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Abstract—This paper studies the performance of contention
based medium access control (MAC) protocols. In particular,
a simple and accurate technique for estimating the throughput
of the IEEE 802.11 DCF protocol is developed. The technique
is based on a rigorous analysis of the Markov chain that
corresponds to the time evolution of the back-off processesat
the contending nodes. An extension of the technique is presented
to handle the case where service differentiation is provided with
the use of heterogeneous protocol parameters, as, for example, in
IEEE 802.11e EDCA protocol. Our results provide new insights
into the operation of such protocols. The techniques developed
in the paper are applicable to a wide variety of contention based
MAC protocols.

Index Terms—IEEE 802.11, IEEE 802.11e, CSMA/CA, Per-
formance evaluation, Fixed point analysis, Fluid limit, Diffusion
Approximation, Wireless LANs, Performance of the MAC pro-
tocols.

I. I NTRODUCTION

Wireless local area networks (WLANs) based on the IEEE
802.11 standard are one of the fastest growing wireless access
technologies in the world today. They provide an effective
means of achieving wireless data connectivity in homes, public
places and offices. The low-cost and high-speed WLANs
can be integrated within the cellular coverage to provide
hotspot coverage for high-speed data services, thus becoming
an integral part of next generation wireless communication
networks.

The fundamental access mechanism of IEEE 802.11 MAC
is the Distributed Coordination Function (DCF). The DCF is a
carrier sense multiple access protocol with collision avoidance
(CSMA/CA). In addition to DCF, the IEEE 802.11 standard
also defines an optional Point Coordination Function (PCF),
which uses a central coordinator for assigning the transmission
right to stations, thus guaranteeing a collision free access to
the shared wireless medium. While DCF has gained enormous
popularity and been widely deployed, the use of PCF has been
rather limited.

Whereas the IEEE 802.11 standard was targeted at best-
effort service for data transfer, it is expected that in the
future WLANs will need to support a mix of QoS-sensitive,
multimedia and interactive traffic, in addition to data traffic
which is only sensitive to the throughput. Future WLANs
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must therefore provide service differentiation in order tobetter
support the diverse QoS requirements of the applications
running on them. A new standard, namely IEEE 802.11e, has
been proposed for this purpose; it defines two new access
mechanisms: EDCA (an enhancement to DCF), and HCF
(an enhancement to PCF). Of the two, EDCA appears to be
gaining more early acceptance.

In this paper we study the performance of contention based
MAC protocols, with a specific emphasis on DCF and a
simplified version of EDCA. There have been several previous
works on the performance of DCF; these include simulation
studies [1], [2] as well as analytical studies based on simplified
models of DCF [3], [4], [5], [6], [7], [8]. Most of the analytical
work is based on a decoupling approximation, first proposed
by Bianchi in [3]; we henceforth refer to the simplified model
with this decoupling assumption as Bianchi’s model.

More recently, several studies [9], [10], [11], [12], [13]
have evaluated the performance of EDCF, an earlier version
of EDCA (see [14]). With the exception of [13], where the
authors propose an extension of the Bianchi’s model for
analyzing EDCF, all these studies are simulation based.

The main contribution of this paper is a novel technique
for estimating the throughput and other parameters of interest
for the contention based MAC protocols. Our technique is
based on a rigorous analysis of the drift of the Markovian
model of the system, and does not require the decoupling
assumption of Bianchi. In fact, through the insights it yields
into the system dynamics, it provides an intuitive justification
of Bianchi’s simplifying assumptions. The technique is easy
to apply, and we use it to analyze DCF as well as a simplified
version of EDCA. We now briefly sketch the key ideas behind
our approach.

A common feature of all the contention based MAC pro-
tocols is the concept ofback-off stagefor a station. The
stations can be in different back-off stages; the back-off stage
for a station depends on the number of collisions that it
has encountered since its last successful transmission (and,
possibly, other information) and can be thought of as its
estimate of the current level of contention at all stations.The
stations use this estimate to control their access probabilities.
The key observation we make in this paper is that, when the
number of stations is large, the Markov chain associated with
the back-off process stays close to what we call atypical state,
which can be obtained as the uniqueequilibrium point of the
drift equations associated with the back-off process. We can
obtain quite accurate estimates of the throughput and other
parameters of interest by assuming the system to be in this
typical state at all times.
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We find that the accuracy of the throughput estimates ob-
tained using our technique is about the same as those obtained
using Bianchi’s analysis. But, in addition, we are able to
provide some key insights about the system dynamics; in fact,
our results provide a justification for Bianchi’s approximation,
which may be of separate interest.

The rest of the paper is organized as follows. We provide a
brief description of DCF and EDCA, and discuss some related
work, in the next section. Our technique for performance
evaluation is discussed in the context of DCF in section III.An
extension of our technique in the context of EDCA is discussed
in Section V. Some concluding remarks are presented in
Section V. Due to space constraints, all technical details and
proofs are deferred to Appendix A and B.

II. DCF, EDCA, AND RELATED WORK

In this section, we provide a brief description of DCF and
EDCA, and discuss some related work in the literature. We
start with a description of DCF.

A. IEEE 802.11 DCF

The DCF is a Carrier Sense Multiple Access with Col-
lision Avoidance (CSMA/CA) MAC protocol. The collision
avoidance scheme of DCF is based on the binary exponential
back-off (BEB) scheme [15], [16]. The DCF defines two
access mechanisms for packet transmissions:basic access
mechanism, andRTS/CTS access mechanism.
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Fig. 1. Basic Access Method.

In the basic access mechanism (see Figure 1), any station,
before transmitting a DATA frame, senses the channel for a
duration of time equal to the Distributed Interframe Space
(DIFS) to check if it is idle. If the channel is determined to be
idle, the station starts the transmission of a DATA frame. All
stations which hear the transmission of the DATA frame set
their Network Allocation Vector (NAV) to the expected length
of the transmission, as indicated in the Duration/ID field of
the DATA frame. This is called thevirtual carrier sensing
mechanism. The channel is considered to be busy if either the
physical carrier sensing or the virtual carrier sensing indicates
so, and in that case, the station enters into a wait period
determined by the back-off procedure to be explained later.
Upon successful reception of the DATA frame, the destination
station waits for a SIFS interval following the DATA frame,
and then sends an ACK frame back to the source station,
indicating successful reception of the DATA frame.

The RTS/CTS access mechanism uses a four-way handshake
in order to reduce bandwidth loss due to the hidden terminal
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Fig. 2. RTS/CTS Access Method.

problem (see, for example, [17]). A station that wishes to send
a DATA frame first senses the channel for a DIFS duration.
If the channel is determined to be idle, then a RTS frame
is sent to the destination. Otherwise, the back-off algorithm
is triggered after the end of the current transmission and a
further DIFS interval. Upon successful transmission of the
RTS frame, the destination waits for a SIFS interval, and then
sends a CTS frame back to the source. The source can start
sending the DATA frame a SIFS interval after the reception
of the CTS frame. As in the basic access mechanism, upon
successful reception of the DATA frame, the destination waits
for a SIFS interval, and then sends an ACK frame back to the
source. A station that hears either the RTS, CTS, or DATA
frame updates its NAV based on the Duration/ID field of the
corresponding frame (see Figure 2). The four way handshake
prevents any DATA-DATA collisions that might occur due
to the hidden terminal problem. Since the RTS and CTS
frames are very small in size, the RTS/CTS access scheme
significantly reduces bandwidth loss due to collisions.

The back-off procedure is implemented by means of the
back-off counterandback-off stages. Initially, upon receiving
a new frame to be transmitted, the station starts in back-
off stage 0, window (CW ) size set toCWmin. Following
an unsuccessful transmission attempt (collision), the back-off
stage is incremented by1 and the contention window size is
doubled until the maximum size of the contention window,
CWmax, is reached, after which the back-off stage and the
contention window size remain unchanged on subsequent
collisions. The back-off window size as well as the back-off
stage are set back to their initial values ofCWmin and0 after
a successful transmission attempt or if theretry count limit
for the frame is reached. At the start of each back-off stage,
the back-off counter is set to an integer chosen uniformly at
random between zero and the valueCW −1 of the contention
window for the current back-off stage. The back-off counter
is decremented by1 in every subsequent slot, as long as the
channel is sensed idle in that slot. (Here, a slot is an interval of
fixed duration specified by the protocol.) If a transmission by
some other station is detected, then the station freezes itsback-
off counter, and resumes its count from where it left off after
the end of the transmission plus an additional DIFS interval.
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When the back-off counter reaches0, the station transmits∗.
The scheme described above treats all the stations equally.

We now briefly describe the enhanced distributed channel
access (EDCA) mechanism, which is an extension of the DCF
mechanism, and aims at providing service differentiation.

B. IEEE 802.11e EDCA

The EDCA has been designed from the perspective of
providing QoS in WLANs. The EDCA defines four different
ACs, each maintaining its own channel access function (an
enhanced variant of the DCF). The main differences between
the EDCA and DCF are:

1) The minimum specified idle duration time, called the
arbitration inter frame space(AIFS), is not a constant
value unlike the DIFS in the case of DCF.

2) The contention window limits,CWmin
† and CWmax,

are different for different ACs.
In section IV we consider a heterogeneous setting similar

to the one as under the above EDCA mechanism.

C. Related Work

One of the earliest analyses of the throughput of DCF
was carried out in [4] using a greatly simplified back-off
model, namely that the back-off counter value is geometri-
cally distributed withconstantparameterp, irrespective of
the current back-off stage of the station. A more realistic
model was proposed in the seminal paper of Bianchi [3].
Here, the evolution of the back-off stage at each node is
described by a Markov process; the Markov chains at different
nodes evolve independently, but in anenvironmentspecified by
the collision probabilityp for any transmission attempt. The
parameterp is a constant derived from themeantransmission
probability in the associated Markov chains. This formulation
leads to a fixed point equation forp. Note that the model is
analogous to mean-field models in statistical physics; the only
interaction between the Markov processes at different nodes
is through the parameterp, which represents a mean value of
the environment. It is not a goal in [3] to provide a rigorous
justification of the mean-field assumption. The assumption
is justified through simulations, which show that the model
predictions are quite accurate.

Several subsequent studies have built on the work of
Bianchi. In [7], the authors obtain similar fixed point equa-
tions using the same decoupling assumption but without the
Markovian assumptions of Bianchi; extensions of this fixed
point formulation are studied in [8].‡ In [6], the authors present

∗As in [3] and majority of the related literature, in our analysis, we ignore
the facts that (i) the back-off procedure is not invoked immediately after a
successful transmission or during the transmission of the first data packet,
and (ii) the back-off counter is not decremented if the channel is sensed to
be busy. For a more accurate model of the back-off procedure,we refer the
reader to [18].

†The parametersaCWmin andaCWmax depend on the physical layer.
‡In order to avoid confusion arising from the superficially similar ter-

minology, we emphasize that thefixed pointswe talk of in this work are
different from the fixed points in [3], [7], [8]. Their fixed points are for the1-
dimensional coupling parameterp; our fixed points are for then-dimensional
state descriptor in a joint Markovian representation of theback-off stages at
all n stations. The details are provided in the next section.

an approximate delay analysis based on Bianchi’s model, and
also extend the model to account for channel errors.

Recently, Proutiere et al. [?] have shown that the mean
field analysis of Bianchi is asymptotically (in the infinite
station limit) accurate. In particular, they have used ideas
from the theory of propagation of chaos to show that Bianchi
type decoupling holds aysmptotically as number of stationsis
allowed to increase to infinity.

Several works have evaluated the performance of EDCF,
an earlier version of EDCA (see [14]). Most of these have
employed simulation [9], [10], [11], [12]. An exception is
[13], where the authors use an extension of Bianchi’s model
to analyze the performance of IEEE 802.11e MAC protocol.
More recently, the performance of EDCA has been analyzed
in [20], [21], using theoretical models based on Bianchi type
assumptions.

Our approach differs fundamentally from the work de-
scribed above in that we do not make the decoupling assump-
tion introduced by Bianchi, and common to all of them except
[?]. Instead, starting from a Markov chain description that
explicitly takes into account the interactions between stations,
we show that in a large system, namely one with a large
number of stations, the Markov chain converges to atypical
state. Thus, one can approximate the collision probability
seen by any single station by that seen in the typical state.
Our analysis therefore provides a rigorous justification for
Bianchi’s model, which has been the basis of much subsequent
work. In addition, it provides an alternative approach to
performance analysis of MAC protocols; performance mea-
sures of interest can be derived directly from analysis of the
typical state. We validate this approach by showing that the
performance predictions thus obtained are close to those seen
in simulations.

Finally, we point out that we focus on DCF and EDCA
protocols in this paper because they are likely to be the two
most widely deployed wireless MAC protocols in the near
future; however, we do not specifically advocate their use.
Several works (see, for example, [22], [23], [24], and the
references therein) have identified the limitations of these
protocols, and proposed alternative MAC protcols that can
provide better performance. The techniques developed in this
paper are very general, and can be applied to evaluate the
performance of these alternative MAC protocols as well.

III. PERFORMANCEEVALUATION OF IEEE 802.11 DCF

In this section, we present a performance analysis of DCF.
We start with a description of our model.

A. The Model

We consider a wireless LAN withn stations employing the
IEEE 802.11 DCF. Every station can hear every other station in
the network, i.e., there are no hidden stations. Our discussion
covers bothad hoc networks, where there is no central access
point (AP) through which all the traffic must pass, as well
as intrastructure based networks, where an AP connects the
wireless network with the wired infrastructure. In order to
simplify the analysis, we assume, in common with most
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related work, that all stations always have a packet to send.
The throughput obtained under such saturation conditions is
commonly referred to as thesaturation throughput. In some
cases (see, for example, [25]), it can be shown that the queues
at all the nodes are stable if the arrival rate at each node is
less than the saturation throughput. s We make the following
additional assumptions:

• (A1) The back-off durations are geometrically dis-
tributed, i.e., when a station is in back-off stagei, it makes
a transmission attempt in the next slot with a probability
pi. In order to maintain the same average waiting time as
in the IEEE 802.11 DCF, we setpi = 2

Wi+1 , whereWi

is the contention window size in back-off stagei.
• (A2) The back-off stage is reset to0 only after a

successful transmission, i.e., the retry count limit, as
defined in Section II-A, is infinite. This assumption is not
necessary for our analysis, but simplifies the exposition
considerably.

All stations use the same back-off parameters. There are
M + 1 back-off stages, labeled0 to M . We adopt a discrete
time model indexed by the slot numbert. To avoid confusion,
note that the term “slot” in our usage refers to a different
quantity from the slot in the IEEE 802.11 protocol description.
We use the term to denote the time period at the end of which
stations may modify their back-off counters. In particular, the
duration of a slot is not a fixed physical layer parameter,
but varies depending on whether it represents an idle slot,
a successful transmission or a collision.

The state of the system at timet can be represented by
a vectorXn(t) = (Xn0(t), ..., XnM (t)) denoting the number
of stations in each of the back-off stages0 throughM . It is
easy to see thatXn(t), t = 0, 1, . . . forms an irreducible and
aperiodic Markov chain on the state space

Sn ,

{

x ∈ Z
M+1 :

M
∑

i=0

xi = n; xi ≥ 0 for all i

}

.

In principle, one could solve for the stationary distribution
of Xn(t) and thereby obtain parameters of interest about the
system. However, the number of states,nM+1, is too large
to make this feasible for systems of practical interest. The
key insight we provide in this paper is that, whenn is large
(and exact computation expensive), the Markov chainXn(t)
stays close to what we call atypical state. Moreover, accurate
estimates of various parameters such as throughput can be
obtained by assuming thatXn(t) is in this typical state at all
times.

We remark for purposes of comparison that Bianchi [3]
models the system as a Markov chain with (typically) an even
larger state space of size(M +1)n by considering the back-off
stage at each station. The analysis is simplified by replacing
this n-dimensional Markov chain byn 1-dimensional Markov
chains (with M+1 states each) which areassumedto be con-
ditionally independent, conditional on the collision probability
p. We do not make any such independence assumptions.

We now proceed with the analysis of the Markov chain
Xn(t). Let us look at the expected change inXn(t) over one

time slot. Forx(n) ∈ Sn, let

f (n)(x(n)) , E{Xn(t + 1) − Xn(t)|Xn(t) = x(n)}
=

∑

l:x(n)+l∈Sn

lP
(n)
l (x(n)),

where P
(n)
l (x(n)) is the probability of making a transition

from x(n) to x(n) + l over one time slot. We now compute
f

(n)
i (x(n)) for i ∈ {0, 1, ..., M}.
First consideri = 0. Let I(x(n)) ,

∏M
i=0(1−pi)

x
(n)
i , where

pi denotes the transmission probability for a station in back-
off stagei. Note thatI(x(n)) is the probability of an idle slot
when the system is in statex(n). The following events can
result in a change in the number of stations in back-off stage
0:

• A successful transmission by a station in back-off stagei,
i ∈ {1, 2, ..., M}, resulting in an increase in the number
of stations in back-off stage0.

• An unsuccessful transmission attempt by one or more
stations in back-off stage0, resulting in a decrease in the
number of stations in back-off stage0.

For the former event to occur, the station itself must transmit
and no other station in the network should transmit; this has
probability pi

1−pi
I(x(n)). Noting that there arex(n)

i stations in
the back-off stagei to choose from, and summing overi, we
obtain

M
∑

i=1

x
(n)
i pi

I(x(n))

1 − pi
(1)

to be the expected increase in the number of stations in back-
off stage 0 due to successful transmissions by stations in
other back-off stages. Likewise, a node in the back-off stage
0 transmits unsuccessfully with probabilityp0

(

1 − I(x(n))
1−p0

)

and moves to back-off stage1. Therefore,

x
(n)
0 p0

(

1 − I(x(n))

1 − p0

)

(2)

is the expected decrease in the number of stations in the
back-off stage0 due to unsuccessful transmission attempts by
stations in the back-off stage0. Combining Eqs.(1) and (2),
we obtain

f
(n)
0 (x(n)) =

M
∑

i=0

x
(n)
i pi

I(x(n))

1 − pi
− x

(n)
0 p0. (3)

Next, let i ∈ {1, 2, ..., M − 1}. We now need to consider the
following events:

• A transmission attempt by a station in back-off stagei.
• An unsuccessful attempt by a station in back-off stage

i − 1.
A station in back-off stagei attempts to transmit with proba-
bility pi, following which, it either moves to back-off stage0
(successful transmission) or to back-off stagei+1 (collision).
Thus, the expected decrease in the number of stations in back-
off stagei at time t is

x
(n)
i pi. (4)

A station in back-off stagei − 1 transmits with probability
pi−1 and moves to back-off stagei if it suffers a collision,
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i.e., if one or more others station in the network also transmit,
which happens with probability

(

1 − I(x(n))
1−pi−1

)

. Thus,

x
(n)
i−1pi−1

(

1 − I(x(n))

1 − pi−1

)

. (5)

is the expected increase in the number of stations in back-off
stagei due to unsuccessful transmission attempts by stations
in back-off stagei− 1. Combining Eqs.(4) and (5), we obtain

f
(n)
i (x(n)) = x

(n)
i−1pi−1

(

1 − I(x(n))

1 − pi−1

)

− x
(n)
i pi (6)

for i ∈ {1, 2, ..., M − 1}.
Finally, let i = M . In this case, we need to consider the

following events:
• A successful transmission attempt by a station in back-off

stageM .
• An unsuccessful transmission attempt by a station in

back-off stageM − 1.
A station in back-off stageM transmits with probabilitypM

and, if no other station in the network transmits, an event of
probability I(x(n))

1−pM
, then the station moves to back-off stage

0; otherwise it stays in the back-off stageM . The expected
decrease in the number of stations in back-off stageM at time
t due to a successful transmission is thus:

x
(n)
M pM

I(x(n))

1 − pM
. (7)

A station in back-off stageM −1 transmits with a probability
pM−1 and, if at least one other station in the network also

transmits, an event of probability
(

1 − I(x(n))
1−pM−1

)

, then the
station enters into back-off stageM . The expected increase
in the number of stations in back-off stageM at time t due
to collisions is thus

x
(n)
M−1pM−1

„

1 −
I(x(n))

1 − pM−1

«

. (8)

Combining Eqs.(7) and (8), we obtain

f
(n)
M (x(n)) = x

(n)
M−1pM−1

„

1 −
I(x(n))

1 − pM−1

«

− x
(n)
M pM

I(x(n))

1 − pm
.

(9)
Collecting Eqs.(3), (6), and (9), at one place, we have

f
(n)
0 (x(n)) =

M
X

i=0

x
(n)
i pi

I(x(n))

1 − pi
− x

(n)
0 p0, (10)

f
(n)
i (x(n)) = x

(n)
i−1pi−1

„

1 −
I(x(n))

1 − pi−1

«

− x
(n)
i pi, 0 < i < M,

(11)

f
(n)
M (x(n)) = x

(n)
M−1pM−1

„

1 −
I(x(n))

1 − pM−1

«

− x
(n)
M pM

I(x(n))

1 − pM
.

(12)

Let

Bn , {x ∈ R
M+1 :

M
∑

i=0

xi = n; xi ≥ 0},

and E , Bn/n. Let f (n) : R
M+1 → R

M+1 be the function
with componentsf (n)

i specified by Eqs.(3), (6), and (9). It is
essentially the one-step drift of the Markov chainXn(t). We
have so far defined the functionf (n)(x) for x ∈ Sn only; we

now extend the definition off (n) to x ∈ Bn by using the
same equations on the extended domain.

In Appendix A, we analyze an appropriately scaled version,
Yn(t) = Xn(⌊nt⌋)/n, of the processXn(t) for n = 1, 2, ...,
and show that for allt ≥ 0, it satisfies:

lim
n→∞

sup
0≤s≤t

‖Yn(s) − Y (s)‖ = 0 a.s.,

where Y (t) is a deterministic process given by the unique
solution of the differential equation

dY (t)

dt
= F (Y (t)) for t ≥ 0,

with initial condition y0 = limn→∞ Yn(0) = X(0)/n, where
F (x) = limn→∞ f (n)(nx) for x ∈ E. In words, we prove a
functional ‘law of large numbers’ limit theorem for the process
Yn(·). We also show that the error involved in approximating
Xn(t) with nY (t/n) is (almost surely)O(nβ) for all β > 1/2.

In Appendix B, we show that the equationF (x) = 0
has a unique solution IfM = 1, we can further show
that Y (t) converges tox from all possible initial states. We
conjecture that such a result holds for allM (as observed in
our simulations).

In view of the results in Appendix A and B, we can expect
that, for large t, the processXn(t) remains close to the
unique pointx(n) ∈ Bn satisfying f (n)(x(n)) = 0, which
will henceforth be referred to as the equilibrium point of the
system.

B. Throughput Calculation

We now estimate the throughput of IEEE 802.11 DCF,
assuming that the system stays close to its equilibirium point
x(n) at all times. Let

• T , The normalized throughput of the system.
• Pc , The conditional collision probability.
• I , The probability of an idle slot in statex(n).
• P , The payload duration§.
• Tc , The average time the channel is sensed busy during

a collision.
• Ts , The average time the channel is sensed busy

because of a successful transmission.
• σ , The duration of an idle slot.

Note that some of the above defined quantities may vary
with n. For the sake of brevity, we do not make explicit this
dependence.

To calculate the throughput, observe that a station in back-
off stagei, transmits with a probabilitypi, and the transmission
is successful if no other station in the network transmits, an
event of probability

I

1 − pi
.

Since there arex(n)
i stations in back-off stagei, the probability

that a station in back-off stagei transmits successfully is

x
(n)
i pi

I

1 − pi
.

§In this paper, we consider the payload duration to be fixed. Variable
payload duration can also be analyzed as in [3].
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TABLE I
IEEE 802.11 DSSS PHY PARAMETER SET [26] AND OTHER

PARAMETERSUSED TO OBTAIN NUMERICAL RESULTS

PARAMETER VALUE

Basic Bit Rate (BBR) 1Mb/s
Bit Rate (BR) 11Mb/s

PHY Header (PH) 192 bits
MAC Header (MH) 272 bits

H PH/BBR + MH/BR
ACK 112/BR + PH/BBR
RTS 160/BR + PH/BBR
CTS 112/BR + PH/BBR

Propagation Delay (δ) 1µs
SIFS 10µs

Slot Time (σ) 20µs
DIFS 50µs

Summing over all possible back-off stages, we obtain the
probability of a successful transmission to be

M
∑

i=0

x
(n)
i pi

I

1 − pi
.

Since the probability that at least one station transmits ina
given slot is1 − I, we have

Pc = 1 −
∑M

i=0 x
(n)
i pi

I
1−pi

1 − I
(13)

The normalized throughput of the system can be expressed as

T =
Expected Payload duration per slot

Slot duration
. (14)

The expected payload duration per slot is(1 − I)(1 − Pc)P .
The expected duration of a slot is readily obtained considering
that, with a probabilityI a slot is idle; with a probability of
(1−I)(1−Pc) it contains a successful transmission, and with
a probability of(1−I)Pc it contains a collision. And plugging
this is Eq.(5),we obtain

T =
(1 − I)(1 − Pc)P

(1 − I)(1 − P )Ts + (1 − I)PcTc + Iσ
(15)

The values ofTc and Ts depend on the access mechanism
being used. Letδ be the propagation delay, then one can
readily obtain (for details, see [3])

T
rts
s = RTS + CTS + H + P + ACK + 3SIFS + 4δ + DIFS

T
rts
c = RTS + DIFS + δ

T
bas
s = H + P + ACK + SIFS + 2δ + DIFS

T
bas
c = H + P + DIFS + δ (16)

where T rts
c (correspondingly,T bas

c ) and T rts
s (correspond-

ingly, T bas
s ) represent theTc andTs values for the RTS/CTS

based access (correspondingly, basic access) mechanism, re-
spectively; the parametersRTS, CTS, H , ACK, DIFS, and
SIFS are all physical layer dependent. We will use the values
of these parameters as defined in the DSSS PHY (see Table
II).
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Fig. 3. Success probability (1 − Pc) for M = 5 andW0 = 128.
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C. Performance Comparison

We have performed extensive simulations with different
values ofM andW0. The simulation results match extremely
well with the numerical results obtained using our technique
and Bianchi’s model. The results for the RTS/CTS access
mechanism withM = 5 andW0 = 128 are shown in Figures
3-5. As is evident in these figures (error bars are barely
visible), the variation of results across various simulation runs
is quite small, thereby showing the high confidence level of
the simulation results. An interesting thing to note is that
although our technique and Bianchi’s model are fundamentally
different, they both result in (roughly) the same fixed point
(in terms of Pc and I), and correspondingly, the estimates
of throughput obtained using the two techniques are very
close. Similar results have been obtained for the basic access
mechanism as well. An interesting special case (M = 1) under
which it is possible to calculate the exact throughput of DCF
is discussed in Appendix C.

IV. EXTENSION TO A HETEROGENEOUSSETTING

The analysis presented in the previous section can easily
be extended to a heterogeneous setting, where different nodes
can run with different values of the protocol parameters.
Indeed, in Appendix D we consider a setting where multiple
access categories, each using its own unique set of protocol
parameters, are running simultaneously at each node as spec-
ified in the EDCA mechanism. However, unlike the EDCA
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Fig. 5. Throughput (T ) for M = 5 andW0 = 128.

mechanism, our analysis does not allow for the variable inter-
frame spacing. We plan to address this issue in our future
work.

V. CONCLUDING REMARKS

We studied the performance of contention based medium
access control (MAC) protocols. We developed a novel tech-
nique for estimating the throughput, and other parameters
of interest, of such protocols. Our technique is based on a
rigorous analysis of a Markovian framework developed in the
paper. The analysis shows that in a limiting regime of large
system sizes, the stochastic evolution of the back-off stages
at different stations converges to a deterministic evolution;
moreover, this deterministic process has a unique fixed point.
Thus, our analysis provides insight into the dynamics of the
MAC protocols, showing that they guide the system to a
typical operating point. This then allows us to obtain the
saturation throughput and other performance measures of
interest without having to calculate the stationary distribution
of the Markov chain, which would be infeasible for systems
of realistic size.

To the best of our knowledge, our technique for performance
analysis of MAC protocols is the first one of its kind with
a quantifiable accuracy. Our results provide a justificationfor
the decoupling approximation of Bianchi [3]. Finally, although
we focused on two representative MAC protcols (IEEE 802.11
DCF and IEEE 802.11e EDCA), the techniques developed in
the paper are quite general and are applicable to a wide variety
of MAC protocols.

Our performance analysis is based on the assumption that
the system remains at its equilibrium point at all times. A
natural refinement is to consider fluctuations around this point,
which will typically be small. A mathematical framework for
studying such fluctuations is provided by the diffusion approx-
imation (a functional central limit theorem for the Markov
process). This is a topic for future research. Secondly, our
current framework cannot fully handle protocols like EDCA
that allow the use of different inter-frame spacing as a means
of achieving service differentiation. It remains to extendour
analysis techniques to deal with this, and with other forms of
heterogeneity. Finally, we have assumed throughout that all

nodes can hear each other; accounting for the hidden node
problem remains an important research challenge.
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APPENDIX A

Recall the setting of Section III-A. For eachn, let En ,

{k/n : k ∈ Sn}, and consider the family of stochastic process
{Yn(t)} defined as follows:

Yn(t) ,
Xn(⌊nt⌋)

n
. (17)

Observe that each for eachn, Yn(t) is just a scaled version
(where the scaling is both in time as well as magnitude) of
Xn(t). We also define another family of stochastic process
{Zn(t)} as follows:

Zn(t) ,
Xn(N(nt))

n
, (18)

where N(t) is a Poisson process with unit intensity, inde-
pendent of the sequence of Markov chains{Xn(t)}. Observe
that {Zn(t)} is a sequence of jump Markov process onEn,
with transition rates (intensities)q(n)

k,k+l/n = nP
(n)
l (nk), for

k ∈ En.
We will need the following assumption:
Assumption 1:There exist positive constantsc0, c1, ..., cM

such thatp(n)
i = ci/n for i ∈ 0, 1, ..., M and alln.

Remark 1:We note thatp(n)
i and M are kept fixed in the

IEEE 802.11 DCF, independent of the number of nodes in
the network. We allow for thep(n)

i to scale withn to avoid
trivialites; for example, ifM andp

(n)
i were kept fixed for all

n, then asn → ∞ the throughput would drop to zero and
all the nodes would eventually be in the back-off stageM

with probability 1. The above choice ofp(n)
0 precludes this

possibility. Note that the way transmission probabilitiesare
chosen in the IEEE 802.11 DCF, Assumption 1 would imply
that c0 = 2c1 = · · · = 2McM .

We need some preparation before we can state our main result.
Henceforth, we use‖x‖ to denote theL2 norm of x. For
x(n) ∈ En, let

I(x(n)) ,

M
∏

i=0

(1 − p
(n)
i )x(n)

.

Strictly speaking, the functionI is not really the same for
differentn; for the sake of brevity, we will continue to follow
the above notation. We start with the following simple result:

Lemma 1:Considerx(n) ∈ En and x(m) ∈ Em. Suppose
Assumption 1 holds. Then,






I(nx(n)) − I(mx(m))






≤ 2c0M‖x(n) − x(m)‖,

whenevern andm are large enough.
Proof: Without loss of generality, supposem ≥ n. Using

the definition of I(x(n)), and observing that forM > 1

e
−2Mc0

M+1 ≤ (1 − p
(n)
i )n ≤ (1 − p

(m)
i )m, we have forn large

enough:

I(nx(n))

I(mx(m))
=

M
∏

i=0

(1 − p
(n)
i )nx

(n)
i

(1 − p
(m)
i )mx

(m)
i

≤
M
∏

i=0

(1 − p
(n)
i )nx

(n)
i −nx

(m)
i

≤
M
∏

i=0

(1 − p
(n)
i )−n‖x(n)−x(m)‖

≤ (1 − p
(n)
0 )−Mn‖x(n)−x(m)‖

≤ e2c0M‖x(n)−x(m)‖.

Now we have





I(nx(n)) − I(mx(m))






=






I(nx(n))















1 − I(mx(m))

I(nx(n))









≤








1 − I(mx(m))

I(nx(n))









≤





1 − e−2c0M‖x(n)−x(m)‖







≤ 2c0M‖x(n) − x(m)‖,

proving the claim.
The following corollary is an easy consequence of the proof

of Lemma 1.
Corollary 1: Considerx(n) ∈ En andx(m) ∈ Em. Suppose

Assumption 1 holds. Then,










I(nx(n))

1 − p
(n)
i

− I(mx(m))

1 − p
(m)
i











≤ 2c0M‖x(n) − x(m)‖,

i ∈ {0, 1, ..., M}, whenevern andm are large enough.
For eachn, define a functionF (n)(x(n)) on En by setting
F (n)(x(n)) = f (n)(nx(n)). We have the following result:

Lemma 2:Suppose Assumption 1 holds. Then the sequence
{F (n)} is uniformly bounded, i.e., there exists a constantC <
∞ such that‖F (n)(x(n))‖ ≤ C for all x(n) ∈ En and for all
n. Moreover, forx(m) ∈ Em, x(n) ∈ En, and m, n large
enough, we have

‖F (n)(x(n)) − F (m)(x(m))‖ ≤ η(c0, M)‖x(n) − x(m)‖,
whenever

‖x(n) − x(m)‖ < 1/c0M,

whereη(c0, M) is a constant that depends only onc0 andM .
Proof: To prove that{F (n)} is uniformly bounded, ob-

serve that in view of Assumption 1, we have|F (n)
i (x(n))| ≤ c0

for i ∈ {1, ..., M − 1} and for all n. Thus, we have
‖F (n)(x(n))‖ ≤ ∑M

i=0 |F
(n)
i (x(n))| ≤ c0(M + 1) for all



9

x(n) ∈ En and for alln.

Now observe that|nx
(n)
i p

(n)
i − mx

(m)
i p

(m)
i | ≤ c0‖x(n) −

x(m)‖. Using Eqs. (10), (11), and (12), along with Corollary
1, for 1 ≤ i ≤ M − 1 we have

|F (n)
i (x(n)) − F

(m)
i (x(m))| ≤ |nx

(n)
i−1p

(n)
i−1 − mx

(m)
i−1p

(m)
i−1 |

+ |nx
(n)
i p

(n)
i − mx

(m)
i p

(m)
i |

+











nx
(n)
i−1p

(n)
i−1I

(n)(x(n))

1 − p
(n)
i−1

− mx
(m)
i−1p

(m)
i−1I

(m)(x(m))

1 − p
(m)
i−1











≤ 2c0‖x(n) − x(m)‖ +
I(n)(x(n))

1 − p
(n)
i−1

|nx
(n)
i−1p

(n)
i−1 − mx

(m)
i−1p

(m)
i−1 |

+ mx
(m)
i−1p

(m)
i−1











I(n)(x(n))

1 − p
(n)
i−1

− I(m)(x(m))

1 − p
(m)
i−1











= (3c0 + 2c2
0M)‖x(n) − x(m)‖

Similarly, it can be shown that|F (n)
0 (x(n)) − F

(m)
0 (x(m))| ≤

(2c0+c0M+2c2
0M+2c2

0M
2)‖x(n)−x(m)‖ and|F (n)

M (x(n))−
F

(m)
M (x(m))| ≤ (3c0 + 4c2

0M)‖x(n) − x(m)‖. Now since

‖F (n)(x(n))−F (m)(x(m))‖ ≤
M
∑

i=0

|F (n)
i (x(n))−F

(m)
i (x(m))|,

the result follows by takingη(c0, M) = 2c0+4c0M+4c2
0M +

4c2
0M

2.

Remark 2:The above lemma implies that for a Cauchy
sequence{x(n)} in E, the sequence{Fn(x(n))} is Cauchy
in R

M+1.

Define a functionF (x) on E as follows:

F (x) = lim
n→∞

F (n)(x(n)), (19)

where{x(n)} is any sequence inE satisfyingx(n) ∈ En and
x(n) → x. The existence of the limit in Eq. (19) follows from
Remark 2. To prove the uniqueness, let{x(n)} and{y(n)} be
two sequences inE, satisfying:

x(n), y(n) ∈ En, and lim
n→∞

x(n) = lim
n→∞

y(n) = x.

Then for n large enough, we would have‖y(n) − x(n)‖ ≤
ǫ < 1/c0M , which, in view of Lemma 2, implies that
‖F (n)(x(n)) − F (n)(y(n))‖ ≤ η(c0, M)ǫ, showing that
limn→∞ F (n)(x(n)) = limn→∞ F (n)(y(n)).

Remark 3:The definition ofF (x) and Lemma 2 imply that
F (x) ≤ C for all x ∈ E.

Remark 4:An alternative, but equivalent, way of defining
the functionF could be to first define for alln ≥ 1 a function
F̂ (n) on E by settingF̂ (n)(x) = f (n)(nx), for x ∈ E, and
then takeF as the pointwise limit of the sequence of functions
F̂ (n)(x).

The following result is a direct consequence of Lemma 2,
the definition of F (x), and the boundedness ofF (x) (see
Remark 3).

Lemma 3:Suppose Assumption 1 holds. Then the fucntion
F (x) is Lipschitz continuous, i.e., there exists a constantK <

∞ such that for allx, y ∈ E, we have

‖F (x) − F (y)‖ ≤ K‖x − y‖.

Next, we obtain a closed form expression for the function
F (x):

Lemma 4:Suppose Assumption 1 holds. Then the function
F (x) = (F0(x), ..., FM (x)), defined by Eq.(19), satisfies:

F0(x) =
M
∑

i=0

cixiL(x) − x0c0, (20)

Fi(x) = xi−1ci−1(1 − L(x)) − xici, for i = 1, ..., M − 1,
(21)

FM (x) = xM−1cM−1(1 − L(x)) − xMcML(x), (22)

where ci = limn→∞np
(n)
i for i ∈ {0, ..., M}, and L(x) =

∏M
i=0 e−cixi .

Proof: Considerx ∈ E, with rational co-ordinates, i.e.,
xi = pi/qi for i ∈ {0, 1, ..., M}, wherepi, qi are nonnegative
integers. Letq = LCM(q0, ..., qM ), whereLCM denotes the
least commom multiple. Observe thatx ∈ En for n = qk,
wherek ≥ 1 is an integer. In view of the definition ofF (x),
we have that

F (x) = lim
k→∞

F (qk)(x) = lim
k→∞

f (qk)(qkx),

which, in view of Eqs.(10)-(12) satisfies Eqs.(20)-(22). For an
irrational x ∈ E, the result now follows by appealing to the
Lipschitz continuity ofF (x) (see Lemma 3).

The following result (which is similar to the notion of
uniform convergence) is now an easy consequence of the
definition of F (n), Eqs.(10)-(12), and Lemma 4.

Lemma 5:Suppose Assumption 1 holds. Then there exists
a sequence{δn} of numbers satisfying:

sup
x(n)∈En

‖F (n)(x(n)) − F (x(n))‖ ≤ δn and lim
n→∞

δn = 0.

For l ∈ Z
M+1, let β

(n)
l , supx∈Sn

P
(n)
l (x). We have the

following result:

Lemma 6:For n ≥ 1, let gn =
∑

l ‖l‖β
(n)
l and hn =

∑

l ‖l‖2β
(n)
l . Then the sequences{gn} and {hn} are uni-

formly bounded, i.e., there exists a constantG, H < ∞ such
that gn ≤ G andhn ≤ H .

Proof: Consider the set of statesS0 = {l : ‖l‖ ≤ M}.
Observe that for alll ∈ S0, we have|li| ≤ ‖l‖ ≤ M for
i ∈ {0, 1, ..., M}. Thus, li can take at most2M + 1 values,
and therefore the total number of states inS0 is no more than
(2M + 1)M+1. Hence, we have

∑

l∈S0

‖l‖β(n)
l ≤ (2M + 1)M+1.

Now consider the set of statesSk = {l : kM ≤ ‖l‖ ≤ (k +
1)M} for k ≥ 1. A similar argument as above shows that the
number of states inSk can be no more than(2kM + 1)M+1.
Also, note that for a jump of magnitude‖l‖ ≥ kM to occur,
more than⌊kM/2⌋ nodes must transmit during the current
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slot; the probability of which is smaller than
(

n

⌊kM/2⌋

)

(c0

n

)⌊kM/2⌋

≤ (2c0)
⌊kM/2⌋

⌊kM/2⌋! , (23)

for ⌊kM/2⌋ ≤ n. Thus, we have

∑

l∈Sk

‖l‖β(n)
l ≤ (2kM + 1)M+1 (2c0)

⌊kM/2⌋

⌊kM/2⌋! .

Let
D0 , (2M + 1)M+1,

and

Dk , (2kM + 1)M+1 (2c0)
⌊kM/2⌋

⌊kM/2⌋!
for k ≥ 1. Now observing thatβl(n) = 0 for all l such that
‖l‖ > 2n, we obtain

gn =
∑

l:‖l‖≤2n

‖l‖β(n)
l ≤

∞
∑

k=1

Dk , G < ∞,

proving the claim regarding{gn}. The claim regarding{hn}
can be proved in a similar fashion.

We are now ready to prove the almost sure convergence of
the sequence{Zn(t)} to a deterministic process.

Theorem 1:Suppose Assumption 1 holds,
limn→∞ Zn(0) = z0, andZ(t) satisfies:

Z(t) = z0 +

∫ t

0

F (Z(s))ds for t ≥ 0.

Then for everyt ≥ 0, we have

lim
n→∞

sup
0≤s≤t

‖Zn(s) − Z(s)‖ = 0 a.s.

Proof: From Theorem 4.1 in [27, Chapter 6, pp. 327],
we have that the jump Markov processZn(t) with intensities
q
(n)
k,k+l/n = nP

(n)
l (nk) satisfies fort less than the first infinity

of jumps:

Zn(t) = Zn(0) +
∑

l

ln−1Yl

(

n

∫ t

0

P
(n)
l (nZn(s))ds

)

,

(24)
whereYl(u) are independent standard Poisson processes. Now
for each l ∈ En, let Ŷl(u) , Yl(u) − u, then Ŷl(u) is a
Poisson process centered at its mean. It is well known that
Ŷl(u) satisfies:

lim
n→∞

sup
0≤u≤v

n−1Ŷl(nu) = 0 a.s., for all v ≥ 0. (25)

Now observe that forx(n) ∈ En, we have

F (n)(x(n)) = f (n)(nx(n)) =
∑

l:nx(n)+l∈Sn

lP
(n)
l (nx(n)),

and therefore,

Zn(t) = Zn(0) +
∑

l

ln−1Ŷl

(

n

∫ t

0

P
(n)
l (nZn(s))ds

)

+

∫ t

0

F (n)(Zn(s))ds. (26)

Let

ǫn(t) , sup
0≤s≤t

w

w

w

w

Zn(s) − Zn(0) −
∫ s

0

F (n)(Zn(u))du

w

w

w

w

,

then using Lemma 6, we obtain

ǫn(t) = sup
0≤s≤t

w

w

w

w

w

∑

l

ln−1Ŷl

(

n

∫ s

0

P
(n)
l (nZn(u))du

)

w

w

w

w

w

≤
∑

l

‖l‖n−1 sup
0≤s≤t

w

w

w
Ŷl

(

nβ
(n)
l s

)w

w

w
(27)

≤
∑

l

‖l‖n−1(Yl(nβ
(n)
l t) + nβ

(n)
l t).

The strong law of large numbers (applied to the independent
increment processYl(.)), the uniform boundedness of the
sequence{gn} = {∑l ‖l‖β

(n)
l } (see Lemma 6), and the

dominated convergence theorem, together imply that

lim
n→∞

ǫn(t) ≤
X

l

lim
n→∞

‖l‖n−1 sup
0≤s≤t

w

w

w

w

Ŷl

„

n

Z t

0

β
(n)
l ds

«w

w

w

w

= 0 a.s.

Using the Lipschitz continuity ofF and Lemma 5, we have
for t ≥ 0 that

‖Zn(t) − Z(t)‖ ≤ ‖Zn(0) − z
0‖ + ǫn(t)

+

Z t

0

‖F (n)(Zn(s)) − F (Z(s))‖ds

≤ ‖Zn(0) − z
0‖ + ǫn(t)

+

Z t

0

(‖F (n)(Zn(s)) − F (Zn(s))‖ + ‖F (Zn(s)) − F (Z(s))‖)ds

≤ ‖Zn(0) − z
0‖ + ǫn(t) + δnt +

Z t

0

K‖Zn(s) − Z(s)‖ds.

Appealing to Gronwall’s Inequality (see, for example, [27,
Appendix 5, pp. 498]), it follows that

‖Zn(t) − Z(t)‖ ≤ (‖Zn(0) − z0‖ + ǫn(t) + δnt)eKt.

The result now follows by noting that

lim
n→∞

(‖Zn(0) − z0‖ + ǫn(t) + δnt) = 0.

Our goal is to prove a result similar to Theorem 1 for the
sequence of stochastic processes{Yn(t)}. We will do this by
comparing{Yn(t)} with {Zn(t)} as follows:

Theorem 2:Suppose Assumption 1 holds. Then the se-
quences{Yn(t)} and{Zn(t)}, defined by Eqs.(17) and (18),
respectively, satisfy:

lim
n→∞

sup
0≤s≤t

‖Yn(s) − Zn(s)‖ = 0 a.s., for allt ≥ 0.

Proof: Let γn(t) , sup0≤s≤t ‖Yn(s)−Zn(s)‖. Note that

γn(t) = sup
0≤s≤t

‖Xn(N(ns)) − Xn([ns])‖.

We need to prove thatlimn→∞ γn(t) = 0 a.s. for all t ≥ 0.
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Let β , 1/16 andα , 7/8. We have

P
(

γn(t) > n−β
)

≤ P

(

sup
0≤s≤t

|N(ns) − [ns]| > nα

)

+ P

(

γn(t) > n−β| sup
0≤s≤t

|N(ns) − [ns]| ≤ nα

)

≤ P

(

sup
0≤s≤t

|N(ns) − ns| > nα − 1

)

+ P

(

γn(t) > n−β| sup
0≤s≤t

|N(ns) − [ns]| ≤ nα

)

(28)

Now observing thatN(ns) − ns for s ≥ 0 is a martinagle, it
follows that|N(ns)−ns| for s ≥ 0 is a submartingale. Using
the Lp maximum inequality forp = 4, we obtain

E

{

(

sup
0≤s≤t

|N(ns) − ns|
)4

}

≤
(

4

3

)4

E{(N(nt) − nt)4}.

Using the Markov Inequality, and observing that
E{(N(nt) − nt)4} = nt + 2n2t2, we obtain

pr

(

sup
0≤s≤t

|N(ns) − ns| > nα − 1

)

≤ E{(N(nt) − nt)4}
(nα − 1)4

≤
(

4

3

)4
nt + 2n2t2

(nα − 1)4
≤ 12n−3/2t2, (29)

for large enoughn. Now we claim that for allx ∈ Sn and all
p ≥ 0, the Markov chainXn(t) satisties:

P

„

sup
p≤q≤p+nα

‖Xn(q) − x‖ > n
1−β |Xn(p) = x

«

≤ 2n
α
e
−n1/8/16

(30)
To prove the above claim observe that for the event

{

sup
p≤q≤p+nα

‖Xn(q) − x‖ > n1−β

}

to occur, there must be at least one time slot, out of thenα

time slots following thepth time slot, in whichn1−α−β/2 =
n1/16/2 or more nodes transmit. Since the probability of a
node transmitting is no bigger thanp(n)

0 = c0/n, we have that
the random variableN = Bernoulli(n, c0/n) stochastically
dominates the random variable corresponding to the number of
nodes that transmit during a time slot. A standard application
of Chernoff Bound shows that:

P(N > n1/16/2) ≤ 2e−n−1/8/16,

and Eq.(30) follows by using the union bound. Now observe
that if

{

sup
0≤s≤t

|N(ns) − [ns]| ≤ nα

}

occurs, then the total number of jumps upto timet of the
processesZn(t) andYn(t) combined, is no bigger than2nt+
nα. Appealing to the union bound once again, we have that
the second term in Eq.(28) is no bigger than

2nα(2nt + nα)e−n1/8/16 ≤ t/n3/2, (31)

for large enoughn. Combining Eqs.(31) and (29), we obtain

P
(

γn(t) > n−β
)

≤ 12t2 + t

n3/2
,

for large enoughn, which implies that
∞
∑

n=1

P
(

γn(t) > n−β
)

< ∞,

andlimn→∞ γn(t) = 0 a.s. now follows from the first Borel-
Cantelli Lemma.

Remark 5:Using theLp maximum inequality forp = 4γ,
γ > 1, and making appropriate changes to the proof of
Theorem V, one can show thatP

(

γn(t) > n−β i.o.
)

= 0
for all β < 1/2. Thus for anyβ < 1/2, there exists a
corresponding integerNβ < ∞ such thatγn(t) < n−β for
n ≥ Nβ .

Combining the results in Theorems 1 and V, gives the
desired result:

Theorem 3:Suppose Assumption 1 holds,
limn→∞ Yn(0) = y0, andY (t) satisfies:

Y (t) = y0 +

∫ t

0

F (Y (s))ds for t ≥ 0. (32)

Then for everyt ≥ 0, we have

lim
n→∞

sup
0≤s≤t

‖Yn(s) − Y (s)‖ = 0 a.s.

Remark 6:The Lipschitz continuity ofF guarantees that
for all y0 ∈ E, there exists a unique solution to the initial
value problem (IVP) corresponding to Eq.(32).

Theorem 3 shows the convergence of{Yn(t)} to Y (t), over
bounded intervals of time. For finite, but largen, Remark 5
shows that the difference betweenYn(t) andZn(t) is O(n−β)
for all β < 1/2. Next, we will characterize the error involved
in approximatingZn(t) with Y (t), following the approach
given in [28].

SetW (n)
l (u) = n−1/2Ŷl(nu) and letVn(t) =

√
n(Zn(t) −

X(t)). Then, Eq.(26) can be rewritten as

Vn(t) =
∑

l

lW
(n)
l

(
∫ t

0

P
(n)
l (nZn(s))ds

)

+

∫ t

0

√
n(F (n)(Zn(s)) − F (n)(X(s)))ds,

which suggests the following limiting equation:

V (t) ,
∑

l

lWl

(
∫ t

0

βl(X(s))ds

)

+

∫ t

0

∂F (X(s))V (s)ds,

(33)
whereβl(x) = limn→∞ P

(n)
l (nx(n)) for x ∈ E, and{x(n)}

satisfies:

x(n) ∈ En for n = 1, 2, ..., and lim
n→∞

x(n) → x.

The existence and uniqueness of the above limit can easily be
shown. LetΦ be the solution of the matrix equation

∂

∂t
Φ(t, s) = ∂F (X(t))Φ(t, s), Φ(s, s) = I, (34)

and let

U(t) ,
∑

l

lWl

(
∫ t

0

βl(X(s))ds

)

.
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Then, we have

V (t) =

∫ t

0

Φ(t, s)dU(s).

Observe that sinceU(t) is Gaussian with zero mean,V (t) is
Gaussian with zero mean and covariance matrix

Cov(V (t), V (r)) =

∫ t∧r

0

Φ(t, s)C(X(s))Φ(r, s)T ds,

where
C(x) =

∑

l

llT βl(x).

From Corollary 6, we have thatsupx∈E C(x) ≤ H < ∞.
ThusV (t) is well defined.

Let DRM+1[0,∞) = {x : [0,∞) → R
M+1| for all t ≥

0 lims→t+ x(s) = x(t) and lims→t− x(s) exists}, i.e., the
space of right continuous functions having left limits. Hence-
forth, we will use the symbol “⇒” to denote the convergence
in distribution in DRM+1[0,∞), or equivalently, weak con-
vergence inP (DRM+1 [0,∞))- the set of Borel probability
measures onDRM+1 [0,∞). For the sake of definiteness, the
metric used onP (DRM+1 [0,∞)) can be assumed to be the
Prohorov metric (see, for example, [27, Chapter 3]); and
the metric used onDRM+1 [0,∞) could be the one specified
in [27, Chapter 3] that induces the Skorohod topology on
DRM+1 [0,∞). For a detailed discussion of these metrics and
related concepts, we refer the reader to [29].

The following theorem characterizes the error involved in
approximatingZn(t) with X(t):

Theorem 4:Let Vn(t) andV (t) be as above, thenVn(t) ,

V1n(t) + V2n(t), whereV1n ⇒ V andV2n(t) = O(t/
√

n).

Remark 7:A consequence of the above result is that for
large n, Xn(t) can be well approximated bynY (t/n) +
n1/2V (t/n). In view of Remark 5, the error in such an
approximation is almost surely bounded byO(nβ) for any
β > 1/2. Also, sinceV (t) has a finite variance for allt, the
error in approximatingXn(t) with nY (t/n) is also almost
surely bounded byO(nβ) for any β > 1/2.

Proof: We have

Vn(t) =
∑

l

n−1/2lŶ
(n)
l

(

n

∫ t

0

P
(n)
l (nZn(s))ds

)

+

∫ t

0

√
n(F (n)(Zn(s)) − F (n)(X(s)))ds

= V1n(t) + V2n(t),

where

V1n(t) ,
∑

l

n−1/2lŶ
(n)
l

(

n

∫ t

0

P
(n)
l (nZn(s))ds

)

+

∫ t

0

∂F (X(s))Vn(s)ds

+

∫ t

0

[√
n (F (Zn(s)) − F (X(s))) − ∂F (X(s))Vn(s)

]

ds,

and

V2n(t) ,

∫ t

0

√
n

(

F (X(s)) − F (n)(X(s))
)

ds

+

∫ t

0

√
n

(

F (n)(Zn(s)) − F (Zn(s))
)

ds.

Using Eqs.(10)-(12), Eqs.(20)-(22), and noting|np
(n)
i − ci| ≤

K0 (see Remark 1), it follows that there exists a constant
K1 < ∞ such that for alln large enough, we have

sup
x∈En

‖F (n)(x) − F (x)‖ ≤ K1/n.

ThusV2n(t) ≤ 2K1t/
√

n = O(t/
√

n). Now turning toV1n(t),
let

Un(t) ,
∑

l

n−1/2lŶ
(n)
l

(

n

∫ t

0

P
(n)
l (nZn(s))ds

)

,

and

en(t) , V2n(t)

+

∫ t

0

[√
n (F (Zn(s)) − F (X(s))) − ∂F (X(s))Vn(s)

]

ds

Using the results in [27, Chapter 4], it can be shown that
Un ⇒ U , with U as above. Using the Lipschitz continuity of
F, we have

|Vn(t)| ≤ |Un(t)| +
∫ t

0

K|Vn(s)|ds,

and hence (using Gronwall’s inequality)

sup
s≤t

|Vn(s)| ≤ sup
s≤t

|Un(s)|eKt.

Since Un ⇒ U and U is continuous, it follows that
sups≤t Un(s) ⇒ sups≤t U(s), and hence theVn are stochas-
tically bounded on bounded intervals. Furthermore, it is easy
to see from Eqs.(20)-(22) that∂F is continuous and bounded,
which together with the fact thatVn are stochastically bounded
on bounded intervals implies thaten ⇒ 0. With Φ as above,
we have

Vn(t) = Un(t) + en(t) +

Z t

0

Φ(t, s)∂F (X(s))(Un(s) + en(s))ds.

Finally, noting that the mappingJ : DRM+1 [0,∞) →
DRM+1 [0,∞) given by

Jθ(t) = θ(t) +

∫ t

0

Φ(t, s)∂F (X(s))θ(s)ds

is continuous, the result follows from the continuous mapping
theorem (see, for example, [27, Chapter 3, pg. 103]).

APPENDIX B

In the previous section, we proved the convergence of the
sequence of stochastic processes{Yn(t)} to the deterministic
processY (t) satisfying:

Y (t) = Y (0) +

∫ t

0

F (Y (s))ds for t ≥ 0,

where F (x) is given by Eqs.(20)-(22). We would now like
to further investigate the behavior ofY (t) for large t. In
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particular, we would like to determine whether the vector
differential equation

d

dt
Y (t) = F (Y (t)), (35)

has an equilibrium point. Supposing it does, we would like
to find out whether that equilibrium point is unique. If the
equilibrium point does exists and is unique, we would like to
determine if the processY (t) started from an arbitrary initial
state would converge to the equilibrium point.

Existence of Equilibrium Points

In this section, we will prove that the differential equation
specified by (35) has at least one equilibrium point. The issue
of the uniqueness will be dealt with in the next section.

Define a functionf(x) on E as follows:

f(x) = x + F (x), for x ∈ E.

From Eqs.(20)-(22), it is easily seen that the functionf(x)
mapsE into itself. SinceE is a compact subset ofRM+1,
Brouwer’s fixed point theorem guarantees the existence of at
least one fixed point off :

Proposition 1: The fuctionf has at least one fixed point in
E.

Remark 8:Note that any fixed point off is an equilibrium
point of the vector differential equation specified by (35).To
see this, supposex ∈ E is a fixed point off . Thenf(x) = x,
implying that F (x) = 0; thus showing thatx is indeed an
equilibrium point of the vector differential equation specified
by (35). Similarly, we have that any equilibrium point of the
vector differential equation specified by (35) is a fixed point
of f .

Uniqueness of Equilibrium Point

We will now establish the uniqueness of the equilibrium
point:

Proposition 2: The vector differential equation specified by
(35) has a unique equilibrium point.

Proof: Let us suppose that the vector differential equation
specified by (35), has more than one equilibrium points. Then
the functionf must have more than one fixed points. Letx
and y be two different fixed points off . Then, in view of
Eqs.(20)-(22), we have thatx must satisfy:

x0c0 =

M
∑

i=0

cixiL(x), (36)

xici = xi−1ci−1(1 − L(x)), for i = 1, ..., M − 1,
(37)

xMcML(x) = xM−1cM−1(1 − L(x)), (38)

and y must satisfy a similar set of equations. Now the
following possibilities can arise:

1) L(x) = L(y). In this case, we havexi

xi−1
= yi

yi−1
for

all i ∈ {1, 2, ..., M}. Since
∑M

i=0 xi =
∑M

i=0 yi = n,
we havex = y, which contradicts our initial assumption
that x 6= y.

2) L(x) > L(y). In this case, we havexi

xi−1
< yi

yi−1
for

all i ∈ {1, 2, ..., M}. If x0 ≤ y0, thenxi < yi, for all
i ∈ {1, 2, ..., M}. However, this is not possible since
∑M

i=0 xi =
∑M

i=0 yi = n. Hence, we must havex0 >
y0. Now let

k , min
i∈{0,1,...,M}

{i : xi < yi}

Also, letai , xi−yi. From the definition ofk, it follows
that ai ≥ 0 for i ∈ {0, 1, ..., k − 1}, and ai < 0 for
i ∈ {k, k + 1, ..., M}. Since

∑M
i=0 xi =

∑M
i=0 yi = n,

we have
∑M

i=0 ai = 0. In particular, we have

k−1
∑

i=0

ai = −
M
∑

i=k

ai

Using the definition ofL(x) andL(y), we have that

L(x) =

M
∏

i=0

e−cixi =

M
∏

i=0

e−ci(yi+ai) = L(y)

M
∏

i=0

e−ciai

= L(y)
k−1
∏

i=0

e−ciai

M
∏

i=k

e−ciai

< L(y)e−ck−1

Pk−1
i=0 aie−ck

Pm
i=k ai

= L(y)e−(ck−1−ck)
Pk−1

i=0 ai

< L(y),

which contradicts our initial assumption thatL(x) >
L(y).

3) L(x) < L(y). In this case also, one arrives at a
contradiction, like in the previous case.

Since one of the above cases must occur, we have proved that
f can have at most one fixed point, and, in view of Proposition
2, the result follows.

Convergence to Equilibrium Point

In this section, we will investigate whether the processY (t),
started from any arbitrary initial state inE, converges to the
unique equilibrium point. We have the following result for
M = 1:

Proposition 3: SupposeM = 1. Then the processY (t)
started from any arbitrary initial state inE, converges to the
unique equilibrium point̂y satisfyingF (ŷ) = 0.

Proof: For M = 1, the set of equations given by (35)
simplify to

dy0(t)

dt
= c1y1(t)L(y) − y0(t)c0(1 − L(y)), (39)

dy1(t)

dt
= y0(t)c0(1 − L(y)) − y1(t)c1L(y). (40)

Now ŷ satisfiesŷ0c0(1−L(ŷ)) = c1y1L(ŷ). Observe that for
all y(t) with y0(t) > ŷ0, we havedy0(t)

dt = − dy1(t)
dt < 0. Now

consider the Lyapunov functionλ(y(t)) = (y(t)− ŷ)T (y(t)−
ŷ). It is straightforward to show that

d

dt
λ(y(t)) = (y(t) − ŷ)T d

dt
y(t) < 0 for y(t) 6= ŷ,

which implies thatlimt→∞ y(t) = ŷ.
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APPENDIX C

In this section we evaluate the throughput of DCF under
a special case, namelyM = 1. For M = 1, the stationary
distribution of the Markov chainXn(t) (see section III-A)
can be computed, and thereby, one can compute the exact
throughput of DCF. We start with the computation of the
stationary distribution ofXn(t).

Computation of Stationary Distribution

Let Sn denote the set of the system states forM = 1, i.e,

Sn = {(x1, x2) : x1, x2 ∈ N; x1 + x2 = n; x1, x2 ≥ 0}

where N denotes the set of integers. Observe thatSn con-
tains n + 1 states. More precisely,Sn = {(0, n), (1, n −
1), ..., (n, 0)}. Let P i

S be the steady state probability of the
system being in state(i, n − i). We now formulate the set
of global balance equations that can be solved to obtain the
stationary distribution ofXn(t).

For the sake of brevity, letpi , 1 − pi, i ∈ {0, 1, ..., M}.
Now consider the state(n, 0): The system leaves this state if
there is a collision, an event of probability

(1 − p0
n − np0p0

n−1).

The system can enter the state(n, 0) only from the state
(n − 1, 1), provided the station in back-off stage1 transmits
successfully, an event of probabilityp1p0

n. Balancing the
probability flux entering and leaving the state(n, 0), we have

Pn
S (1 − p0

n − np0p0
n−1) = Pn−1

S p1p0
n. (41)

Now consider the state(n− i, i): The system leaves this state
if there is a successful transmission by a station in back-off
stage1, an event of probability

ip1p1
i−1p0

n−i;

or if there is an unsuccessful transmission involving at least
one station in back-off stage0, an event of probability

1 − p0
n−i − (n − i)p0p0

n−i−1 + (n − i)p0p1
n−i−1(1 − p0

i).

The system can enter the state(n − i, i) from the state

• (n− i−1, i+1): Following a successful transmission by
a station in back-off stage1, an event of probability

(i + 1)p1p1
ip0

n−i−1;

• (n− i+1, i−1): Following a collision involving exactly
one station in back-off stage0, and one or more stations
in back-off stage1, an event of probability

(n − i + 1)p0p0
n−i(1 − p1

i−1);

• (n − j, j) for 0 ≤ j ≤ i − 2: Following a collision
involving i − j stations in back-off stage0, an event of
probability

(

n − j

i − j

)

pi−j
0 p0

n−j .

Balancing the probability flux leaving and entering the state

(n − i, i), we get

P i
S(ip1p1

i−1p0
n−i + 1 − p0

n−i − (n − i)p0p0
n−i−1p1

i) =

Pn−i−1
S (i + 1)p1p1

ip0
n−i−1 +

i−2
∑

j=0

Pn−j
S

(

n − j

i − j

)

pi−j
0 p0

n−j+

Pn−i+1
S (n − i + 1)p0p0

n−i(1 − p1
i−1), 0 < i < n (42)

Note that the summation term in Eq.(42) exists only fori ≥ 2.
Since the sum of stationary probabilities across all the system
states must equal one, we have

n
∑

i=0

P i
S = 1. (43)

Observe that we haven + 1 equations inn + 1 unknowns.
We leave it for the reader to verify that these equations are
linearly independent, and therefore the stationary probabilies
can be obtained by solving these equations.

Throughput Calculation

Once we have the stationary probabilities, we can calculate
the throughput and other parameters of interest about the
system. Fork ∈ {0, 1, ..., M}, let:

• T k , The expected system throughput given the system
is in state(k, n − k).

• P k
c , The collision probability given the system is in

state(k, n − k).
• Ik , The probability of an idle slot given the system is

in state(k, n − k).
• T , The system throughput.
• Pc , The conditional collision probability.
• I , The probability of an idle slot.

Observe thatIk = (1 − p0)
k(1 − p1)

n−k. Arguing as in the
derivation of Eq.(13), we obtain

P k
c = 1 −

kp0
Ik

1−p0
+ (n − k)p1

Ik

1−p1

1 − Ik
(44)

and the expected system throughput when the system is in
state(k, n − k) is given by:

T k =
(1 − Ik)(1 − P k

c )P

(1 − Ik)(1 − P k
c )Ts + (1 − Ik)P k

c Tc + Ikσ
(45)

Since the probability that the system is in state(k, n − k) is
given byP k

S , we have

T =

n
∑

k=0

P k
S T k (46)

Similarly, we haveI =
∑n

k=0 P k
S Ik andPc =

∑n
k=0 P k

S P k
c .

Performance Comparison

We now compare the exact results obtained by using the
above approach, with the numerical results obtained using
our technique and Bianchi’s model. Note that our technique
relies on the fact that for sufficiently larget, the process
Xn(t) stays close to the equilibrium pointx(n) that satisfies
f (n)(x(n)) = 0. To demonstrate the effectiveness of our
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technique, we compare the random sample paths of the system
with the deterministic trajectory obtained using:

x(k + 1) = x(k) + f (n)(x(k)),

for n = 50, with x(0) = (50, 0). As shown in Figure 6,
not only does the system converge to a neighborhood of the
equilibrium point for larget, but also the random trajectory
of the system stays close to the above deterministic trajectory
at all times (see Theorem 3, for a proof of such a result).
Further, we see that the convergence to a neighborhood of the
equilibrium point is quite rapid (within100 slots).
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Fig. 6. Random system trajectories converging to a neighborhood of the
equilibrium point.

TABLE II
THROUGHPUT:W0 = 32, M = 1.

Stations Throughput (T)
Exact BM OT

5 0.4664 0.4666 0.4669
15 0.4486 0.4484 0.4487
25 0.4229 0.4228 0.4230
55 0.3348 0.3348 0.3348
80 0.2543 0.2544 0.2543
100 0.1918 0.1918 0.1918

TABLE III
CONDITIONAL COLLISION PROBABILITY: W0 = 32, M = 1.

Stations Conditional Coll. Probability (Pc)
Exact BM OT

5 0.1008 0.1022 0.1008
15 0.2713 0.2727 0.2717
25 0.3961 0.3970 0.3965
55 0.6528 0.6530 0.6531
80 0.7879 0.7880 0.7881
100 0.8611 0.8611 0.8612

Tables II-IV show various parameters of interest obtained
using the exact analysis, Bianchi’s model (BM), and our
technique (OT). The results shown are for RTS/CTS access
mechanism withW0 = 32. It is clear that both our technique
and Bianchi’s model are extremely accurate even for smalln;
and, as expected, their accuracy increases asn increases.

TABLE IV
IDLE SLOT PROBABILITY: W0 = 32, M = 1.

Stations Idle Slot Probability (I)
Exact BM OT

5 0.7692 0.7689 0.7681
15 0.5245 0.5244 0.5231
25 0.3782 0.3781 0.3771
55 0.1544 0.1544 0.1541
80 0.0743 0.0743 0.0742
100 0.0411 0.0411 0.0410

APPENDIX D

In this section, we show how the analysis in section III can
be extended to a setting where heterogeneous protocol param-
eters are used as a means of providing service differentiation,
as in the IEEE 802.11e EDCA mechanism [19]. We start with
a description of our model.

Consider a similar setting as in section III-A and suppose
that there areK different access categories (ACs), each
maintaining its own set of back-off parameters. Each station
maintains a separate transmit queue for each AC. All queues
are assumed to be saturated, i.e., they always have a packet to
send. As in section III-A, we make the following additional
assumptions:

• (A1) The back-off durations are geometrically distributed,
i.e., the type-k AC at a station, when in back-off stage
j, transmits with probabilitypk,j , wherepk,j = 2

Wk,j+1 ,
whereWk,j is the contention window size of the type-k
AC in back-off stagej.

• (A2) The back-off stage is reset to0 only after a success-
ful transmission.

For the purposes of analysis, we assume that the minimum
idle duration time is the same,DIFS, for all ACs and no
internal collision avoidance mechanism is used by the nodes.
It should be noted that because of these two assumptions, the
throughput obtained using our technique would not necessarily
match the throughput obtained using the EDCA mechanism.
A more exact analysis of the EDCA mechanism is left for
future work.

Let Mk+1, Wk,0, denote the number of back-off stages and
minimum contention window size, respectively, for the type-k
AC, k ∈ {1, 2, ..., K}. Let Xk,j(t), j ∈ {0, 1, ..., Mk}, denote
the number of type-k ACs in back-off stagej at time t. Let

S , {(k, j) : k ∈ {1, 2, ..., K}; j ∈ {0, 1, ..., Mk}}

andM =
∑K

k=0(Mk + 1). ThenXn(t) = {Xk,j(t)}(k,j)∈S ,

represents the state of the system at timet. Clearly,Xn(t) for
t = 0, 1, ..., is a Markov chain on{0, 1, ..., n}M , and satisfies:

Mk
∑

j=0

Xk,j(t) = n for k ∈ {1, 2, ..., K}.

It can easily be shown that the Markov chainXn(t) is
irreducible (see [7, Theorem 8.1], for a similar proof). Since it
has only finitely many states, it follows thatXn(t) is positive
recurrent and possesses a stationary distribution. However, it
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does not appear possible to obtain a closed form expression
for the stationary distribution ofXn(t). Therefore, we proceed
as in the previous section.

Let Z+ denote the set of non-negative integers, and let

Sn ,

{

x = {xk,j} : xk,j ∈ Z+,

Mk
∑

j=0

xk,j = n, 1 ≤ k ≤ K
}

.

We denote the one-step drift ofXn(t) by

f (n)(x(n)) , E{Xn(t + 1) − Xn(t)|Xn(t) = x(n)}
=

∑

l:x(n)+l∈Sn

lP
(n)
l (x(n)),

for x(n) ∈ Sn; hereP
(n)
l (x(n)) is the probability of making

a transition fromx(n) to x(n) + l over one time slot. Set
f (n)(x(n)) = 0 for x(n)∈/ Sn. Arguing as in Section III-A,
we obtain fork ∈ {1, 2, ..., K}:

f
(n)
k,0 (x(n)) =

Mk
∑

j=0

x
(n)
k,j pk,j

I(x(n))

1 − pk,j
− x

(n)
k,0pk,0,

f
(n)
k,j (x(n)) = x

(n)
k,j−1pk,j−1

(

1 − I(x(n))

1 − pk,j−1

)

− x
(n)
k,j pk,j ,

j ∈ {1, 2, ..., Mk − 1},

f
(n)
k,Mk

(x(n)) = x
(n)
k,Mk−1pk,Mk−1

(

1 − I(x(n))

1 − pk,Mk−1

)

− x
(n)
k,Mk

pk,Mk

I(x(n))

1 − pk,Mk

, (47)

whereI(x(n)) =
∏

(k,j)∈S(1 − pk,j)
x
(n)
k,j . Let

Bn ,

{

x = {xk,j} :

Mk
∑

j=0

xk,j = n, 1 ≤ k ≤ K; xk,j ≥ 0
}

,

andE , Bn/n.
The results derived in Appendix A and B can easily be

extended to the current setting. In particular, under a similar
set of assumptions, we can show that the sequence of scaled
stochastic processes

Yn(t) = Xn(⌊nt⌋)/n, for n = 1, 2, ...,

converges (in the same sense, and with the same error bounds,
as discussed for DCF earlier) to the deterministic limitY (t)
given by the unique solution of the differential equation

dY (t)

dt
= F (Y (t)) for t ≥ 0,

with initial condition y0 = limn→∞ Yn(0) = X(0)/n, and
F (x) = limn→∞ f (n)(nx) for x ∈ E. The only difference
from the DCF case earlier is thatf (n) is now given by Eq.(47)
instead of by Eqs.(3), (6), and (9)

Likewise, following the line of analysis in Appendix B, we
can also show that there is a unique pointx ∈ E that satisfies
F (x) = 0; we call it the equilibrium point.

Using the intuition that for larget, the processXn(t) should
remain close to the pointx(n) ∈ Bn satisfyingf (n)(x(n)) = 0,
we can carry out the throughput analysis as in section 5.
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