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Fast Model Selection Based Speaker Adaptation
for Nonnative Speech

Xiaodong He and Yunxin Zhad&enior Member, IEEE

Abstract—in this paper, the problem of adapting acoustic speaker-independent models to the foreign-accent characteris-
models of native English speech to nonnative speakers is ad-tics of a new speaker. Commonly used adaptation algorithms
dressed from a perspective of adaptive model complexity selection. j,clude Maximum Likelihood Linear Regression (MLLR) [4]

The goal is to dynamically select model complexity for each . L . _
nonnative talker so as to optimize the balance between model and Maximuma posteriori(MAP) learning [5]. Ithas been rec

robustness to pronunciation variations and model detailedness for ©9nized that although speaker adaptation can improve recogni-
discrimination of speech sounds. A maximum expected likelihood tion accuracy for both native and nonnative English speakers, a
(MEL) based technique is proposed to enable reliable complexity much larger amount of adaptation speech data is needed from a
selection when adaptation data are sparse, where expectationforeign-accent speaker than a native English speaker to achieve
of log-likelihood (EL) of adaptation data is computed based on a comparable level of recognition accuracy [1], [2].

distributions of mismatch biases between model and data, and ) e ; .
model complexity is selected to maximize EL. The MEL based Research efforts Oh using multlllngqgl acoustic modeling
complexity selection is further combined with MLLR to enable te€chniques for nonnative speech recognition have been reported
adaptation of both complexity and parameters of acoustic models. in recent years [6], [7]. In multilingual acoustic modeling, a
Experiments were performed on WSJ1 data of speakers with a universal phone set is used. Phonemes of several languages are
wide range of foreign accents. Results show that the MEL based mapped to the universal phone set and speech data of these

complexity selection was feasible when using as little as one . : :
adaptation utterance, and it was able to dynamically select proper languages are pooled to train the acoustic model in order to

model complexity as the adaptation data increased. Compared C&Pturé pronunciation variations of the same phoneme in dif-
with the standard MLLR, the MEL + MLLR method led to ferent languages [6]-[11]. Although promising improvements
consistent and significant improvement to recognition accuracy on to nonnative speech recognition were observed for small tasks
nonnative speakers, without performance degradation on native ith this approach, two problems exist. First, much more
speakers. speech data, including speech of foreign languages, are needed

Index Terms—Maximum expected likelihood, model selection, to train a multilingual acoustic model. Second, compared
nonnative speech recognition, speaker adaptation. with using acoustic model trained from native speech alone,
although multilingual acoustic model improved nonnative
speech recognition, it degraded native speech recognition in
some cases [6], [7].

URRENT English speech recognition systems are a closely related problem to nonnative speaker adaptation is
commonly trained from speech data of native Englisfagional dialect speaker adaptation. Digalatial.investigated
speakers. Although the systems work very well for nativgdapting acoustic models to fit speakers with dialect accents

talkers, their performance degrades dramatically when recQ@z], [13]. In [12], Maximum Likelihood Stochastic Transfor-
nition is performed on speech with heavy foreign accents. Digation (MLST) was proposed to estimate multiple linear trans-
to wide varieties of foreign accents, different proficiency levelgrms for each model cluster in model adaptation. Although a
of English speaking and limited data, it is in general difficul§ignificant performance improvement was achieved, much more
to train a set of acoustic models for each specific acceglta than that of MLLR were needed, where only one linear
Therefore, improving the performance of the state-of-the-arhnsform was estimated for each model cluster in MLLR. In
speech recognition systems for nonnative speech remaing @, in order to achieve a good performance when adaptation
challenging task. data were sparse, speech data of prototype speakers from target
Several efforts have been made to improve recognition pefialect regions were used to generate a set of basis linear trans-
formance for nonnative speech [1]-[3]. A straightforward agormations and a small amount of new speaker’s speech was
proach is to use general speaker adaptation techniques to agapt to estimate the transform combination weights. In their ex-
periments of Swedish dialect speaker adaptation, the adaptation
performance exceeded that of MLLR greatly when the amount
of adaptation data was very small. However, a large number of
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speech have been reported recently [14]-[16]. In [15], it wasIn the current paper, a maximum expected likelihood (MEL)
found that intelligibility of nonnative speech degraded signifibased algorithm is proposed for effective model complexity se-
cantly from that of native speech, corresponding to a differentzetion from a small amount of adaptation data, and compre-
in signal-to-noise ratio (SNR) of about 3 dB, and the degradhensive experimental evaluation results are reported for a wide
tion was mainly due to the confusion of vowels, especially thosange of foreign accents. The algorithm consists of three major
not in the speaker’s native language. In [16], the phenomesizps, where the first step is for model training, and the second
of phone variation and substitution in nonnative speech wemad third steps are for model selection. In the first step, al-
investigated. It was shown that phone variation and substitophone states are hierarchically clustered through a clustered
tion properties changed greatly with different foreign accenphonetic decision tree (CPDT), and each node of the tree corre-
and phone contexts. It was suggested in [14] that, beside #ponds to a tied allophone state. A tied allophone state is gen-
reduced intelligibility of nonnative speech, the ever-increasiregated by tying all the allophone states of the terminal nodes
details of the state-of-the-art acoustic models that are tuned &drits subtree, and for each tree node, a GMD is estimated. In
native speakers are not necessarily beneficial to the performatiwsecond step, given a certain amount of adaptation data, each
of nonnative speech recognition due to reduced tolerance of thature analysis vector is assigned to one dominant Gaussian
models to variations in nonnative speech. component (GC) by Viterbi alignment, and a bias between the
A speaker adaptation strategy that focuses on adaptiveBmple data mean and the model mean is calculated for each GC
selecting a proper model complexity for each nonnative Englisi each terminal tree node that has adaptation data. Assuming
speaker has recently been proposed [17], [18]. This approdbht the biases within an allophone state cluster are i.i.d., the
was motivated from the fact that highly detailed Englisdistribution parameters of biases are estimated, and expected
acoustic models with sharp distributions of very narrow alldeg-likelihood is computed at each tree node. In the third step, a
phone classes do not fit well to speech data with heavy foreigpttom-up tree pruning is carried out to select the optimal model
accents, while a certain level of context-dependent modelingmplexity that maximizes expected log-likelihood (EL) over
needs to be maintained for discrimination among phon#te tree nodes.
[14], [17]. Experimental results of [17] showed that between This paper is organized as follows. The concept of MEL based
native speakers and nonnative speakers, the curves of madetlel selection is discussed in Section Il. Several implementa-
complexity versus recognition performance were significantijon issues, including construction of the clustered phonetic de-
different. Highly detailed acoustic models that produced thaésion tree, hierarchical computation of EL, and adaptive model
best recognition result for native speakers were worst feelection, are presented in detail in Section lll. Experiment setup
nonnative speakers. A conjecture is therefore made that ard data are described and results are discussed in Section IV.
intermediate level of acoustic model complexity determindéinally, a conclusion is drawn in Section V.
from adaptation speech may work best for a foreign accent

talker.
Among various model complexity selection methods, max- Il. RATIONAL OF MEL BASED
imum likelihood (ML) based model selection has been widely MODEL SELECTION AND ADAPTATION

used [19]. In the data-rich case, independent “validation data” is

employed for model selection. The model that gives maximum VoSt state-of-the-art HMM based acoustic modeling tech-
likelihood of these data will be selected as the optimal mod iques employ very sharp distributions to describe narrowly

However, the requirement of large amount of data by ML-bas 8flned acoustic speech units, and these techniques work very

model selection prevents its application in on-line fast speak¥f!l for recognition of native speech. However, due to diversity
adaptation. In [18], by using a small amount of adaptatio‘?{ nonnative speech, Iess_detalled mode_ls that are more robust
data from a nonnative English speaker, a combined ML amj\{anatlons are better §U|ted for nonnat_lve speech_. M.o.reover,
pseudo-likelihood (PL) based tree pruning was performed gptimal model comple_X|_ty may also be d|ffer_ent for mdmdual
select complexity of an acoustic model that was trained gpeakers. Therefore, it is deswlable to adaptlvely.determlne the
native English speech for the nonnative speaker. The specfigPer level of model complexity for each specific speaker by
mismatch between adaptation speech data and acoustic m&g#lg @ small amount of adaptation data.

was represented by a global bias, which was estimated froml he problem of model complexity selection can be addressed
adaptation data by using phonetic decision trees with Sindf@m the perspective of state tying. In conventional state tying,
Gaussian Densities (SGD) at tree nodes. The global bias #&sh triphone is modeled by an HMM, and for triphones that
then used to compute a PL value for each SGD of each tfe@ve the same centre phoneme, a phonetic decision tree (PDT) is
node, and ML/PL based tree pruning was preformed for modalilt for the same indexed states of triphone HMMs, and the root
selection. In [18], although a significant improvement wagode of a PDT corresponds to a context-independent state of
resulted from model selection in recognizing speech with heathiat centre phoneme [20]. Each tree node in the PDT represents
foreign accents, there were drawbacks. First, since spe@hallophone cluster and corresponds to a distribution of the
recognition was performed by Gaussian Mixture Densi@llophones tied in that node. As shown in Fig. 1, a tree cut is
(GMD) based HMM phone models, model selection based a@ncollection of nodes that can separate the whole tree into an
phonetic decision trees of SGDs was not sufficiently precisapper part and a lower part. Data distributions of the nodes in a
Second, single global bias was not adequate in characterizirgg cut of a PDT constitute an acoustic model of a HMM state
detailed mismatches between a speaker’s speech and the plabagphone unit. Fixing the distribution complexity at each node,
models. a high-level tree cut corresponds to a less detailed model, and
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a low-level tree cut corresponds to a more detailed model.
proper tree cut should be selected for each particular speake
In certain scenarios of speaker adaptation, only a sm
amount of adaptation data is available. In such cases, ol
a small number of PDT nodes have adaptation data, a
the matching between acoustic model and adaptation d
cannot be reliably measured by direct likelihood calculatiol
To address this problem, a method of expected likelihood
proposed. To simplify discussions on the concept of EL, ttQ O
distribution of speech features at each PDT node is assumed
as a one-dimensional single Gaussian density, with the under-  Fig. 1. Model selection based on a phonetic decision tree.
standing that mixtures of multi-dimensional Gaussian densities
are used in actual acoustic models, which will be discussed in
Section Il of this paper. A
Consider a node of a PDT with a data seY,, where the size
of X, is N, and the sample data meanaig. Given the node
Gaussian pdh, = N (u,,072), the sample data variance and
the bias between the model mean and the data mean are defined
asv? = (1/N,) SN (z; — %,)? andb, = Z, — 1, The model
and data distribution parameters are illustrated in Fig. 2. The
average log-likelihood per data sample is therefore computed
as

Fig. 2. Parameters and statistics involved in computation of log-likelihood.

1 v2 b2
AL(XgPAg) = =5 [n(2m) +In(07) + 5+ 5| (@)
9% % A. Construction of Clustered Phonetic Decision Tree
and is defined as the log-likelihood at the ngdé&ssumingthat  In order to share bias distributions among phone units, a clus-
the variance of data is proportional to the variance of the modtdred phonetic decision tree is built in two steps as follows.

i.e.,v] = const - 07, the expectation of the log-likelihood at  First, for each phone state, a state-tying binary phonetic deci-

nodeq (EL,) over the distribution ob, is sion tree is built as in [20]. Initially each triphone state is mod-
eled by one Gaussian density and the Gaussian densities are
E[AL(X,|\)] = 1 [1n(27r) +1n (03)] placed into a single cluster at the root of the tree. Then a yes/no
2

1 1 guestion about phone context from a pre-defined set is asked to
—Sconst — — K (bz) . (2) divide the triphones in the cluster into two groups based on their

2 20, answers to that question, and the question that leads to the max-
imum likelihood increment is adopted for splitting the node into

If the distribution of the bias, can be estimated at eaCht\évo children nodes. This process is repeated for each node until

nodeg, then the above expectation can be readily computei increment in log likelihood due to cluster split falls below

The expected log-likelihood of a tree cut is defined as a sum oF o
weightedL,’s of all nodes in that tree cut, and the tree Cu.';[l pre-defined threshold, or the number of data samples at each

. - node is less than a threshold. As the result, each node of a PDT
that leads to maximum expected log-likelihood can be selected !
: .~ corresponds to a tied state of allophones, and the root node cor-
as the optimal tree cut. Through the PDT, allophones are hierar- S )
. L . . —.responds to the state of the phone unit with arbitrary contexts,
chically clustered. In the data-sparse situation, the bias distribu- .
or context-independent.

tions of nodes that lie in a specified cluster are tied, where biase d th PDT di lustered phonetic d
are computed from the terminal GCs with sufficient adaptation ~ eC(t)n ’th ese h b? are 9roupe" i n aé usherfethp POII?'? Ic te-
data and the computed biases are taken as samples of thecﬂo%?n ree througn a binary super- tree. bach of tne roo

bias distribution. As the result, a tied bias distribution can be rt%-k es Its re%rese?tt?]d bgg_?e Gaussgn de:jntsny. A.t thle begtlnrtntr;]g,
liably estimated from the terminal nodes in a local subtree th £ 1o no“ es o " € S are assigned 1o a single set at the
has enough samples of bias data. root of the “super” tree. Then binary-sphkf-means clustering

is performed to split the root nodes of the PDTs into two new
sets, or equivalently two children nodes. This procedure con-
tinues until each node has only one PDT root node, where the
In system implementation, the distribution of speech featuresrresponding PDT obtained in the first step is then attached.
at each tree node is a GMD instead of a SGD, and model selbtthe K-means clustering of SGDs, the Mahalanobis distance
tion is performed on a clustered phonetic decision tree instemeasure is used for each Gaussian densityaai N (pq, >a)
of PDTs. In this section, we describe the details of buildingand A, = N(up, %), i.€., d(Aa, Ao) = (pa — i) [(Za +
CPDT, the computation of EL based on GMD at each node, thg)/2]~*(u. — us)- As the result of clustering, a binary “super”
estimation of tied bias distributions, and the MEL based treeee is built on top of the PDTs and the overall tree structure is
pruning procedure for optimal tree cut selection. referred to as a CPDT.

I1l. MEL B ASED MODEL SELECTION
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For each PDT node, a GMD can be estimated based on the Properties of Bias Distribution
segmental expectation-maximization (EM) algorithm. The de-

H 2
tails are discussed in Section IV-A. In order to compute (7), the expectation teﬂT(bM) needs

to be estimated. Viewing the bids ; as a Gaussian random
B. Expectation of Log-Likelihood Based on GMD variable, the estimation of the distribution parametersforis
discussed below. For simplicity of notations, the feature dimen-
sion indexd is omitted in the subsequent discussions.
A subtree that is rooted at the noglef a CPDT is shown in
Fig. 3. The term “terminal GC” denotes a Gaussian component
of a GMD at a terminal node. The term “full terminal GC” de-
L(X|\) = Zln Zwk N(zi; g, Xg) (3) notesaterminal GC that has been assigned more than a specified
i=1 amount of adaptation data by Viterbi forced alignment, and the
where Wy bk, Ek are the We|ght’ mean vector and Covariterm "nonempty terminal GC’ denotes a terminal GC that haS
ance matrix of thekth GC, respectively. For each;, if the Peen assigned some adaptation data but the amount is less than

log-likelihood value can be approximated by a dominant Gdhe specified threshold. The term “full internal node” denotes a
we can getL(X|\) ~ Zk Y s, In[w N (255 e, S, node that covered more than a specified number of “samples of
JESk ’

where Sy, is the index set of feature data that are assigned Qs data” under its subtree.
the kth GC, with N}, = |5y, andzk N = N. Assummg Relation of Bias Distributions Based on SGD and GMD:

Given a Gaussian mixture densitywith K Gaussian com-
ponents (GC) and an arbitrary data &et= {x1,z2,..., 25},
the log-likelihood ofX is computed as

k= [k )T, andyy = dlag[gk Lsees 07 bl then the training stage, GMD and SGD are both estimated for each
tree node. Consider GMD and SGD of the same ngdehere
1 GMD, = YK N( 4,2.),SGD:N o2),
LX|\) =~ —= Z Z Ny, ln 27r0k d) g Z’Ll Wa,k Pa.k» Tk D q (“‘1/ Uq)
2 b1 d—1 and denote the respective biaseg)fpﬁgN ) = Tqk — fbg,r aNd
1 beSGD) = T4 — pq. Based on the previous assumption that the
t o > (@ja— ma)®| + Z Ny In(wg). (4)  number of feature data assigned to titie GC is proportional to
kod jes k=1 the weight of that GCI;(SGD) is approximated as a linear com-
In the dth feature dimension, from the data that are adination Ofb(G\ID) aSb(SGD) Y w kb(GMD) Assuming
signed to thekth GC, the sample mean and sample varthatbgGMD k = 1,...,K, are i.i.d. and follow a Gaussian
ance are computed by = (1/N’“)ZJ€5A 7ja and d|str|but|onN( (@) S(GMD)2 , thenb{°“? also follows
via = (1/Ni)Y,cs, (wja—Tra)?, and the bias be- sarh (sam? e
tween the model mean and the sample mean is computedab§aussian distributioV (e( ), (SaD) ) with e((l ) ~
bk,d = Th,a — Hk,qd. ThEN (GMD) ands (SGD) (GMD)2 Zk X w2

02 b2 Relatlon of B|ases Based on Internal Node and Terminal
LIX|\) ~ —= ZN’“Z [ln 2mop 4) + ';d + %1 Node SGDs:Refer to Fig. 3 and consider the SGD of an
k 1 d=1 Okd Ok internal nodeg and the SGDs of the terminal nodés= 1,
2, 3, 4 below the nodg. We havebESGD) = T; — i, and
+ ZNk In(w). (5) b,(ISGD) =S, b(SGD) whereq; is the contribution weight
=t of bias b(SGD) of node: to the biasbeSGD) of nodeg, with
Assume that the variance of the data i |s proportional to ttE4 a; = 1.
variance of the model, i.evj ; = constq - 07, 4,V k, d, and the Relation of Bias Distributions Based on Internal Node
number of feature data assigned to fite GC is proportional and Terminal Node GMDsBased on the relation of biases

to the weight of that GC, i.elN; = N - wy. Then the average petween GMD and SGD of the same node drawn above

log-likelihood per data sample becomes and refer to Fig. 3, we hava{®® = S ;55 P)x

4 K b(GMD)
1K D b? 4 Dl Wi Wikbi g - ' o
AL(X|\) ~ ——Zwkz In(2707, ;) + consty + —& For a local subtree with root, it is assumed that
k=1 d=1 k,d the bias distributions of the GCs of its terminal nodes
K are tied and the tied distribution is a Gaussian density
+Zwk In(wy)  (6) N( (GMD)  (GMD)? ) Thereforeel®”) ~ ¢(SMP)ang
(SGD)2 GMD) Then
and the expectation of log-likelihood over the distribution ot? Stermi | Li1 Z’“ 1 (@iwig)”.
bx,a is computed by (GMD)? GMD)? GMD)?
E(b2,) =E (bq/k ):eg P 4 5 (MDY
E[AL(X|\)] = —= [ZwkZm 210} 4) —{—Zconstd k=L...,K (8)
k=1 d=1 2
. 28(i,) where ofN) SO0 (GO and (D)
k,d SGD)? K GMD)? 4 K
+ Z Wi — | + Z W ln wk 7) SSI ) /Zkle wg,kz Siermi ) ’ Zi:l Zk:l(aiw’iyk)g/
(7 K 2
=1 d=1 k,d Zk:l wq,k'
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GMD,  SGD, In order to generate reliable bias samples, two cases are
considered. In the first case, a terminal GC has been assigned

q
sufficient adaptation data, and a bias sample can be directly
® computed for the GC. In the second case, a nonempty GC
¢ SGD, has a data amount below the specified threshold, and a bias
sample is computed as a weighted average of biases of several
1 5 3 nearby nonempty GCs and the weights are made proportional
& &‘ & to the data amount in each of these GCs.
jﬁerminal GC :
E. MEL Approach for Model Selection
® Full internal node A Full terminal GC Denote the expectation of log-likelihood for a tree dut
O Internal node A Non-empty terminal GC .
O Terminal node A Empty terminal GC by EL(F). MEL based model selection attempts to deter-

mine an optimal tree cuf™ that maximizesEL(F), i.e.,
Fig. 3. lllustration of the types of nodes and the GCs in a CPDT. F* = argmaxp [EL(F)] EL(F) can be defined as a weighted
summation of expected log-likelihood of all nodes in the tree
2 cutF,ie.,EL(F) = >, .r T; - EL;, whereT; is the number
The parameteréegg’rﬁﬂ) L stomi ) can be estimated from of terminal nofjei un<jzer€rlgdeand for any tree cup, we have
the biases of GCs of terminal nodes computed from adapgn T: = T,oor Which is the total number of terminal nodes
tion data. Denoté’, as the number of terminal nodes under thg, the tree.
nodeq and assume that the contributions of blalsgég )i = The optimal tree cut selection can be efficiently accomplished
1,2,...,T; to the blasb (SGD) are approximately equal, i.e.,by a bottom-up tree pruning algorithm. The algorithm is illus-
a; = 1/T Based on the above derivations and incorporatirigated in Fig. 4. For an internal noge the difference between
the dimension variablé of feature components into (7) and (8)EL, and the sum of its two children’s MELs is defined as
these equations become
AEL(p,l,r) = [T; - MEL, + T, - MEL, — T, - EL,] (11)

1 D E b2
EJAL(X M) =— 3 Z Wq,k Z q £ d whereT, = T;+7,., and the MEL value of the nogsis assigned
q Fd as (see (12) at the bottom of the next page).
9 If AEL(p,l,r) < 0, then the children nodes of the noge
+ qu k Zln 2704k are prune(d, oth)erwise they are kept. From gg) (11), and (12),
b we can see that the constant term(1/2) - >~ ,_; consty” in
b Z const (9)iseliminated in (11) and it does not affect the model selection
d
2 £ result.
B This procedure is carried out bottom-up over all the nodes of
Z wa. In(wy 1) (9) aclustered phonetic decision tree, similar to the method of [21].
After tree pruning, the collection of terminal nodes constitute
5 (b . l) :e(GMD) L (G\ID) the optimal treg cut. In implementation, the tree pruning proce-
(LA 0,4 dure is constrained so that for each state of each phone, at least
k=1,....K d= 17 D (10) ' the root node of the PDT is maintained. Moreover, although in
, a data sparse situation it is possible to estimate node specific
where e<GMD) ~ Efriﬂ)j nd fﬁ’lMD) ~ sfr]r\,?j - consts at high level nodes of the CPDT, such as estimating a
Zqu1 f L(wi k) Ty)? /Zk 1w - specificconstvector at the root node of each PDT, the model

The value of the donsty’ in (9) does not affect model Selection results would remain the same as the case of using a
selection result, and can be set to any real number. Detdlgbalconstvector since tree pruning is performed at the lower
are discussed in Section IlI-E. level tree nodes, in general.

D. Parameter Estimation of the Bias Distribution F. Dynamic Model Selection

Referring to Fig. 3, for a subtree rooted at an internal npde Given an amount of adaptation data from a speaker, model
that represents a tied allophone state, the biases correspongargmeters can be first adapted to reduce the mismatch between
to the terminal GCs are assumed i.i.d. Gaussian r.v.’s, the catme speaker’s speech and the adapted model. As the amount of
puted biases are samples of the distribution, and a bias distribdaptation data increases, model parameters are better adapted
tion can therefore be estimated for a full internal node defineahd the mismatch biases in general become smaller. Conse-
in Section 1I-C. In computing the expected log-likelihood foquently, the optimal model structure should change with the
an internal node, if it is a full internal node, then (9) and (10) amount of adaptation data. To dynamically select the optimal
are applied directly to obtain the Elotherwise, the bias dis- model, it is desirable to perform model selection after an initial
tribution under the node is approximated by that of its nearesbdel adaptation. Note that from (9) and (10), the mean param-
ancestor full node. eters of GCs of internal nodes are not involved in model selec-
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o

Training Build phonetic decision trees, and
/ \ stage train a GMD model at each tree node.
O O AT TN e mmmmmmmmmmmmeo oo B R A e
/ r if AEL (P, l, r) <0 Divide available adaptation data set X into
two sets X, and X,. Perform Viterbi forced ]
Fig. 4. MEL based tree pruning. alignment on adaptitlon data.

Initial model |Perform initial MLLR on GMD of each

tion, and therefore in initial model adaptation by MLLR, only adaptation - _‘“T‘_"_ai:f_cfffff:vr"_h_‘ia_‘f_si‘_’f-_- __________

the mean parameters of terminal GCs n_egd to be adapteq. Model Calculate biases at terminal GCs with data set | |
In order to avoid the effect of over-fitting, the “validation selection X2. .

data"_ used for m0d9| _s_el_ectlon should be |ndepende_nt Oftl Estimate tied bias distributions at full internal

“training data” used in initial model adaptation. Ideally, if suffi- nodes. N

cient data are available, then we can Q|V|de them to two disjoi Compute EL for cach node, and

sets, one set for model adaptatigraiping), and the other set perform MEL baseimodel selection.

for model selectionv@alidation). This is feasible here since the ;-1\ odel [Perform final MLLR on selected GMDs by |

MEL based model selection can perform well with a relativel! adaptation adaptation data set X.

small amount of data, and the deduction of this amount of data

from initial model adaptation would not drastically change the Fig. 5. Procedure of model selection and adaptation.

adaptation performance if the amount of adaptation data is ad-

equate. On the other hand, if the amount of adaptation data,id, and the decoder was provided by HTK v2.2 [22]. The

very small, then the data for initial model adaptation and modéilence model was not adapted.

selection are allowed to overlap. The details of such data parti-

tion are discussed in Section V. A. Baseline System

tio(r?l:jﬁamc(;dnelbzelljicet:joItqolspgrefrof?r;mggldg:eazggigtisoer: zzi?]aepta} base_:line system was built as fol_lows. The acoustic model

lected model. Therefore MLLR adaptation is performed twicégmple.x.Ity was d_etermmed to_prowde best performance for
’ : . ?f)cognltlon of native speech. First, a very large clustered pho-

once before model selection and once after it. The compl

. : . . 16tic decision tree was built as described in Section I1I-A. The
MEL based dynamic model selection/adaptation algorithm EPDT was considered as a basic tree with sufficient details,

implemented in seven steps as shown in Fig. 5. The overall prg- .
) . ) nyr nable m | candi woul Ir n r
cedure is referred to as the MEL based method in Section IVa d any reasonable model candidate would correspond to a tree

) &)t in this basic tree. An existing speech recognition system
experiments. was used to segment the speech data of the entire training set
to the state level of phone units by a forced Viterbi alignment.
The segmented data were assigned to each node of the CPDT

The proposed method was evaluated on the LDC WSadtcording to the corresponding states of triphones, and EM
database. The entire set of speaker-independent short-tatgorithm was employed to estimate parameters of GMD at
training data (SI_TR_S, 200 speakers) of WSJ1 was used &arch tree node. As such, once a tree cut is determined, GMDs
acoustic model training. Each triphone HMM model had thremrresponding to that tree cut can be used to form an acoustic
emitting states (except for a “short-pause” model, which hawdodel for speech recognition.

a single state), and each state had a mixture of 16 GaussiaBayesian Information Criterion (BIC) [23] was used to
densities. Based on the consideration that cross-word trarsect the optimal baseline model, which is defined as:
tions in nonnative speech is in general not as smooth as nafB& (X, \) = Inp(X|\) — v/2M In(N), where) is a model,
speech, and based on our previous experience that simpteis the training data sed/ is the total number of free parame-
context-dependent phone models worked better for Chindses inthe model)V is the size ofX, andy is a tuning parameter
accent English speech recognition [17], only within-word trithat can be adjusted to balance likelihood of observations with
phones were used. An additional benefit of using within-wonehodel complexity [24]. For a GMD withn D-dimensional
triphones is the simplification of search at the decoding staghbagonal Gaussian componentg,= (2D + 1) - m.

Speech features consisted of 39 components of 12 MFCCskor each specified, a tree cut that led to the maximum BIC
energy, and their delta and acceleration derivatives. Cepstralue was determined. By varying the valueypa series of BIC
Mean Normalization (CMN) as implemented in HTK wa®ptimal models were selected. These models were validated on
applied to both training and test data. In testing, the standahe WSJ1 test set ET_H2, which consisted of 10 native speakers
5K-vocabulary bigram language model provided by WSJ1 wasth totally 215 test utterances. The recognition performance

IV. EXPERIMENTS

A (1) - MEL, + T, - MEL,), if ABL(p,1,7) > 0.

12
EL,, if p is a terminal node, cAEL(p,,r) < 0. (12)

MEL,, = {
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TABLE |
SPEAKER GROUPSDEFINED BY BASELINE RECOGNITION ERRORRATE (%)

9 Group ID Gl G2 G3 G4

@ proficiency worst bad good best

E Speakers®  4n0,1,3,4, ET_S3 4n5,8, ET_H2
.§ chnl,chn2  (4nd~4nn) 9,a,b,c (40a~40j)
g, Avg. WER 60.8 26.5 18.1 9.7

e S.D. WER 3.8 5.9 7.0 59

%4n0, 1,3,4,5,8,9,a,b, c belong to DT_S3

i I \ ] ‘ ‘ ; ;
9.650 0 20 80 % 0 T 120 im selection, the threshold on the number of biases for a full node
# Gaussian components (K) was set to 25, and the threshold on the number of feature data
for a full terminal GC was set to 30.
Fig. 6. Recognition WER versus model complexity for native speech. In MEL, the partition of adaptation utterances into two sub-

sets, one for initial model adaptation and one for model se-

versus model complexity is shown in Fig. 6. The best perfof€ction, was empirically determined for differet. When the

mance with a WER of 9.7% was achieved by a model with 103%daptation data were 20 utterances or more, two disjoint subsets
GCs, corresponding to a tree cut with 6473 nodes. This modi§re generated, each had half the adaptation data. When adapta-
was chosen as the baseline model in the subsequent tests. tion data amount was less than 20 utterances, all utterances were

used in model selection, and a subset of them was used in initial
model adaptation. Specifically, in thé = 1 case, initial adap-

o ) tation was not performed; in th¥ = 3 case, the first utterance
Testwas conducted on speakers with different foreign acceqfss ysed for initial adaptation to estimate a global bias-only

and different levels of English speaking proficiency. A total ofgnsformation; in theV = 5 case, the first two utterances were
32 speakers were included in the test set. WSJ1 database Qi for initial adaptation to estimate a global diagonal MLLR
vides two groups of nonnative speakers (DT_S3 and ET_Sg)nsformation; in theV = 10 case, the first five utterances
and one group of native speakers (ET_H2). Each group has {gtye ysed to estimate a global full MLLR transformation. For
speakers. In addition, speech data of two speakers with Ma-_ 9 or 40, half amount of adaptation utterances were used to
darin Chinese accent (chnl and chn2) were collected undeg@mate full MLLR transformations with the number of trans-

similar acoustic condition and with similar prompting texts ag,.ms determined by the threshold discussed above.
WSJ1. A total of 40 adaptation utterances were available from

each test speaker. As show in Table |, these 32 speakers werayiEL Based Model Selection and Adaptation

divided into four groups based on their English speaking pro- . : .
ficiency as measured by baseline recognition error rate, Where;rhe basic CPDT tree used in MEL model selection had a total

G1 is the nonnative speaker group with the highest recogniti8f1 7137 termln_al nodes. The _evaluatlon conditions included
error rate, and G4 is the native speaker group with the IowégPdel adaptation by conventional MLLR alone and by the
recognition error rate. proposed _MEL based method. Thesel re;ults are summarized
In testing, the decoding parameters, including Iangui\\?éé recognition word error rate (WER) in Fig. 7(a)—(d) for the
model score scale and beam-search pruning thresholds, w@H SPeaker groups G1-G4. Recognition results show that
optimized for native speaker group ET_H2 and were applié\éE'— ba_sed model selection produced a_S|gn|flcant impact on
to all the four groups. For each test speakr,adaptation rec_ogmtl_o_n performf_;lnce for heavy_ foreign accent_ spea_lkers.
utterances were randomly selected from his or her adaptatigs verified the notion that a detailed model that is optimal
data set for use as adaptation data, wh§re= 1, 3, 5, 10, for native speakers is not suitable for heavy accent speakers.
20, 40, and the first 20 test utterances were used in testﬂﬁgtead, a less complex model structure can better tolerate
(except for the ET_H2 group, where each speaker had ofligtribution deviations of nonnative speech from native speech.
about 20—23 test utterances and therefore all the test utterant@d effect of error reduction due to MEL based model selection
were used). The adaptation experiments were repeated tHfegbserved to reduce with the increase of English speaking
times with different selection of adaptation utterances, excdpeficiency. The MEL based model selection did not improve
that whenN = 40, the whole set of adaptation data was use@cognition for native speakers, due to the fact that the model
once. Recognition results were averaged over each groupcamplexity of the baseline system was optimized for the native
MLLR implementation, the CPDT was used as a regressi6feakers.
tree, and only mean vectors of Gaussian components werén Table Il, the number of remained states after model se-
adapted. The sample size threshold for estimating a MLLRction is shown for each group. It is worth noting that only
transformation was set to 500, and only mean vectors lodlf of adaptation data were used in model selection when the
Gaussian components were adapted because the performanigeber of adaptation utterancAs> 20. We can observe that
gain from variance adaptation is usually small compared witar speakers with heavy foreign accents, a simpler model struc-
that of mean adaptation [25]. In final model adaptation, fdure was selected than that for speakers with slight accents. On
estimation reliability, only a diagonal transformation with dhe other hand, as more adaptation data became available, more
bias vector was estimated whé&h= 1. For MEL based model complex models were selected for each group of speakers. The

B. Experimental Condition
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Fig. 7. Recognition WER versus amount of adaptation data for speaker groups defined by English speaking proficiency.
TABLE I the original structure of the CPDT temporarily, then at the

NUMBER OF TIED STATES RESULTING FROM MODEL SELECTION final model adaptation stage each MLLR transformation was

estimated with respect to terminal GCs in the original CPDT,

# adaptation

utterances 3 3 10 20 40 and the estimated transformation was used to adapt the GCs of
G1 1994 1793 2101 2688 2966 3221 the selected optimal tree cut. The marked nodes were pruned
G2 2581 2048 2395 2978 3074 3397 after model adaptation, and the adapted GMDs corresponding
G3 2462 2137 2457 3310 3409 3569 to the optimal tree cut were used to form a final acoustic
G4 2616 2701 3043 4051 4213 4410 model for speech recognition.

Fig. 8 illustrates these two approaches for final model adapta-
tion. A hypothetic optimal tree cut™* and its constituent nodes
proposed MEL algorithm was able to capture this informatiopands are illustrated in Fig. 8. Assuming that adequate amounts
and dynamically select more complex model structures with iBf data are accumulated at nodgsnd r, then for both ap-
creasing amounts of adaptation data. It is also worth noting thateaches of model adaptation, two MLLR transformatia,
even for native speakers, the MEL selected model was less C{Rd I¥,., are estimated at nodgsandr, with W, used for the
plex than the baseline one without causing performance degics at node andW,. for the GCs at node. The difference be-
dation. This is because that the baseline system was a spegl@en these two approaches lies in the estimation of the MLLR
independent one and it had certain redundancy with regarditgnsformations. For example, in the first approdéf),is esti-
individual native speakers. mated based on the GCs at nodesds and their corresponding
In implementing MLLR for final model adaptation, twodata, and as a contrast, in the second apprdéils estimated
approaches were investigated. In the first approach, the Gézsed on the GCs at nodes 1-4 and their corresponding adapta-
of the nodes in the optimal tree cut were treated as termirian data.
GCs, and MLLR model adaptation was carried out with respectWe found that the latter approach had a small but consistent
to those GCs. In the second approach, at the model selectmlvantage over the first approach. The results presented here
stage a node that was to be pruned was first marked to keegre therefore based on the latter approach.



306 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 4, JULY 2003

3600

JAp-ommmmmmmmmmmoooooooo- ©
3400| o - -e- G1|
w, r c VT -8 G2
......... [ ZCLCETTE e EEREE LI TP TP ETPETRRT R O :23200 . “ l' | -é= G3
8 v -v- G4
gl \ / - G5
1 2 3 gzwof 3 Boae mme===""T 2ttt v
= ’ -
. - R4
O Terminal node O Internal node @© 26001
= \
@ ~
Fig. 8. lllustration of final MLLR model adaptation. & 24001 W T S -
) .\ #-"~* _____________ a
2200 \ P N=s o-mmmmm" g ----===-=="T
. 3 !
D. Robustness of MEL Based Model Selection = 2000 @ §
AY
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the amount of adaptation data used in model selection was ¢
evaluated. Same adaptation data sets as used in Section I' 19003 10 20 20
were used here. To isolate model selection from model adag.... # model selection utterances

tion, initial m0d8| adaptation was not performeg and_a” data_‘ E?g 9. Model complexity versus amount of data by using MEL based model

one adaptation set were used for model selection. Given a fix@iction.

number of adaptation utterances, the resulting numbers of tied

allophone states for individual speakers in each group were a- 73

eraged. Model selection was also evaluated on speakers in t

training set, where ten speakers (460-469) were selected to fol 74l o

a group G5, and the adaptation set conditions of G5 were tt o

same as those of the other groups. | o ©
As shown in Fig. 9, when the data amount was very small °

the model selection results were inconsistent, but the orderird 76l oo 09° °

among the five groups was still reasonable, and when the dag °

amounts were ten utterances or more, the selected model co % 77l ® °

plexities became stabilized. This indicates that the propose® o @ °

model selection technique worked well with a small amounto | 0 © |

data. The robustness can be attributed to the fact that in the ME

based model selection, only the expectation of the squared bi 7ol o

needs to be estimated for each tied allophone cluster, and tt o °

term was effective in capturing the degree of mismatch betwee _ ‘

the adaptation data and the acoustic model. %0 -78 -76 -74 -72 -70 -68
Also shown in Fig. 9 is that the selected model complexity awerage log-likelihcod

increased with the degree of matching between the adaptatlor]:ig. 10. Scatter plot of expected log-likelihood versus log-likelihood.

data and the model. Among the four test groups G1, G2, G3, G4,

for group G1 of the heaviest foreign accents the simplest model

was chosen, and for group G4 of native speakers a complg 32 speakers is 0.81, indicating a good agreement between

model was chosen. Furthermore, since group G5 had 10 trainfelg and log-likelihood.

set native speakers and therefore matched the model best, the

corresponding model complexity was the highest, higher than V. CONCLUSION

that of the test group G4.

Although the performance of native speech recognition is
not very sensitive to model complexity upon reaching a certain
limit, highly detailed acoustic models that are trained from

The agreement between the expected log-likelihood valnative speech are not suitable for nonnative speech recogni-
and the log-likelihood value as computed from speech datan due to various deviation and variation factors in nonnative
was evaluated. All 32 speakers of the four groups G1-G4 wesgeech with respect to native speech. An acoustic model with
included. For each test speaker, the average log-likelihoodaproper level of complexity is desirable to balance the needs
40 adaptation utterances was computed based on the basdbnaliscrimination of speech sounds and for tolerance of vari-
model. From the same set of adaptation data, as in modé&bns in nonnative speech. In this paper, a novel technique
selection, bias distributions were estimated and the expectddmodel complexity selection is proposed to select an op-
log-likelihood corresponding to the selected tree cut of themal tree cut based on maximization of expected likelihood,
baseline model was computed and normalized. The results anel model adaptation technique of MLLR is integrated with
shown as a scatter plot in Fig. 10, and the correlation coefficight MEL based model selection to allow dynamic selection
between the normalized EL and the average log-likelihood ovefr model complexity and full usage of adaptation data. On

E. Expected Log-Likelihood versus Log-Likelihood
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nonnative English speech, the proposed model complexity s¢t7]
lection method led to consistent and significant improvements
to MLLR, while for native English, speech recognition per- [18]
formance similar to MLLR was maintained.

The proposed MEL based model selection technique need&’]
to be further improved to work more reliably when the data,
amountis small. Additional performance improvements are also
possible by integrating the proposed model selection/adaptati 511]
framework with Bayesian speaker adaptation techniques. Fur-
thermore, it is of interest to study the relation of optimal model
structure resulting from model selection with different types ofl22]
foreign accents.

(23]

ACKNOWLEDGMENT [24]

The authors would like to thank the reviewers for their valu-

able suggestions that helped make this paper better. [25]

REFERENCES

G. Zavaliakos, R. Schwartz, and J. Makhoul, “Batch, incremental and
instantaneous adaptation techniques for speech recognitiofoin
ICASSR 1995, pp. 676-679.

G. Zavaliakos, “Maximum a posteriori adaptation for large scale HMN
recognizers,” irProc. ICASSP1996, pp. 725-728.
S. Wittand S. Young, “Off-line acoustic modeling of nonnative accents,
in Proc. EUROSPEECHL999, pp. 1367-1370.
C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear re
gression for speaker adaptation of continuous density hidden Mark
models,”Comput. Speech Langol. 9, pp. 171-185, 1995.
J. L. Gauvain and C. H. Lee, “Maximum a posteriori estimation for mul .
tivariate Gaussian mixture observations of Markov chailisE Trans.
Speech Audio Processingpl. 2, pp. 291-298, Apr. 1994.

U. Uelber and M. Boros, “Recognition of nonnative german speech wi
multilingual recognizers,” ifProc. EUROSPEECHL999, pp. 911-914.
V. Fischer, E. Janke, S. Kunzmann, and T. Ross, “Multilingual acoust
models for the recognition of nonnative speech,”Hroc. Automatic
Speech Recognition and Understanding Works26p1.

J. Kohler, “Multi-lingual phoneme recognition exploiting acoustic-pho-
netic similarities of sounds,” iRroc. ICSLR 1996, pp. 2195-2198.

F. Wenget al,, “A study of multilingual speech recognition,” iRroc.
EUROSPEECH1997.

T. Schultz and A. Waibel, “Multilingual and crosslingual speect
recognition,” in Proc. DARPA Broadcast News Transcription and
Understanding Workshod 998.

W. Byrneet al,, “Toward language independent acoustic modeling,” ir
Proc. ICASSP2000, pp. 1029-1032.

V. Diakoloukas and V. Digalakis, “Maximum likelihood stochastic trans:
formation adaptation of hidden markov modeldfEE Trans. Speech
Audio Processingpp. 177-187, March 1999.

C. Boulis and V. Digalakis, “Fast speaker adaptation of large vocabulary

(1]

(2
(3]
[4]

(3]

(6]
(71

(8]
(9]
[10]

[11]

(12]

(13]

%cognition, acoustic
recognition.
1€ Mr. He is a member of Sigma Xi.

307

X.He and Y. Zhao, “Model complexity optimization for nonnative Eng-
lish speakers,” irProc. EUROSPEECHScandinavia, Denmark, Sept.
2001, pp. 1461-1464.

——, “Fast model adaptation and complexity selection for nonnative
speakers,” irProc. ICASSPvol. 1, 2002, pp. 577-580.

T. Hastie, R. Tibshirani, and J. FriedmaFhe Elements of Statistical
Learning New York: Springer-Verlag, 2001.

S. J. Young, J. J. Odell, and P. C. Woodland, “Tree based state tying
for high accuracy modeling,” in Proc. ARPA Workshop on Human Lan-
guage Technology, Mar. 1994.

S. Wang and Y. Zhao, “Online bayesian tree structure transformation
of HMM'’s with optimal model selection for speaker adaptatidigEE
Trans. Speech Audio Processjngl. 9, pp. 663-677, Sept. 2001.

S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, and
P. Woodland. The HTK Book, Version 2.2. [Online]. Available:
http://htk.eng.cam.ac.uk/docs/docs.shtml

G. Schwarz, “Estimating the dimension of a moddéin. Statist.vol.

6, pp. 461-464, 1978.

S. Deligne, E. Eide, R. Gopinath, D. Kanevsky, B. Maison, P. Olsen,
H. Printz, and J. Sedivy, “Low-resource speech recognition of 500-word
vocabularies,” irProc. EUROSPEECH2001.

M. J. F. Gales and P. C. Woodland, “Mean and variance adaptation within
the MLLR framework,”Comput. Speech Langeol. 10, pp. 249-264,
1996.

Xiaodong Hereceived the B. Eng. degree in preci-
sion instruments from Tsinghua University, Beijing,
China, in 1996, and the M.S. degree in signal and in-
formation processing from Chinese Academy of Sci-
ences, Beijing, in 1999. He is currently pursuing the
Ph.D. degree in the Department of Computer Engi-
neering and Computer Science, University of Mis-
souri-Columbia.

His research interest lies in the field of speech
and signal processing, pattern recognition, spoken
language processing, large vocabulary speech

modeling, speaker adaptation, and nonnative speech

Yunxin Zhao (S’86-M'88-SM’'94) received
the Ph.D degree in 1988 from the University of
Washington, Seattle.

She was Senior Research Staff and Project
Leader with the Speech Technology Laboratory,
Panasonic Technologies, Inc., from 1988 to 1994.
She was Assistant Professor with the Department of
Electrical and Computer Engineering, University of
lllinois at Urbana-Champaign from 1994 to 1998.
She is currently Professor with the Department
of Computer Engineering and Computer Science,

continuous density HMM speech recognizer using a basis transform dgniversity of Missouri-Columbia. Her research interests are in spoken language

proach,” inProc. ICASSPvol. 2, 2000, pp. 989-992.
1 nonnatives,’'Speech Communvol. 35, pp. 71-79, 2001.
19} speech,’'Speech Communvol. 35, pp. 103-113, 2001.
6] syllabification and foreign accent identificatiorspeech Communvol.
35, pp. 125-138, 2001.

processing, automatic speech recognition, multimedia interface, multimodal
D. Compernolle, “Recognizing speech of goats, wolves, sheep and human—computer interaction, statistical pattern recognition, statistical blind
systems identification and estimation, speech and signal processing, and
S. J. V. Wijingaarden, “Intelligibility of native and nonnative dutchbiomedical applications.

Dr. Zhao was Associate Editor of IEEERANSACTIONS ON SPEECH AND

K. Berkling, “SCoPE, syllable core and periphery evaluation: Automati&ubio PROCESSINGand a member of IEEE Speech Technical Committee. She
received 1995 NSF Career Award, and is listed in American Men and Women
of Science, February 1998.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


