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Abstract

Heterogeneous object co-clustering has become an
important research topic in data mining. In early years of
this research, people mainly worked on two types of
heterogeneous data (denoted by pair-wise co-clustering);
while recently more and more attention was paid to
multiple types of heterogeneous data (denoted by high-
order co-clustering). In this paper, we studied the high-
order co-clustering of objects with star-structured inter-
relationship, i.e., there is a central type of objects that
connects the other types of objects. Actually, this case
could be a very good model for many real-world
applications, such as the co-clustering of Web images,
their low-level visual features, and the surrounding text.
We used a tripartite graph to represent the inter-
relationships among different objects, and proposed a
consistent information theory which generates an effective
algorithm to obtain the co-clusters of different types of
objects. Experiments on a Web image show that our
proposed algorithm is a better choice compared with
previous work on heterogeneous object co-clustering.

1. Introduction

Homogeneous data clustering has been extensively
studied in the literature. However, in real applications
nowadays, people often need to deal with the co-clustering
of heterogeneous data objects. For example, in order to
conduct personalized search, one may need to co-cluster
three types of objects in the click-through log of Web
search engines, i.e., Web users, issued queries, and
clicked pages. One may also need to co-cluster Web
images, their low-level visual features, and surrounding

text for a friendly user interface of an image search engine.

And one may need to co-cluster papers, authors,
conferences, and journals in order to mine communities in
the research society. In the above examples, not only
features of the objects, but also their inter-relationships
are heterogeneous. In such cases, homogeneous clustering
technologies cannot work well any longer.

In the past decades, researchers have proposed many
technologies on the co-clustering of two types of
heterogeneous data (denoted by pair-wise co-clustering).
Representative work includes information bottleneck co-
clustering [6][10], bipartite spectral graph partitioning [4],
and information theoretic co-clustering [1][5]. According
to [5], the information theoretic method is much more
scalable and efficient than the other methods. In this
particular method, a two-dimensional co-occurrence table,
which describes the relations among data objects, was
viewed as an empirical joint probability distribution of
two discrete random variables. Accordingly, the co-
clustering problem was posed as an optimization problem
in information theory: the optimal co-clustering
maximized the mutual information [3] between the
clustered random variables subject to constraints on the
number of row and column clusters in the co-occurrence
table. Besides the above work on pair-wise co-clustering,
researchers also made some efforts on the co-clustering of
multiple types of objects (denoted by high-order co-
clustering). For example, Wang et al [11] proposed an
iterative method named ReCoM to cluster multi-type
interrelated Web objects.

In this paper, we would like to study a special topology
of star-structured high-order heterogeneous data as shown
in Figure 1.(a). In this structure, there is a central type of
objects that connects the other types of objects. This case
could be a very good abstraction for many real-world
applications, such as the co-clustering of authors,
conferences, papers, and keywords in academic
publication systems (corresponding to Figure 1.(a).(ii),
where paper is the central data type), in order to identify
that a certain group of authors usually write papers of a
certain series of topics using a certain list of keywords,
and submit them to a certain kind of conferences. To solve
the problem of star-structured high-order co-clustering, we
designed an algorithm named consistent bipartite graph
co-partitioning (CBGC) based on the consistency theory
proposed in [7][8]. Although experiments showed this
algorithm is very effective, it is not very efficient in large-
scale datasets because CBGC is solved by semi-definite
programming (SDP), which is time-consuming in large-
scale cases.
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Figure 1. (a) Star-structured high-order heterogeneous
data. (b) The tripartite graph of heterogeneous objects.

The motivation of this paper is to develop a more
efficient method to solve the aforementioned star-
structured  high-order co-clustering problem. For
simplicity, we only focus on the case as shown in Figure
1.(a).(i). In order to get a high-order co-clustering
algorithm with both high effectiveness and speed, we
extend the information theoretic co-clustering algorithm
[5] to the high-order case, once again based on the
consistency theory. Similar to [7][8], we use a tripartite
graph to represent the inter-relationships among different
types of objects. Figure 1.(b) shows a tripartite graph
which consists of three types of heterogeneous objects:
X:{Xl, X2yeony Xm}, Y:{yl, Voyeuns yn}’ and Z:{Zl, Vo TN Z]}.
We model the co-clustering of X, Y, and Z as the
consistent fusion of two pair-wise co-clustering sub-
problems. That is, we look for such two partitions for the
sub-problems of X-Y co-clustering and Z-Y co-clustering,
provided that their clustering results on the central type Y
are the same. Then for each sub-problem, we adopt the
information theoretic co-clustering algorithm to get the
desirable clusters, and adjust these clusters by considering
the clustering results of the other sub-problem.
Experiments on a Web image dataset show that this
method is almost as effective as the CBGC method, while
it is much faster. In this regard, this method is more
suitable for real-world large-scale  co-clustering
applications.

2. Problem formulation

In the following two sections, we will mainly discuss
how to extend the information-theoretic co-clustering
method to handle the star-structured high-order cases.
First of all, we will introduce a probability model to
represent the inter-relationship among heterogeneous
objects, which is an extension of that used in [4].

Let X, Y, and Z be discrete random variables that take
values from the sets {xi, ..., X, }, {¥1, ..., Yu}, and {zy, ...,
7}, representing the three types of objects. Denote the

joint probability distributions between X and Y, and
between Z and Y as the mXn matrix p(X,Y) and the
[ xXn matrix p,(Z,Y). Our target is to cluster X, Y, and Z
into r, s, and ¢ disjoint (or hard) clusters simultaneously.
Suppose the clusters of X, Y, and Z are {%,..,%},
{3y}, and {Z,...Z}, we are actually seeking the
maps Cx, Cy, and Cz ie., ()G :{x,..x }>{%,..%},
@) G Ay 3, ) 2T 3} @) C, {2z} {2502 ) In
brief, we denote X =C,(X), ¥ =C,(Y), and Z=C,(Z).
Based on the above notations, we have the following
definitions.

Definition 1. We refer to the tuple (Cy, Cy) as a co-
clustering.

Definition 2. We refer to the star-structured triple (Cy,
Cy, Cz) as a consistent co-clustering, where Cy is the
mapping corresponding to the central data type.

A traditional and fundamental quantity that measures
the amount of information that random variable X contains
about Y (and vice versa) is the mutual information /(X,Y)
[3]. As shown in Definition 3, similar to [5], the resultant
loss in mutual information is adopted in this paper to
judge the quality of a co-clustering.

Definition 3. An optimal co-clustering minimizes 1(X,Y)

—1(X,Y) subject to the constraints on the number of row
and column clusters in the probability matrix p,(X,Y),

where 1(-,-) denotes the mutual information, i.e.,

1X.Y)=3 >, pelog(p(xy)/(p)p (). (D
Similarly, we have
1ZY)=3 >, p(zlog(p(z0)/(p, ()P, () - (2)

It was proved in [5] that the loss of mutual information
could be obtained by calculating a Kullback-Leibler (KL)
[3] divergence. For the star-structured high-order co-
clustering, we can have the similar conclusion as follows
after some deductions.

Lemma 1. For a fixed consistent co-clustering (Cx, Cy,
Cy), we can write the loss in mutual information as

I(X,Y)-I(X,Y)=D(p,(X.,Y)ll g,(X.Y)), 3)
1(Z,Y)-1(Z,Y)=D(p,(Z,Y) 1 ¢,(Z.Y)) , @)
where D(-ll-) denotes the Kullback-Leibler (KL)

divergence, also known as relative entropy, and q,(X,Y)
and q,(Z,Y) are distributions of the following forms:
4,(x.y) = p, (%, 9)p (xI D)p(y13). where xe X, ye 3, (5)
0,(2, )= P, (2. 9)p, (21 ) p, (Y1), where ze 2, ye 3 . (6)
According to the consistency theory [7][8], we divide
the original X-Y-Z co-clustering problem into two sub-
problems: X-Y co-clustering and Z-Y co-clustering, with
the constraints that their clustering results on the central
type Y are exactly the same and the overall partitioning is
optimal under a certain objective function. A simple but
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feasible objective function could just be the linear
combination of the two KL divergences in (3) and (4).
Definition 4. The objective function of the consistent co-
clustering on (Cy, Cy, Cz) is defined as
F(X,Y,Z)=aD(p,(X,Y)llg(X,Y))
+(1-a)D(p,(Z,Y) 1 g,(Z,Y)), where 0 < a <1. (7)
In the right-hand side of the above formula, the first
term stands for the objective function for the sub-problem
of X-Y co-clustering, while the second one stands for that
of Y-Z co-clustering. Parameter o is a weighting factor
determining which local bipartite graph we trust more.

3. Consistent information theoretic co-
clustering

According to [5], we have the following proposition
and lemma after some extensions.
Proposition 1. For the sub-problems of X-Y co-clustering
and Z-Y co-clustering in a fixed (or hard) consistent co-
clustering (Cy, Cy, Cy), there holds
D(p (X, V)l q,(X.Y))=D(p,(X.Y,X, "l g,(X.,Y,X,Y)), (8)
D(p,(Z ) q,(Z,Y)) =D(p,(Z,Y,Z,Y)1q,(Z,Y,Z.Y)) . (9)
Lemma 2. For either of the sub-problems of X-Y co-
clustering and Z-Y co-clustering in a fixed (or hard)
consistent co-clustering (Cx, Cy, Cy), the loss in mutual
information can be expressed as (i) a weighted sum of the
relative entropies between row distributions and “row-
lumped” distributions, or as (ii) a weighted sum of the
relative entropies between column distributions and
“column-lumped” distributions, that is,

D(p,(X.Y,X V) llg(X,Y,X,Y))
=2 > pD(pY1x0)lg Y I13), (10)
X xCy (x)=%
D(p,(X.Y.X.¥)llq(X.Y,X.Y)
=Y > pIDpX1Iylg(X19). (11)
5 wCy (=5
D(p,(Z,Y,Z, V)l q,(Z,Y,Z,Y))
= > @D, Y 1)lg,(Y12), (12)
Z zCy(2)=2
D(p,(Z,Y,Z, V)l q,(Z,Y,Z,Y))
=Y > pWMD(P(ZIy)g,(Z15)). (13)
5 wCy (=9
Lemma 2 shows that in either of the sub-problems, we
can express the objective function solely in terms of the
row-clustering, or in terms of the column-clustering. Then,
for example, in X-Y co-clustering, we can define the
distribution ¢, (Y |1X) as a row-cluster prototype, and

similarly, the distribution ¢, (X | y) as a column-cluster

prototype. Based on this intuition, the co-clustering of
each sub-problem can be calculated by iteratively

computing row clusters and column clusters. Furthermore,
it can be proved that this interactive process can gradually
maximize the mutual information between the clustered
random variables in a reinforcing manner. To solve the
overall consistent co-clustering problem, we first use the
above idea to get the solution of each sub-problem, and
then determine the clustering result for the central type of
object Y by minimizing the objective function as defined
in Definition 4, based on the foregoing clustering results
of X and Z. This process can be conducted in an iterative
way, until the co-clustering results become stable. More
specifically, we propose the Consistent Information
Theoretic co-clustering algorithm (CIT) as shown in
Table 1 to solve the star-structured high-order
heterogeneous data co-clustering problem.

Table 1. The CIT algorithm.

ALGORITHM CIT (py, po, 1, 5, t, a, &Cx, &Cy, &C7)

Input: p;: the joint probability distributions of X and Y; p: the
joint probability distributions of Z and Y; r: the desired cluster
number of X; s: the desired cluster number of Y; #. the desired
cluster number of Z.

Output: The mapping functions Cx, Cy and Cy.

1. Initialization: Set i=0. Start with some initial partition
functions C)((O) s Cl(,o) and Céo) . Compute

gOX.0),q"X12), ¢ 1), "2V, 4" Z12),4" (¥ 1Y),

and distributions ¢ (v 1%),1<2<r and gO(Y12),1<5<1

<
usin 0] 1) = (i) | (i) K (1)( |"): (i)( |’\) (i) AlA).
g ¢ " ID=4"1»q"310.q Y12)=¢" Oyg Y1z
2. Compute X clusters. For each x, find its new cluster index as

CY*™ (x)=argmin, D(p,(¥Y 1)l g’ (¥ %)),
resolving ties arbitrarily. Let CI(,M) =C).
3. Compute distributions ¢’ (X, ), ¢ (X 1 X), ¢ (Y 1Y)
and the distributions ¢ (X | $),1< $ < s using
ql(i+l)(x| 3}) :ql(i+l)(x| )%)ql(iﬂ)()%l 5\/) .
4. Compute Y clusters. For each y, find its new cluster index as
C}(/i+2)(y) — argminﬁ pl (X | y) ” ql(H-l)(X | )A])
resolving ties arbitrarily. Let C{™® = C{*".

5. Compute distributions ¢*?(X,Y), ¢"** (X 1 X), g™ (Y 1Y)

1 1

and the distributions g/ (¥ | %), 1< 2 < r using

a1 D =4"(19g"(F13).
6. If the number of the process loop of Steps 2~5 exceeds the
scheduled value, or the change in objective function value of
the X-Y sub-problem, that is,
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D(p, (X, V)l g (X, V) =D(p (X, V)l ¢*? (X, 1)),
is small, go to Step 7; otherwise, go to Step 2.
7. Compute Z clusters. For each z, find its new cluster index as

Ci™(z)=argmin, D(p,(Y 1 2)11¢" ¥ 12)),
resolving ties arbitrarily. Let Cf,”l) = C)(,i) .
8. Compute distributions q;”])(ZA, ), VA ZA),q;m) YY)
and the distributions ¢\ (Z1$),1< $ <n using
4" (219)=¢""(z12)g;"" (219).
9. Compute Y clusters. For each y, find its new cluster index as
i (y) =argmin D(p,(Z1 Wl g{*™ (Z1 $))
resolving ties arbitrarily. Let C{™ = C{*™".

10. Compute distributions ¢ (Z,Y), ¢\**(Z 1 2),¢{*> (Y 1Y)

and the distributions ¢{*?(y12),1< 2 <t using

1= HE(312).

11. If the number of the process loop of Steps 7~10 exceeds the
scheduled value, or the change in objective function value of
the Z-Y sub-problem, that is,

D(p,(Z V)¢ (Z.Y)-D(p,(Z.Y)ll gy (Z.Y),
is small, go to Step 12; otherwise, go to Step 7.

12. Compute Y clusters under the concept of consistency. For each
y, find its new cluster index as

G () =argmin;[ap (WD X NG XTI (14
+(1=2)p,(ND(p,(Z1 )¢, (Z1 3)]

resolving ties arbitrarily (0<a<1). Let ¢{*» =c¢*" and
CU*? = D
z z :
13. Compute distributions
4P EDG X4 MD, ¢7ENG A DG 0Y)
and distributions ¢ (Y1%),1<2<r and ¢i*?(v13),1<5<¢
using ¢ (v1D=¢" (1 9)q" 319 ¢'012D=¢' V19’ G12)-
14. Stop and return C, =C{™>, C, =C,"” and C, =C,"™” if
the change in objective function value, that is,
a] D(p (X D)l g (X.¥)=D(p,(X. V)l ¢ (X.Y)) ]
+(1—0!)[D(P2 @Z)g(Z,Y)-D(p,(Z, V) g, (Z, Y))],

where 0 < & <1 is small; else, set i=i+2 and go to step 2.

Overall speaking, at the beginning of each iteration of
the CIT algorithm, we calculate the clusters of X and Y
through the sub-problem of X-Y information theoretic co-

clustering (see steps 2~6). Actually, instead of processing
this sub-problem till it converges, we stop it after a few
iterations and output the clustering of X. This is because
that the aim of the above operation is to obtain a relatively
good initial clustering of X for calculating the clustering
of Y, rather than to get an accurate clustering of X.
Similarly, the clusters of Z and Y are calculated through
the sub-problem of Z-Y information theoretic co-clustering
and the clustering of Z is outputted after several iterations
(see steps 7~11). Then, the new clusters of Y are
calculated under the concept of consistency, by
minimizing the loss function (14) (defined in Definition
4). After that, the clusters of X, Y, and Z are all updated
(Steps 12~14). This iterative process stops when the
objective function no longer decreases.

Note that the convergence of this algorithm can be well
proved. That is, this algorithm can monotonically decrease
the objective function as given in Definition 4, and
terminate in a finite number of iterations. We omitted the
details of the proof due to the space restriction.

4. Experimental results

Web image clustering is a technology to help users
digest the large amount of online visual information.
Many traditional methods on image clustering only used
either the low-level visual features inside the images or
the surrounding text in the corresponding Web pages.
Considering that these two kinds of information are
complementary, one can expect better clustering results if
we are able to utilize both of them in an effective way.
Low-level visual features, images, and surrounding text
can just make up a star structure where images are the
central type of objects. Therefore, they can be well
represented by the tripartite graph as shown in Figure
1.(b) and thus be solved by the CIT algorithm. In this
section, we would like to show some evaluation results on
this task.

4.1. Data preparation

The image data used in our experiments were crawled
from the Photography Museums and Galleries of the
Yahoo! Directory. Images and their surrounding texts
were extracted from the crawled Web pages. After
removing some low-quality data, the remaining 17,000
images were assigned to 48 categories manually.

In our experiment, we randomly selected 10 categories
of images from this dataset, the names of which are listed
in Table 3. We extracted 530-dimension color and texture
features in total as the low-level visual representation of
the images (See Table 2) to build the {visual feature}-by-
image matrix A. To generate the {term in surrounding
text}-by-image matrix B, we removed the stop words and
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then the remaining words were regarded as textual
representations of the images in our experiments. The
dimensionality of the textual features ranges from several
hundreds to more than one thousand, changing with
different subset of images.

Table 2. The low-level features extracted from images.

Feature category Feature Name Dimensions
Color Histogram Features 256
Color Color Moment Features 9
Color Coherence Features 128
Tamura Texture Features 18
Texture Wavelet Features [2] 104
MRSAR [9] 15

4.2. Average performance

We set parameter a = 0.4 and report the clustering
performance for all possible pairs of categories in the
selected image dataset. We plot the comparison between
CIT accuracy and CBGC accuracy in Figure 2, each point
in which represents a category pair. We can see that most
of the points fall in the upper side of the diagonal,
indicating that the CIT algorithm outperforms the CBGC
method in most cases. We also plot the comparison
between CIT time cost and CBGC time cost in Figure 3,
which shows definitely that the proposed algorithm is
much more efficient than the CBGC algorithm. (In Figure
3, the indexes on the horizontal axis were a random
permutation of all possible pairs of categories in the
selected image dataset.) To sum up, the CIT algorithm is a
better solution to the high-order co-clustering problem.
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Figure 2. Accuracy comparison.
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Figure 3. Time cost comparison.

5. Conclusions

In this paper, we proposed a novel algorithm based on
the consistent information theory for co-clustering high-
order heterogeneous data. This algorithm can be regarded
as another realization of the consistency theory, and can
also be regarded as an extension of the information-
theoretic co-clustering algorithm. Experiments showed
that it is a good choice for the co-clustering of multi-type
inter-related data objects, in terms of both efficiency and
effectiveness.
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