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Abstract—This paper studies the performance of contention must therefore provide service differentiation in ordebétter
based medium access control (MAC) protocols. In particular support the diverse QoS requirements of the applications
a simple and accurate technique for estimating the throughpt running on them. A new standard, namely IEEE 802.11e, has
of the IEEE 802.11 DCF protocol is developed. The technique . v : ’ '
is based on a rigorous analysis of the Markov chain that been prpposed for this purpose; it defines two new access
corresponds to the time evolution of the back-off processeat Mechanisms: EDCA (an enhancement to DCF), and HCF
the contending nodes. An extension of the technique is prested (an enhancement to PCF). Of the two, EDCA appears to be
tﬁ handleftkt:e case where serviceldifferentiation is ?roviddat;vith gaining more early acceptance.
the use of heterogeneous protocol parameters, as, for exatepin ; ;

IEEE 802.11e EDCA protocol. Our results provide new insighs In this paper we ;tudy the p_e_rformance .Of contention based
into the operation of such protocols. The techniques devebed MAC,PrOtOCdf‘S’ with a specific emphasis on DCF anq a
in the paper are app|icab|e to a wide Variety of contention baed Slmp|lfled version Of EDCA There ha.Ve been SeVeral pl’eVIOUS

MAC protocols. works on the performance of DCF; these include simulation

Index Terms—IEEE 802.11. IEEE 802.11e. CSMA/CA. per- Studies[1], [2] as well as analytical studies based on sfiegl

formance evaluation, Fixed point analysis, Fluid limit, Dffusion ~models of DCF [3], [4], [5], [6], [7], [8]. Most of the analydal
Approximation, Wireless LANs, Performance of the MAC pro- work is based on a decoupling approximation, first proposed

tocols. by Bianchi in [3]; we henceforth refer to the simplified model
with this decoupling assumption as Bianchi’'s model.

More recently, several studies [9], [10], [11], [12], [13]
have evaluated the performance of EDCF, an earlier version
Wireless local area networks (WLANSs) based on the IEEE gpca (see [14]). With the exception of [13], where the
802.11 standard are one of the fastest growing wirelessaccg thors propose an extension of the Bianchi's model for

technologies in the world today. They provide an effectivgnalyzing EDCF, all these studies are simulation based.
means of achieving wireless data connectivity in homeslipub The main contribution of this paper is a novel technique
places and offices. The low-cost and high-speed WLANS estimating the throughput and other parameters oféster
can be integrated within the cellular coverage to proviggy the contention based MAC protocols. Our technique is
hotspot coverage for high-speed data services, thus begomiased on a rigorous analysis of the drift of the Markovian
an integral part of next generation wireless communicatiofgdel of the system, and does not require the decoupling
networks. . assumption of Bianchi. In fact, through the insights it g&l
The fundamental access mechanism of IEEE 802.11 MAfgo the system dynamics, it provides an intuitive justiiica
is the Distributed Coordination Function (DCF). The DCF is gf Bianchi's simplifying assumptions. The technique isyeas
carrier sense multiple access protocol with collision daoce g apply, and we use it to analyze DCF as well as a simplified
(CSMA/CA). In addition to DCF, the IEEE 802.11 standardersjon of EDCA. We now briefly sketch the key ideas behind
also defines an optional Point Coordination Function (PCRyyr approach.
which uses a central coordinator for assigning the trar@ons A common feature of all the contention based MAC pro-
right to stations, thus guaranteeing a collision free a&tes tgcols is the concept oback-off stagefor a station. The
the shared wireless medium. While DCF has gained enormaystions can be in different back-off stages; the backafje
popularity and been widely deployed, the use of PCF has bagp a station depends on the number of collisions that it
rather limited. has encountered since its last successful transmissiah (an
Whereas the IEEE 802.11 standard was targeted at bessibly, other information) and can be thought of as its
effort service for data transfer, it is expected that in thestimate of the current level of contention at all staticFise
future WLANs will need to support a mix of QoS-sensitivestations use this estimate to control their access prabesil
multimedia and interactive traffic, in addition to data fiaf The key observation we make in this paper is that, when the
which is only sensitive to the throughput. Future WLAN$,ymper of stations is large, the Markov chain associateld wit
the back-off process stays close to what we céjipacal state,
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DIFS

We find that the accuracy of the throughput estimates ob-
tained using our technique is about the same as those othtaine
using Bianchi's analysis. But, in addition, we are able to SiFs s siFs
provide some key insights about the system dynamics; in fact = -
our results provide a justification for Bianchi’'s approxiioa, oS
which may be of separate interest. o T — e

The rest of the paper is organized as follows. We provide a
brief description of DCF and EDCA, and discuss some related
work, in the next section. Our technique for performanggy » Rrrs/cTs Access Method.
evaluation is discussed in the context of DCF in sectiorAi.
extension of our technique in the context of EDCA is discdsse
in Section V. Some concluding remarks are presented in
Section V. Due to space constraints, all technical detaits a
proofs are deferred to Appendix A and B.

RTS DATA
Source

Defer Access Back-off After Defer

. I. I?CF’ EDCA’.AND RE_LATED V\./O'?K problem (see, for example, [17]). A station that wishes todse
In this section, we provide a brief description of DCF ang DATA frame first senses the channel for a DIFS duration.
EDCA, and discuss some related work in the literature. e the channel is determined to be idle, then a RTS frame

start with a description of DCF. is sent to the destination. Otherwise, the back-off alparit
is triggered after the end of the current transmission and a
A. IEEE 802.11 DCF further DIFS interval. Upon successful transmission of the

The DCF is a Carrier Sense Multiple Access with ColRTS frame, the destination waits for a SIFS interval, and the

lision Avoidance (CSMA/CA) MAC protocol. The collision send_s a CTS frame back to the source. The source can_start
avoidance scheme of DCF is based on the binary exponeng&Pding the DATA frame a SIFS interval after the reception

back-off (BEB) scheme [15], [16]. The DCF defines twdf the CTS frame. As in the basic access mechanism, upon
access mechanisms for packet transmissidiasic access successful reception of the DATA frame, the destinatiorntsvai

mechanismand RTS/CTS access mechanism for a SIFS interval, and then sends an ACK frame back to the
source. A station that hears either the RTS, CTS, or DATA

rﬂ frame updates its NAV based on the Duration/ID field of the
Source corresponding frame (see Figure 2). The four way handshake

] prevents any DATA-DATA collisions that might occur due

Destnation AoK to the hidden terminal problem. Since the RTS and CTS

|_ores | frames are very small in size, the RTS/CTS access scheme
Other NAY OATA) | Baiot significantly reduces bandwidth loss due to collisions.

The back-off procedure is implemented by means of the
Fig. 1. Basic Access Method. back-off counteiand back-off stageslnitially, upon receiving
a new frame to be transmitted, the station starts in back-
In the basic access mechanism (see Figure 1), any statioffi, stage 0, window (CW) size set toCW,,;,. Following
before transmitting a DATA frame, senses the channel foram unsuccessful transmission attempt (collision), thekudic
duration of time equal to the Distributed Interframe Spacgage is incremented by and the contention window size is
(DIFS) to check if it is idle. If the channel is determined ® bdoubled until the maximum size of the contention window,
idle, the station starts the transmission of a DATA framd. AC'W,,...., is reached, after which the back-off stage and the
stations which hear the transmission of the DATA frame sebntention window size remain unchanged on subsequent
their Network Allocation Vector (NAV) to the expected lehgt collisions. The back-off window size as well as the back-off
of the transmission, as indicated in the Duration/ID field aftage are set back to their initial values@#,,;,, and0 after
the DATA frame. This is called theirtual carrier sensing a successful transmission attempt or if tte¢ry countlimit
mechanism. The channel is considered to be busy if either floe the frame is reached. At the start of each back-off stage,
physical carrier sensing or the virtual carrier sensingcaigs the back-off counter is set to an integer chosen uniformly at
so, and in that case, the station enters into a wait pericthdom between zero and the vatu® — 1 of the contention
determined by the back-off procedure to be explained latarindow for the current back-off stage. The back-off counter
Upon successful reception of the DATA frame, the destimatias decremented by in every subsequent slot, as long as the
station waits for a SIFS interval following the DATA frame,channel is sensed idle in that slot. (Here, a slot is an iaterfv
and then sends an ACK frame back to the source statidixed duration specified by the protocol.) If a transmissign b
indicating successful reception of the DATA frame. some other station is detected, then the station freezbadts
The RTS/CTS access mechanism uses a four-way handshafkeounter, and resumes its count from where it left off afte
in order to reduce bandwidth loss due to the hidden termirthke end of the transmission plus an additional DIFS interval



When the back-off counter reach@sthe station transmits  an approximate delay analysis based on Bianchi's model, and
The scheme described above treats all the stations equallgo extend the model to account for channel errors.
We now briefly describe the enhanced distributed channelRecently, Proutiere et al.?] have shown that the mean
access (EDCA) mechanism, which is an extension of the D@EId analysis of Bianchi is asymptotically (in the infinite
mechanism, and aims at providing service differentiation. station limit) accurate. In particular, they have used #dea
from the theory of propagation of chaos to show that Bianchi
B. IEEE 802.11e EDCA type decoupling holds aysmptotically as number of statiens

: : owed to increase to infinity.
The EDCA has been designed from the perspective %¥Several works have evaluated the performance of EDCF,

providing QoS in WLANs. The EDCA defines four different n earlier version of EDCA (see [14]). Most of these have

ACs, each maintaining its own channel access function (%?Eployed simulation [9], [10], [11], [12]. An exception is

enhanced variant of the DCF). The main differences betwe . where the authors use an extension of Bianchi's model
thel EI_?hCA ahq DCF are: fied idle d . . lled hto analyze the performance of IEEE 802.11e MAC protocol.
) be' minimum SprCI ed | eAlgrSatlc_)n time, called thg,, ¢ recently, the performance of EDCA has been analyzed
ar |trat|on Inter frame .Spacé ), Is not a constant in [20], [21], using theoretical models based on Bianchietyp
value unlike the DIFS in the case of DCF. assumptions
2) The d(_:fcfmtentl?n \é\l_l;dow lZnC'tSCWmm and CWinaz, Our approach differs fundamentally from the work de-
are- ffferent for di .erent S: . __scribed above in that we do not make the decoupling assump-
In section IV we consider a heterogeneous setting similggn introduced by Bianchi, and common to all of them except

to the one as under the above EDCA mechanism. [?]. Instead, starting from a Markov chain description that
explicitly takes into account the interactions betweeticata,
C. Related Work we show that in a large system, namely one with a large

One of the earliest analyses of the throughput of DCRUMber of stations, the Markov chain converges tycal
was carried out in [4] using a greatly simplified back-offtate. Thus, one can approximate the collision probability
model, namely that the back-off counter value is geomet§€€en by any single station by that seen in the typical state.
cally distributed withconstantparameterp, irrespective of Our analysis therefore provides a rigorous justification fo
the current back-off stage of the station. A more realistRianchi’s model, which has been the basis of much subsequent
model was proposed in the seminal paper of Bianchi [3]\{ork. In addition, it provides an alternative approach to
Here, the evolution of the back-off stage at each node R§rformance analysis of MAC protocols; performance mea-
described by a Markov process; the Markov chains at difterefHres of interest can be derived directly from analysis ef th
nodes evolve independently, but in@mvironmenspecified by typical state. We validate this approach by showing that the
the collision probabilityp for any transmission attempt. ThePerformance predictions thus obtained are close to thase se
parametep is a constant derived from theeantransmission N simulations.
probability in the associated Markov chains. This formiolat ~ Finally, we point out that we focus on DCF and EDCA
leads to a fixed point equation fer Note that the model is Protocols in this paper because they are likely to be the two
analogous to mean-field models in statistical physics; tilg o Mmost widely deployed wireless MAC protocols in the near
interaction between the Markov processes at different sod#ture; however, we do not specifically advocate their use.
is through the parameter which represents a mean value offeveral works (see, for example, [22], [23], [24], and the
the environment. It is not a goal in [3] to provide a rigorougeferences therein) have identified the limitations of ¢hes
justification of the mean-field assumption. The assumptigtotocols, and proposed alternative MAC protcols that can
is justified through simulations, which show that the mod@rovide better performance. The techniques developedisn th
predictions are quite accurate. paper are very general, and can be applied to evaluate the

Several subsequent studies have built on the work performance of these alternative MAC protocols as well.
Bianchi. In [7], the authors obtain similar fixed point equa-
tions using the same decoupling assumption but without théll. PERFORMANCEEVALUATION OF IEEE 802.11 DCF

Markovian assumptions of Bianchi; extensions of this fixed | this section, we present a performance analysis of DCF.
point formulation are studied in [8]In [6], the authors present\ne start with a description of our model.

*As in [3] and majority of the related literature, in our arg# we ignore
the facts that (i) the back-off procedure is not invoked irdiately after a A. The Model
successful transmission or during the transmission of thet iata packet, . . . . .
and (i) the back-off counter is not decremented if the clefim sensed to Ve consider a wireless LAN with stations employing the
be busy. For a more accurate model of the back-off procedueerefer the |EEE 802.11 DCF. Every station can hear every other station i

reader to [18]. . . . .
"The parameteraC'W,., andaCWinas depend on the physical layer. the network, i.e., there are no hidden stations. Our disoass

*In order to avoid confusion arising from the superficiallyngar ter- COYefS bothad hoc network,swhere ther_e is no central access
minology, we emphasize that tHixed pointswe talk of in this work are point (AP) through which all the traffic must pass, as well

different from the fixed points in [3], 7], [8]. Their fixed puts are for thel-  5gintrastructure based networksvhere an AP connects the
dimensional coupling parametgr our fixed points are for the-dimensional irel Kk with th ired inf | d
state descriptor in a joint Markovian representation of biaek-off stages at WIr€less network with the wired infrastructure. In order to

all n stations. The details are provided in the next section. simplify the analysis, we assume, in common with most



related work, that all stations always have a packet to setithe slot. Forz(™ ¢ S,,, let
The throughput obtained under such saturation conditiens i (n)(.(n)\ A )
commonly referred to as theaturation throughputin some FrE) S E{X(+1) - Xa () Xa(t) = 22}

cases (see, for example, [25]), it can be shown that the gueue = > 1P (M),

at all the nodes are stable if the arrival rate at each node is Lo +1ES,

less than the saturation throughput. s We make the followin (n) , . i .
additional assumptions: where P, (z() is the probability of making a transition

from z(") to (") + | over one time slot. We now compute
o (A1) The back-off durations are geometrically dis-f_(n)(x(n)) for i € {0,1,..., M}.
tributed, i.e., when a station is in back-off stagé makes " First considet = 0. Let I(z(™) 2 [

a transmission attempt in the next slot with a probability i ;
p;. In order to maintain the same average waiting time %%iiggss’flr;?etmgfln&s(:;(;n probab
in the IEEE 802.11 DCF, we s@ = 27, WhereW; '
is the contention window size in back-off stage

o (A2) The back-off stage is reset td only after a
successful transmission, i.e., the retry count limit, as
defined in Section II-A, is infinite. This assumption is not
necessary for our analysis, but simplifies the exposition
considerably.

o(1—pi)™", where

lity for a station in back-
is the probability of an idle slot
when the system is in state™. The following events can
result in a change in the number of stations in back-off stage

« A successful transmission by a station in back-off stage
i€ {1,2,..., M}, resulting in an increase in the number
of stations in back-off stage.

o An unsuccessful transmission attempt by one or more
All stations use the same back-off parameters. There are stations in back-off stage, resulting in a decrease in the

M + 1 back-off stages, labele@to M. We adopt a discrete number of stations in back-off stage

time model indexed by the slot numberTo avoid confusion, For the former event to occur, the station itself must trahsm

note that the term “slot” in our usage refers to a differer@nd no other station in the network should transmit; this has

guantity from the slot in the IEEE 802.11 protocol descapti probability lffpil(x(")). Noting that there areE”) stations in

We use the term to denote the time period at the end of whittte back-off stage to choose from, and summing ovgrwe

stations may modify their back-off counters. In particuthe obtain

duration of a slot is not a fixed physical layer parameter, M (n) I(z(™)

but varies depending on whether it represents an idle slot, Z i P 1—p;

a successful transmission or a collision.

The state of the system at timecan be represented by

a vectorX, (t) = (Xno(t), ..., Xna(t)) denoting the number

of stations in each of the back-off stageshrough M. It is

)
i=1
to be the expected increase in the number of stations in back-
off stage0 due to successful transmissions by stations in
other back-off stages. Likewise, a node in the back-offetag

i ; R I(z(™)
easy to see thak,(t), t = 0, 1,... forms an irreducible and 0 transmits unsuccessfully with probabilify, (1 - f_—po))
aperiodic Markov chain on the state space and moves to back-off stage Therefore,

M ](I(n))
(n)
Snﬁ{ GZMH:in—n;xiZOfOrallz}, %o PO(l— 1= o 2)
1=0

o . ~ is the expected decrease in the number of stations in the
In principle, one could solve for the stationary distrilouti pack-off staged due to unsuccessful transmission attempts by

of X,,(t) and thereby obtain parameters of interest about tBgtions in the back-off stagé Combining Egs.(1) and (2),
system. However, the number of states/*!, is too large we obtain

to make this feasible for systems of practical interest. The o n)
key insight we provide in this paper is that, wheris large fé”)(x(n)) _ ngn)pif(x ) _ xé")po. ©)
(and exact computation expensive), the Markov ch&in(¢) i—o ’ 1—pi
stays close to what we calltgpical state Moreover, accurate
estimates of various parameters such as throughput can
obtained by assuming thaf,,(¢) is in this typical state at all
times.

We remark for purposes of comparison that Bianchi [3]

models the system as a Markov chain with (typically) an eve Lo ) -

g s space of a1 by consderng th backcfl #1971 bacef sage atee o e i o

stage at each station. The analysis is simplified by repiaci Y Pi» g which, _ -
?successful transmission) or to back-off stagel (collision).

this n-dimensional Markov chain by 1-dimensional Markov . . .
. . " Thus, the expected decrease in the number of stations in back
chains (with M+1 states each) which aagsumedo be con- , : .
off stage: at timet is

ditionally independent, conditional on the collision patbiity
p. We do not make any such independence assumptions.

We now proceed with the analysis of the Markov chaiA station in back-off stage — 1 transmits with probability
X, (t). Let us look at the expected changeXn, (¢) over one p;_; and moves to back-off stageif it suffers a collision,

I\he t, leti € {1,2,..., M — 1}. We now need to consider the

fo %Wing events:

« A transmission attempt by a station in back-off stage

« An unsuccessful attempt by a station in back-off stage
1 — 1.

™. (4)



i.e., if one or more others station in the network also trahismnow extend the definition of ") to =z € B,, by using the

which happens with probabilit<1 — f(_mp—(jz) Thus, same equations on the extended domain.
' In Appendix A, we analyze an appropriately scaled version,
(n) 1_ I(z(™) ®) Y, (t) = X,(|nt])/n, of the processX,,(¢) for n = 1,2, ...,
b L—pi1/) and show that for alt > 0, it satisfies:
is the expected increase in the number of stations in back-of lim sup [|Y,(s) =Y (s)|| =0 a.s.,
stagei due to unsuccessful transmission attempts by stations N0 0t
in back-off stagel — 1. Combining Egs.(4) and (5), we obtainyhere v'(¢) is a deterministic process given by the unique
() m)y ) ~ I(z™) . solution of the differential equation
i @) =20 pio (1 10, z; 'pi (6) dY (t)
Pimt N Py () for t >0,
forie {1,2,...,M —1}. dt
Finally, leti = M. In this case, we need to consider thavith initial condition y® = lim,, . ¥;,(0) = X (0)/n, where
following events: F(z) = lim, .o f"(nz) for z € E. In words, we prove a
« A successful transmission attempt by a station in back-dgnctional ‘law of large numbers’ limit theorem for the pess
stagelM. Y, (). We also show that the error involved in approximating
« An unsuccessful transmission attempt by a station in(t) With nY (¢/n) is (almost surely)(n”) for all 5 > 1/2.
back-off stageM — 1. In Appendix B, we show that the equatiofi(z) = 0

A station in back-off stage/ transmits with probabilityp,, NS @ unique solution I/ = 1, we can further show

and, if no other station in the network transmits, an event §tat Y (t) converges tar from all possible initial states. We

- ) . i i
probability 11(pr)’ then the station moves to back-off Staggonjecture that such a result holds for &l (as observed in

0; otherwise it stays in the back-off stadé¢. The expected our simulations).

decrease in the number of stations in back-off stafat time th l? VerW |Of thi r?rs]ults n Aps;ndtlx A anq B, V\:e car: e)iEeCt
t due to a successful transmission is thus: at, for larget, the processX,(t) remains close to the

unique pointz(™ ¢ B, satisfying f)(2(")) = 0, which
a?g\’})pM I(I("))' @) will henceforth be referred to as the equilibrium point oéth
1—pum system.
A station in back-off stagd/ — 1 transmits with a probability

pym—1 and, if at least one other station in the network alsB. Throughput Calculation

. - ) .
transmits, an event of probabﬂn(l - 11,(177)1) then the  We now estimate the throughput of IEEE 802.11 DCF,
station enters into back-off stagel. The expected increaseassuming that the system stays close to its equilibiriumtpoi
in the number of stations in back-off stagé at timet due (™ at all times. Let

to collisions is thus « T £ The normalized throughput of the system.

(n) I(z™) « P, £ The conditional collision probability.
Ty apm—1 (1= ———]. ® A s . . (n)
1—pym— o I = The probability of an idle slot in state'™ .
Combining Egs.(7) and (8), we obtain « P = The payload duration
) () « T. £ The average time the channel is sensed busy during
M (™) =20 pa s <1 _ 1) ) —2Wpus I(z™) a collision.
1=prm 1 _pm(g) « T, £ The average time the channel is sensed busy
C0||ecting Eq5(3)’ (6), and (9), at one p|ace, we have because of a successful transmission.
o o « 0 = The duration of an idle slot.
£ (@™ = ngn)pi@ — 2 po, (10) Npte that some of the abqve defined quantities may vary
i=0 P with n. For the sake of brevity, we do not make explicit this

() () . I(z™) M 0 <i<M dependence.
[P @) =2t (1 T—p.) % pol<ti<idh To calculate the throughput, observe that a station in back-

(11)  off stagei, transmits with a probability;, and the transmission

) () () ) I(z™) my (™) is successful if no other station in the network transmits, a
A @) = ayapua \ L= 70 | =@ Mo event of probability
(12)
Let o 1=pi
By 2 {o e RM+1. Z 2 =mn;z; > 0} Since there arez(.") stations in back-off stage the probability
P h that a station in back-off stagetransmits successfully is
andE 2 B, /n. Let f(®) : RM+1 _, RM+1 pe the function z™p, I
with componentg“i(”) specified by Egs.(3), (6), and (9). It is 1—=pi

essentially the Pne'StEp drift .Of the Markov chaif (¢). We §In this paper, we consider the payload duration to be fixediabte
have so far defined the functiofi”™ (x) for x € S,, only; we payload duration can also be analyzed as in [3].



TABLE |

IEEE 802.11 DSSS PHYARAMETER SET [26] AND OTHER

PARAMETERSUSED TO OBTAIN NUMERICAL RESULTS

esults

f length = 2 x Std. Deviation
lodel
u

[ PARAMETER | VALUE | \
Basic Bit Rate (BBR) 1Mb/s .
Bit Rate (BR) 11Mb/s - \
PHY Header (PH) 192 bits .l
MAC Header (MH) 272 bits "
H PH/BBR + MH/BR
ACK 112/BR + PH/BBR
RTS 160/BR + PH/BBR
CTS 112/BR + PH/BBR ® e W
Propagaéllcl):rgDelayéo 11655 Fig. 3. Success probabilityl (— P) for M =5 and Wy = 128.
Slot Time ¢) 20us ‘
DIFS 50us + S
//ﬂ////

T
0.25

Summing over all possible back-off stages, we obtain the
probability of a successful transmission to be

M

S5 0y,
[ ? 1—n, .

i=0 b

Since the probability that at least one station transmits in BE R s
given slot is1 — I, we have

M I
> izo xz('n)Pi Tp

1-1 .
The normalized throughput of the system can be expressedcélsperformanCe Comparison

We have performed extensive simulations with different
e (14) values ofM andWj. The simulation results match extremely
Slot duration well with the numerical results obtained using our techaiqu
The expected payload duration per slot(ls— I)(1 — P.)P. and Bianchi's model. The results for the RTS/CTS access
The expected duration of a slot is readily obtained consider mechanism withl/ = 5 and W, = 128 are shown in Figures
that, with a probability/ a slot is idle; with a probability of 3.5 As is evident in these figures (error bars are barely
(1—1)(1-F) it contains a successful transmission, and witlsip|e), the variation of results across various simolatiuns
a probability of(1—I) P it contains a collision. And plugging js quite small, thereby showing the high confidence level of
this is Eq.(5),we obtain the simulation results. An interesting thing to note is that
(1-I)(1—P.)P although our technique and Bianchi’'s model are fundamigntal
1-I1-P)Ts+(1—-1)P.T.+Ic (15) different, they both result in (roughly) the same fixed point
The values of7, and 7, depend on the acoess MechaniSgy L obtained using he. o techridues are ver
being used. Lety) be the propagation delay, then one carﬁlf gnp 9 . q . y
readily obtain (for details, see [3]) close. S_lmllar results hgve bee.n obtaln_ed for the basicsacce
r mechanism as well. An interesting special case-€ 1) under
Ts™ =RTS+CTS+H+ P+ ACK +35IFS + 40 + DIFS  whjch it is possible to calculate the exact throughput of DCF
T = RTS+ DIFS 46 is discussed in Appendix C.
T! = H+ P+ ACK + SIFS + 25 + DIFS

T = H+ P+ DIFS+§

Attempt Probability (1-1)

Fig. 4. Attempt probability { — I) for M = 5 and Wy = 128.

Po=1- (13)

T_ Expected Payload duration per slot

T =

(16) IV. EXTENSION TO AHETEROGENEOUSSETTING

where T7** (correspondingly7*®*) and T7** (correspond-  The analysis presented in the previous section can easily
ingly, T%%*) represent thd. and T, values for the RTS/CTS be extended to a heterogeneous setting, where differemsnod
based access (correspondingly, basic access) mechaeismcan run with different values of the protocol parameters.
spectively; the parametefsl'S, CT'S, H, ACK, DIFS,and Indeed, in Appendix D we consider a setting where multiple
SIFS are all physical layer dependent. We will use the valuegcess categories, each using its own unique set of protocol
of these parameters as defined in the DSSS PHY (see Tgtdeameters, are running simultaneously at each node as spec
). ified in the EDCA mechanism. However, unlike the EDCA



‘ ‘ ‘ ‘ ‘ nodes can hear each other; accounting for the hidden node
—— Bianchi's Model . .
 ginulaton esuls problem remains an important research challenge.

— Error bars of length = 2 x Std. Deviation
Our Technique
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APPENDIX A ‘

(1 — p{™)y=nlle™ =™

IN
.zz

~
Il
=]

Recall the setting of Section Ill-A. For eaah let E,, £
{k/n: k € S,}, and consider the family of stochastic process

i . ("))—]\'fn||m(")—z(m)H
{Y,.(¢)} defined as follows:

1 —pg
e2coM||z(™ —z (™|

IN

<
Ya(t) 2 Xnllnt]) (17
n Now we have
Observe that each for eaeh Y, (¢) is just a scaled version I (m)
T L on ) (n)y _ m) | _ (n) _ (ma™))
(where the scaling is both in time as well as magnitude) of| /(nz'™) — I(mz'"™) | = | I(nz'™)| |1 T(na™)
X, (t). We also define another family of stochastic process (m)
{Z,(t)} as follows: 1— I(ma™™))
X,(V () o e
Zn(t) L %7 (18) < ’ 1— e*QCoMHI(n)*I(m) I ‘
n <
where N(t) is a Poisson process with unit intensity, inde- < 2coM ||z™) — 2™,
pendent of the sequence of Markov cha{d§,,(¢t)}. Observe ) )
that {Z,(t)} is a sequence of jump Markov process By, Proving the C_la'm' ) u
with transition rates (intensitiesj,i”,zﬂ/n _ npl(n) (nk), for The following corollary is an easy consequence of the proof

keE,. ’ of Lemma 1.

Corollary 1: Considerz(™ € E,, andz("™) € E,,. Suppose

We will need the following assumption: :
Assumption 1 holds. Then,

Assumption 1:There exist positive constantg, c1, ..., ¢y
such thatpE”) =¢;/nforie0,1,..,M and alln. I(nz™)  I(maz(™)
Remark 1:We note thatpgn) and M are kept fixed in the 1 _p(_n> T _p(_m)
IEEE 802.11 DCF, independent of the number of nodes in ! ‘
the network. We allow for the!™ to scale withn to avoid ¢ € 10,1,..., M}, whenevem andm are large enough.
trivialites; for example, ifA andp{™ were kept fixed for all FOr eachn, define a functions") (") on E, by setting
n, then asn — oo the throughput would drop to zero and? " (™) = f (nz(™)). We have the following result:
all the nodes would eventually be in the back-off stage ~ Leémma 2:Suppose Assumption 1 holds. Then the sequence
with probability 1. The above choice op(" precludes this {F (™} is uniformly bounded, i.e., there exists a constant
possibility. Note that the way transmission probabiliteg o such that| () (z(")|| < C for all z(") € E,, and for all

chosen in the IEEE 802.11 DCF, Assumption 1 would imply- Moreover, forz(™ € E,, «") € E,, andm,n large
thatcy = 2¢1 = - - - = 2M¢yy. enough, we have

< 2coM ||z™ — 2™,

We need some preparation before we can state our main resulty () (%)) — pm) (™)) < p(co, M)||2™ — 2™,
Henceforth, we use|z| to denote theL? norm of x. For

™ ¢ B, let whenever
o 2™ — 2™ < 1/coM,
n n w(") .
Iz 2 [ - piy= wheren(co, M) is a constant that depends only @nand M.
i=0 Proof: To prove that{ #(™} is uniformly bounded, ob-

Strictly speaking, the functiod is not really the same for serve that in view of Assumption 1, we hah@(")(:c(”>)| < ¢y
differentn; for the sake of brevity, we will continue to follow for i < {1,..,M — 1} and for all n. Thus, we have
the above notation. We start with the following simple resuIHF(n)(x(n))H < Z?io |Fl_("> ()| < co(M + 1) for all



z(™ e E, and for alln. oo such that for allz,y € E, we have

Now observe thafnz " pi" — ma;™ p{™| < colla™ — |F(2) = F(y)ll < Kl ]|
(™). Using Egs. (10), (11), and (12), along with Corollary T
1,for1 <i<M —1 we have Next, we obtain a closed form expression for the function
F(x):
IF™ (@) — F™ (20m)] < jnal™ p™) — ma{™)pim))| Lemma 4:Suppose Assumption 1 holds. Then the function
(n) (m) (m)| F(z) = (Fy(x), ..., Fp(x)), defined by Eq.(19), satisfies:

+ |n:1cl(-")pin —ma;"p; N

(n) (n) n n (m), (m) 1(m m

na{" @) map I (@) Fo(a) = 3 exL(x) — moco, (20)
Lol Lo Fi#) = rerei (1 — L(x) fori=1,..,M—1
700 (5(n) N n o (m i\T) = Ti—1¢i—1(l — L(x)) — xici, TOre=1,..., M — 1,
< 2o = 2+ T a5, — a0l 1)
Pi—1 F]w(x) = .I']u_ch_l(l — L(,T)) — 1‘]\461\4[1(1‘), (22)

m) (m) 7(n) (x(n)) ](m)(x(m))
+mE; 1P 1 —p™ T D) wherec; = limnﬁmnpl(") fori € {0,...,M}, andL(z) =

— Pi—1 —Mi—1

1L e e,

Proof: Considerz € E, with rational co-ordinates, i.e.,
Similarly, it can be shown ththé") (z(m) — Fém) (@m) < wi= pi/q; fori € {0,1,..., M}, wherep,, ¢; are nonnegative
(2c0+coM +2c3M +2c2 M?) ||z — (™) | anlejfy) (z(W)— integers. Ley = LCM(qO, ..»qn), WhereLC'M denotes the
F](;z)(x(m)” < (3co + 4c2M) || 2™ — z(™)||. Now since least commom mgltlple. Obsgrve thate En.fQ.f n = gk,

wherek > 1 is an integer. In view of the definition of (x),
we have that

— (3co + 263M) ™ — ™|

HF(”)(x(”))—F(m)(x(m))H < Z |Fi(n) (x(”))—Fi(m)(:v(m))L
i=0 F(z) = klim FUb) (z) = klim FUR) (qka),

thg re25ult follows by taking(co, M) = 2co+4coM +4cEM+  \which, in view of Eqgs.(10)-(12) satisfies Egs.(20)-(22) Bo
deg M. ® jrrational z € E, the result now follows by appealing to the

Remark 2: The above lemma implies that for a Cauchy.ipschitz continuity of F'(z) (see Lemma 3). [ |
(M j (M
?ne%uj\?ﬂfe{x }in B, the sequencéF,(z1"))} is Cauchy  ue folioning result (which is similar to the notion of
! _ ' _ uniform convergence) is now an easy consequence of the
Define a functiont'(z) on E as follows: definition of F("), Egs.(10)-(12), and Lemma 4.
F(z) = lim F™(z(™), (19)  Lemma 5:Suppose Assumption 1 holds. Then there exists

a sequencéd,, } of numbers satisfying:

where{z(")} is any sequence i satisfyingz(™ < E,, and (5) ¢ () ) .

(") — z. The existence of the limit in Eq. (19) follows from Sup [F (@) = F ()] < 6, and lim 4, = 0.
Remark 2. To prove the uniqueness, {etf”} and {y™} be ~ * "

two sequences i, satisfying: Forl € ZM+1 |et ﬁl(n) 2 sup,cs. Pl(n) (). We have the

™ 4™ e E,, and lim 2™ = lim y™ = z. following result:

Then forn large enough, we would havgy™ — x| < Lem;nzz\nss.For n= 1 let go = 55 [IU|6 " and by =
e < 1/coM, which, in view of Lemma 2, implies that 2 I3 Thef’ the seque_nceggn} and {h,} are uni-
[FM (zm)) = FO) ()| < n(co, M)e, showing that formly bounded, i.e., there exists a constéhtd < oo such
lim,, ., F(m) (I(")) — lim,_ ., F(™) (y(”)). thatg, < G andh,, < H.

Remark 3:The definition of F(z) and Lemma 2 imply that Proof: Consider the set of states) = {I : [[I|| < M}.
F(z)<Cforallz € E. Observe that for all € Sy, we havel|l;| < ||I|| < M for
i €{0,1,...,M}. Thus,l; can take at mostM + 1 values,

Remark 4:An alternative, but equivalent, way of defining .
the functionF" could be to first define for alk > 1 a function and therefore the total number of statesSinis no more than

F™ on E by setting F™ (z) = f(™(nz), for z € E, and (2M + 1)1, Hence, we have
then takeF" as the pointwise limit of the sequence of functions Z 11" < (2M + 1M+,
F(”)(x). 1€So
The following result is a direct consequence of Lemma Riow consider the set of state, = {1 : kM < ||I|| < (k +
the definition of F'(z), and the boundedness df(x) (see 1)} for k > 1. A similar argument as above shows that the
Remark 3). number of states i), can be no more tha(kM + 1)M+1,
Lemma 3:Suppose Assumption 1 holds. Then the fucntioAlso, note that for a jump of magnitudg| > kM to occur,
F(z) is Lipschitz continuous, i.e., there exists a consf@nt more than|kM /2] nodes must transmit during the current



slot; the probability of which is smaller than

n c , o) kM /2]
<LkM/2J> ()" =

|kM/2]! (23)
for |[kM/2] < n. Thus, we have

n (2CO)UQM/2J
8™ < (2kM + 1M
lezsk ! |kM/2)!
Let
Do £ (2M + )M+
and
2 )LkM/Qj
Dy 2 (20 + 1yt B0
b= RRM A+ 1) = T

for £ > 1. Now observing that;(n) = 0 for all [ such that
l7]] > 2n, we obtain

gn= D

i:)|1]|<2n

I16™ <3 D 2 G < o,
k=1

proving the claim regardingg, }. The claim regardindh,, }
can be proved in a similar fashion.

We are now ready to prove the almost sure convergence loFn (1) —

holds, / 1F™ (Zn(s)) = F(2(s))ds

the sequencé¢Z,,(t)} to a deterministic process.
Theorem 1:Suppose Assumption 1
lim,, 00 Zn(0) = 2%, and Z(t) satisfies:

)=z +/F ))ds for ¢ > 0.
Then for everyt > 0, we have
lim sup | Z.(s) — Z(s)|]| =0 a.s.

n—00 <<t

Proof: From Theorem 4.1 in [27, Chapter 6, pp. 327],

we have that the jump Markov proce&s (¢) with intensities
(n)

D, k+1/n

of jumps:

Zn(t) = Zn(0) + Y In"1Y] <n /0 t p™ (nZn(s))ds) ,
l

(24)

whereY;(u) are independent standard Poisson processes. Now

for eachl € E,, let Yi(u) £ Yi(u) — u, thenY;(u) is a

10

Let

enlt)  sup
757

2,() = 20) - | " PO (2, (u))du

then using Lemma 6, we obtain

€n(t) = sup Zlnilfﬁ (n/ Pl(n)(nZn(u))du) ’
0<s<t . 0

< Do s 7 () |

< Z 11|~V nﬁl" t) +nB8™1).

The strong Iaw of large numbers (applied to the independent
increment proces¥/(.)), the uniform boundedness of the

sequence{g,} = {ZlHlHﬁl"} (see Lemma 6), and the
dominated convergence theorem, together imply that

Y, (n/ Bf”)ds) H =0 a.s.
0

Using the Lipschitz continuity of” and Lemma 5, we have
for ¢t > 0 that

ZW)I <1120 (0) = 2°[| + en(t)

(27)

lim e, (
n—oo

)< tim [} sup
l

0<s<t

< NNZn(0) = 2°ll + en(t)

+/ (1E(Za(8)) = F(Zu()]l + |IF(Za(s)) = F(Z(s))])ds

0

< N1Zn(0) = 2°ll + en(t) + 8nt + /O K|[Zn(s) — Z(s)||ds.

Appealing to Gronwall's Inequality (see, for example, [27,
Appendix 5, pp. 498]), it follows that

1Zn(t) = Z@)] < (120(0) = 2°]| + €n(t) + nt)e™*

= nPl(") (nk) satisfies fort less than the first infinity The result now follows by noting that

lim (|| Z,,(0) — 2°|| + en(t) + 6,t) =0

Poisson process centered at its mean. It is well known thafOur goal is to prove a result similar to Theorem 1 for the

Yi(u) satisfies:

lim sup n_lffl(nu) =0 a.s., forall v > 0.

n—=0 g<u<v

(25)

Now observe that for:(") € E,,, we have

FO (™) = £ (na Yo P (na™),
linz(M) +1€8S,

(n)) -

and therefore,

Zn(t) = Zn(0)+ > In"'Y] (n /0 t P (nZn(s))ds>
l

t
() s))ds.
+ /0 PO (Z,(s))d (26)

sequence of stochastic proces$®s(¢)}. We will do this by
comparing{Y,(¢)} with {Z,(t)} as follows:

Theorem 2:Suppose Assumption 1 holds. Then the se-
quences|Y,(t)} and{Z,(t)}, defined by Eqgs.(17) and (18),
respectively, satisfy:

lim sup ||Y.(s)—

n—00 (<<t

Z,(s)|]| =0 a.s., for allt > 0.

Proof: Let 7, (t) £ supy<,<; || Yn(s) — Zn(s)||. Note that

s)) = Xn([ns])|l

<s<t
Tn(t) = sup [[Xn(N(n
0<s<t

We need to prove thdim,, .o v, (t) = 0 a.s. for all ¢ > 0.
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Let 3£ 1/16 anda £ 7/8. We have for large enough, which implies that

P (v, (t) >n~? SP(su N(ns) — [ns >na> P t -p
(m(®) > ) < B{ sup [N (ns) - [os] g (Ya(t) > 07 < oo,
+P <'yn(t) >n"P| sup |N(ns)— [ns]| < no‘) andlim,, .o 7, (t) = 0 a.s. now follows from the first Borel-
0<s<t Cantelli Lemma. u
<P ( sup |N(ns) —ns| > n® — 1> Remark 5:Using the L? maximum inequality fop = 4+,
0<s<t

~ > 1, and making appropriate changes to the proof of
I P <%(t) > 0P| sup |N(ns) — [ns]| < na) (28) Theorem V, one can show tha@t (v,,(t) > n=7 i.0.) =0
0<s<t for all 5 < 1/2. Thus for any8 < 1/2, there exists a

i i -8
Now observing thatV (ns) — ns for s > 0 is a martinagle, it co;re]\s[pondlng integeNs < co such thaty,(t) < n™" for
ﬁ.

follows that| N (ns) — ns| for s > 0 is a submartingale. Using " =
the L? maximum inequality fop = 4, we obtain Combining the results in Theorems 1 and V, gives the
4 4 desired result:
E {( sup |N(ns) — ns|> } < <é> E{(N(nt) — nt)*}. Theorem 3:Suppose Assumption 1 holds,
Oss<t 3 lim,, o0 Y5, (0) = 3%, andY (¢) satisfies:

Using the Markov Inequality, and observing that 0 t
E{(N(nt) — nt)*} = nt + 2n?t?, we obtain Y(t)=y +/0 F(Y(s))ds for t > 0. (32)

pr < sup |N(ns) —ns| >n% —1

> < E{(N(nt) —nt)"}  Then for everyt > 0, we have
0<s<t -

(ne —1)4 .
Nt o2 nh_)rrgo Oiigt IY(s) = Y(s)]| =0 a.s.
< (—) DI <1082, (29) T

3 (ne—1) Remark 6:The Lipschitz continuity off’ guarantees that
for large enough. Now we claim that for alk: € S,, and all for all y° € E, there exists a unique solution to the initial
p > 0, the Markov chainX, (t) satisties: value problem (IVP) corresponding to Eq.(32).

P < sup [ Xn(q) —zl| > n' | Xn(p) = x) < opoe—n'/t/16 Theorem 3 shows the convergence(®f,(¢)} to Y (¢), over
p<g<p+ne - bounded intervals of time. For finite, but large Remark 5

shows that the difference betwegp(t) and Z,,(t) is O(n=")

for all 5 < 1/2. Next, we will characterize the error involved

(30)
To prove the above claim observe that for the event

X 15 in approximatingZ, (t) with Y'(¢), following the approach
{0 o2 0} gvenn (28]

to occur, there must be at least one time slot, out ofsthe seti," (u) = n”'/?¥i(nu) and letV, (t) = vn(Zn(t) —
time slots following thep™ time slot, in whichn'~2-8/2 = X (¢)). Then, Eq.(26) can be rewritten as

n'/16/2 or more nodes transmit. Since the probability of a o ("

node transmitting is no bigger thay” = ¢, /n, we have that Va(t) = D1V, (/0 B, ("Zn(s))d5>

the random variableV = Bernoulli(n, co/n) stochastically . t

dominates the ranqlom \{ariablg corresponding to the nur_n‘bgro +/ \/E(F(")(Zn(s)) _ ) (X (s)))ds,

nodes that transmit during a time slot. A standard appbcati 0

of Chernoff Bound shows that: which suggests the following limiting equation:

P(N > n!/16/2) < 2¢=" /°/16, N t t
v £ S ([ sxeonas) + [ orcxviss,

and Eq.(30) follows by using the union bound. Now observe

that if . ™ 53)3)

sup |N(ns) — [ns]] < n® Wh_ergﬁl(a:) = lim, oo P,/ (na'™)) for x € E, and {z™}

0<s<t satisfies:
occurs, then the total number of jumps upto timef the " e E, forn=1,2,...,and lim 2™ — z.
processes, (t) andY, (t) combined, is no bigger thaint + e
n®. Appealing to the union bound once again, we have thahe existence and uniqueness of the above limit can easily be
the second term in Eq.(28) is no bigger than shown. Let® be the solution of the matrix equation

0
2n® (2nt +n®)e 18 < 1/, (31) 5 2(19) = OF(X(1)@(t,5), (s.5) =1, (34)

for large enougm. Combining Egs.(31) and (29), we obtaingnd |et
t
1262 4+ ¢ 2
P (ya(t) >n?) < et U(t) XZ:ZWZ </0 51(X(S))ds) .

n3/2
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Then, we have and

t t
V(t) = / O(t,s)dU (s). Vau(t) £ / v (F(X(s)) - F(")(X(s))) ds
0 0
Observe that sinc&(¢) is Gaussian with zero meat,(t) is + /t Jn (F(")(Zn(s)) _ F(Zn(s))) ds.
Gaussian with zero mean and covariance matrix 0

Using Egs.(10)-(12), Egs.(20)-(22), and noti|mg>§") -l <
Ky (see Remark 1), it follows that there exists a constant
K, < oo such that for alln large enough, we have

Cov(V(t),V(r)):/O T@(t,s)C(X(s))@(r, s)Tds,

where
Clx) =Y U Bi(x). sup ||[F™(2) — F(z)| < K1 /n.
l zeFE,

From Corollary 6, we have thatup, . C(r) < H < co. ThusVa,(t) < 2K:t/y/n = O(t/\/n). Now turning toV;, (¢),

ThusV(t) is well defined. let
t

Let Dgari1[0,00) = {z : [0,00) — RM*![forallt > Un(t) 2> o=y, (n / Pl(n)(nZn(S))dS),
0 limg_¢y z(s) = «(¢t) and lim,_,;_ x(s) exists, i.e., the ! 0

space of right continuous functions having left limits. iden 4

forth, we will use the symbol=-" to denote the convergence

in distribution in Dgar+1[0,00), or equivalently, weak con- e, (t) £ Vo, (t)

vergence inP (Drum+1]0,00))- the set of Borel probability t

measures omgar+1 [0, 00). For the sake of definiteness, the +/ (Vi (F(Za(s)) = F(X(s))) — OF (X (s))Va(s)] ds

metric used orP (Drwm+1[0,00)) can be assumed to be the , ,
Prohorov metric (see, for example, [27, Chapter 3]); aridsing the results in [27, Chapter 4], it can be shown that

the metric used oDg+1[0,00) could be the one specifiedUn = U, With U as above. Using the Lipschitz continuity of
in [27, Chapter 3] that induces the Skorohod topology dn W€ have
Dgu+1[0,00). For a detailed discussion of these metrics and

t
related concepts, we refer the reader to [29]. Va(®)] < [Un(?)] +/0 K|V (s)lds,

The following theorem characterizes the error involved ignd hence (using Gronwall’s inequality)
approximatingZ, (t) with X (¢): sup [V, (s)| < sup |Un(s)|e.
s<t s<t

. A
VThteore‘r/n 4t.Let L/"(t)vandvg) be;ja‘\/s akt)oxebtf;em(t) Since U, = U and U is continuous, it follows that
1n(t) + Von(t), whereVi, =V and Vo, (t) = O(t/vn). - oy~ U (s) = sup,-, U(s), and hence the, are stochas-
] . tically bounded on bounded intervals. Furthermore, it isyea
Remark 7:A consequence of the _above result is that faf sge from Egs.(20)-(22) that is continuous and bounded,
large n, X,(t) can be well approximated byY (t/n) + which together with the fact thaf, are stochastically bounded
n'/2V(t/n). In view of Remark 5, the error in such anon bounded intervals implies that, = 0. With ® as above,

approximation is almost surely bounded byn?) for any We have

B > 1/2. Also, sinceV (t) has a finite variance for atl, the _ ¢
error in approximatingX,, (¢t) with nY (¢/n) is also almost Valt) = Un(t) +e”(t)+/0 (t, 5)OF(X (5))(Un(s) + en(s))ds.

surely bounded by)(n”) for any 3 > 1/2. Finally, noting that the mapping/ : Dgar+1[0,00) —

Proof: We have Dgu+1[0,00) given by

t
t
Va(t) = n 2y (n/ Pl(n)(nZn(s))ds) JO(t) =9(f)+/0 O(t,5)0F (X (s))0(s)ds
0
lt is continuous, the result follows from the continuous mapgpi
+/ V(F™(Z,(s)) — FU (X (s)))ds theorem (see, for example, [27, Chapter 3, pg. 103]). =
0
= Vin(t) + Van(t), APPENDIX B
where In the previous section, we proved the convergence of the
1o i(n t o sequence of stochastic proces$&s(t)} to the deterministic
Vin(t) = Z” 2y ("/0 P )("Z”(S))ds) processY (t) satisfying:
1
t t
+ [ omCxiovatsas V() =Y0)+ [ POy (s))asfort >0
0
t where F(z) is given by Eqgs.(20)-(22). We would now like
+/ [V (F(Za(s)) = F(X(5) = OF (X (s))Va(s)] %o further investigate the behavior af (t) for large t. In

0
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particular, we would like to determine whether the vector 2) L(z) > L(y ) In this case, we have™- < o

differential equation all i € {1 S MY 20 < yo, then x; < Yi, for all
d i€ {1,2,. M However, this is not possible since
Y () =FY (), (35) M = Zl o i = n. Hence, we must have, >
has an equilibrium point. Supposing it does, we would like Yo- Now let
to find out whether that equilibrium point is unique. If the k2 min  {i:z; <yl
equilibrium point does exists and is unique, we would like to €{0,1,. M}
determine if the procesE (¢) started from an arbitrary initial Also, leta; £ z;—y;. From the definition o, it follows
state would converge to the equilibrium point. thata; > 0 for i € {0,1,...k — 1}, anda; < 0 for
i€ {kk+1,.,M}. Since Mz, =My =n,
. _ . M ;
Existence of Equilibrium Points we have) ;" a; = 0. In particular, we have
In this section, we will prove that the differential equatio
specified by (35) has at least one equilibrium point. Theessu Z a; = — Z @;
of the uniqueness will be dealt with in the next section. i=0 i=
Define a functionf(z) on E as follows: Using the definition ofL(x) and L(y), we have that

flx) =2+ F(x), forz € E.
From Egs.(20)-(22), it is easily seen that the functifix)

M
He CiTi __ He leral) _ (y) Hefciai
i=0

maps E into itself. SinceE is a compact subset @&+, k—1
Brouwer’s fixed point theorem guarantees the existence of at = H H —Cia;
least one fixed point of: i=0

Proposition 1: The fuctionf has at least one fixed point in < L(y)e o1 Zi:o Qi g=Ch 372, i
E. -

Remark 8:Note that any fixed point of is an equilibrium = L(y)e ™ (crm1mew) Zico @
point of the vector differential equation specified by (35). < L(y),

see this, suppose € E is a fixed point off. Thenf(x) = z,

implying that F'(z) = 0; thus showing that is indeed an
equilibrium point of the vector differential equation sy : .
by (35). Similarly, we have that any equilibrium point of the 3) L{z) < L(y). In this case also, one arrives at a

vector differential equation specified by (35) is a fixed poin contradiction, like in the previous case.
of f. Since one of the above cases must occur, we have proved that

f can have at most one fixed point, and, in view of Proposition
2, the result follows. [ |

which contradicts our initial assumption thafz) >
L(y).

Uniqueness of Equilibrium Point
We will now establish the uniqueness of the equilibriur@onvergence to Equilibrium Point

point. _ _ _ - In this section, we will investigate whether the prockss),
Proposition 2: The vector differential equation specified bystarted from any arbitrary initial state i, converges to the
(35) has a unique equilibrium point. unique equilibrium point. We have the following result for

Proof: Let us suppose that the vector differential equatiops — 1:
specified by (35), has more than one equilibrium points. Thenproposition 3: SupposeM = 1. Then the proces3 (1)
the functionf must have more than one fixed points. ket started from any arbitrary initial state i, converges to the
and y be two different fixed points of f. Then, in view of unique equilibrium point satisfying F (i) = 0.

Egs.(20)-(22), we have that must satisfy: Proof: For M = 1, the set of equations given by (35)
M simplify to
ToCo = Z ciz;L(x), (36) dyo (t
= WO — oy (L) - ot ~ L), (39)
,Ticizl'i_lci_l(l—L(,T)), forizl,...,M—l, dU t
37) 80 py(t)eolt - L) ~ e L), (40)
epenL(z) = zy-1ep-1(1 = L(z)), (38)  Now g satisfiesjoco(1 — L(§)) = c1y1 L(§). Observe that for
and y must satisfy a similar set of equations. Now th@ll y() with yo(t) > o, we hgved{g_tt _ dyl(t)A<T0 Now
following possibilities can arise: consider the Lyapunov functiok(y(t)) = (y(t) —9)" (y(t) -
1) L(z) = L(y). In this case, we havg% _ yy_ for 7). Itis straightforward to show that
. Mo d d
all i € {1,2,.., M} Since Yooz = iy i =m - ZA(e) = (y(t) — ) Fu(®) < 0 for y(t) £ 3.
we haver = y, which contradicts our initial assumption dt

dt
thatz # y. which implies thatlim; ., y(t) =
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APPENDIXC (n—1,i), we get

A i—1

In this section we evaluate the throughput of DCF unddfs(ip1P1' ™ 'Po" " + 1 =pg" " — (n — i)popo™ "~ 'p1’) =
a special case, namely/ = 1. For M = 1, the stationary _ . . -2 n—j
distribution of the Markov chainX,,(t) (see section Il-A) P&~ '(i+ Dpipi'me™ ' + > P¢ J(

can be computed, and thereby, one can compute the exact j=0

throughput of DCF. We start with the computation of the®y "' (n — i+ 1)popo” (1 —p7" '), 0<i<n (42)

stationary distribution ofX,, (¢).

. ) Py B0 T+
i—j

Note that the summation term in Eq.(42) exists onlyifor 2.

Since the sum of stationary probabilities across all théesys

Computation of Stationary Distribution states must equal one, we have
Let S,, denote the set of the system states fir= 1, i.e, Zpg =1. (43)

Sp = {(21,22) : 21,22 € N;21 + 22 = njz1, 22 > 0} . )
Observe that we have + 1 equations inn + 1 unknowns.

where N denotes the set of integers. Observe thatcon- e leave it for the reader to verify that these equations are
tains n + 1 states. More preciselyy, = {(0,n),(1,n — Jinearly independent, and therefore the stationary priieab

1),..,(n,0)}. Let P§ be the steady state probability of thecan be obtained by solving these equations.
system being in stat¢i,n — i). We now formulate the set

of global balance equations that can be solved to obtain

stationary distribution ofX,, (¢). ﬂﬁﬁroughput Calculation

For the sake of brevity, lef; 2 1 — p;, i € {0,1,..., M}. Once we have the stationary probabilities_, we can calculate
Now consider the statén, 0): The system leaves this state ithe throughput and other parameters of interest about the
there is a collision, an event of probability system. Foik € {0,1,..., M}, let:

. o « T* £ The expected system throughput given the system
(1 —P5" —npopo™ ). is in state(k,n — k).

The system can enter the state,0) only from the state P = The collision probability given the system is in
(n —1,1), provided the station in back-off stagetransmits state(k,n — k).

successfully, an event of probability,75”. Balancing the  I* = The probability of an idle slot given the system is
probability flux entering and leaving the st4te, 0), we have in state(k,n — k).

« T = The system throughput.
PE(1—po" — npopo” ") = P& 'pipo” (41) . P. 2 The conditional collision probability.

A ” ;
Now consider the staté: — i, 7): The system leaves this state * { = The probability of an idle slot. _ _
if there is a successful transmission by a station in batk-ébserve that’* = (1 — po)*(1 — p1)"~*. Arguing as in the

stagel, an event of probability derivation of Eq.(13), we obtain
. . k k
ippr' o P Fpo T+ (n = k)pi i 44)
. . S . c T T _Jk
or if there is an unsuccessful transmission involving astiea 1-1 o
one station in back-off stag& an event of probability and the expected system throughput when the system is in
. . i1 . i1 . state(k,n — k) is given by:
1—po"™" = (n—i)poPo + (n — 4)poPr (1—p0"). (- 1)1 - PHP
k - — L
The system can enter the stdie— i,4) from the state T = (A= 7)1 = PIT, + (1 = INPFT, 1 TFo (45)

. (n—i_— 1,_z'+ 1): Following a successful transmi_s_sion bySince the probability that the system is in stéken — k) is
a station in back-off stagé, an event of probability given by P%, we have

(i + Dpipr'po™ "o

. D . T = PsT 46

e (n—i41,i—1): Following a collision involving exactly Z(:) o (46)

one station in back-off stag® and one or more stations . - . -

in back-off stagel, an event of probability Similarly, we havel =3, , Pl andP. =3, PsPr.
(n =i+ Lpopo™ (1 =P1") Performance Comparison

e (n—Jj,j) for 0 < j < i — 2 Following a collision  \ve now compare the exact results obtained by using the

involving i — j stations in back-off stage, an event of 4p6ve approach, with the numerical results obtained using

probability N our technique and Bianchi’s model. Note that our technique
(n '?>p6jp_0n_j, relies on the fact that for sufficiently large the process
t=J X, (t) stays close to the equilibrium point™ that satisfies

Balancing the probability flux leaving and entering the estatf (™) (z(")) = 0. To demonstrate the effectiveness of our



technique, we compare the random sample paths of the system
with the deterministic trajectory obtained using:

IDLE SLOT PROBABILITY: Wy =32, M = 1.

TABLE IV

15

Stations| Idle Slot Probability ()
ok +1) = z(k) + f™(x(k)), Exact | BM oT
. . . 5 0.7692 | 0.7689 | 0.7681
for n = 50, with 2(0) = (50,0). As shown in Figure 6,
. 15 0.5245 | 0.5244 | 0.5231
not only does the system converge to a neighborhood of the
I . . 25 0.3782 | 0.3781 | 0.3771
equilibrium point for larget, but also the random trajectory 55 01544 | 0.1544 | 0.1541
of the system stays close to the above deterministic ti@jgct ' ' '
- 80 0.0743 | 0.0743 | 0.0742
at all times (see Theorem 3, for a proof of such a result).
. 100 0.0411 | 0.0411 | 0.0410
Further, we see that the convergence to a neighborhood of the
equilibrium point is quite rapid (withirl00 slots).
— APPENDIXD
wl - §§E§EE§ In this section, we show how the analysis in section Ill can
A 4 = Simmepans be extended to a setting where heterogeneous protocol param

Number of stations in the back-off stage 1
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CONDITIONAL COLLISIONPROBABILITY: Wo =32, M = 1.

L L
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L L
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TABLE I
THROUGHPUT: Wy = 32, M = 1.

L L
140 160

L
180

Stations Throughput (T)
Exact BM oT
) 0.4664 | 0.4666 | 0.4669
15 0.4486 | 0.4484 | 0.4487
25 0.4229 | 0.4228 | 0.4230
55 0.3348 | 0.3348 | 0.3348
80 0.2543 | 0.2544 | 0.2543
100 0.1918 | 0.1918 | 0.1918
TABLE Il

Stations| Conditional Coll. Probability £.)
Exact BM oT
5 0.1008 | 0.1022 0.1008
15 0.2713 | 0.2727 0.2717
25 0.3961 | 0.3970 0.3965
55 0.6528 | 0.6530 0.6531
80 0.7879 | 0.7880 0.7881
100 0.8611 | 0.8611 0.8612

Tables II-IV show various parameters of interest obtained
using the exact analysis, Bianchi's model (BM), and our

\
200

eters are used as a means of providing service differemtiati
as in the IEEE 802.11e EDCA mechanism [19]. We start with
a description of our model.

Consider a similar setting as in section IlI-A and suppose
that there areK different access categories (ACs), each
maintaining its own set of back-off parameters. Each statio
maintains a separate transmit queue for each AC. All queues
are assumed to be saturated, i.e., they always have a packet t
send. As in section IlI-A, we make the following additional
assumptions:

o (A1) The back-off durations are geometrically distributed,
i.e., the typek AC at a station, when in back-off stage
J, transmits with probabilityp,, ;, wherepy, ; = ﬁﬁl
whereW, ; is the contention window size of the type-
AC in back-off stagej.

« (A2) The back-off stage is reset toonly after a success-

ful transmission.

For the purposes of analysis, we assume that the minimum
idle duration time is the samd)IF'S, for all ACs and no
internal collision avoidance mechanism is used by the nodes
It should be noted that because of these two assumptions, the
throughput obtained using our technique would not necigsar
match the throughput obtained using the EDCA mechanism.
A more exact analysis of the EDCA mechanism is left for
future work.

Let M +1, Wy o, denote the number of back-off stages and
minimum contention window size, respectively, for the tjpe
AC, ke{l,2,..,K}. Let Xy ;(¢), j € {0,1, ..., M}, denote
the number of typd: ACs in back-off stagg at timet. Let

SE{(k,j):ke{l1,2,...K};j€{0,1,...,M}}

and M = 37,0 (Mg + 1). Then X, (t) = {Xe;(8)} 5, res
represents the state of the system at tim@learly, Xn(tg for
t=0,1,..., is a Markov chain o0, 1, ...,n}", and satisfies:

My
S Xiy(t) = nfor k€ {1,2,..., K.
7=0

technique (OT). The results shown are for RTS/CTS accdsscan easily be shown that the Markov chak,(t) is
mechanism withi/, = 32. It is clear that both our techniqueirreducible (see [7, Theorem 8.1], for a similar proof). &irit
and Bianchi's model are extremely accurate even for small has only finitely many states, it follows tha, (¢) is positive

and, as expected, their accuracy increases mreases.

recurrent and possesses a stationary distribution. Hawive
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does not appear possible to obtain a closed form express@darav Sharma received his B.Tech in Electrical Engineering from Indian
for the stationary distribution X, (t) Therefore, we proceed Institute of Technology, Delhi in 2002 and Ph.D. Electrigald Computer

as in the previous section.
Let Z, denote the set of non-negative integers, and let

M,

Sn & {:c = {wns} oy €2y, Y wpy=n,1<k< K}
7=0

We denote the one-step drift of,,(¢) by
F (@™ 2 B{X,(t+1) — X, ()| X0 (t) = 2™}
>, ),

Lix(M)+1eS,

for 2™ € S,; here P™ (2(™) is the probability of making

a transition fromz(™ to 2(™ + [ over one time slot. Set

fM(x™) = 0 for z(M£S,,. Arguing as in Section IlI-A,
we obtain fork € {1,2,..., K}:

My s, 1@
fk,() (') = ;xk,jm,jm = Lk 0Pk,0;
(n)
) (o AE) Ny
frj (@) = g, j—1Pk,j—1 (1 1— prs1 Tk,5Pk,5>
jeq{1,2,..., M, — 1},
(n)
(n) (. (n)y _ .(n) I(z'™)
fk,Mk (I( )) = Ik,Mk—1Pk-,Mwl(1 - TM,C—l)
(n)
(n) I(z™)
- xk,MkpkaMkm’ (47)
where I (z(™) =], jes(1 —pk,j)””l(f;, Let
My,
B, = {x = {x,;}: Z:C;w» =n,1<k<K;xp, > 0},
j=0

andE = B, /n.

The results derived in Appendix A and B can easily b
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stochastic processes

Y,(t) = Xpn(|nt])/n, forn=1,2,...,

converges (in the same sense, and with the same error bouﬂ’&%‘

as discussed for DCF earlier) to the deterministic litiit)
given by the unique solution of the differential equation

dY (t)

dt

with initial condition y° = lim,,_,, ¥,,(0) = X(0)/n, and
F(zx) = lim,_, f(™(nz) for x € E. The only difference

from the DCF case earlier is th#t™ is now given by Eq.(47)
instead of by Eqgs.(3), (6), and (9)

F(Y(t)) fort >0,
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Likewise, following the line of analysis in Appendix B, we

can also show that there is a unique pairg FE that satisfies
F(z) = 0; we call it the equilibrium point.

Using the intuition that for large the process(,, (¢) should
remain close to the point™ ¢ B,, satisfyingf" (z(™)) = 0,
we can carry out the throughput analysis as in section 5.



