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ABSTRACT
The ability of a sensor network to parse out observable ac-
tivities into a set of distinguishable actions is a powerful fea-
ture that can potentially enable many applications of sensor
networks to everyday life situations. In this paper we in-
troduce a framework that uses a hierarchy of Probabilistic
Context Free Grammars (PCFGs) to perform such parsing.
The power of the framework comes from the hierarchical or-
ganization of grammars that allows the use of simple local
sensor measurements for reasoning about more macroscopic
behaviors. Our presentation describes how to use a set of
phonemes to construct grammars and how to achieve dis-
tributed operation using a messaging model. The proposed
framework is flexible. It can be mapped to a network hierar-
chy or can be applied sequentially and across the network to
infer behaviors as they unfold in space and time. We demon-
strate this functionality by inferring simple motion patterns
using a sequence of simple direction vectors obtained from
our camera sensor network testbed.

Categories and Subject Descriptors: C.3 [Special-Purpose
and Application-Based Systems]: Real-time and embedded
systems

General Terms: Algorithms, Human Factors

Keywords: Human Activity, Behavior Identification, PCFG,
Sensor Grammars, Sensor Networks.

1. INTRODUCTION
Sensor networks are emerging as a very promising technol-

ogy for the future, that is already beginning to impact many
aspects of science, engineering and society. As sensor net-
works come closer to everyday life applications, the need for
understanding the behaviors of the phenomena they observe
in physical space is becoming more apparent. In most appli-
cations, intelligent sensors are expected to acquire context
awareness, observe their environments, understand behav-
iors and seamlessly react to provide a set of services to their
users. For instance, sensor networks deployed to provide
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safety in the workplace will be expected to sense the de-
velopment of a hazardous situation, generate warnings and
take steps to avoid it. In construction sites for example,
such a sensor network would prevent workers from falling
into empty elevator shafts or walking under heavy loads
while they are moved by a crane. In security systems, sen-
sor networks are expected to provide proactive intelligence.
They should autonomously recognize suspicious activity and
trigger actions and alarms without requiring humans in the
loop. Furthermore, with the capability of understanding hu-
man motion behaviors in space, one could also envision the
use of sensor networks in entertainment applications.

For a sensor network to be powerful, it needs to be able
to develop a model of the activity that is taking place in the
area that the network senses. This of course involves people
and their actions and it has been subject of research in Sur-
veillance and Computer Vision applications [13, 4, 1, 14].
Among these approaches a recent development [9] proposes
a new framework that has a number of appealing properties.
The framework suggests that the problem of human action
understanding is similar in spirit to the speech understand-
ing problem, where phonemes are replaced by body parts
and their movements indexed on the human silhouette that
is extracted from the video, and morphemes (or words) are
the appropriate grouping of these silhouettes into actions
(verbs), which are then grouped together by syntax. Tech-
niques such as Hidden Markov Models [12] or Probabilistic
Context Free Grammars [15] are successfully used to parse
the videos and recognize human action.

The approach requires the application of various filters
in order to discover primitives and it may need more com-
putational power than the one available to the sensor net-
works that we are studying. We can however capitalize on
the grammatical structure of human behavior as it is ex-
emplified in the work described before, and propose a new
generic framework for analyzing large scale human behavior
using sensor networks with minimal computational capacity
and communication capabilities. We believe that before a
sensor network discovers that two persons exchanged their
briefcases in a corridor, it should be able to idenitfy simpler
things like where people are going. Suppose, for example,
that we wish to monitor (and reason about) the movement of
people inside a building. Then we can write grammars spec-
ifying the behaviors we wish to capture and thus turn the
interpretation problem of the sensor network to a sensory
parsing problem. Depending on the behaviors that need to
be understood, the grammars may be context free or context
sensitive, thus creating an interesting complexity hierarchy



in the space of sensor networks. By posing the problem in
this way we avoid ad hoc development where one tailors the
algorithms to the particular application. Instead, we would
like to pose a large class of questions surrounding the in-
terpretation of the signals from sensor networks as parsing
problems, where the behavior of interest can be specified
by a grammar (or any other equivalent or similar mecha-
nism, such probabilistic grammars, Petri nets, etc.). The
parsing problems become especially interesting because we
enforce constraints about communication and computation.
Our nodes (sensors) will be able to transmit few bytes to
other nodes (neighbors) and will have restricted computa-
tion capabilities.

In this paper we present such an approach. We develop a
framework of hierarchical sensory grammars to parse out ob-
servable activities into a set of distinguishable actions. The
power of such framework comes from the hierarchical orga-
nization of reasoning. This allows the use of simple localized
sensor measurements to reason about more macroscopic be-
haviors taking place in space and time. At the lowest lev-
els of the grammar hierarchy, a grammar converts sensor
measurements into a set of symbols that become the inputs
of higher order grammars. Each grammar in the hierar-
chy produces an output that interprets and summarizes its
inputs and thus effectively reduces the data that need to
be propagated to the higher layers. Our approach offers
several favorable attributes for sensor network implementa-
tion. Computations are lightweight, training is confined to
the lowest layer of the hierarchy, and grammar hierarchies
map naturally to network hierarchies.

Our framework has three main components: 1) phonemes,
2) hierarchical grammar construction and 3) messag-
ing model. To realize this framework, in section 3 we will
describe phonemes, Probabilistic Context Free Languages,
grammar hierarchies and messaging models. In section 4 we
will provide a concrete example of our framework based on
location data that were acquired by our camera sensor net-
work testbed. Although our presentation focuses on the in-
terpretation of motion behaviors in physical space, the same
framework could be applied to recognize other more abstract
behaviors such as the identification of network faults or to
identify patterns in sensor data.

2. PARSING BEHAVIORS IN SENSOR
NETWORKS

The need for recognizing behaviors comes at all levels of a
sensor network hierarchy during the data collection process.
In many applications, it is more practical to filter out re-
dundant information as close to the sensors as possible so
as to reduce the computation and communication require-
ments across the network. At the same time, we would like
to interpret the sensed information so that the network can
understand what is happening in the physical world and
provide a response. Camera sensor networks are a good
example for this requirement. Camera sensors can provide
qualitatively and quantitatively better information about a
scene. Communicating and processing images across the
network however is an expensive process requiring signifi-
cant communication and processing bandwidth. A better
approach would be to process the image information locally
at the node level. Nodes in the network can then interpret
a behavior by exchanging short packets containing symbolic
information about their sensors.
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Figure 1: Deployment Scenario.

Our framework creates a modularized stack, as shown in
Figure 1, that bears similarities to languages. Intelligent
sensors at the physical layer will extract a set of features
from the environment that are analogous to phonemes in
natural language(Level 0). These phonemes will eventually
be interpreted into actions (or verbs), sentences, paragraphs
and stories that describe the happenings inside the sensor
network(Level 1 to Level N). The proposed framework can
be applied sequentially and across the network to interpret
behaviors that unfold in space and time.

2.1 Challenges in parsing behaviors
The lack of global information on individual sensor nodes

makes the problem of training the sensor network to parse
macro-behaviors extremely challenging. In particular, the
training of the sensor network should be:

1. Topology/Location independent: The detection
and recognition of behaviors is independent of the location
in the network where the behavior takes place. Therefore,
the training data for such a sensor network should not embed
any location or topology information.

2. Scaling independent: The detection and recognition
of a behavior is independent of the scale of the behavior.

For instance, consider a sensor network that recognizes
people moving on a circle in a room. The topology/location
independence rule implies that the “moving on a circle” be-
havior is the same independently of the location in the room
where it is performed. “Moving on a circle” close to the exit
of the room is the same as “moving on a circle” in the middle
of the room. The scaling independence rule implies that the
“moving on a circle” behavior is independent of the actual
size of the circle. The motion pattern of a human moving
on a circle of 1m radius is the same as the motion pattern
of a human moving on a circle of 5m radius.

The above two requirements have to be enforced on the
training of the sensor network for two main reasons:

(i) Size of the training data: Differentiating among the
same behaviors that take place at different locations in the
network or among behaviors that appear at different scales,
would create a huge training data set.

(ii) Network scalability: This huge training data set
would also depend on the topology and the size of the net-
work affecting the flexibility and scalability of the network.
If a number of nodes dies or a number of nodes is added to



the network, the topology and relative locations of the nodes
automatically change, dictating the partial re-training of the
sensor network.

To avoid running into scalability issues, our framework
simplifies the extend of training required by the sensor net-
work by adopting a hierarchy of grammars. Instead of re-
quiring to train the network for all behaviors, we structure
our framework so as to simplify and reduce the amount of
required training. The grammar at the bottom of the hi-
erarchy operates directly on the sensor measurements and
converts them into a more symbolic form, that becomes the
input for higher order grammars. This structure not only
reduces the amount of training required but also facilitates
the interaction of multiple sensing modalities at the higher
levels of the hierarchy. If one is able to design a grammar (or
engineer sensors) in a way that a Level-0 grammar can con-
vert the measurements into a more symbolic form, then one
could use the outputs of multiple Level-0 grammars that
represent multiple sensing modalities, as inputs to higher
level grammars that reason about behaviors.

2.2 Case Study using Tracking Data
To make our presentation more concrete, we present our

framework in the context similar to tracking applications
which have been well studied in sensor networks. The study
case that will be discussed in detail in section 4, uses a trace
of location data (a time series of location measurements)
extracted form a camera sensor network testbed. As we
will explain later on, our testbed is configured to generate a
stream of locations when observing a single target moving
along the sensor field. The framework we will describe in
the next section will use this ”tracking” data to parse the
motions of the target into lines, left and right turns, U-turns
and S-turns. To simplify our discussion, throughout the
paper we assume that the system observes a single target,
and that the fields of view of the camera sensor nodes are
non-overlapping. Before describing this in more detail we
first describe the framework design methodology.

3. FRAMEWORK DESIGN
METHODOLOGY

To realize our framework in this section we discuss four
main topics: 1. Identifying the phonemes, 2. Specifying the
grammar, 3. Hierarchical Language Construction, and 4.
Messaging Model.

3.1 Identifying the Phonemes
Phonemes are the most fundamental component of the

framework. The network designer must know the applica-
tion well enough to specify a set of terminal symbols for the
language. An important direction of our framework is that
these phonemes should be specified in a way that will allow
their use at the node and sensor level. Ideally, the sensor
should be intelligent enough to output features that can be
used as phonemes. This implies that a Level-0 grammar
would be embedded in the sensor node hardware. Alterna-
tively, the sensor node processor will have to interpret raw
sensor data as phonemes. By confining as much as possi-
ble the production of phonemes to a Level-0 grammar, we
essentially confine the training requirements to the sensor
node level. Once the phonemes are successfully extracted,
the rest of the network will be able to interpret complex

behaviors by operating on a vocabulary generated at each
level of the hierarchy.

In human language recognition, speech processing oper-
ates on the language phonemes. In computer vision, these
terminal symbols can be the keyframes extracted from a se-
quence of images observing and action. These keyframes are
the minima and maxima points in motion behaviors that are
sufficient to describe a behavior [9]. Handwriting recognition
approaches use direction, angle or velocity information [2].
In our case study, the phonemes are straight lines inferred
from a set of direction vectors extracted from a camera sen-
sor.

3.2 Specifying the PCFG
Before delving into the details of PCFGs we have to first

define context-free grammars [15]. A context-free grammar
G is an ordered quadruple 〈VN , VT , Start, Pr〉 where:

• VN is an alphabet of non-terminal symbols.

• VT is an alphabet of terminal symbols.

• VN ∩ VT = ∅. V = VN ∪ VT is called the vocabulary.

• Start ∈ VN is the start symbol.

• Pr is a finite nonempty subset of VN × V ∗ called the
production rules.

The set of all strings that are composed of non-terminal,
terminal or both non-terminal and terminal symbols are rep-
resented by V ∗N ,V ∗T , and V ∗ respectively. Let capital letters:
A, B, C, . . . represent the non-terminal symbols and small
letters: a, b, c, . . . represent the terminal symbols. The pro-
duction rules of a context-free grammar are then written as:
A → a, where the lefthand side can be any non-terminal
symbol while the righthand side can be any combination of
terminal and non-terminal symbols.

Starting from the start symbol Start and by successively
applying the same or different production rules, differrent
strings can be generated. In general, we say that string
α derives string β (α ⇒ β) if there is a sequence: α =
α0, α1, α2, . . . , αn = β, n ≥ 0, of strings in V ∗ such that:
α0 ⇒ α1, α1 ⇒ α2, . . . , αn−1 ⇒ αn. The language L(G)
generated by a context-free grammar G is the set: L(G) =
{x|Start ⇒ x, x ∈ V ∗T }. In other words, L(G) is the set of
all terminal strings derivable from the start symbol Start.

Having defined in detail the context-free grammars (CFG),
we can describe a probabilistic context-free grammar PG as
a CFG paired with a set of probabilities P = {pij}[15]. This
set of probabilities must satisfy the following rules:

1. For each production Pij ∈ Pr there is one and only
one probability pij ∈ P .

2. 0 < pij ≤ 1,∀i, j

3. For every i with 1 ≤ i ≤ |VN |:
P

1≤j≤ni
pij = 1,

where ni is the number of productions with the ith
non-terminal on the lefthand side.

This definition assigns a constant probability to each pro-
duction rule in grammar G. These production probabilities
can be used to generate probabilities for sentences. The ba-
sic assumption is that the choice of production rules used
in deriving a sentence is “context-free” in the sense that
each rule is chosen independently of all the others in the
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derivation. This allows us to compute the probability of a
sentence as the product of the production probabilities that
were used to generate this sentence. If the same sentence
can be derived in more than one ways then its probability
is the sum of the probabilities of all possible derivations.

3.3 Hierarchical Grammar Construction
Perhaps the most versatile feature of the framework is

the ability to create a hierarchical grammar. At Level-0
the symbols in the vocabulary of the PCFG are obtained
from the sensors, and the probabilities pij for each symbol
need to be obtained by off-line training. When a measure-
ment is obtained, the Level-0 grammar uses the measure-
ment to update the probability for each production (behav-
ior). These outputs become the vocabulary for grammars
in the subsequent levels of the grammar hierarchy. In this
way each level of the hierarchy computes a set of probabil-
ities for each behavior it describes. The lower levels of the
hierarchy infer simple behaviors that help higher levels infer
macro-behaviors.

Consider for example the grammar hierarchy in Fig. 2.
The first three levels inside the grey box describe the hi-
erarchy that we will define in detail in section 4. Level-0
processes inputs from cameras to infer probabilities for four
types of straight lines, pointing north, south, east and west.
The outputs of Level-0 become the terminal symbols for
Level-1, that classifies the line behavior to left, right and
180-degree turns. A Level-2 grammar then operates on the
outputs of Level-1 to infer another set of probabilities for
S-turns and U-turns. A higher level grammar can detect
zig-zag and spirals, that can provide inputs to yet another
grammar to infer what a person does at the room level (i.e
walking in circles, dancing etc). Similarly, one could expand
the hierarchy both horizontally, by including more sensing
modalities, or vertically to infer activities in a room, floor,
building, neighborhood, town.

This example demonstrates the promise of hierarchical
grammars. Each level of the hierarchy interprets the out-
put of the previous level and summarizes the information
into a higher order behavior. Through such hierarchy one

can correlate measurements from a local scale to infer a be-
havior that takes place at a more macroscopic level. When
mapped onto a network hierarchy, a grammar hierarchy hon-
ors a very desirable attribute for communication in sensor
networks. Each grammar level interprets information and
produces outputs in more compact form, that reduces the
amount of data that needs to be propagated across the net-
work hierarchy. This is explained in more detail with the
messaging model.

3.4 Messaging Model
The messaging model specifies how information flows across

the grammar hierarchy, and between nodes in the network.
To explain the messaging model let us consider two neigh-
boring nodes A and B with adjacent, non-overlapping sens-
ing regions observing a target moving across the sensing
region of A and into the sensing region of B. Each node
runs an instance of the three-level grammar hierarchy of our
example application. Every time there is a new observation,
the node that made the observation updates the probabili-
ties of detection for all the behaviors at all the levels of its
grammar hierarchy.

When the target moves out of the sensing range of node A
into the sensing range of node B, node A has to transmit its
update probabilities to node B to continue the computation.
In particular, given a PCFG G and a string w1w2 . . . wn we
want to find the most probable parse tree in the grammar
for the given string:

argmaxtreeP (tree|w1 . . . wn, G) (1)

Note that the maximization problem in the last equation
is a global maximization problem since information about
the whole string is required. However, in the case of a dis-
tributed sensor network, nodes make local observations and
they are not aware of the observations made at other nodes.
This means that each node can observe only a substring of
w1w2 . . . wn at different places in space and time. Conse-
quently, such a global maximization would be feasible only
if all nodes were communicating their local observations to a
central node, where the actual maximization problem could
be solved.

Fortunately, it turns out that the global maximization
problem in equation 1 can be decomposed to a set of local
maximization problems. This can de done using a dynamic
programming algorithm called the Viterbi search path algo-
rithm [3]. Given the PCFG G and the string w1w2 . . . wn we
want to find the most probable derivation tree of the given
string. Let V [X, i, j] be the maximum probability of any sin-
gle derivation of the string wi . . . wj−1 from the non terminal
symbol X. Then, in normal Chomsky form ∀j > i + 1:

V [X, i, i + 1] = P (X → wi) (2)

V [X, i, j] = maxi<k<j
X→Y ZP (X → Y Z)V [Y, i, k]V [Z, k, j] (3)

The last set of equations shows that the initial global max-
imization problem can be decomposed to a sequence of local
maximization problems. This means that the sensor node
that makes the kth observation (node B in our example)
needs to run a local maximization problem based on: 1) its
local observation, 2) all the possible production rules of the
grammar based on its local observation, and 3) the result
of the local maximization on the sensor node that made the
k − 1 observation (node A in our example).



Figure 3: Hierarchical behavior interpretation using
a sensory grammar.

Note that the only non-local information needed by the
node that makes the kth observation is the result of the
maximization on the sensor node that made the k−1 obser-
vation. In addition, all the local maximizations performed
for the observations 1, 2, . . . , k − 2 are not needed at step k
because all this information is already embedded in the max-
imization performed at the k− 1 step. Note that the actual
amount of data that needs to be transmitted to the node
that computes step k is very small. For instance, the three
level grammar used in our case study in section 4, computes
three probabilities at each level. Assuming that each prob-
ability is stored in a 16-bit variable, then each transition of
a target from the sensing region of one node to the sensing
region of another node will result in the transmission of a
packet carrying 18 bytes of state data. Here we assume that
the packet transmission is triggered by an external handoff
process that recognizes the transition of the target from one
region to the next.

4. CASE STUDY: INTERPRETING BEHAV-
IORS FROM TRACKING DATA

This section describes an instance of the framework that
uses a series of locations in time obtained from a camera
network. Our discussion begins with the use of a binary 1-
bit sensor that can sense presence or absence of a person in
its sensing range. This assumption will be relaxed later on
when we describe our testbed setup. Our goal is to recognize
the motion patterns of a person walking along a corridor
inside a building. More specifically, we are interested in
recognizing left-turns, right-turns, U-turns and S-turns.

4.1 Phoneme and PCFG Specification
Assume that we have a grid of sensor nodes in the cor-

ridor of a building indicating the presence or absence of a
person. The person is only allowed to move in four direc-
tions along this grid: North (N), South (S), East (E), and
West (W). These four symbols are the terminal symbols or
phonemes of the grammar. The sensor grid returns a string
of these phonemes as a person moves through the grid, e.g.,
NNNEESSSSEE.

As a first step, we can define a grammar to detect straight
line movements of arbitrary length along each of the four di-
rections. The four possible straight lines have symbols Ln,
Ls, Le, Lw, which correspond to lines of arbitrary length
along the North, South, East and West directions respec-
tively. A simple grammar for detecting these lines is shown
below. Note that each expansion rule has an associated
probability denoted by the superscript. These probabilities
are currently distributed uniformly, but can be learned in a
real system.

VN = {Start, M, L, Ln, Ls, Le, Lw}
VT = {N, S, E, W}

Start → M (1.0)

M → M L(0.5)|L(0.5)

L → Ln(0.25)|Ls(0.25)|Le(0.25)|Lw(0.25)

Ln → Ln N (0.5)|N (0.5)

Ls → Ls S(0.5)|S(0.5)

Le → Le E(0.5)|E(0.5)

Lw → Lw W (0.5)|W (0.5)

We can use this grammar to parse a string such as the fol-
lowing: “NNNEESSSSEE”, and create a more compact rep-
resentation from it such as “Ln Le Ls Le”, which says that
the motion which took place comprised just three straight
line motions. Before we go further, let us define a device
or process which we call a Repeater, which takes any string
of symbols, and returns a string with all symbols duplicated
except the first and the last symbol. For example, if we pass
the string “Ln Le Ls Le” to the repeater, it returns “Ln Le
Le Ls Ls Le”. Note the repetition of the middle “Le” and
“Ls”. Having this process is necessary since some symbols
are shared by subtrees in higher grammars.

At the next level, we can define a grammar of single turns,
which takes as input the output of the grammar of straight
lines after passing through a Repeater. The output of the
grammar of straight lines was “Ln Le Ls”, which the Re-
peater changed to “Ln Le Le Ls Ls Le”. This string can be
parsed by the grammar of single turns shown below.

VN = {Start, M, T, Lt, Rt, Πt}
VT = {Ln, Ls, Le, Lw}

Start → M (1.0)

M → M T (0.5)|T (0.5)

T → Lt(0.33)|Rt(0.33)|Πt(0.33)

Lt → Ln Lw(0.25)|Lw Ls(0.25)|Ls Le(0.25)|Le Ln(0.25)

Rt → Ln Le(0.25)|Le Ls(0.25)|Ls Lw(0.25)|Lw Ln(0.25)

Πt → Ln Ls(0.25)|Ls Ln(0.25)|Le Lw(0.25)|Lw Le(0.25)

This grammar defines three simple turns, the left turn (Lt),
the right turn (Rt), and the in-place 1800 turn (Πt). Given
the string “Ln Le Le Ls Ls Le”, this grammar can reduce it
to a sequence of three simple turns “Rt Rt Lt”.

We can now pass this output through another Repeater to
get “Rt Rt Rt Lt”. This string is now ready to be parsed by
an even more complex grammar of two turns. This grammar
consists of a Uturn which involves two consecutive turns in
the same direction, or an Sturn which involves consecutive
turns in opposite directions.
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VN = {Start, M, T, U − turn, S − turn}
VT = {Rt, Lt}

Start → M (1.0)

M → M T (0.5)|T (0.5)

T → U − turn(0.5)|S − turn(0.5)

U − turn → Rt Rt(0.5)|Lt Lt(0.5)

S − turn → Rt Lt(0.5)|Lt Rt(0.5)

The given string “Rt Rt Rt Lt” can be now condensed to
“Uturn Sturn”.

In the same manner, we can continue to define more com-
plex behaviors such as a zigzag motion (which consists of
alternate U and S turns), or a spiral motion (which is a se-
quence of U turns). If we have to identify closed curves such
as a square shape, we can do so by augmenting or lexicaliz-
ing the context-free grammar with step counts, since closure
requires us to keep track of the number of transitions of the
person in each direction in the grid. Another option is to
use a context-sensitive grammar. Figure 3 shows how such a
hierarchy of increasingly complex behaviors may be created
by starting out with simple behaviors such as straight lines
and turns.

4.2 Message Passing
The messages exchanged fall into two different categories:

the internal and the external messages. Internal message
passing describes the communication between the different
layers of the grammar hierarchy that co-exist on the same
node. The output of each level becomes the input for the
level right above it. This communication is triggered by the
local observations and does not involve any radio commu-
nication. Conversely, whenever the target exits the field of
view of node A and enters the field of view of node B, a mes-
sage containinng the output of each level running on node
A is sent from node A to node B. In our implementation
this will result in a packet containing 18 bytes of data.

5. EVALUATION
To validate the proposed framework we used a fraction of

our camera-based sensor network testbed. Our test config-
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uration is comprised of a 4× 4 grid of XYZ sensor nodes [8]
equipped with a low-power camera module from Omnivision
(OV7649). The cameras are attached to the ceiling facing
into the room as shown in Fig. 4. These nodes can localize in
their image plane a mobile node carrying a bright red LED.
The mobile node is used to emulate the motion of an indi-
vidual walking along a corridor. Each node is programmed
to capture images at 4 frames per second, and identify the
image coordinates of the red LED in the scene with the same
frequency. The camera network is pre-calibrated and uses
the LED image coordinates at consecutive frames to com-
pute motion vectors for the LED. 3-D Node localization and
camera calibration can also be performed online using the
implementation we previously described in [7].

The data recorded using our testbed was used to simulate
the performance of the proposed hierarchical grammar. We
used the PCFG implementation in the Natural Language
Toolkit (NLTK, http://nltk.sourceforge.net), which incoor-
porates a Viterbi-style parser for PCFGs. NLTK’s PCFG
parser is a bottom-up parser that uses dynamic program-
ming to find the single most probable parse for a sequence of
observed events (motion vectors in our case). It parses its in-
put by iteratively filling in a most probable constituents ta-
ble. This table records the most probable tree structure for
each span (number of observed events combined together)
and node value (terminal or non-terminal symbol). In par-
ticular, it has an entry for every start index, end index,
and node value, recording the most probable subtree that
spans from the start index to the end index, and has the
given node value. Once the table has been completely filled
in, the parser simply returns the entry for the most proba-
ble constituent that spans the entire input, and whose node
value is the start symbol.

The output of our simulations are the most probable parse
trees generated from the Viterbi parser. In other words, for
every sequence of motion vector observations that is given
as input to our simulation tool, we report the most prob-
able parse tree for every level of the proposed hierarchical
grammar. Each parse tree represents the behavior that was
detected at each level based on the input data.

5.1 Experimental Results
In our first experiment each camera-enabled sensor node

records the point of entrance and point of exit of the moving
target on the image plane, and computes a motion/direction
vector using the localization algorithm from [7]. This direc-
tion vector is then mapped into one of the four possible
phonemes N, S, E, and W. In particular, the phoneme that
minimizes the directional difference from the measured di-
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Figure 7: Most probable parse trees for (a) Level 0
(b) Level 1 (c) Level 2. The output of the grammar
is the correct motion behavior: “S-turn”.

rection vector is chosen. This setup corresponds to a 4x4
grid of camera nodes where each node records only one mo-
tion vector. To evaluate the accuracy of the proposed hier-
archical grammar, a moving person performed several right
turns, S-turns and U-turns covering a large fraction of the
monitored area every time. The typical most probable parse
trees for each one of these motion behaviors can be seen in
Figures 6,7, and 10. In all cases the hierarchical grammar
identifies the correct motion behavior.

To better understand how the proposed framework iden-
tifies behaviors at different levels let us consider the case of
the S− turn pattern in Figure 5. The motion pattern takes
place in 4 different squares(camera-enabled sensor nodes)
inside the 4× 4 grid. Each sensor node observes a phoneme
(N, S, E, or W) as it was described earlier. In that way, the
S − turn can now be expressed as an ordered sequence of
phonemes: “W S S W”. This ordered sequence of phonemes
is given as input to the first level grammar(Figure 7(a)).
The output of this level is a new ordered sequence: “LwL-
sLw”. The output of the first level is fed to a repeater and it
becomes: “LwLsLsLw”. The second level of the hierarchical
grammar(Figure 7(b)) transforms this sequence to: “LtRt”.
The new sequence is fed to the third level grammar after
passing through a repeater. By definition, the repeater will
not change the sequence “LtRt”. The third level grammar
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Figure 8: Most probable parse tree (4 × 4 grid) for
the Level 0. No result is produced for Levels 1 and
2. The output of the grammar is: “Ls”.
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Figure 9: Most probable parse trees (8× 8 grid) for
(a) Level 0 (b) Level 1 (c) Level 2. The output of the
grammar is the correct motion behavior: “S-turn”.

(Figure 7(c)) translates this sequence to an S − turn which
is the initially performed behavior.

5.2 Sampling Implications
In order to verify how the accuracy of the proposed hi-

erarchical grammar is affected by the grid resolution, we
applied the same set of turns, S-turns and U-turns on grids
of different sizes: 8 × 8 and 20 × 20. We simulated those
grid sizes using the 4×4 sensor network grid. Each camera-
enabled node segmented its image plane to a 2×2 and 5×5
grid. In that case, each camera records a direction vector for
every square grid on its image plane. The results of our ex-
periments were not differentiated from the results shown in
Figures 6, 7, and 10. The main difference was in the depth
of the parse trees. This shows that the proposed hierarchy
of grammars scales well with the grid resolution.

The motion patterns that were used in the previous exper-
iments were covering a large fraction of the monitored area.
To push the system to its limits, we also created a new data
set where a person was performing small scale S-turns that
were covering only a small fraction (approximately 15%) of
the monitored area. We gathered data for 3 different con-
figurations: 4× 4, 8× 8, and 20× 20 grids. The results for
each configuration can be seen in Figures 8, 9, and 11. It is
clear that in the case of the 4 × 4 grid (Figure 8) the out-
put of the grammar is wrong since the performed behavior
is not detected. The main reason is the fact that we are
recording only one direction vector per square grid. When
the scale of the motion pattern is small and the grid resolu-
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Figure 10: Most probable parse trees for (a) Level 0, (b) Level 1, (c) Level 2. The output of the grammar is
the correct motion behavior: “U-turn”.

tion is low, using only one direction vector per square grid
is not enough because drastic changes in motion behavior
might be undetected. For instance, consider the S − turn
shown in Figure 5. If a 2 × 2 grid were used instead of a
4× 4 grid, then the ordered sequence of observations would
change from: “W S S W” to “S S”. While the former se-
quence of observations provides enough information for the
grammar to identify the S − turn the latter does not. This
problem could be addressed by segmenting the image plane
of a camera to a virtual grid as it was described before.
Keeping track of a direction vector per square grid on the
image plane allows the camera-enabled sensor node to col-
lect the information required to classify the performed mo-
tion pattern. This approach is verified by the results shown
in Figure 9. Higher grid resolution allows the collection of
more information about the observable motion pattern lead-
ing to its correct classification. However, as Figure 11 shows
the resolution of the grid cannot be arbitrarily high. In the
case of the 20×20 grid the oversampling of the observed mo-
tion pattern leads to a wrong classification. These results
show that for a given sensor network coverage, there is a
minimum and a maximum scale of the behavior that can be
identified. Formalizing the correlation between the coverage
of the sensor network and the bounds that it sets on the
scale of the behavior that can be detected is an interesting
research problem that needs to be considered.

6. RELATED WORK
The topic of inferring high-level behaviors from low-level

sensors is also studied by Patterson et. al. in [11]. This
approach is based on particle filters and it is used to study
behaviors of buses on bus routes using GPS sensors. This ap-
plication bears many similarities to our case study but our
approach is significantly different and designed to exploit
hierarchical inference with lightweight computation. More
examples of inference work applied to assisted living using
RFID sensors can be found in [5],[6]. Paskin and Guestrin
proposed a very promising inference framework for sensor
networks [10]. This work proposes a robust architecture

comprised of spanning tree creation, junction tree creation
and message passing. Applications of this architecture to in-
ference, regression and optimization has shown that a struc-
tured way of reasoning can provide very favorable results.
Our framework also tries to provide a structured way of rea-
soning but focuses more on the hierarchical properties and
on specifying a grammatical format to reasoning that can
scale vertically to reason about macroscale behaviors.

In our framework similar functionality could be achieved
using Hidden Markov Models instead of PCFGs [15]. PCFGs
however are more general and more expressive and can be
used to describe a large family of HMMs. Using a small set
of simple grammar rules we can define families of HMMs,
where each family models similar motion behaviors. This
representation does not only reduce memory requirements
but also makes the reconfiguration of the sensor network
easier and more efficient. Instead of changing the defini-
tion of a large number of HMMs, in order to detect different
type of motion behaviors, we can simply change only a small
set of rules on each node. This small set of rules captures
exactly the same information as a large number of HMMs.

7. CONCLUSIONS AND FUTURE WORK
We have described a novel framework for interpreting be-

haviors in sensor networks. Complex behaviors can be ex-
pressed in a hierarchy of probabilistic context-free grammars
whose vocabulary is a set of events that are extractable from
the processing of sensor data at different levels of complex-
ity. We presented a concrete example for a “real sensor
network” that the community is building and studying, es-
pecially one with strong constraints on communication and
computation, and demonstrated that the problem of inter-
preting a set of behaviors amounts to parsing the temporal
evolution of the sensor network data (or rather extracted
primitive events). Of course, our initial implementation of
the proposed framework is simplified by assuming idealized
inputs and considering only a single sensing modality but it
clearly demonstrates the capabilities of our framework. This
initial exposure also revealed that implementing and main-
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Figure 11: Most probable parse trees (20× 20 grid) for (a) Level 0 (b) Level 1 (c) Level 2. The output of the
grammar is : “U-turn S-turn U-turn”.

taining grammars in a distributed network is an interesting
research problem that needs to be explored. The formalism
of our framework gives rise to several applications of sensor
networks in everyday life situations such as assisted living,
security, entertainment and workplace safety. This formal-
ism is very powerful because each level in the hierarchy can
be viewed by higher layers as a black box. Each layer infers
and summarizes information using lightweight computations
and thus effectively reduces the amount of data that needs
to be propagated across the network and the network hier-
archy. These properties provide a simple, modular, yet very
scalable framework that can potentially enable the creation
of complex sensor systems.
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