes mining much easier.
As a result, simple intersection based measures already yield
highly effective results.

C. Consumption by E-tailers

There are two ways the query-to-entity data service can be
consumed by an e-tailer. We now discuss these two options.
Offline Query Log Feed: The query-to-entity data service can
be used to obtain a query log given a product catalog as input.
Such a query log can be ingested into a product search engine
that supports auto-completion. Many existing product search
solutions support this functionality. For instance, Microsoft
FAST Sharepoint search has an API which takes queries and
their frequencies as input. Once ingested, it can provide query
auto-completion based on the generated query log.
Online Query Auto-completion: Another option is to di-
rectly offer an online query auto-completion service. This
differs from providing an offline query log feed to e-tailers.
This alleviates e-tailers from hosting their own query auto-
completion. On the other hand, this requires the online query
auto-completion service to be of very low response time to
offer completions (under 100ms - see below for additional
discussions on implementation). Once the online query auto-
completion service is ready, the e-tailer who subscribed to the

Domain Entity Associated Synonyms
Camera Canon 600D canon t3i, cannon 600d, canon eos t3i, ...
Camcorder Sony Dcr Sr87 sony handycam dcr sr87, dcrsr87, ...
Fantasy Movie Harry Potter and the Half Blood Prince harry potter 6, half blood prince, hp6, ...
Software Windows 8 win8, microsoft windows 8, windows 7 successor, ...

TABLE I
EXAMPLE SYNONYMS ASSOCIATED TO ENTITIES

service will only need to make minimal changes to their search
box script, so that the search box talks to the service at every
key stroke for getting query completions.

D. Implementation

The related query information for products of a given e-
tailer can be mined offline (as explained above) and can be
directly returned to the e-tailer, who can leverage the log to
power its product search auto-completion. However, for the
rest of the implementation section we focus on the online
query auto-completion scenario discussed above. With this
online service option, e-tailers only need to slightly modify
their search box script to directly talk to the data service
for getting query completions. While this option alleviates
the e-tailers to power their own auto-completion, this mode
demands our query-to-entity data service is able to ensure
extremely fast response to satisfy the need of online query
auto-completion. Toward this goal, we implemented a memory
based Trie leveraging the Windows Azure infrastructure. First,
the query log for a given e-tailer has to be computed offline
based on the input set of entity reference strings given by the
e-tailer. Next, for a given e-tailer, a Windows Azure instance
loads the custom generated query log (from the first step)
into the Trie, and then it is able to serve online the top k
completions for incoming queries ranked by their frequency in
web search query log given a prefix input. A separate Windows
Azure instance is needed for each output query log, since the
log is specific to an e-tailer. Our results show that by building
an efficient Trie over 100 million queries, we can output query
completions under 100ms for 99.9% of the test cases.

VI. EXPERIMENTAL EVALUATION

We present an experimental evaluation of the mining al-
gorithms for the three data services. The main goal of the
study is to evaluate the quality of the mined signals in terms
of precision and recall. Since the focus is on e-tailers, all the
entities considered are products from real-life product catalogs.
The exact set of domains of products considered is different
for the different data services (there are common domains as
well); we describe them in the individual subsections.

To evaluate the quality of a service for a particular entity
domain, we provide a set of entities of that domain as input
to the service, obtain the output and manually judge the
output pairs. We report two measures, precision and recall.
Precision is the fraction of output pairs that are judged correct.
Recall is difficult to compute since we do not know the
set of all valid output pairs for an entity (i.e., set of all
synonyms/tags/related queries of the entity). Hence, we use

the average number of outputs pairs per entity (e.g., average
number of synonyms/tags/related queries) as recall.

A. Quality of Entity Synonyms

Setup: To generate entity synonyms, we leverage query click
log from Bing from 2010 to 20124. We conduct our evaluation
over 5 different product domains from the Bing shopping
catalog. These domains cover popular categories such as
cameras, as well as tail categories such as car speakers. To
manually judge an output pair (e, s), we ask the judge the
following question: is s a valid synonym of the entity e?
Results for Quality of Synonyms: To provide a feeling for the
output, Table I shows a few example entities and the synonyms
discovered for them by our service.

Table II reports the average number of synonyms discovered
per entity for these 5 domains, as well as the precision for these
domains. Our data service discovers 2-4 synonyms per entity
with a precision of around 94%. Notice here we optimize for
very high precision, which is well above 90%. We can discover
significantly more synonyms per entity if we sightly lower the
precision to around 85%-90%.

Product Category #synonyms/entity Precision
Camera 3.4 94%

Camcorder 3.3 96%
Car Speaker 2.1 92%
CD Player 2.0 99%

Speaker 2.2 90%

TABLE II
QUALITY OF ENTITY SYNONYMS FOR 5 PRODUCT CATEGORIES.

B. Quality of Entity Tagging

Setup: Our experimental study uses a snapshot of the web
corpus of high static rank documents, consisting of roughly
1.4 billion documents with total corpus size at 35.2T. We
conduct empirical evaluation on two real product domains,
camera domain (with 3,557 cameras) and shirt domain (with
22,182 shirts). We obtained both sets of products from Bing
shopping.

We chose these two domains because they are important
ones (e.g., frequently queried) and have widely different char-
acteristics. First, unlike the camera domain where entities typ-
ically have a unique model name, such as G600, entities in the
shirt domain are more difficult to distinguish from one another.
As a result, approximate entity mention identification could
potentially lead to more errors for the shirt domain. Second,
entities in the camera domain are relatively well represented on
the web, as they are often available on their specification pages

4Note that due to proprietary and privacy concerns we cannot share all
the details of the query click log.

Domain Entity Associated Etags
Camera Ricoh G600 Digital Camera waterproof, outdoor, rugged, 10mp, ...
Camera Go Photo Easy Pix 30 Digital Camera pink, blue, ultra compact, mini, ...
Camera Sony Cyber-shot DSC-W220 Point and Shoot Camera image stabilized, digital zoom, compact, ...
Shirt Ralph Lauren Childrenswear Striped Oxford Shirt polo, soft, ...
Shirt Dogwood Boys Striped Short Sleeve Polo light blue, little boys, cotton, ...
Shirt Under Armour Heatgear Short Sleeve Tee Girls base layer, moisture wicking, casual, lightweight, ...

TABLE III
EXAMPLE ETAGS ASSOCIATED TO ENTITIES

and review pages. Entities in the shirt domain, on the other
hand, typically are not as well represented on the web, with
most of their appearances in listing pages (e.g., a listing page
of all Ralph Lauren shirts). These different characteristics of
the two domains give us the opportunity to study the sensitivity
of our techniques to different characteristics.

Domain Total Number of Etags Discovered
Camera 1,166
Shirt 935

TABLE IV
STATISTICS OF ETAGS DISCOVERED

Results for Quality of E-tags The domain name strings used
for the camera domain are: “camera”, “digital camera”, and
for the shirt domain are: “shirt”, “t shirt”. Table IV shows the
number of etags discovered for the two domains. On manual
evaluation, we found the set of discovered etags to be highly
accurate, at around 99% precision.

Results for Quality of Entity Mention Identification: We
compare the approximate entity mention identification based
on Jaccard containment against exact entity mention identifi-
cation in terms of precision-recall tradeoff, i.e., the amount
we lose in entity mention identification accuracy versus the
amount we gain in the number of entity mentions identified.
We use the Jaccard containment threshold θ at 0.9 and sliding
window size of 30.

Camera Estimated Precision Median # of Mentions
Exact Match 100% 36
Approx Match 98% 221
Shirt Estimated Precision Median # of Mentions
Exact Match 100% 7
Approx Match 96% 16

TABLE VI
ENTITY MENTION IDENTIFICATION RESULTS

Table VI reports the comparison result for the two domains.
We use the median number of entity mentioned identified,
to eliminate the effect of very popular entities which have
an extremely high number of mentions on the web. We
estimate the precision by manually judging a random sample
of entity mentions of 50 camera entities and 50 shirt entities.
Compared to exact matching, approximate matching identifies
significantly more entity mentions at the cost of a small loss
in precision. The higher number of identified entity mentions
is critical for the subsequent association analysis, which relies
on large scale aggregation. This underscores the importance
of approximate matching based on Jaccard containment.

Results for Quality of Final Output: We present our evalua-

tion of the final output of our system (i.e., etags associated
with the entities) for the two domains. For each domain,
we randomly select 50 entities among the entities that have
more than 20 mentions identified on our web corpus. The
threshold 20 is empirically chosen as the basic limit to perform
robust statistical analysis over the entities. This gives us 2,811
qualifying camera entities and 10,103 qualifying shirt entities
respectively. Table III shows a few example entities and the
etags associated to them by the service.

To manually judge an etag t assigned to an entity e under
domain D with a domain name string nD ∈ ND, we ask
the judge the following question: “is entity e a t nD?”. For
instance, for entity Ricoh G600 Digital Camera and etag
“rugged” in the camera domain, we ask the following question:
“is Ricoh G600 Digital Camera a rugged camera?” Note that
this evaluation stands for the end-to-end accuracy of the overall
system.

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

A

c

c

u

r

a

c

y

Average Number of Dtags Per Entity

C

C+P

C+P+E

Fig. 7. Entity-Etag Association Results (Camera)

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

A

c

c

u

r

a

c

y

Average Number of Dtags Per Entity

C

C+P

C+P+E

Fig. 8. Entity-Etag Association Results (Shirt)

To evaluate various association techniques described in
Section IV, we compare the following methods in terms of
precision and recall (the average number of tags associated
per entity):

Domain Entity Associated Queries
Camera Canon EOS Rebel T2i 18.0 Megapixel Digital Slr Camera canon camera, canon eos rebel, canon t2i, ...
Camera Fujifilm Finepix T350 14.0 Megapixel Digital Camera fujifilm digital camera, fujifilm camera, ...
Camcorder Cobra Digital Dvc3100 Digital Camcorder cobra camcorder, cobra dvc3100, ...
Camcorder Bushnell Trophy Cam Bundle HD Flash Memory Camcorder bushnell cam, trophy cam bushnell, ...

TABLE V
EXAMPLE QUERIES ASSOCIATED TO ENTITIES

● C: Association by co-occurrence frequency analysis only;
● C+P: Association by co-occurrence frequency analysis with
proximity information;
● C+P+E: Association by co-occurrence frequency analysis
with proximity information and entity-exclusive document
optimization.

Figure 7 and 8 show the precision and recall for the camera
and shirt domains respectively. Co-occurrence frequency anal-
ysis alone gives good results; leveraging proximity and lever-
aging entity-exclusive documents further improve the quality.
Overall, the combination of co-occurrence frequency analysis
with proximity information and entity-exclusive documents
(C+P+E) shows the best overall performance. This leads to
the assignment of on average ∼10 etags per entity with ∼85%
precision for the camera domain and ∼8 etags per entity
with ∼80% precision for the shirt domain. The differences
in precision and recall between the two domains are due
to the different characteristics discussed in the beginning of
this subsection. The shirt domain presents more challenges
in entity mention identification, as well as its lack of web
information for robust aggregation.

On analyzing the errors, we found three main sources of
errors: (i) etags of some other entities that appear in close
proximity to the target entity get incorrectly assigned to the
target entity. This is especially true for listing pages where
a list of entities are mentioned; (ii) incorrect entity mention
identification leads to wrong associations, since the etags
associated could be actually about a different entity; (iii)
ambiguous tags: tags that are legitimate by themselves, but
have different meanings under different contexts. For example
in camera domain, “manual”, “tracking” are all legitimate
etags, since they describe subclasses of camera: “manual
camera” and “tracking camera” respectively. However, their
appearances on the web often refer to other meanings. For
instance, “manual” is often mentioned under the meaning of
handbook.

C. Quality and Performance of Query-To-Entity Service

Setup: To generate queries for entities, we leverage query click
log from Bing from 2010 to 2012 (similar to the synonym
service). We conduct our evaluation over the camera domain
and the camcorder domain from the Bing shopping catalog.
To manually judge an output pair (e, q), we ask the judge the
following question: is q a subset synonym or hypernym of the
entity e?
Results for Quality of Query-to-Entity Mapping: Table V
shows a few example entities and the queries associated with
them by our service.

Table VII reports the number of queries discovered per

Product Category #queries/entity Precision
Camera 4.7 99%

Camcorder 5.5 100%

TABLE VII
QUALITY OF QUERY-TO-ENTITY MAPPING FOR TWO PRODUCT

CATEGORIES

entity for these two domains, as well as the precision for these
domains. Our data service discovers a large number of related
queries per entity with very high precision.
Auto-completion Performance: We evaluate the latency of
online autocompletion based on the queries discovered by the
entities. To support online autocompletion, we implemented
an in-memory Trie with Windows Azure as the backend
infrastructure. Our results show that we can autocomplete
99.9% of the queries under 100ms for a query log consisting
of over 100 million distinct queries. This is a “worst case
scenario” since most e-tailers’ query logs have far less queries.

VII. RELATED WORK

The main idea of the paper is to make the connection
between search engine data assets and mining information
for e-tailer’s products. Given online retail is a $200 billion
business [3], this has a tremendous business opportunity. To
the best of our knowledge, we are not aware of any other
work that has demonstrated the use of web search engine data
assets to directly benefit product search functionality for e-
tailers. While we believe that the proposed functionality is
novel, past works on data mining used for product search as
well as for web search are relevant. Naturally, such past work
can be divided into two categories: (i) technologies developed
by e-tailers to mine their own data assets to obtain information
about their own products and (ii) technologies developed by
search engines to mine their own data assets to improve their
relevance and create new functionalities on their own websites.
We now discuss these two lines of related works in more
details.
Technologies developed by e-tailers: As discussed in Section I,
e-tailers, especially big e-tailers like Amazon, mine their data
assets to extract signals that can be leveraged for their portal
and thus for customer experience. For example, [15] describes
Amazon’s product recommendation algorithm. Note that many
algorithms, like the product recommendation algorithm in
[15], rely on data assets for which there is no “parallel”
search engine data asset (e.g., user purchase history data used
in product recommendation). Of course, other services such
as query auto-completion are more similar to functionalities
offered by web search engines.
Technologies developed by search engines: Web search engines

mine their data assets to improve their own relevance ranking
and enable new search engine functionalities (e.g., related
searches and query auto-completion). For example, past works
discuss how to mine synonyms of entities using query logs
[8], associate descriptive phrases or tags to entities using
web crawl [7], find related queries [12] and perform query
autocompletion [6]. Our innovation here is to exploit those
web search engine data assets to mine signals for the product
search functionalities for e-tailers.

VIII. CONCLUSIONS

In this paper, we presented the idea of using search engine
data assets to enhance the user experience for product search
for e-tailers. We have created three cloud data services (entity
synonym data service, entity tagging data service and query-
to-entity data service) to enable e-tailers to enhance user ex-
perience for product search on their sites. These data services
provide all but the largest e-tailers with much needed user data
that they lack.

Our current work continues to explore opportunities for
other cloud data services useful for e-tailers derived from web
search data assets that may add to the three we have proposed
here. In addition, we also need to identify efficient techniques
to incrementally refresh the three data services discussed here
in order to respond to incremental additions to search query
logs as well as updates to product catalogs of e-tailers (the
algorithms proposed in this paper are geared towards bulk
processing).

REFERENCES

[1] Enceda Search. http://www.oracle.com/us/products/applications/
commerce/endeca/overview/index.html.

[2] Fast Sharepoint Search. http://sharepoint.microsoft.com/en-us/product/
capabilities/search/Pages/Fast-Search.aspx.

[3] U.S. Online Retail Sales to Reach $327 Billion by 2016. http://mashable.
com/2012/02/27/ecommerce-327-billion-2016-study/, 2012.

[4] Parag Agrawal, Arvind Arasu, and Raghav Kaushik. On indexing error-
tolerant set containment. In SIGMOD, 2010.

[5] Sanjay Agrawal et al. Exploiting web search engines to search structured
databases. In WWW, 2009.

[6] Ziv Bar-Yossef and Naama Kraus. Context-sensitive query auto-
completion. In Proceedings of WWW, 2011.

[7] Kaushik Chakrabarti, Surajit Chaudhuri, Tao Cheng, and Dong Xin.
Entitytagger : automatically tagging entities with descriptive phrases.
In WWW Conference, 2011.

[8] Kaushik Chakrabarti, Surajit Chaudhuri, Tao Cheng, and Dong Xin. A
framework for robust discovery of entity synonyms. In SIGKDD, 2012.

[9] Kaushik Chakrabarti, Surajit Chaudhuri, Venkatesh Ganti, and Dong
Xin. An efficient filter for approximate membership checking. In
SIGMOD, 2008.

[10] Soumen Chakrabarti, Kriti Puniyani, and Sujatha Das. Optimizing
scoring functions and indexes for proximity search in type-annotated
corpora. In WWW, 2006.

[11] Tao Cheng, Xifeng Yan, and Kevin Chen-Chuan Chang. Entityrank:
searching entities directly and holistically. In VLDB, 2007.

[12] Nick Craswell and Martin Szummer. Random walks on the click graph.
In SIGIR Conference, 2007.

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. ACM SIGOPS
Operating Systems Review, 41(3), 2007.

[14] Ravi Kumar and Andrew Tomkins. A characterization of online search
behavior. Data Engineering Bulletin, 2009.

[15] G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-
to-item collaborative filtering. Internet Computing, IEEE, 2003.

http://www.oracle.com/us/products/applications/commerce/endeca/overview/index.html
http://www.oracle.com/us/products/applications/commerce/endeca/overview/index.html
http://sharepoint.microsoft.com/en-us/product/capabilities/search/Pages/Fast-Search.aspx
http://sharepoint.microsoft.com/en-us/product/capabilities/search/Pages/Fast-Search.aspx
http://mashable.com/2012/02/27/ecommerce-327-billion-2016-study/
http://mashable.com/2012/02/27/ecommerce-327-billion-2016-study/

