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Fast Model Selection Based Speaker Adaptation
for Nonnative Speech

Xiaodong He and Yunxin Zhao, Senior Member, IEEE

Abstract—In this paper, the problem of adapting acoustic
models of native English speech to nonnative speakers is ad-
dressed from a perspective of adaptive model complexity selection.
The goal is to dynamically select model complexity for each
nonnative talker so as to optimize the balance between model
robustness to pronunciation variations and model detailedness for
discrimination of speech sounds. A maximum expected likelihood
(MEL) based technique is proposed to enable reliable complexity
selection when adaptation data are sparse, where expectation
of log-likelihood (EL) of adaptation data is computed based on
distributions of mismatch biases between model and data, and
model complexity is selected to maximize EL. The MEL based
complexity selection is further combined with MLLR to enable
adaptation of both complexity and parameters of acoustic models.
Experiments were performed on WSJ1 data of speakers with a
wide range of foreign accents. Results show that the MEL based
complexity selection was feasible when using as little as one
adaptation utterance, and it was able to dynamically select proper
model complexity as the adaptation data increased. Compared
with the standard MLLR, the MEL + MLLR method led to
consistent and significant improvement to recognition accuracy on
nonnative speakers, without performance degradation on native
speakers.

Index Terms—Maximum expected likelihood, model selection,
nonnative speech recognition, speaker adaptation.

I. INTRODUCTION

CURRENT English speech recognition systems are
commonly trained from speech data of native English

speakers. Although the systems work very well for native
talkers, their performance degrades dramatically when recog-
nition is performed on speech with heavy foreign accents. Due
to wide varieties of foreign accents, different proficiency levels
of English speaking and limited data, it is in general difficult
to train a set of acoustic models for each specific accent.
Therefore, improving the performance of the state-of-the-art
speech recognition systems for nonnative speech remains a
challenging task.

Several efforts have been made to improve recognition per-
formance for nonnative speech [1]–[3]. A straightforward ap-
proach is to use general speaker adaptation techniques to adapt
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speaker-independent models to the foreign-accent characteris-
tics of a new speaker. Commonly used adaptation algorithms
include Maximum Likelihood Linear Regression (MLLR) [4]
and Maximuma posteriori(MAP) learning [5]. It has been rec-
ognized that although speaker adaptation can improve recogni-
tion accuracy for both native and nonnative English speakers, a
much larger amount of adaptation speech data is needed from a
foreign-accent speaker than a native English speaker to achieve
a comparable level of recognition accuracy [1], [2].

Research efforts on using multilingual acoustic modeling
techniques for nonnative speech recognition have been reported
in recent years [6], [7]. In multilingual acoustic modeling, a
universal phone set is used. Phonemes of several languages are
mapped to the universal phone set and speech data of these
languages are pooled to train the acoustic model in order to
capture pronunciation variations of the same phoneme in dif-
ferent languages [6]–[11]. Although promising improvements
to nonnative speech recognition were observed for small tasks
with this approach, two problems exist. First, much more
speech data, including speech of foreign languages, are needed
to train a multilingual acoustic model. Second, compared
with using acoustic model trained from native speech alone,
although multilingual acoustic model improved nonnative
speech recognition, it degraded native speech recognition in
some cases [6], [7].

A closely related problem to nonnative speaker adaptation is
regional dialect speaker adaptation. Digalakiset al. investigated
adapting acoustic models to fit speakers with dialect accents
[12], [13]. In [12], Maximum Likelihood Stochastic Transfor-
mation (MLST) was proposed to estimate multiple linear trans-
forms for each model cluster in model adaptation. Although a
significant performance improvement was achieved, much more
data than that of MLLR were needed, where only one linear
transform was estimated for each model cluster in MLLR. In
[13], in order to achieve a good performance when adaptation
data were sparse, speech data of prototype speakers from target
dialect regions were used to generate a set of basis linear trans-
formations and a small amount of new speaker’s speech was
used to estimate the transform combination weights. In their ex-
periments of Swedish dialect speaker adaptation, the adaptation
performance exceeded that of MLLR greatly when the amount
of adaptation data was very small. However, a large number of
prototype speakers and an adequate amount of data from target
dialect speech were needed to form a set of powerful transfor-
mation basis.

Compared with recognition of regional accent speech, non-
native speech is much more difficult because it is an interfu-
sion between a speaker’s native language and a target nonnative
language [14]. Several studies on the properties of nonnative
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speech have been reported recently [14]–[16]. In [15], it was
found that intelligibility of nonnative speech degraded signifi-
cantly from that of native speech, corresponding to a difference
in signal-to-noise ratio (SNR) of about 3 dB, and the degrada-
tion was mainly due to the confusion of vowels, especially those
not in the speaker’s native language. In [16], the phenomena
of phone variation and substitution in nonnative speech were
investigated. It was shown that phone variation and substitu-
tion properties changed greatly with different foreign accents
and phone contexts. It was suggested in [14] that, beside the
reduced intelligibility of nonnative speech, the ever-increasing
details of the state-of-the-art acoustic models that are tuned for
native speakers are not necessarily beneficial to the performance
of nonnative speech recognition due to reduced tolerance of the
models to variations in nonnative speech.

A speaker adaptation strategy that focuses on adaptively
selecting a proper model complexity for each nonnative English
speaker has recently been proposed [17], [18]. This approach
was motivated from the fact that highly detailed English
acoustic models with sharp distributions of very narrow allo-
phone classes do not fit well to speech data with heavy foreign
accents, while a certain level of context-dependent modeling
needs to be maintained for discrimination among phones
[14], [17]. Experimental results of [17] showed that between
native speakers and nonnative speakers, the curves of model
complexity versus recognition performance were significantly
different. Highly detailed acoustic models that produced the
best recognition result for native speakers were worst for
nonnative speakers. A conjecture is therefore made that an
intermediate level of acoustic model complexity determined
from adaptation speech may work best for a foreign accent
talker.

Among various model complexity selection methods, max-
imum likelihood (ML) based model selection has been widely
used [19]. In the data-rich case, independent “validation data” is
employed for model selection. The model that gives maximum
likelihood of these data will be selected as the optimal model.
However, the requirement of large amount of data by ML-based
model selection prevents its application in on-line fast speaker
adaptation. In [18], by using a small amount of adaptation
data from a nonnative English speaker, a combined ML and
pseudo-likelihood (PL) based tree pruning was performed to
select complexity of an acoustic model that was trained by
native English speech for the nonnative speaker. The spectral
mismatch between adaptation speech data and acoustic model
was represented by a global bias, which was estimated from
adaptation data by using phonetic decision trees with Single
Gaussian Densities (SGD) at tree nodes. The global bias was
then used to compute a PL value for each SGD of each tree
node, and ML/PL based tree pruning was preformed for model
selection. In [18], although a significant improvement was
resulted from model selection in recognizing speech with heavy
foreign accents, there were drawbacks. First, since speech
recognition was performed by Gaussian Mixture Density
(GMD) based HMM phone models, model selection based on
phonetic decision trees of SGDs was not sufficiently precise.
Second, single global bias was not adequate in characterizing
detailed mismatches between a speaker’s speech and the phone
models.

In the current paper, a maximum expected likelihood (MEL)
based algorithm is proposed for effective model complexity se-
lection from a small amount of adaptation data, and compre-
hensive experimental evaluation results are reported for a wide
range of foreign accents. The algorithm consists of three major
steps, where the first step is for model training, and the second
and third steps are for model selection. In the first step, al-
lophone states are hierarchically clustered through a clustered
phonetic decision tree (CPDT), and each node of the tree corre-
sponds to a tied allophone state. A tied allophone state is gen-
erated by tying all the allophone states of the terminal nodes
of its subtree, and for each tree node, a GMD is estimated. In
the second step, given a certain amount of adaptation data, each
feature analysis vector is assigned to one dominant Gaussian
component (GC) by Viterbi alignment, and a bias between the
sample data mean and the model mean is calculated for each GC
of each terminal tree node that has adaptation data. Assuming
that the biases within an allophone state cluster are i.i.d., the
distribution parameters of biases are estimated, and expected
log-likelihood is computed at each tree node. In the third step, a
bottom-up tree pruning is carried out to select the optimal model
complexity that maximizes expected log-likelihood (EL) over
the tree nodes.

This paper is organized as follows. The concept of MEL based
model selection is discussed in Section II. Several implementa-
tion issues, including construction of the clustered phonetic de-
cision tree, hierarchical computation of EL, and adaptive model
selection, are presented in detail in Section III. Experiment setup
and data are described and results are discussed in Section IV.
Finally, a conclusion is drawn in Section V.

II. RATIONAL OF MEL BASED

MODEL SELECTION AND ADAPTATION

Most state-of-the-art HMM based acoustic modeling tech-
niques employ very sharp distributions to describe narrowly
defined acoustic speech units, and these techniques work very
well for recognition of native speech. However, due to diversity
of nonnative speech, less detailed models that are more robust
to variations are better suited for nonnative speech. Moreover,
optimal model complexity may also be different for individual
speakers. Therefore, it is desirable to adaptively determine the
proper level of model complexity for each specific speaker by
using a small amount of adaptation data.

The problem of model complexity selection can be addressed
from the perspective of state tying. In conventional state tying,
each triphone is modeled by an HMM, and for triphones that
have the same centre phoneme, a phonetic decision tree (PDT) is
built for the same indexed states of triphone HMMs, and the root
node of a PDT corresponds to a context-independent state of
that centre phoneme [20]. Each tree node in the PDT represents
an allophone cluster and corresponds to a distribution of the
allophones tied in that node. As shown in Fig. 1, a tree cut is
a collection of nodes that can separate the whole tree into an
upper part and a lower part. Data distributions of the nodes in a
tree cut of a PDT constitute an acoustic model of a HMM state
of a phone unit. Fixing the distribution complexity at each node,
a high-level tree cut corresponds to a less detailed model, and
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a low-level tree cut corresponds to a more detailed model. A
proper tree cut should be selected for each particular speaker.

In certain scenarios of speaker adaptation, only a small
amount of adaptation data is available. In such cases, only
a small number of PDT nodes have adaptation data, and
the matching between acoustic model and adaptation data
cannot be reliably measured by direct likelihood calculation.
To address this problem, a method of expected likelihood is
proposed. To simplify discussions on the concept of EL, the
distribution of speech features at each PDT node is assumed
as a one-dimensional single Gaussian density, with the under-
standing that mixtures of multi-dimensional Gaussian densities
are used in actual acoustic models, which will be discussed in
Section III of this paper.

Consider a nodeof a PDT with a data set , where the size
of is and the sample data mean is. Given the node
Gaussian pdf , the sample data variance and
the bias between the model mean and the data mean are defined
as and . The model
and data distribution parameters are illustrated in Fig. 2. The
average log-likelihood per data sample is therefore computed
as

(1)

and is defined as the log-likelihood at the node. Assuming that
the variance of data is proportional to the variance of the model,
i.e., , the expectation of the log-likelihood at
node ( ) over the distribution of is

(2)

If the distribution of the bias can be estimated at each
node , then the above expectation can be readily computed.
The expected log-likelihood of a tree cut is defined as a sum of
weighted ’s of all nodes in that tree cut, and the tree cut
that leads to maximum expected log-likelihood can be selected
as the optimal tree cut. Through the PDT, allophones are hierar-
chically clustered. In the data-sparse situation, the bias distribu-
tions of nodes that lie in a specified cluster are tied, where biases
are computed from the terminal GCs with sufficient adaptation
data and the computed biases are taken as samples of the tied
bias distribution. As the result, a tied bias distribution can be re-
liably estimated from the terminal nodes in a local subtree that
has enough samples of bias data.

III. MEL B ASED MODEL SELECTION

In system implementation, the distribution of speech features
at each tree node is a GMD instead of a SGD, and model selec-
tion is performed on a clustered phonetic decision tree instead
of PDTs. In this section, we describe the details of building a
CPDT, the computation of EL based on GMD at each node, the
estimation of tied bias distributions, and the MEL based tree
pruning procedure for optimal tree cut selection.

Fig. 1. Model selection based on a phonetic decision tree.

Fig. 2. Parameters and statistics involved in computation of log-likelihood.

A. Construction of Clustered Phonetic Decision Tree

In order to share bias distributions among phone units, a clus-
tered phonetic decision tree is built in two steps as follows.

First, for each phone state, a state-tying binary phonetic deci-
sion tree is built as in [20]. Initially each triphone state is mod-
eled by one Gaussian density and the Gaussian densities are
placed into a single cluster at the root of the tree. Then a yes/no
question about phone context from a pre-defined set is asked to
divide the triphones in the cluster into two groups based on their
answers to that question, and the question that leads to the max-
imum likelihood increment is adopted for splitting the node into
two children nodes. This process is repeated for each node until
the increment in log likelihood due to cluster split falls below
a pre-defined threshold, or the number of data samples at each
node is less than a threshold. As the result, each node of a PDT
corresponds to a tied state of allophones, and the root node cor-
responds to the state of the phone unit with arbitrary contexts,
or context-independent.

Second, these PDTs are grouped in a clustered phonetic de-
cision tree through a binary “super” tree. Each of the PDT root
nodes is represented by one Gaussian density. At the beginning,
the root nodes of the PDTs are assigned to a single set at the
root of the “super” tree. Then binary-split -means clustering
is performed to split the root nodes of the PDTs into two new
sets, or equivalently two children nodes. This procedure con-
tinues until each node has only one PDT root node, where the
corresponding PDT obtained in the first step is then attached.
In the -means clustering of SGDs, the Mahalanobis distance
measure is used for each Gaussian density pair
and , i.e.,

. As the result of clustering, a binary “super”
tree is built on top of the PDTs and the overall tree structure is
referred to as a CPDT.
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For each PDT node, a GMD can be estimated based on the
segmental expectation-maximization (EM) algorithm. The de-
tails are discussed in Section IV-A.

B. Expectation of Log-Likelihood Based on GMD

Given a Gaussian mixture densitywith Gaussian com-
ponents (GC) and an arbitrary data set ,
the log-likelihood of is computed as

(3)

where , , are the weight, mean vector and covari-
ance matrix of the th GC, respectively. For each , if the
log-likelihood value can be approximated by a dominant GC,
we can get ,
where is the index set of feature data that are assigned to
the th GC, with , and . Assuming

, and , then

(4)

In the th feature dimension, from the data that are as-
signed to the th GC, the sample mean and sample vari-
ance are computed by and

, and the bias be-
tween the model mean and the sample mean is computed by

. Then

(5)

Assume that the variance of the data is proportional to the
variance of the model, i.e., , , and the
number of feature data assigned to theth GC is proportional
to the weight of that GC, i.e., . Then the average
log-likelihood per data sample becomes

(6)

and the expectation of log-likelihood over the distribution of
is computed by

(7)

C. Properties of Bias Distribution

In order to compute (7), the expectation term needs
to be estimated. Viewing the bias as a Gaussian random
variable, the estimation of the distribution parameters foris
discussed below. For simplicity of notations, the feature dimen-
sion index is omitted in the subsequent discussions.

A subtree that is rooted at the nodeof a CPDT is shown in
Fig. 3. The term “terminal GC” denotes a Gaussian component
of a GMD at a terminal node. The term “full terminal GC” de-
notes a terminal GC that has been assigned more than a specified
amount of adaptation data by Viterbi forced alignment, and the
term “nonempty terminal GC” denotes a terminal GC that has
been assigned some adaptation data but the amount is less than
the specified threshold. The term “full internal node” denotes a
node that covered more than a specified number of “samples of
bias data” under its subtree.

Relation of Bias Distributions Based on SGD and GMD:In
the training stage, GMD and SGD are both estimated for each
tree node. Consider GMD and SGD of the same node, where

, ,

and denote the respective biases by and

. Based on the previous assumption that the
number of feature data assigned to theth GC is proportional to
the weight of that GC, is approximated as a linear com-
bination of as . Assuming

that , , are i.i.d. and follow a Gaussian

distribution , then also follows

a Gaussian distribution , with

, and .
Relation of Biases Based on Internal Node and Terminal

Node SGDs:Refer to Fig. 3 and consider the SGD of an
internal node and the SGDs of the terminal nodes ,
2, 3, 4 below the node. We have , and

, where is the contribution weight
of bias of node to the bias of node , with

.
Relation of Bias Distributions Based on Internal Node

and Terminal Node GMDs:Based on the relation of biases
between GMD and SGD of the same node drawn above
and refer to Fig. 3, we have

.
For a local subtree with root , it is assumed that

the bias distributions of the GCs of its terminal nodes
are tied and the tied distribution is a Gaussian density

. Therefore , and

. Then

(8)

where , and

.
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Fig. 3. Illustration of the types of nodes and the GCs in a CPDT.

The parameters can be estimated from
the biases of GCs of terminal nodes computed from adapta-
tion data. Denote as the number of terminal nodes under the
node and assume that the contributions of biases

to the bias are approximately equal, i.e.,
. Based on the above derivations and incorporating

the dimension variable of feature components into (7) and (8)
these equations become

(9)

(10)

where , and

.
The value of the ’ ’ in (9) does not affect model

selection result, and can be set to any real number. Details
are discussed in Section III-E.

D. Parameter Estimation of the Bias Distribution

Referring to Fig. 3, for a subtree rooted at an internal node
that represents a tied allophone state, the biases corresponding
to the terminal GCs are assumed i.i.d. Gaussian r.v.’s, the com-
puted biases are samples of the distribution, and a bias distribu-
tion can therefore be estimated for a full internal node defined
in Section III-C. In computing the expected log-likelihood for
an internal node, if it is a full internal node, then (9) and (10)
are applied directly to obtain the EL; otherwise, the bias dis-
tribution under the node is approximated by that of its nearest
ancestor full node.

In order to generate reliable bias samples, two cases are
considered. In the first case, a terminal GC has been assigned
sufficient adaptation data, and a bias sample can be directly
computed for the GC. In the second case, a nonempty GC
has a data amount below the specified threshold, and a bias
sample is computed as a weighted average of biases of several
nearby nonempty GCs and the weights are made proportional
to the data amount in each of these GCs.

E. MEL Approach for Model Selection

Denote the expectation of log-likelihood for a tree cut
by . MEL based model selection attempts to deter-
mine an optimal tree cut that maximizes , i.e.,

. can be defined as a weighted
summation of expected log-likelihood of all nodes in the tree
cut , i.e., , where is the number
of terminal nodes under node, and for any tree cut , we have

which is the total number of terminal nodes
in the tree.

The optimal tree cut selection can be efficiently accomplished
by a bottom-up tree pruning algorithm. The algorithm is illus-
trated in Fig. 4. For an internal node, the difference between

and the sum of its two children’s MELs is defined as

(11)

where , and the MEL value of the nodeis assigned
as (see (12) at the bottom of the next page).

If , then the children nodes of the node
are pruned, otherwise they are kept. From (9), (11), and (12),
we can see that the constant term “ ” in
(9) is eliminated in (11) and it does not affect the model selection
result.

This procedure is carried out bottom-up over all the nodes of
a clustered phonetic decision tree, similar to the method of [21].
After tree pruning, the collection of terminal nodes constitute
the optimal tree cut. In implementation, the tree pruning proce-
dure is constrained so that for each state of each phone, at least
the root node of the PDT is maintained. Moreover, although in
a data sparse situation it is possible to estimate node specific
const’s at high level nodes of the CPDT, such as estimating a
specificconstvector at the root node of each PDT, the model
selection results would remain the same as the case of using a
globalconstvector since tree pruning is performed at the lower
level tree nodes, in general.

F. Dynamic Model Selection

Given an amount of adaptation data from a speaker, model
parameters can be first adapted to reduce the mismatch between
the speaker’s speech and the adapted model. As the amount of
adaptation data increases, model parameters are better adapted
and the mismatch biases in general become smaller. Conse-
quently, the optimal model structure should change with the
amount of adaptation data. To dynamically select the optimal
model, it is desirable to perform model selection after an initial
model adaptation. Note that from (9) and (10), the mean param-
eters of GCs of internal nodes are not involved in model selec-
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Fig. 4. MEL based tree pruning.

tion, and therefore in initial model adaptation by MLLR, only
the mean parameters of terminal GCs need to be adapted.

In order to avoid the effect of over-fitting, the “validation
data” used for model selection should be independent of the
“training data” used in initial model adaptation. Ideally, if suffi-
cient data are available, then we can divide them to two disjoint
sets, one set for model adaptation (training), and the other set
for model selection (validation). This is feasible here since the
MEL based model selection can perform well with a relatively
small amount of data, and the deduction of this amount of data
from initial model adaptation would not drastically change the
adaptation performance if the amount of adaptation data is ad-
equate. On the other hand, if the amount of adaptation data is
very small, then the data for initial model adaptation and model
selection are allowed to overlap. The details of such data parti-
tion are discussed in Section IV.

Once model selection is performed, the entire set of adapta-
tion data can be used to perform model adaptation on the se-
lected model. Therefore MLLR adaptation is performed twice,
once before model selection and once after it. The complete
MEL based dynamic model selection/adaptation algorithm is
implemented in seven steps as shown in Fig. 5. The overall pro-
cedure is referred to as the MEL based method in Section IV of
experiments.

IV. EXPERIMENTS

The proposed method was evaluated on the LDC WSJ1
database. The entire set of speaker-independent short-term
training data (SI_TR_S, 200 speakers) of WSJ1 was used for
acoustic model training. Each triphone HMM model had three
emitting states (except for a “short-pause” model, which had
a single state), and each state had a mixture of 16 Gaussian
densities. Based on the consideration that cross-word transi-
tions in nonnative speech is in general not as smooth as native
speech, and based on our previous experience that simpler
context-dependent phone models worked better for Chinese
accent English speech recognition [17], only within-word tri-
phones were used. An additional benefit of using within-word
triphones is the simplification of search at the decoding stage.
Speech features consisted of 39 components of 12 MFCCs,
energy, and their delta and acceleration derivatives. Cepstral
Mean Normalization (CMN) as implemented in HTK was
applied to both training and test data. In testing, the standard
5K-vocabulary bigram language model provided by WSJ1 was

Fig. 5. Procedure of model selection and adaptation.

used, and the decoder was provided by HTK v2.2 [22]. The
silence model was not adapted.

A. Baseline System

A baseline system was built as follows. The acoustic model
complexity was determined to provide best performance for
recognition of native speech. First, a very large clustered pho-
netic decision tree was built as described in Section III-A. The
CPDT was considered as a basic tree with sufficient details,
and any reasonable model candidate would correspond to a tree
cut in this basic tree. An existing speech recognition system
was used to segment the speech data of the entire training set
to the state level of phone units by a forced Viterbi alignment.
The segmented data were assigned to each node of the CPDT
according to the corresponding states of triphones, and EM
algorithm was employed to estimate parameters of GMD at
each tree node. As such, once a tree cut is determined, GMDs
corresponding to that tree cut can be used to form an acoustic
model for speech recognition.

Bayesian Information Criterion (BIC) [23] was used to
select the optimal baseline model, which is defined as:

, where is a model,
is the training data set, is the total number of free parame-

ters in the model, is the size of , and is a tuning parameter
that can be adjusted to balance likelihood of observations with
model complexity [24]. For a GMD with -dimensional
diagonal Gaussian components, .

For each specified, a tree cut that led to the maximum BIC
value was determined. By varying the value of, a series of BIC
optimal models were selected. These models were validated on
the WSJ1 test set ET_H2, which consisted of 10 native speakers
with totally 215 test utterances. The recognition performance

if
if is a terminal node, or

(12)
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Fig. 6. Recognition WER versus model complexity for native speech.

versus model complexity is shown in Fig. 6. The best perfor-
mance with a WER of 9.7% was achieved by a model with 103K
GCs, corresponding to a tree cut with 6473 nodes. This model
was chosen as the baseline model in the subsequent tests.

B. Experimental Condition

Test was conducted on speakers with different foreign accents
and different levels of English speaking proficiency. A total of
32 speakers were included in the test set. WSJ1 database pro-
vides two groups of nonnative speakers (DT_S3 and ET_S3)
and one group of native speakers (ET_H2). Each group has ten
speakers. In addition, speech data of two speakers with Man-
darin Chinese accent (chn1 and chn2) were collected under a
similar acoustic condition and with similar prompting texts as
WSJ1. A total of 40 adaptation utterances were available from
each test speaker. As show in Table I, these 32 speakers were
divided into four groups based on their English speaking pro-
ficiency as measured by baseline recognition error rate, where
G1 is the nonnative speaker group with the highest recognition
error rate, and G4 is the native speaker group with the lowest
recognition error rate.

In testing, the decoding parameters, including language
model score scale and beam-search pruning thresholds, were
optimized for native speaker group ET_H2 and were applied
to all the four groups. For each test speaker,adaptation
utterances were randomly selected from his or her adaptation
data set for use as adaptation data, where , 3, 5, 10,
20, 40, and the first 20 test utterances were used in testing
(except for the ET_H2 group, where each speaker had only
about 20–23 test utterances and therefore all the test utterances
were used). The adaptation experiments were repeated three
times with different selection of adaptation utterances, except
that when , the whole set of adaptation data was used
once. Recognition results were averaged over each group. In
MLLR implementation, the CPDT was used as a regression
tree, and only mean vectors of Gaussian components were
adapted. The sample size threshold for estimating a MLLR
transformation was set to 500, and only mean vectors of
Gaussian components were adapted because the performance
gain from variance adaptation is usually small compared with
that of mean adaptation [25]. In final model adaptation, for
estimation reliability, only a diagonal transformation with a
bias vector was estimated when . For MEL based model

TABLE I
SPEAKERGROUPSDEFINED BY BASELINE RECOGNITIONERRORRATE (%)

selection, the threshold on the number of biases for a full node
was set to 25, and the threshold on the number of feature data
for a full terminal GC was set to 30.

In MEL, the partition of adaptation utterances into two sub-
sets, one for initial model adaptation and one for model se-
lection, was empirically determined for different. When the
adaptation data were 20 utterances or more, two disjoint subsets
were generated, each had half the adaptation data. When adapta-
tion data amount was less than 20 utterances, all utterances were
used in model selection, and a subset of them was used in initial
model adaptation. Specifically, in the case, initial adap-
tation was not performed; in the case, the first utterance
was used for initial adaptation to estimate a global bias-only
transformation; in the case, the first two utterances were
used for initial adaptation to estimate a global diagonal MLLR
transformation; in the case, the first five utterances
were used to estimate a global full MLLR transformation. For

or 40, half amount of adaptation utterances were used to
estimate full MLLR transformations with the number of trans-
forms determined by the threshold discussed above.

C. MEL Based Model Selection and Adaptation

The basic CPDT tree used in MEL model selection had a total
of 7137 terminal nodes. The evaluation conditions included
model adaptation by conventional MLLR alone and by the
proposed MEL based method. These results are summarized
by recognition word error rate (WER) in Fig. 7(a)–(d) for the
four speaker groups G1–G4. Recognition results show that
MEL based model selection produced a significant impact on
recognition performance for heavy foreign accent speakers.
This verified the notion that a detailed model that is optimal
for native speakers is not suitable for heavy accent speakers.
Instead, a less complex model structure can better tolerate
distribution deviations of nonnative speech from native speech.
The effect of error reduction due to MEL based model selection
is observed to reduce with the increase of English speaking
proficiency. The MEL based model selection did not improve
recognition for native speakers, due to the fact that the model
complexity of the baseline system was optimized for the native
speakers.

In Table II, the number of remained states after model se-
lection is shown for each group. It is worth noting that only
half of adaptation data were used in model selection when the
number of adaptation utterances . We can observe that
for speakers with heavy foreign accents, a simpler model struc-
ture was selected than that for speakers with slight accents. On
the other hand, as more adaptation data became available, more
complex models were selected for each group of speakers. The
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Fig. 7. Recognition WER versus amount of adaptation data for speaker groups defined by English speaking proficiency.

TABLE II
NUMBER OF TIED STATES RESULTING FROM MODEL SELECTION

proposed MEL algorithm was able to capture this information
and dynamically select more complex model structures with in-
creasing amounts of adaptation data. It is also worth noting that,
even for native speakers, the MEL selected model was less com-
plex than the baseline one without causing performance degra-
dation. This is because that the baseline system was a speaker
independent one and it had certain redundancy with regard to
individual native speakers.

In implementing MLLR for final model adaptation, two
approaches were investigated. In the first approach, the GCs
of the nodes in the optimal tree cut were treated as terminal
GCs, and MLLR model adaptation was carried out with respect
to those GCs. In the second approach, at the model selection
stage a node that was to be pruned was first marked to keep

the original structure of the CPDT temporarily, then at the
final model adaptation stage each MLLR transformation was
estimated with respect to terminal GCs in the original CPDT,
and the estimated transformation was used to adapt the GCs of
the selected optimal tree cut. The marked nodes were pruned
after model adaptation, and the adapted GMDs corresponding
to the optimal tree cut were used to form a final acoustic
model for speech recognition.

Fig. 8 illustrates these two approaches for final model adapta-
tion. A hypothetic optimal tree cut and its constituent nodes

and are illustrated in Fig. 8. Assuming that adequate amounts
of data are accumulated at nodesand , then for both ap-
proaches of model adaptation, two MLLR transformations,
and , are estimated at nodesand , with used for the
GCs at node and for the GCs at node. The difference be-
tween these two approaches lies in the estimation of the MLLR
transformations. For example, in the first approach,is esti-
mated based on the GCs at nodesand and their corresponding
data, and as a contrast, in the second approach,is estimated
based on the GCs at nodes 1–4 and their corresponding adapta-
tion data.

We found that the latter approach had a small but consistent
advantage over the first approach. The results presented here
were therefore based on the latter approach.
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Fig. 8. Illustration of final MLLR model adaptation.

D. Robustness of MEL Based Model Selection

The robustness of MEL based model selection with respect to
the amount of adaptation data used in model selection was also
evaluated. Same adaptation data sets as used in Section IV-D
were used here. To isolate model selection from model adapta-
tion, initial model adaptation was not performed and all data in
one adaptation set were used for model selection. Given a fixed
number of adaptation utterances, the resulting numbers of tied
allophone states for individual speakers in each group were av-
eraged. Model selection was also evaluated on speakers in the
training set, where ten speakers (460–469) were selected to form
a group G5, and the adaptation set conditions of G5 were the
same as those of the other groups.

As shown in Fig. 9, when the data amount was very small,
the model selection results were inconsistent, but the ordering
among the five groups was still reasonable, and when the data
amounts were ten utterances or more, the selected model com-
plexities became stabilized. This indicates that the proposed
model selection technique worked well with a small amount of
data. The robustness can be attributed to the fact that in the MEL
based model selection, only the expectation of the squared bias
needs to be estimated for each tied allophone cluster, and this
term was effective in capturing the degree of mismatch between
the adaptation data and the acoustic model.

Also shown in Fig. 9 is that the selected model complexity
increased with the degree of matching between the adaptation
data and the model. Among the four test groups G1, G2, G3, G4,
for group G1 of the heaviest foreign accents the simplest model
was chosen, and for group G4 of native speakers a complex
model was chosen. Furthermore, since group G5 had 10 training
set native speakers and therefore matched the model best, the
corresponding model complexity was the highest, higher than
that of the test group G4.

E. Expected Log-Likelihood versus Log-Likelihood

The agreement between the expected log-likelihood value
and the log-likelihood value as computed from speech data
was evaluated. All 32 speakers of the four groups G1–G4 were
included. For each test speaker, the average log-likelihood of
40 adaptation utterances was computed based on the baseline
model. From the same set of adaptation data, as in model
selection, bias distributions were estimated and the expected
log-likelihood corresponding to the selected tree cut of the
baseline model was computed and normalized. The results are
shown as a scatter plot in Fig. 10, and the correlation coefficient
between the normalized EL and the average log-likelihood over

Fig. 9. Model complexity versus amount of data by using MEL based model
selection.

Fig. 10. Scatter plot of expected log-likelihood versus log-likelihood.

the 32 speakers is 0.81, indicating a good agreement between
EL and log-likelihood.

V. CONCLUSION

Although the performance of native speech recognition is
not very sensitive to model complexity upon reaching a certain
limit, highly detailed acoustic models that are trained from
native speech are not suitable for nonnative speech recogni-
tion due to various deviation and variation factors in nonnative
speech with respect to native speech. An acoustic model with
a proper level of complexity is desirable to balance the needs
for discrimination of speech sounds and for tolerance of vari-
ations in nonnative speech. In this paper, a novel technique
of model complexity selection is proposed to select an op-
timal tree cut based on maximization of expected likelihood,
and model adaptation technique of MLLR is integrated with
the MEL based model selection to allow dynamic selection
of model complexity and full usage of adaptation data. On



HE AND ZHAO: FAST MODEL SELECTION BASED SPEAKER ADAPTATION FOR NONNATIVE SPEECH 307

nonnative English speech, the proposed model complexity se-
lection method led to consistent and significant improvements
to MLLR, while for native English, speech recognition per-
formance similar to MLLR was maintained.

The proposed MEL based model selection technique needs
to be further improved to work more reliably when the data
amount is small. Additional performance improvements are also
possible by integrating the proposed model selection/adaptation
framework with Bayesian speaker adaptation techniques. Fur-
thermore, it is of interest to study the relation of optimal model
structure resulting from model selection with different types of
foreign accents.
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