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Abstract 
 

Heterogeneous object co-clustering has become an 

important research topic in data mining. In early years of 

this research, people mainly worked on two types of 

heterogeneous data (denoted by pair-wise co-clustering); 

while recently more and more attention was paid to 

multiple types of heterogeneous data (denoted by high-

order co-clustering). In this paper, we studied the high-

order co-clustering of objects with star-structured inter-

relationship, i.e., there is a central type of objects that 

connects the other types of objects. Actually, this case 

could be a very good model for many real-world 

applications, such as the co-clustering of Web images, 

their low-level visual features, and the surrounding text. 

We used a tripartite graph to represent the inter-

relationships among different objects, and proposed a 

consistent information theory which generates an effective 

algorithm to obtain the co-clusters of different types of 

objects. Experiments on a Web image show that our 

proposed algorithm is a better choice compared with 

previous work on heterogeneous object co-clustering. 

 

1. Introduction 
 

Homogeneous data clustering has been extensively 

studied in the literature. However, in real applications 

nowadays, people often need to deal with the co-clustering 

of heterogeneous data objects. For example, in order to 

conduct personalized search, one may need to co-cluster 

three types of objects in the click-through log of Web 

search engines, i.e., Web users, issued queries, and 

clicked pages. One may also need to co-cluster Web 

images, their low-level visual features, and surrounding 

text for a friendly user interface of an image search engine. 

And one may need to co-cluster papers, authors, 

conferences, and journals in order to mine communities in 

the research society. In the above examples, not only 

features of the objects, but also their inter-relationships 

are heterogeneous. In such cases, homogeneous clustering 

technologies cannot work well any longer.  

 

In the past decades, researchers have proposed many 

technologies on the co-clustering of two types of 

heterogeneous data (denoted by pair-wise co-clustering). 

Representative work includes information bottleneck co-

clustering [6][10], bipartite spectral graph partitioning [4], 

and information theoretic co-clustering [1][5]. According 

to [5], the information theoretic method is much more 

scalable and efficient than the other methods. In this 

particular method, a two-dimensional co-occurrence table, 

which describes the relations among data objects, was 

viewed as an empirical joint probability distribution of 

two discrete random variables. Accordingly, the co-

clustering problem was posed as an optimization problem 

in information theory: the optimal co-clustering 

maximized the mutual information [3] between the 

clustered random variables subject to constraints on the 

number of row and column clusters in the co-occurrence 

table. Besides the above work on pair-wise co-clustering, 

researchers also made some efforts on the co-clustering of 

multiple types of objects (denoted by high-order co-

clustering). For example, Wang et al [11] proposed an 

iterative method named ReCoM to cluster multi-type 

interrelated Web objects. 

In this paper, we would like to study a special topology 

of star-structured high-order heterogeneous data as shown 

in Figure 1.(a). In this structure, there is a central type of 

objects that connects the other types of objects. This case 

could be a very good abstraction for many real-world 

applications, such as the co-clustering of authors, 

conferences, papers, and keywords in academic 

publication systems (corresponding to Figure 1.(a).(ii), 

where paper is the central data type), in order to identify 

that a certain group of authors usually write papers of a 

certain series of topics using a certain list of keywords, 

and submit them to a certain kind of conferences. To solve 

the problem of star-structured high-order co-clustering, we 

designed an algorithm named consistent bipartite graph 

co-partitioning (CBGC) based on the consistency theory 

proposed in [7][8]. Although experiments showed this 

algorithm is very effective, it is not very efficient in large-

scale datasets because CBGC is solved by semi-definite 

programming (SDP), which is time-consuming in large-

scale cases. 
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(a) (b) 

Figure 1. (a) Star-structured high-order heterogeneous 
data. (b) The tripartite graph of heterogeneous objects. 

The motivation of this paper is to develop a more 

efficient method to solve the aforementioned star-

structured high-order co-clustering problem. For 

simplicity, we only focus on the case as shown in Figure 

1.(a).(i). In order to get a high-order co-clustering 

algorithm with both high effectiveness and speed, we 

extend the information theoretic co-clustering algorithm 

[5] to the high-order case, once again based on the 

consistency theory. Similar to [7][8], we use a tripartite 

graph to represent the inter-relationships among different 

types of objects. Figure 1.(b) shows a tripartite graph 

which consists of three types of heterogeneous objects: 

X={x1, x2,…, xm}, Y={y1, y2,…, yn}, and Z={z1, z2,…, zl}. 

We model the co-clustering of X, Y, and Z as the 

consistent fusion of two pair-wise co-clustering sub-

problems. That is, we look for such two partitions for the 

sub-problems of X-Y co-clustering and Z-Y co-clustering, 

provided that their clustering results on the central type Y 

are the same. Then for each sub-problem, we adopt the 

information theoretic co-clustering algorithm to get the 

desirable clusters, and adjust these clusters by considering 

the clustering results of the other sub-problem. 

Experiments on a Web image dataset show that this 

method is almost as effective as the CBGC method, while 

it is much faster. In this regard, this method is more 

suitable for real-world large-scale co-clustering 

applications. 
 

2. Problem formulation 
 

In the following two sections, we will mainly discuss 

how to extend the information-theoretic co-clustering 

method to handle the star-structured high-order cases. 

First of all, we will introduce a probability model to 

represent the inter-relationship among heterogeneous 

objects, which is an extension of that used in [4]. 

Let X, Y, and Z be discrete random variables that take 

values from the sets {x1, ... , xm}, {y1, ... , yn}, and {z1, ... , 

zl}, representing the three types of objects. Denote the 

joint probability distributions between X and Y, and 

between Z and Y as the m n×  matrix p1(X,Y) and the 

l n×  matrix p2(Z,Y). Our target is to cluster X, Y, and Z 

into r, s, and t disjoint (or hard) clusters simultaneously. 

Suppose the clusters of X, Y, and Z are 
1̂

ˆ{ ,..., }
r

x x , 

1̂
ˆ{ ,..., }

s
y y , and 

1̂
ˆ{ ,..., }

t
z z , we are actually seeking the 

maps CX, CY, and CZ, i.e., 
1 1̂

ˆ( ) :{ ,..., } { ,..., }
X m r

i C x x x x→ , 

1 1̂
ˆ( ) :{ ,..., } { ,..., }

Y n s
ii C y y y y→ , 

1 1̂
ˆ( ) :{ ,..., } { ,..., }

Z l t
iii C z z z z→ . In 

brief, we denote ˆ ( )
X

X C X= , ˆ ( )
Y

Y C Y= , and ˆ ( )
Z

Z C Z= . 

Based on the above notations, we have the following 

definitions. 

Definition 1. We refer to the tuple (CX, CY) as a co-

clustering. 

Definition 2. We refer to the star-structured triple (CX, 

CY, CZ) as a consistent co-clustering, where CY is the 

mapping corresponding to the central data type. 

A traditional and fundamental quantity that measures 

the amount of information that random variable X contains 

about Y (and vice versa) is the mutual information I(X,Y) 

[3]. As shown in Definition 3, similar to [5], the resultant 

loss in mutual information is adopted in this paper to 

judge the quality of a co-clustering. 

Definition 3. An optimal co-clustering minimizes ( , )I X Y  

ˆ ˆ( , )I X Y−  subject to the constraints on the number of row 

and column clusters in the probability matrix 
1
( , )p X Y , 

where ( , )I ⋅ ⋅  denotes the mutual information, i.e., 

( )1 1 1 1( , ) ( , ) log ( , ) ( ( ) ( ))
x y

I X Y p x y p x y p x p y=∑ ∑ . (1) 

Similarly, we have 

( )2 2 2 2( , ) ( , ) log ( , ) ( ( ) ( ))
z y

I Z Y p z y p z y p z p y=∑ ∑ . (2) 

It was proved in [5] that the loss of mutual information 

could be obtained by calculating a Kullback-Leibler (KL) 

[3] divergence. For the star-structured high-order co-

clustering, we can have the similar conclusion as follows 

after some deductions. 

Lemma 1. For a fixed consistent co-clustering (CX, CY, 

CZ), we can write the loss in mutual information as 

1 1
ˆ ˆ( , ) ( , ) ( ( , ) || ( , ))I X Y I X Y D p X Y q X Y− = ,           (3) 

2 2
ˆ ˆ( , ) ( , ) ( ( , ) || ( , ))I Z Y I Z Y D p Z Y q Z Y− = ,             (4) 

 where ( || )D ⋅ ⋅  denotes the Kullback-Leibler (KL) 

divergence, also known as relative entropy, and q1(X,Y) 

and q2(Z,Y) are distributions of the following forms: 

1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( | ) ( | ), ,q x y p x y p x x p y y where x x y y= ∈ ∈ ,   (5) 

2 2 2 2
ˆ ˆ ˆˆ ˆ ˆ( , ) ( , ) ( | ) ( | ), ,q z y p z y p z z p y y where z z y y= ∈ ∈ .   (6) 

According to the consistency theory [7][8], we divide 

the original X-Y-Z co-clustering problem into two sub-

problems: X-Y co-clustering and Z-Y co-clustering, with 

the constraints that their clustering results on the central 

type Y are exactly the same and the overall partitioning is 

optimal under a certain objective function. A simple but 
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feasible objective function could just be the linear 

combination of the two KL divergences in (3) and (4). 

Definition 4. The objective function of the consistent co-

clustering on (CX, CY, CZ) is defined as  

1 1( , , ) ( ( , ) || ( , ))F X Y Z D p X Y q X Yα=  

2 2(1 ) ( ( , ) || ( , )), 0 1D p Z Y q Z Y whereα α+ − < < .   (7) 

In the right-hand side of the above formula, the first 

term stands for the objective function for the sub-problem 

of X-Y co-clustering, while the second one stands for that 

of Y-Z co-clustering. Parameter α is a weighting factor 

determining which local bipartite graph we trust more. 

 

3. Consistent information theoretic co-

clustering 
 

According to [5], we have the following proposition 

and lemma after some extensions.  

Proposition 1. For the sub-problems of X-Y co-clustering 

and Z-Y co-clustering in a fixed (or hard) consistent co-

clustering (CX, CY, CZ), there holds 

1 1 1 1
ˆ ˆ ˆ ˆ( ( , ) || ( , )) ( ( , , , ) || ( , , , ))D p X Y q X Y D p X Y X Y q X Y X Y= , (8) 

2 2 2 2
ˆ ˆ ˆ ˆ( ( , ) || ( , )) ( ( , , , ) || ( , , , ))D p Z Y q Z Y D p Z Y Z Y q Z Y Z Y= . (9) 

Lemma 2. For either of the sub-problems of X-Y co-

clustering and Z-Y co-clustering in a fixed (or hard) 

consistent co-clustering (CX, CY, CZ), the loss in mutual 

information can be expressed as (i) a weighted sum of the 

relative entropies between row distributions and “row-

lumped” distributions, or as (ii) a weighted sum of the 

relative entropies between column distributions and 

“column-lumped” distributions, that is, 

1 1
ˆ ˆ ˆ ˆ( ( , , , ) || ( , , , ))D p X Y X Y q X Y X Y  

1 1 1

ˆ ˆ: ( )

ˆ( ) ( ( | ) || ( | ))
Xx x C x x

p x D p Y x q Y x
=

=∑ ∑ ,              (10) 

1 1
ˆ ˆ ˆ ˆ( ( , , , ) || ( , , , ))D p X Y X Y q X Y X Y  

1 1 1

ˆ ˆ: ( )

ˆ( ) ( ( | ) || ( | ))
Yy y C y y

p y D p X y q X y
=

=∑ ∑ .           (11) 

2 2
ˆ ˆ ˆ ˆ( ( , , , ) || ( , , , ))D p Z Y Z Y q Z Y Z Y  

2 2 2

ˆ ˆ: ( )

ˆ( ) ( ( | ) || ( | ))
Zz z C z z

p z D p Y z q Y z
=

=∑ ∑ ,              (12) 

2 2
ˆ ˆ ˆ ˆ( ( , , , ) || ( , , , ))D p Z Y Z Y q Z Y Z Y  

2 2 2

ˆ ˆ: ( )

ˆ( ) ( ( | ) || ( | ))
Yy y C y y

p y D p Z y q Z y
=

=∑ ∑ .           (13) 

Lemma 2 shows that in either of the sub-problems, we 

can express the objective function solely in terms of the 

row-clustering, or in terms of the column-clustering. Then, 

for example, in X-Y co-clustering, we can define the 

distribution 1
ˆ( | )q Y x  as a row-cluster prototype, and 

similarly, the distribution 1
ˆ( | )q X y  as a column-cluster 

prototype. Based on this intuition, the co-clustering of 

each sub-problem can be calculated by iteratively 

computing row clusters and column clusters. Furthermore, 

it can be proved that this interactive process can gradually 

maximize the mutual information between the clustered 

random variables in a reinforcing manner. To solve the 

overall consistent co-clustering problem, we first use the 

above idea to get the solution of each sub-problem, and 

then determine the clustering result for the central type of 

object Y by minimizing the objective function as defined 

in Definition 4, based on the foregoing clustering results 

of X and Z. This process can be conducted in an iterative 

way, until the co-clustering results become stable. More 

specifically, we propose the Consistent Information 

Theoretic co-clustering algorithm (CIT) as shown in 

Table 1 to solve the star-structured high-order 

heterogeneous data co-clustering problem. 

 

Table 1. The CIT algorithm. 
ALGORITHM CIT (p1, p2, r, s, t, α, &CX, &CY, &CZ) 

Input: p1: the joint probability distributions of X and Y; p2: the 

joint probability distributions of Z and Y; r: the desired cluster 

number of X; s: the desired cluster number of Y; t: the desired 

cluster number of Z. 

Output: The mapping functions CX, CY and CZ. 

1. Initialization: Set i=0. Start with some initial partition 

functions
(0) (0),
X Y

C C and
(0)

Z
C . Compute 

(0) (0) (0)

1 1 1
ˆ ˆ ˆ ˆ( , ), ( | ), ( | ),q X Y q X X q Y Y

(0) (0) (0)

2 2 2
ˆ ˆ ˆ ˆ( , ), ( | ), ( | ),q Z Y q Z Z q Y Y  

and distributions (0)

1
ˆ ˆ( | ), 1q Y x x r≤ ≤  and (0)

2
ˆ ˆ( | ),1q Y z z t≤ ≤  

using ( ) ( ) ( )

1 1 1
ˆ ˆ ˆ ˆ( | ) ( | ) ( | )

i i i
q y x q y y q y x= , ( ) ( ) ( )

2 2 2
ˆ ˆˆ ˆ( | ) ( | ) ( | )

i i i
q y z q y y q y z= . 

2. Compute X clusters. For each x, find its new cluster index as 

( 1) ( )

ˆ 1 1
ˆ( ) arg min ( ( | ) || ( | ))

i i

X xC x D p Y x q Y x
+

= , 

resolving ties arbitrarily. Let 
( 1) ( )i i

Y Y
C C+

= . 

3. Compute distributions ( 1) ( 1) ( 1)

1 1 1
ˆ ˆ ˆ ˆ( , ), ( | ), ( | )i i i

q X Y q X X q Y Y
+ + +  

and the distributions ( 1)

1
ˆ ˆ( | ), 1

i
q X y y s

+
≤ ≤  using  

( 1) ( 1) ( 1)

1 1 1
ˆ ˆ ˆ ˆ( | ) ( | ) ( | )i i i

q x y q x x q x y
+ + +

= . 

4. Compute Y clusters. For each y, find its new cluster index as 

( 2) ( 1)

ˆ 1 1
ˆ( ) argmin ( | ) || ( | )i i

Y y
C y p X y q X y+ +

=  

resolving ties arbitrarily. Let ( 2) ( 1)i i

X X
C C

+ +
= . 

5. Compute distributions ( 2) ( 2) ( 2)

1 1 1
ˆ ˆ ˆ ˆ( , ), ( | ), ( | )i i iq X Y q X X q Y Y+ + +  

and the distributions ( 2)

1
ˆ ˆ( | ), 1i

q Y x x r
+

≤ ≤  using 

( ) ( ) ( )

1 1 1
ˆ ˆ ˆ ˆ( | ) ( | ) ( | )i i i

q y x q y y q y x= . 

6. If the number of the process loop of Steps 2~5 exceeds the 

scheduled value, or the change in objective function value of 

the X-Y sub-problem, that is, 
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( ) ( 2)

1 1 1 1
( ( , ) || ( , )) ( ( , ) || ( , ))i iD p X Y q X Y D p X Y q X Y+

− , 

is small,  go to Step 7; otherwise, go to Step 2. 

7. Compute Z clusters. For each z, find its new cluster index as 

( 1) ( )

ˆ 2 2
ˆ( ) arg min ( ( | ) || ( | ))i i

Z z
C z D p Y z q Y z

+
= , 

resolving ties arbitrarily. Let 
( 1) ( )i i

Y Y
C C+

= . 

8. Compute distributions ( 1) ( 1) ( 1)

2 2 2
ˆ ˆ ˆ ˆ( , ), ( | ), ( | )

i i i
q Z Y q Z Z q Y Y

+ + +  

and the distributions ( 1)

2
ˆ ˆ( | ), 1i

q Z y y n
+

≤ ≤  using  

( 1) ( 1) ( 1)

2 2 2
ˆ ˆˆ ˆ( | ) ( | ) ( | )i i iq z y q z z q z y+ + +

= . 

9. Compute Y clusters. For each y, find its new cluster index as 

( 2) ( 1)

ˆ 2 2
ˆ( ) argmin ( ( | ) || ( | ))

i i

Y yC y D p Z y q Z y
+ +

=  

resolving ties arbitrarily. Let ( 2) ( 1)i i

Z Z
C C+ +

= .  

10. Compute distributions ( 2) ( 2) ( 2)

2 2 2
ˆ ˆ ˆ ˆ( , ), ( | ), ( | )

i i i
q Z Y q Z Z q Y Y

+ + +  

and the distributions ( 2)

2
ˆ ˆ( | ), 1iq Y z z t+

≤ ≤  using 

( ) ( ) ( )

2 2 2
ˆ ˆˆ ˆ( | ) ( | ) ( | )i i iq y z q y y q y z= . 

11. If the number of the process loop of Steps 7~10 exceeds the 

scheduled value, or the change in objective function value of 

the Z-Y sub-problem, that is, 

( ) ( 2)

2 2 2 2( ( , ) || ( , )) ( ( , ) || ( , ))
i i

D p Z Y q Z Y D p Z Y q Z Y
+

− , 

is small,  go to Step 12; otherwise, go to Step 7. 

12. Compute Y clusters under the concept of consistency. For each 

y, find its new cluster index as 

( 2) ( 1)

ˆ 1 1 1

( 1)

2 2 2

ˆ( ) argmin [ ( ) ( ( | ) || ( | ))

ˆ(1 ) ( ) ( ( | ) || ( | ))]

i i

Y y

i

C y p y D p X y q X y

p y D p Z y q Z y

α

α

+ +

+

=

+ −

      (14) 

resolving ties arbitrarily ( 0 1α< < ). Let ( 2) ( 1)i i

X X
C C+ +

=  and 

( 2) ( 1)i i

Z Z
C C

+ +
= .  

13. Compute distributions 

( 2) ( 2) ( 2)

1 1 1
ˆ ˆ ˆ ˆ( , ), ( | ), ( | ),i i iq XY q X X q Y Y+ + +  ( 2) ( 2) ( 2)

2 2 2
ˆ ˆ ˆ ˆ( , ), ( | ), ( | )

i i i
q ZY q Z Z q Y Y

+ + +  

and distributions ( 2)

1
ˆ ˆ( | ),1

i
q Y x x r

+
≤ ≤  and ( 2)

2
ˆ ˆ( | ),1

i
q Y z z t

+
≤ ≤  

using ( ) ( ) ( )

1 1 1
ˆ ˆ ˆ ˆ( | ) ( | ) ( | )i i i

q y x q y y q y x= , ( ) ( ) ( )

2 2 2
ˆ ˆˆ ˆ( | ) ( | ) ( | )i i i

q y z q y y q y z= . 

14. Stop and return ( 2)i

X X
C C

+
= , 

( 2 )i

Y Y
C C

+
=  and 

( 2)i

Z Z
C C

+
=  if 

the change in objective function value, that is,  

( ) ( 2)

1 1 1 1

( ) ( 2)

2 2 2 2

( ( , ) || ( , )) ( ( , ) || ( , ))

(1 ) ( ( , ) || ( , )) ( ( , ) || ( , )) ,

i i

i i

D p X Y q X Y D p X Y q X Y

D p Z Y q Z Y D p Z Y q Z Y

α

α

+

+

 − 

 + − − 

    

where 0 1α< <  is small; else, set i=i+2 and go to step 2. 

Overall speaking, at the beginning of each iteration of 

the CIT algorithm, we calculate the clusters of X and Y 

through the sub-problem of X-Y information theoretic co-

clustering (see steps 2~6). Actually, instead of processing 

this sub-problem till it converges, we stop it after a few 

iterations and output the clustering of X. This is because 

that the aim of the above operation is to obtain a relatively 

good initial clustering of X for calculating the clustering 

of Y, rather than to get an accurate clustering of X. 

Similarly, the clusters of Z and Y are calculated through 

the sub-problem of Z-Y information theoretic co-clustering 

and the clustering of Z is outputted after several iterations 

(see steps 7~11). Then, the new clusters of Y are 

calculated under the concept of consistency, by 

minimizing the loss function (14) (defined in Definition 

4). After that, the clusters of X, Y, and Z are all updated 

(Steps 12~14). This iterative process stops when the 

objective function no longer decreases. 

Note that the convergence of this algorithm can be well 

proved. That is, this algorithm can monotonically decrease 

the objective function as given in Definition 4, and 

terminate in a finite number of iterations. We omitted the 

details of the proof due to the space restriction. 

 

4. Experimental results 
 

Web image clustering is a technology to help users 

digest the large amount of online visual information. 

Many traditional methods on image clustering only used 

either the low-level visual features inside the images or 

the surrounding text in the corresponding Web pages. 

Considering that these two kinds of information are 

complementary, one can expect better clustering results if 

we are able to utilize both of them in an effective way. 

Low-level visual features, images, and surrounding text 

can just make up a star structure where images are the 

central type of objects. Therefore, they can be well 

represented by the tripartite graph as shown in Figure 

1.(b) and thus be solved by the CIT algorithm. In this 

section, we would like to show some evaluation results on 

this task. 

 

4.1. Data preparation 
 

The image data used in our experiments were crawled 

from the Photography Museums and Galleries of the 

Yahoo! Directory. Images and their surrounding texts 

were extracted from the crawled Web pages. After 

removing some low-quality data, the remaining 17,000 

images were assigned to 48 categories manually.  

In our experiment, we randomly selected 10 categories 

of images from this dataset, the names of which are listed 

in Table 3. We extracted 530-dimension color and texture 

features in total as the low-level visual representation of 

the images (See Table 2) to build the {visual feature}-by-

image matrix A. To generate the {term in surrounding 

text}-by-image matrix B, we removed the stop words and 
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then the remaining words were regarded as textual 

representations of the images in our experiments. The 

dimensionality of the textual features ranges from several 

hundreds to more than one thousand, changing with 

different subset of images.  

Table 2. The low-level features extracted from images. 

Feature category Feature Name Dimensions 

 

Color 

Color Histogram Features 256 

Color Moment Features 9 

Color Coherence Features 128 

 

Texture 

Tamura Texture Features 18 

Wavelet Features [2]  104 

MRSAR [9]  15 

 

4.2. Average performance 
 

We set parameter α = 0.4 and report the clustering 

performance for all possible pairs of categories in the 

selected image dataset. We plot the comparison between 

CIT accuracy and CBGC accuracy in Figure 2, each point 

in which represents a category pair. We can see that most 

of the points fall in the upper side of the diagonal, 

indicating that the CIT algorithm outperforms the CBGC 

method in most cases. We also plot the comparison 

between CIT time cost and CBGC time cost in Figure 3, 

which shows definitely that the proposed algorithm is 

much more efficient than the CBGC algorithm. (In Figure 

3, the indexes on the horizontal axis were a random 

permutation of all possible pairs of categories in the 

selected image dataset.) To sum up, the CIT algorithm is a 

better solution to the high-order co-clustering problem. 
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Figure 2. Accuracy comparison. 
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Figure 3. Time cost comparison. 

5. Conclusions 
 

In this paper, we proposed a novel algorithm based on 

the consistent information theory for co-clustering high-

order heterogeneous data. This algorithm can be regarded 

as another realization of the consistency theory, and can 

also be regarded as an extension of the information-

theoretic co-clustering algorithm. Experiments showed 

that it is a good choice for the co-clustering of multi-type 

inter-related data objects, in terms of both efficiency and 

effectiveness.  
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