

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee

ICSE'11, May 21-28, 2011, Waikiki, Honolulu, HI, USA

Copyright © 2011 ACM 978-1-4503-0445-0/11/05... $10.00

Characterizing the Differences Between

Pre- and Post- Release Versions of Software
Paul Luo Li+#, Ryan Kivett+, Zhiyuan Zhan+, Sung-eok Jeon+, Nachiappan Nagappan *,

Brendan Murphy*, Andrew J. Ko#

+
Microsoft Windows Reliability Team

One Microsoft Way
Redmond, WA USA

pal,ryankiv,zhizhan,sujeon@microsoft.com

*
Microsoft Research
Redmond, WA USA

nachin,bmurphy@Microsoft.com

#
The Information School | DUB Group

University of Washington
Seattle, WA USA

ajko@UW.edu

ABSTRACT

Many software producers utilize beta programs to predict post-

release quality and to ensure that their products meet quality

expectations of users. Prior work indicates that software producers

need to adjust predictions to account for usage environments and

usage scenarios differences between beta populations and post-

release populations. However, little is known about how usage

characteristics relate to field quality and how usage characteristics

differ between beta and post-release. In this study, we examine

application crash, application hang, system crash, and usage

information from millions of Windows® users to 1) examine the

effects of usage characteristics differences on field quality (e.g.

which usage characteristics impact quality), 2) examine usage

characteristics differences between beta and post-release (e.g. do

impactful usage characteristics differ), and 3) report experiences

adjusting field quality predictions for Windows. Among the 18

usage characteristics that we examined, the five most important

were: the number of application executed, whether the machines

was pre-installed by the original equipment manufacturer, two

sub-populations (two language/geographic locales), and whether

Windows was 64-bit (not 32-bit). We found each of these usage

characteristics to differ between beta and post-release, and by

adjusting for the differences, accuracy of field quality predictions

for Windows improved by ~59%.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification -

Reliability, Statistical Methods, Validation

D.2.8 [Software Engineering]: Metrics – Product Metrics

General Terms

Human Factors, Measurement, Reliability, Verification

Keywords

Windows, Customer experience improvement program, Windows

Error Reporting (WER), Reliability Analysis Component (RAC),

Usage, Beta

1. INTRODUCTION
Many commercial (e.g. Apple®, Adobe®, and Microsoft®) and

open-source (e.g. Firefox®, MySql®) software producers utilize

beta programs (i.e. distribution of free pre-release software to

volunteer or selected users) to predict post-release quality and to

ensure that their products meet quality expectations of users.

Software producers commonly use quality measured on beta

versions as the predicted post-release quality (i.e. field quality)

and address issues found in beta versions to improve field quality.

Misleading field quality predictions can lead software producers

to take sub-optimal actions, such as basing the decision to release

on the misleading predictions and releasing low-quality software

that do not meet quality expectations of users.

Prior work indicates that software producers need to adjust field

quality predictions to account for usage environments and usage

scenario differences between beta (i.e. pre-release) and post-

release populations [11]. Approaches for adjusting measurements,

such as screening beta users or adjusting measurements

statistically [22], need information on which usage characteristics

to target. However, little is known about how usage characteristics

relate to field quality and how usage characteristics differ between

pre-release and post-release, which makes adjusting for pre-

release and post-release differences difficult to do with

confidence.

In this study, we focus on three aspects of field quality:

application crashes, application hangs, and system crashes. We:

 Examine the effects of usage characteristic differences on field

quality: Which usage characteristics are the most impactful to

field quality? How do they affect field quality? Why do they

affect field quality?

 Examine usage characteristics differences/similarities between

pre-release and post-release machines: Which usage

characteristics differ or remain similar? If they differ, how and

why?

 Report experiences using the Usage Profile-based Reliability

Measurement Calibration (UPRMC), introduced by Xue et al.

in [22], to adjust field defect predictions for Windows: How do

adjustments improve field quality predictions?

We analyzed anonymous failure and usage data from millions of

pre-release and post-release Windows7® machines in the

Customer Experience Improvement Program [12]. We examined

field quality data captured through the Windows Error Reporting

(WER) system [6] and the Reliability Analysis Component (RAC)

[9], explained in more detail in Sections 3.1 and 3.2. Among the

various usage characteristics that we examined, the five most

important were:

1. Number of applications executed: machines executing more

applications had higher rates of failures

2. Install Type: Pre-installed by the Original Equipment

Manufacturer (OEM): machines that were pre-installed by the

OEM had lower rates of failures compared to other methods of

installations (likely due to users that utilize this Install Type)

3. Sub-population: Locale 2: machines belonging to one the key

language/geographic locales had lower rates of failures

compared with the world-wide average

4. 64-bit (not 32-bit) Windows: machines running 64-bit

Windows had lower rates of failure compared to machines

running 32-bit Windows

5. Sub-population: Locale 6 machines belonging to another of

the key language/geographic locales had higher rates of

application crashes and application hangs, but lower rate of

system crashes compared with the world-wide average

We found each of these usage characteristics to differ between

pre-release and post-release machines. Using UPRMC to adjust

for the differences, accuracy of Windows’ field quality prediction

improved by ~59%.

Our work makes three contributions to the state of knowledge.

First, using data from millions of machines world-wide, we

identified five usage characteristics that are impactful to field

quality, quantified their effects, and identified possible causes for

their impact. Second, using empirical data, we verified and

described usage characteristics differences between pre-release

and post-release, as well as identified possible causes for the

differences. Third, using experiences from a large commercial

software producing organization, we provided evidence of the

feasibility and effectiveness of field quality prediction

adjustments. Our findings help software producers determine

which usage characteristics to consider for prediction adjustments

and whether usage characteristics actually differ; experiences with

adjustments increase confidence that field quality prediction

accuracy improvements are possible.

Our findings can help to improve user experiences in three

additional ways. First, software producers may use the findings to

target testing effort on failure-prone usage characteristics. Second,

the findings may help field service organizations. Field service

organizations may use the findings to suggest less failure-prone

usage environments and usage scenarios to users, and they may

staff call centers with experts on the failure-prone usage

characteristics. Finally, the findings may help guide future

research to investigate and remove underlying causes of field

quality differences.

Rest of this paper is organized as follows. Section 2 discusses

prior work. Section 3 provides background information on

Windows data sources and processes. Section 4 discusses our

analysis methodology. Section 5 discusses the usage

characteristics we examined. Section 6 presents findings on

effects of usage characteristics differences on field quality.

Section 7 presents findings on usage characteristics differences

between pre-release and post-release. Section 8 presents Windows

Reliability Team’s experiences adjusting field quality predictions.

Section 9 discusses conclusions.

2. PRIOR WORK
This section discusses prior work examining effects of usage

characteristics differences on field quality and usage

characteristics differences between pre-release and post-release.

There is general consensus in the software engineering

community that different usage environments and usage scenarios

can lead to different quality experiences because the software is

executed in different ways. Many researchers have explored

characterizing and accounting for these differences. Cheung

explored using probabilistic distribution of component utilization

to determine reliability of software services in [2]. Musa et al.

described an approach for identifying and testing intended usage

environments and usage scenarios to produce accurate reliability

predictions in [17]. Hassan et al. characterized usage scenarios

based on repeated events for a telecom system in [7]. Weyn and

Host showed that changes in usage scenarios need to be accounted

for in order to accurately predict the reliability of websites in [21].

Similarly, Wang and Tang showed that user scenarios need to be

considered in modeling reliability of websites in [20]. LeGuen et

al. showed that software reliability predictions need to consider

the amount of usage in [8]. Li et al. examined effects of several

usage characteristics on the reliability for two industrial control

systems in [9]. Mockus et al. examined reliability differences due

to usage environment differences for a telecom system in [14].

Munson et al. predicted reliability of a software system based on

module usage in [15]. Elbaum et al. discussed a method to

profiling usage to aid testing and reliability predictions in [3].

Diep et al. proposed a technique to probe execution of software

systems to assess reliability in [3].

This study extends prior work through a combination of breath

and depth. Many previous studies examined software used in

limited usage environments and usage scenarios, e.g. telecom and

control systems. In this study, we examine the most widely-used

software system in the world with a large software/hardware

ecosystem. Furthermore, we examine field quality at the system

level. This study goes beyond a single piece of software in a

single environment, the method in many prior studies, and

examines interactions of multiple software applications and

multiple environmental factors (e.g. hardware configurations).

Few previous studies have examined usage characteristics

differences between pre-release and post-release populations.

Augustine and Podgurski showed usage differences between

ordinary users and internal users (e.g. experienced testers) in [1] ;

however, their work did not seek to explain the differences. Our

work [11] noted differences between pre-release and post-release

machines and corresponding failure rates, but did not examine the

differences in detail. To our knowledge, this study is the first to

examine and explain usage characteristic differences between pre-

release and post-release machines in detail.

3. BACKGROUND
This section provides background information on data and

processes used by the Windows Reliability Team to measure,

predict, and improve field quality. For this paper, we used

anonymous data from two Windows reliability telemetry

components (i.e. programs that communicate reliability data from

machines to Windows): WER and RAC. These data are

representative of general consumers, not of users in large

enterprises, government agencies, financial institutions, etc., that

do not send telemetry data by policy. We describe the two

components, the data they collect, and how the Windows

Reliability Team uses the data to assess and improve field quality.

3.1 Windows Error Reporting (WER)
WER [13] is a per incidence failure reporting system that collects

detailed debugging information, with the user’s consent, to help

developers address failures. WER automatically activates when

the operating system detects a failure, e.g. application crashes,

application hangs, and system crashes. WER collects debugging

data, e.g. memory state, to help developers diagnose and fix

issues. WER collects data with the user’s consent and only when

necessary (i.e. if sufficient information has already been collected

for an issue, no additional data is collected). WER combines and

replaces two earlier systems: Online Crash Analysis (OCA) and

Dr. Watson [6]. WER was first included in Windows XP and has

been in all subsequent versions of Windows. Ganapathi et al. [1]

and Glerum et al. [6] discuss WER in detail.

3.2 Reliability Analysis Component (RAC)
RAC is an opt-in Windows component that continuously collects,

analyzes, and reports field quality and usage data. It randomly

samples a sub-set of machines from the Customer Experience

Improvement Program (CEIP) [12] to send data to Windows. The

CEIP population is representative of general consumers. These

data include a variety of anonymous information, such as machine

configuration (e.g. hard drive size and laptop/desktop), system

events (e.g. application installations), user initiated events (e.g.

duration of application execution, number of OS boots), and state

transitions (e.g. system hibernations). An updateable set of data

collection rules is shipped with Windows and defines the sub-set

of data collected (i.e. not all data are collected from all machines).

RAC sends data with the consent of the user. RAC is included

with Windows Vista and is in all subsequent versions of

Windows. Li et al. [9] and Xue et al. [22] discuss RAC in detail.

3.3 Processes and Definitions
In this study, we relied heavily on processes and definitions used

by the Windows Reliability Team; we describe the key ones here.

The Windows Reliability Team uses an iterative feedback process

to assess and improve field quality pre-release. The process

consists of four steps: 1) product deployment, 2) telemetry data

collection, 3) measurement and issue identification and

prioritization, and then 4) issue resolution. After beta deployment,

field quality is predicted from the telemetry data and compared

with goals (goals are typically established based on previous

releases). The gap between field quality and goals is quantified,

along with a list of issues contributing to the gap. These issues are

prioritized based on their overall impact on field quality and then

assigned to developers or partner engagement teams to resolve.

The Windows Reliability Team treats user and machine as

synonymous. The Windows reliability telemetry components

capture data on a per-machine basis. Multiple users can use the

same machine; however, they are generally not distinguished

because there is no accurate way to distinguish between users (e.g.

an entire family using the machine with the same account).

The Windows Reliability Team examines the average application

crash, application hang, and system crash rates during the first 7

hours of active usage after installation (among many other

measures of field quality). In this study, we focused on these three

measures, which we collectively refer to as failure rates. A system

crash is a catastrophic failure that prevents the system from

performing its function and requires a complete system reboot [1].

System crashes are often caused by 3rd party device drivers or

hardware failures. An application crash is when an application

terminates with an error exit code. An application hang is defined

as when an application failed to process user inputs for at least

five seconds and is closed by the user.

Active usage is defined as the number of minutes with input from

input devices like mouse, keyboard, stylus, touch screen, etc.

Active usage is different from calendar time and system runtime.

Calendar time is defined as the elapsed calendar time since install

and does not consider whether the machine is running or being

actively used. System runtime is defined as the accumulated

runtime logged by the system and does not consider how much

calendar time it took to accumulate the runtime or how much of

the runtime includes interactions with the user.

The Windows Reliability Team measures failure rates during the

first 7 active hours of usage after install for business reasons. The

measurements assess user experience during the important initial

usage period, are sufficiently stable for comparisons against goals,

and can be obtained relatively quickly after the deployment of a

beta version.

The Windows Reliability Team measures average failure rate over

99% of the machines. The top 1% of machines is trimmed so that

the average is more resilient against outliers, which is especially

important for pre-release versions. Pre-release populations often

contain machines running automated tests, which can generate

large numbers of failures in a short amount of time. Untrimmed,

data from these machines pollute the average. The failure rate (for

each type of failure) for each machine is defined as:

∑

Machines are ordered according to their failure frequency in

ascending order, and the average is computed over the top 99%.

4. METHODOLOGY
This section describes our analysis methodology, i.e. the steps we

took to address our research questions. This section focuses on

‘why’ we chose our approach, and subsequent sections (5, 6, and

7) discusses ‘how’ and ‘what’.

 Data selection: To understand field quality variations and usage

characteristics differences between pre-release and post-release,

we selected failure and usage data from pre-release and post-

release machines. To be indicative of the current state of

practice, our data comprised of millions of machines world-

wide running Windows 7, the most recent release of the

Windows operating system.

 Usage characteristics selection: In order to avoid spurious

correlations, we surveyed Windows reliability experts to

determine a set of usage characteristics to examine.

 Identification of important usage characteristics: Due to space

constraints and to prevent over-fitting of the field quality

prediction adjustment model, we focused our analysis on a

subset of statistically important usage characteristics, based on

correlations to failure rates.

 Examination of field quality variations: We plotted and

quantified usage characteristics changes and corresponding

failure rates changes for the important usage characteristics. To

understand possible causes for the changes, we examined the

underlying failures and machines.

 Examination of usage characteristics differences between pre-

release and post-release: For the important usage

characteristics, we plotted and tested for differences between

pre-release and post-release. We hypothesized possible causes

for the differences based on Windows’ experiences with beta

programs.

 Windows experiences with field quality prediction adjustments:

We quantified discrepancies between field quality predictions

and actual post-release quality for Windows 7, likely due to

usage characteristics differences. We reported Windows’

experiences and results adjusting the predictions using Usage

Profile-based Reliability Measurement Calibration.

4.1 Select Data
To be reflective of the current state of practice, we used CEIP data

collected in 2009 and 2010 from machines running pre-release

and post-release versions of the Windows 7 operating system. The

Windows operating system is the most widely-used everyday

operating system today (not specialized operating systems like

ones operating aircrafts). The CEIP data were randomly sampled

from machines world-wide. We used data from 1.4 million

machines for the post-release version, 24 thousand machines for

one pre-release version, and 34 thousand machines from a later

pre-release version (during peak adoption for the two pre-release

versions). All machines met the measurement requirements of the

Windows Reliability Team described in Section 3.3.

4.2 Select Usage Characteristics
We chose to examine usage characteristics that were likely to be

related to field quality; we informed our decision by interviewing

Windows reliability experts. This approach avoided spurious

correlations (i.e. examining many usage characteristics and

obtaining statistically significant results by chance). We

interviewed five reliability experts in the Windows Reliability

Team. Collectively, these experts have over 100 years of

experience assessing quality and debugging failures at Microsoft,

IBM®, Digital®, and other software development organizations.

4.3 Identify Important Usage Characteristics
We identified a subset of important usage characteristics based on

statistically relationships to failure rates and focused the rest of

our analyses on this subset of usage characteristics. We did this

for two reasons. First, due to space constraints, we could only

present in-depth analysis for a limited set of usage characteristics.

Second, we wanted to prevent over-fitting of the field defect

prediction adjustment model (i.e. adjusting for more usage

characteristics resulted in less accurate predictions), discussed

further in Section 8. To make this identification, we used general

linear regression (GLM) to analyze the relationship between

failure rates and usage characteristics.

4.4 Examine Field Quality Variations
We examined changes in field quality associated with changes in

the important usage characteristics in two ways. First, we

performed descriptive statistical analysis (i.e. we plotted and

quantified the changes). Second, we examined the underlying

application crashes and machines to identify possible causes for

the changes. We examined application crashes (not application

hangs or system crashes) because it was the most frequent and

prevalent kind of failure, as discussed in Section 4.3. For example,

to identify possible causes for failure rates differences in various

sub-populations (i.e. language/geographic locales), we analyzed

failing modules that were unique to those locale. Results of this

investigation improved construct validity and increased

confidence in our findings; furthermore, the results identified

possible areas of future investigations.

4.5 Examine Usage Characteristic Differences
We evaluated differences in the important usage characteristics

between pre-release and post-release. We performed descriptive

statistical analysis and conducted statistical tests for the

differences. We hypothesized possible causes for the differences

based on Windows’ experiences with beta programs. These

findings indicated possible future investigations and suggested

practical limitations for beta programs. For example, machines

pre-installed by the OEM should not be considered exist in pre-

release versions and is a limitation of Windows beta programs.

4.6 Report Experiences with Adjustments
We reported Windows experiences using Usage Profile-based

Reliability Measurement Calibration (UPRMC) [22] to adjust

field quality predictions. We first quantified discrepancies

between field quality predictions and actual post-release quality.

Quantifying discrepancies provided motivation for adjusting field

quality predictions and served as references for evaluating

improvements. We reported Windows experiences using the four

step UPRMC algorithm, which adjusts users of a target population

(e.g. a pre-release version) to match the users of a reference

population (e.g. a post-release version) based on a set of usage

characteristics. The four steps are: identification of key usage

characteristics, quantitative usage profiling, bootstrap sampling,

and computation of failure rate measurements. We presented

instantiations and outputs of these steps for Windows. We

quantified improvements in predictions resulting from the

adjustments. The results increased confidence in the feasibility of

field quality prediction adjustments.

5. USAGE CHARACTERISTICS
In this section, we discuss the usage characteristics we examined.

We discuss the usage characteristics identified by Windows

reliability experts and the subset of important usage characteristics

that we identified using GLM analysis of data from post-release

machines.

5.1 Usage Characteristics
We asked Windows reliability experts to identify usage

environments and usage scenarios that may affect field quality.

Usage environments were hardware related characteristics, e.g.

number of processors or whether the machine was a laptop. Usage

scenarios were action related characteristics, e.g. number of

applications executed and system runtime. Some usage

characteristics could be both usage environment and usage

scenario related, e.g. overclocking.

The experts identified 27 potentially important usage

characteristics. We then examined the available telemetry data

and obtained measures for 18 of the usage characteristics; the

other 9 were not yet collected by Windows reliability telemetry

components. We discuss implications of not having measures for

all usage characteristics in Section 9. Table 1 describes the usage

characteristics relevant for this paper, why the experts believed

they would affect field quality, and how we measured them.

The other usage characteristics that we examined were: number of

storage drives, number of processors, size of the hard drive,

whether the machine was overclock, whether the machine was a

laptop (not a desktop), whether the machine was a netbook,

number of hibernations, number of sleeps, calendar days since

install, size of memory (RAM), speed of the processor, machine

runtime, number of applications installed, and whether the

machine was a virtual machine.

Table 1: Usage characteristics measured

5.2 Important Usage Characteristics
We used Generalized Linear Model (GLM) to analyze changes in

the usage characteristics and corresponding changes in field

quality in the post-release population. GLM is a flexible and

widely-used analysis approach used for examining the

relationship between continuous variables and categorical

variables (converted to indicator variables). Since we examined

failure rates, we used the Poisson variant of GLM, as prescribed

in references [19].

For each usage characteristic, we treated each failure type equally

by running analysis for each: application crash, application hang,

and system crash. We did this for two reasons. First, these three

types of failures were inherently different phenomena (e.g.

application hangs required user interaction) as discussed in

Section 3.3. Second, application crashes were significantly more

common than the other two types of failures; therefore, combining

the counts of application crashes, application hangs, and system

crashes together would have skewed the results. In the post-

release data, the application crash rate was ~3.1X the application

hang rate and ~27.1X the system crash rate (e.g. crashes in 3rd

party drivers).

Since GLM is sensitive to the scale of the variables and the usage

characteristics were on significantly different scales, we

normalized continuous variables to be between zero and one. We

subtracted by the minimum value and divide by the value at the

99% percentile. We did not divide by the max because the max

was generally an outlier. This normalization also enabled us to use

a mix of indicator and continuous variables in UPRMC, discussed

in Section 8.

We evaluated absolute values of the z-value statistic (larger values

are better) [19], which measure the strengths of correlations. For

each failure type, the z-value of a usage characteristic was divided

by the largest z-value among all usage characteristics. Then, for

each usage characteristic, the normalized values were summed

across the three failure types. We ordered the usage characteristics

using this combined value. The z-values needed to be normalized

(i.e. divided by the largest z-value among all usage

characteristics) because of differences in the rarity of the failure

types. It was easier to get higher z-values for application crashes,

followed application hangs, and then system crashes (i.e. higher z-

values for system crashes were harder to get). The usage

characteristics we selected had the highest overall relationship

across all three failure types.

The top five usage characteristics and their normalized combined

values were: Number of applications executed: 3.00 (the highest

possible across three failure type), Install Type: Pre-installed by

the OEM: 1.01, Sub-population: Locale: 2: .84, 64-bit (not 32-

bit) Windows: .78, Sub-population: Locale 6: .68. Rest of the

usage characteristics had lower combined values, though not by

much (e.g. the sixth most important, number of storage drives, had

a combined value of .65). We focused our analysis on the top five

usage characteristics because of space considerations and because

including additional usage characteristics in field quality

predictions adjustments did not improve accuracy (including each

of these top five did improve predictions), discussed further in

Section 8. Software producers seeking to adjust field quality

predictions should consider these five usage characteristics.

6. DIFFERENCES IN FIELD QUALITY
In this section, we present results of the descriptive statistical

analysis of field quality differences corresponding to changes in

the important usage characteristics (identified in Section 5), using

data from post-release machines. We also identify possible causes

for the differences by examining the underlying failures and

machines.

For numerical usage characteristics, e.g. the number of

applications executed in Table 1, we ordered the machines and

then plotted the percentile of machines against the average failure

rates for the percentile. For categorical usage characteristics, e.g.

install type in Table 1, we plotted the average failure rate for

machines in the category. For both types of data, we obscured the

data for business reasons. We obscured the data by normalizing

the failure rates; for numerical usage characteristics, we divided

the failure rate of a percentile by the failure rate at the 99

percentile, and for categorical usage characteristics, we divided

the failure rates by the failure rates of one of the categories.

Usage characteristic Why it may affect failure rates Measure

Number of applications executed

Failure rates may differ due to quality of the applications and

associated hardware (i.e. specific hardware that works with
specific applications)

Count applications receiving more than 1

minute of active usage

Install Type:

 Fresh install (Previous OS)

 Pre-installed by OEM

 Upgrade

 Fresh install (Media)

Failure rates may differ due to the kind of users that utilize

various types of install, as well as quality of the drivers and
applications on the machine

Five indicator variable, one for each possible

install type, based on the OS installation event

Sub-populations:

 World-wide average (all locales

except the top 6)

 Locale 1

 Locale 2

 Locale 3

 Locale 4

 Locale 5

 Locale 6

Failure rates may differ due to regional specific differences.
Locales are determined based on OS language and regional

settings. The six locales represent top Windows markets; they

are listed in random order and are obscured for business

reasons.

Seven indicator variable, one for each of the
seven possible locales

64-bit (not 32-bit) Windows
Failure rates may differ due to maturity and age of hardware

and applications that run 64-bit Windows
Indicator variable, whether Windows is 64 bit

6.1 Number of Applications Executed
Failure rates increased with increases in the number of

applications executed, as shown in Figure 1. In Figure 1, the

horizontal axis is the percentile of machines, ordered by the

number of applications executed. The differences were 2.0X for

system crashes, 3.1X for application crashes, and 3.5X for

application hangs, between users at the 10% percentile (far left)

and user at the 99% percentile (far right).

Figure 1: Changes in failure rate relative to apps executed

A likely cause was the diversity of applications executed. We

examined the number of distinct crashing application modules for

machines in the lower 25 percentile and the upper 25 percentile.

Even though the numbers of machines were the same, the upper

25 percentile machines had failures in 1.8X more modules (~75K

against ~42K). This finding aligns with existing reliability theory

[17]. Execution of an application has some chance of failure, and

more applications executed results in, on average, more failures.

6.2 Install Type: Pre-Installed by OEM
Machines pre-installed by OEM had the lowest failure rates, as

shown in Figure 2. Relative to machines fresh installed from

previous OS (i.e. where the fresh install is initiated from a running

OS and not from media), the differences were .52X for system

crash, .76X for application crash, .90X for application hang.

Figure 2: Failure rate for install types

The likely cause was the behavior of users that performed a fresh

install. Users of machines that were fresh installed (from previous

OS) tended to use their machines more extensively than users of

machines that were pre-installed by the OEM. We examined

applications executed and applications installed as proxies for

how extensively the users used their machines. For machines that

were fresh installed (from previous OS), the median applications

executed was at the 39.2 percentile and the median applications

installed was at the 18.6 percentile. For machines that were pre-

installed by the OEM, the median applications executed was at the

35.2 percentile and the median applications installed was at the

8.0 percentile. These differences in how extensively the users

used their machines likely resulted in the differences in failure

rates, as discussed in Section 6.1.

6.3 Sub-Population: Locale 2 and Locale 6
Sub-populations are specific language/geographic locales. We

examined locales corresponding to the top six Windows markets,

as discussed in Table 1. The locales are obscured for business

reasons.

Locale 2 had better failure rates than the world-wide average for

all failure types, while Locale 6 had worse application crash and

application hang rates but better system crash rate, as shown in

Figure 3. The differences for Locale 2 were .69X for application

crash, .61X for application hang, and .57X for system crash. For

Locale 6, failure rates were 1.13X for application crash, 1.39X for

application hang, and .77X for system crash.

Figure 3: Failure rate for top locales

A likely cause was the localized nature of the software

ecosystems. Both of these locales used double-byte languages

(e.g. Chinese). We examined crashing application modules not

present in rest of the world (i.e. localized). For Locale 6, 35.2% of

modules (~8 thousand) were localized. For Locale 2, 25.0% of

modules (~3 thousand) were localized. Quality of the locale

specific software ecosystems likely dictated the failures rates.

6.4 64-Bit (not 32-Bit) Windows
Machines running 64-bit Windows had lower failure rates than

machines running 32-bit Windows, shown in in Figure 4. The

differences were .80X for application crash, .90 X for application

hang, and .72 X for system crash.

Figure 4: Failure rate for 64-bit and 32-bit Windows

The likely cause was age of the machines. Newer machines tend

to have fewer hardware related issues, reducing application

crashes and system crashes. Also, newer machines tend to have

better performance, reducing application hangs. Although, we did

not have a direct measure for the age of the machine, we used

memory size and processor speed as proxies. For machines

running 64-bit Windows, the median memory size was at the 46.0

percentile and the median processor speed was 68.3 percentile.

For machines running 32-bit Windows, the median memory size

was at the 22.6 percentile and the median processor speed was at

the 65.3 percentile.

7. PRE-RELEASE AND POST-RELEASE

USAGE CHARACTERISTICS
In this section, we present descriptive statistical analysis of

differences in the important usage characteristics identified in

Section 5 between pre-release and post-release machines. Also,

we present results of statistical tests for differences (and

similarities) and identify possible causes for differences based on

Windows’ experiences with beta programs.

We used two statistical tests for usage characteristics differences:

the two-sample Kolmogorov-Smirnov (K-S) test for continuous

usage characteristics and the proportion test (Pearson’s χ2 test) for

categorical usage characteristics. The K-S test is a non-parametric

test of equality of empirical distributions [19]. It rejects the null

hypothesis (two distributions are equal) based on differences in

the cumulative distribution functions (i.e. how many observations

are below a given value). We used the K-S test because the

distributions of machines with usage characteristics generally do

not follow known distributions. The proportion test is a test for

equality of proportion of successes and failures [19]. With

sufficient number of observations, the test rejects the null

hypothesis that the proportion of successes (e.g. users running 64-

bit Windows in the post-release population) is the same as another

sample (e.g. users in pre-release version 1) based on the χ2

distribution. Since we had millions of observations, this test was

appropriate for examining the categorical usage characteristics.

The statistical tests allowed us to statistically verify whether usage

characteristics differed between pre-release and post-release.

7.1 Number of Applications Executed
Pre-release machines executed more applications during the first 7

hours of active usage compared to post-release machines. In the

plot of pre-release and post-release distributions in Figure 5, the

curves for pre-release versions are to the right of (higher

percentiles) the post-release version (i.e. more machines with

higher numbers of applications executed). Results were

statistically significant at the 95% confidence level (K-S test

statistics of .0542 and .0742)

Figure 5: Distribution differences for applications executed

A likely cause was the proportion of people who are skilled with

computers in pre-release populations. Pre-release populations

generally have higher proportions of people who are skilled with

computers and confident with trying applications. The average

users are generally less inclined to experiment with software,

which may not be fully functional and may contain bugs.

7.2 Install Type: Pre-Installed by OEM
There were fewer machines pre-installed by OEM pre-release, as

shown in figure 6. The differences were statistically significant at

the 95% confidence level based on the proportion test (χ2 statistics

of 255.13 and 102.8241).

Figure 6: Proportion differences for install type

In theory, machines pre-installed by the OEM did not exist pre-

release. OEMs generally prepared machines with up-to-date

drivers and applications after the OS was ready. Pre-release

machines installed by the OEM were likely testing the machine

setup process. These machines likely did not have up-to-date

drivers and applications (i.e. they were not similar to post-release

machines). For field defect predictions, the Windows Reliability

Team excluded these machines, discussed in Section 8.

7.3 Sub-Population: Locale 2 and Locale 6
Locale 2 had fewer machines pre-release; Locale 6 had more

machines pre-release. Plot of the proportions are Figure 7. The

differences between pre-release and post-release were statistically

significant at the 95% confidence level based on the proportion

test for both Locale 2 and Locale 6 (χ2 statistics of 714.3097 and

779.2834 for Locale 2; 251.4201 and 43.968 for Locale 6).

Figure 7: Proportion differences for locales

The availability of language packs was likely not a cause for the

differences. Pre-release version 1 was available in languages of

both Locale 2 and 6. Pre-release version 2 was available in the

language of Locale 2 (but not for sub-population 6). Yet, the

proportion of machines in Locale 2 actually decreased from pre-

release version 1 to pre-release version 2, while the proportion of

machines in Locale 6 increased.

A likely cause for the differences was cost. Both pre-versions

were effectively free for users. Users in Locale 6 might have been

more inclined to try free, albeit pre-release, software.

7.4 64-Bit or 32-Bit Windows
Fewer machines ran 64-bit Windows pre-release, as shown in

Figure 8. The differences were significant at the 95% confidence

level based on the proportion test (χ2 statistics of 10753.177 and

11463.96).

Figure 8: Proportion differences between 64/32-bit Windows

A likely cause was post-release users running new hardware. Post-

release, users generally obtained Windows with the purchase of a

new computer. New machines tended to have newer hardware that

runs 64-bit Windows. Nonetheless, there were new computers

running 32-bit Windows (e.g. netbooks) and older machines being

upgraded; thus, not all post-release machines ran 64-bit Windows.

8. PREDICTION ADJUSTMENTS
In this section, we report experiences of the Windows Reliability

Team using UPRMC to adjust field quality predictions,

accounting for usage characteristics differences between pre-

release and post-release machines. First, we quantify the

discrepancy between field quality predictions and actual field

quality. Then we describe results of instantiating the four steps of

UPRMC for Windows. Finally, we report results of adjustments.

The Windows Reliability Team considered adjustments because

misleading field quality predictions could lead to sub-optimal

release actions, discussed in Section 3.3.

8.1 Prediction Discrepancies
Current practice takes failure rates measured on pre-release

versions, adjusted for fixes, as the predicted field quality; we

compared failure rates of the pre-lease versions and the post-

release version. We estimated fixes using failure rate changes on

Windows internal self-host machines. Since usage characteristics

remained largely the same for internal self-host machines (i.e.

machines and the usage scenarios remained relative unchanged),

comprised of machines from ~2000 Windows engineers, the

observed differences in failure rates is an approximation of fixes.

Shown in Figure 9, the absolute relative errors in predictions were

~36% for pre-release version 1 and ~89% for pre-release version

2, averaged across the three types of failure. These errors were

statistically significant based on 95% bootstrap confidence

intervals (i.e. sampling subsets of the data to determine the

variation in the data), indicated by the error bars in Figure 9.

Figure 9: Error in field quality predictions

The likely causes for the discrepancies were differences in usage

characteristics as discussed in the previous sections. The

important usage characteristics we identified in Section 5 were

shown to be related to failure rates in Section 6, and we identified

differences in proportions of machines with these usage

characteristics between pre-release and post-release in Section 7.

8.2 Instantiation of UPRMC
To adjust for the differences, the Windows Reliability Team used

UPRMC [22]. Instantiation, explanation, and results of the four

steps of UPRMC are:

1. Identification of key usage characteristics

This step identifies the usage characteristics to profile. The

Windows Reliability Team used the important usage

characteristics identified in Section 5.

I. Number of applications executed

II. Whether the machines was pre-installed by OEM

III. Whether the machine was from Locale 2

IV. Whether the machine was running 64-bit Windows

V. Whether the machine was from Locale 6

Using a statistical cut-off to select important usage characteristics

would not have been appropriate because the data did not follow

known distributions. Instead, an empirical approach was taken:

iteratively including more variables and then evaluating

predictions. The Windows Reliability Team observed improved

prediction accuracy with the five usage characteristics, but not

with additional usage characteristics.

Since it was not possible to have machines pre-installed by OEM

before release, discussed in section 7.1.2, machines pre-installed

by OEM were sampled out both pre-release and post-release.

2. Quantitative usage profiling

This step profiles usage using k-Means clustering [19] over the

usage characteristics. For categorical data, e.g. Install Type, all

categories were transformed into multiple indicator variables (i.e.

1 for being of the category and 0 for not being in the category) as

discussed in Section 5. This approach is used by existing

statistical packages, e.g. WEKA [9]. The k-Means clustering

algorithm is then used to partition the machine sample into ten

clusters, each having similar usage characteristics. K-Means

minimizes the following function:

 ∑∑|

 |

Where |

 |

is the squared Euclidian distance between a

machine,

 and the cluster center .

The Windows Reliability Team produced ten clusters using the k-

Means algorithm. The Windows Reliability Team tried using

more than ten clusters but encountered feasibility issues: there

were no machines in some niche clusters. Fewer clusters did not

improve accuracy of predictions. Using ten clusters appeared to be

a good rule-of-thumb.

The cluster centers were defined as <Number of applications

executed j, Locale 2 j, 64-bit (not 32-bit) Windows j Locale 6 j>.

The cluster centers are presented in Table 3. For example, ~35.7%

of the post-release Windows users were centered on the 28

percentile for number of applications executed, were not from

Locale 2 or 6, and ran 32-bit Windows.

Table 3: Cluster centers for post-release users

Number of
Applications

Executed
Locale 2

64-bit (not
32-bit)

Windows
Locale 6 Percent

0.28 0.00 0.00 0.00 35.7%

0.51 0.00 0.00 0.00 22.1%

0.34 0.00 1.00 0.00 18.7%

0.69 0.00 1.00 0.00 7.7%

0.40 0.00 0.00 1.00 5.5%

0.87 0.00 0.00 0.00 4.8%

0.79 0.00 0.00 1.00 2.4%

0.43 1.00 0.00 0.00 1.3%

0.51 0.00 1.00 1.00 1.1%

0.50 1.00 1.00 0.00 0.6%

3. Bootstrap sampling

This step constructs a calibrated sample by re-sampling machines

(i.e. including multiple times) to ensure that the calibrated sample

exhibits the same usage profile as the reference profile (i.e.

percent of machines in each clusters matches the percentage in the

reference sample). The reference profile is the output from Step 2,

shown in Table 3. For the calibrated sample, every machine is

counted at least once, and the maximum cardinality difference

between any two machines within each cluster is one (i.e. no

machine is over-weighted within a cluster). The Windows

Reliability Team constructed new machine samples for both pre-

release versions using this methodology.

4. Computation of failure rate measurements

This step computes the calibrated failure rates, which are the

failure rates calculated on the calibrated sample. The Windows

Reliability Team used the same calculation method described in

Section 3.3. The failure rates for the individual machines

remained unchanged; however, the adjusted sample contained

additional re-sampled machines having the desired usage

characteristics.

By adjusting for the five usage characteristics (sampling out OEM

Pre-install machines and using UPRMC to calibrate for the other

four), accuracy of predictions improved by ~59%, as shown in

Figures 10 and 11. Accuracy of predictions improved by ~78%

overall for pre-release version 1 and ~51% overall for pre-release

version 2. Both improvements were statistically significant based

on 95% bootstrap confidence intervals.

Figure 10: Improvements for Pre-release Version 1

Figure 11: Improvements for Pre-release Version 2

9. CONCLUSIONS
Many software producers today utilize data from beta programs to

predict field quality and fix failures; however, this paper shows

that usage environments and usage scenarios can differ between

pre-release and post-release machines, leading to misleading field

defect predictions. For two pre-release versions of the Windows 7

operating system, the absolute relative errors of predictions

(adjusted for fixes) were ~36% and ~89%.

We identified 5 important usage characteristics based on their

relationship with field quality for Windows: number of

applications executed, whether the machine was pre-installed by

OEM, whether the machine was from one of two double-byte

language locales, and whether the machine is running 64-bit

Windows. For Windows 7, the proportion of machines with these

important usage characteristics differed significantly between the

two pre-release versions and the post-release version.

We reported the Windows Reliability Team’s experiences and

results using UPRMC and information on the important usage

characteristics to adjust field defect predictions. The Windows

Reliability Team obtained improvements in accuracy of field

defect predictions of ~78% and ~51% for the two pre-release

versions of Windows by adjusting for differences in the five usage

characteristics.

Based on the findings, we believe that software producers running

beta programs should consider adjusting for usage characteristics

differences between pre-release and post-release. This is

especially true for software that interacts with many other

software applications and is released world-wide. Software

producers can use two approaches to account for the differences:

1) selectively deploying pre-release versions to match post-release

usage or 2) statistically adjusting for usage characteristics

differences. In practice, Windows has found it impractical to

control deployment of pre-release versions. Many partners use

pre-release versions to test and verify their own software products.

These tests often do not represent real-world usage but are critical

to improving the overall quality experience for users.

Furthermore, it is also impractical for Windows to control the

distribution of pre-release versions (e.g. through bit-torrent).

Consequently, software producers may want to focus on

statistically approaches.

Our findings suggest that software producers should have

localized quality improvement efforts to obtain high field quality

world-wide. Our analysis shows that individual locales have

highly localized software ecosystems. For two locales with two

different double-byte languages, ~25% and ~35% of the crashing

applications modules were seen only in that locale. These locale

specific failures may be missed if failures are aggregated and

prioritized world-wide.

Our findings may be specific to Windows and may change over

time as hardware and software evolve. Nonetheless, since little

quantitative information is available today, this paper can be

useful to other software producers and can be a mile marker for

gauging future changes. Furthermore, since many software

producers build on top of the Windows platform, the information

is relevant to their quality improvement efforts.

There may be other usage characteristics that significantly affect

field quality not included in our analyses. We were not able to

obtain measures for all usage characteristics identified by the

Windows reliability experts, and there may be other important

usage characteristics beyond their knowledge. For example, after

conducting the analyses, we came to believe that age of the

machine might be a hidden variable that underlie several other

usage characteristics, as discussed in Section 6.4. Also, Section

6.1 suggests that highly skilled users are likely different from

average users, improved detection of these users may also

improve predictions. We hope to investigate age of the machine

and additional usage characteristics in future studies.

The findings and experiences reported in this paper can help

software producers with current practices and guide future

research to improve experiencers with software systems for

billions of users world-wide.

10. ACKNOWLEDGEMET
Thanks to Gabriel Aul and Michael Fortin for their support of this

work, Jason Garms, Vince Orgovan, and Tony Voellm for their

leadership and feedback, Gretchen Loihle, David Grant for their

expert input, and the Windows 7 Reliability Team for providing

foundational work: Song Xue, Mingtian Ni, Raymond Fingas,

Yuriy Vasyleha, and Arvind Visvanathan.

This document is provided “as-is.” Information and views expressed

in this document, including URL and other Internet Web site

references, may change without notice. You bear the risk of using it.

This document does not provide you with any legal rights to any

intellectual property in any Microsoft product.

11. REFERENCES
[1] V. Augustine, A. Podgurski, Corroborating User Assessments of

Software Behavior to Facilitate Operational Testing. ISSRE, pp. 61-

70, 2007.

[2] R. C. Cheung, A User-Oriented Software Reliability Model. IEEE
Trans. Software Engineering, Vol. SE-6, No.2, pp.118-125, March

1980

[3] M. Diep, M. Cohen, S. Elbaum, Probe Distribution Techniques to

Profile Events in Deployed Software. ISSRE, pp. 331-342, 2006.

[4] S. Elbaum, M. Diep, Profiling Deployed Software: Assessing
Strategies and Testing Opportunities, IEEE Trans. Software

Engineering, Vol. 31, No. 8, Aug. 2005.

[5] A. Ganapathi, V. Ganapathi, D. Patterson, Windows XP Kernel

Crash Analysis. Large Installation System Administration

Conference, pp. 149-159, 2006.

[6] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan, G.
Nichols, D. Grant, G. Loihle, G. Hunt, Debugging in the (Very)

Large: Ten Years of Implementation and Experience. SOSP, pp.
103-116, 2009.

[7] A. E. Hassan, D. J. Martin, P. Flora, P. Mansfield, D. Dietz, An

Industrial Case Study of Customizing Operational Profiles Using
Log Compression. ICSE, pp. 713-723, 2008.

[8] H. Le Guen, R. Marie, T. Thelin, Reliability Estimation for
Statistical Usage Testing using Markov Chains. ISSRE, pp. 54-65,

2004.

[9] K-Means Clustering in WEKA
http://maya.cs.depaul.edu/classes/ect584/WEKA/k-means.html

retrieved on 2011-02-01

[10] P. L. Li, J. Herbsleb, M. Shaw, B. Robinson, Experiences and

Results from Initiating Field Defect Prediction and Product Test
Prioritization Efforts at ABB Inc. ICSE, pp. 413-422, 2006.

[11] P.L. Li, M. Ni, S. Xue, JP. Mullally, M. Garzia, M. Khambatti,

Reliability Assessment of Mass-Market Software: Insights from
Windows Vista. ISSRE pp. 265-270, 2008.

[12] Microsoft Corp: http://www.microsoft.com/products/ceip/EN-
US/default.mspx, retrieved on 2001-02-01

[13] Microsoft Corp.: Introducing Windows Error Reporting.
http://msdn2.microsoft.com/en-us/isv/bb190483.asp.

[14] A. Mockus, P. Zhang, P.L. Li, Predictors of Customer Perceived

Software Quality. ICSE, pp. 225-233, 2005.

[15] J. C. Munson, S. Elbaum, Software Reliability as a Function of User

Execution Patterns. International Conference on System Sciences,
1999

[16] B. Murphy, Automating software failure reporting, ACM Queue. Vol
2, No 8,pp. 42-48, Nov. 2004.

[17] J.D. Musa, A. Iannino, K. Okumoto, Software reliability:

measurement, prediction, application, McGraw-Hill, 1987.

[18] National Institute of Standards and Technology. The economic

impacts of inadequate infrastructure for software testing. Planning
Report 02-3, Jun. 2002

[19] R Project for Statistical Computing, http://www.r-project.org/,
retrieved on 2011-02-01

[20] W. Wang, M. Tang, User-Oriented Reliability Modelling for a Web
System. ISSRE, pp. 293-306, 2003.

[21] K. Weyns, M. Host, Sensitivity of Website Reliability to Usage

Profile Change. ISSRE, pp.3-8, 2007.

[22] S. Xue, P.L. Li, J.P. Mullally, M. Ni, G. Nichols, S. Heddaya, B.

Murphy, Predicting the Reliability of Mass-Market Software in the
Marketplace Based on Beta Usage: a Study of Windows Vista and

Windows 7. MSR Tech Report, MSR-TR-2011-2, 2011

http://maya.cs.depaul.edu/classes/ect584/WEKA/k-means.html
http://www.microsoft.com/products/ceip/EN-US/default.mspx
http://www.microsoft.com/products/ceip/EN-US/default.mspx
http://msdn2.microsoft.com/en-us/isv/bb190483.asp
http://www.r-project.org/

