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Abstract 
In this paper we address two related challenges in multimodal 
local search applications on mobile devices: first, correctly 
displaying the business names, and second, harvesting 
language model training data from an inconsistently labeled 
corpus.  We investigate the impact of common text 
normalization and the quality of language model training 
corpus on the accuracy of displayed results.  We propose a 
new language model framework that eliminates the need for 
explicit inverse text normalization.  The same framework can 
be applied to sift through corrupted language model training 
data. Our new language model is 25% more accurate while 
25% smaller in size. 
Index Terms: text normalization, inverse text normalization, 
language model, multimodal, voice search, transduction, 
language resources. 

1. Introduction 
Text Normalization (TN) has become a common practice in 
the development of various applications with a voice user 
interface, such as automated directory assistance (ADA) 
[1,2].  While this process [3,4] (e.g. “Kwik Kopy” -> “Quick 
Copy”, “4X4” -> “Four by Four”) improves speech 
recognition efficiency and accuracy, as well as the recall of 
the search, it poses challenges on Inverse Text Normalization 
(ITN), or Pretty Print, in multimodal voice search 
applications[5] where recognized utterances have to be 
displayed in original business names for users to verify.  For 
example, if the word “Rite” is text-normalized (TNed) to 
“Right”, then the task of ITN is to convert the recognized 
phrase “Right Aid” back to “Rite Aid”.  Without correct ITN, 
the text normalized name “Right Aid” will be displayed and 
create a confusing user experience of not knowing if the 
incorrect display form is really what the user wanted. 

The adoption of Statistical Language Models (SLM) in 
voice search [5,6,8,9] has shown great potential in adding 
robustness and in improving task completion rates.  
Unfortunately, the data available (source feed, web queries, 
human transcribed utterances, caller confirmed recognition 
results, etc,) is never “clean”, that is, the data is either 
inconsistently labeled, incompatible, or irrelevant to the task.  
It requires substantial development efforts to clean up the 
data, and thus limits this approach from reaching its potential. 

In this paper, we present a novel ITN framework to 
prevent context information from being lost in TN so as to 
preserve original business names.  We then show that ITN can 
also be used to clean up a corrupted corpus to achieve better 
system performance. 

This paper is organized in three parts. Section 2 describes 
the TN and ITN process in our voice search application.  We  
compares the baseline unigram-based ITN with our proposed 
new approach using longer context and then shows a novel 

implicit ITN LM architecture that uses the unified LM to 
eliminate the need for a decoder after speech recognition. 
Section 3 discusses why salvaging a corrupted corpus can be 
viewed as an ITN task, and demonstrates that our new implicit 
ITN framework provides a principled approach to this 
problem.  Finally, section 4 reports some findings, challenges 
the common belief of the benefit of traditional TN, suggests 
effective remedies we learned from our experiments, and 
concludes with the discussion.  

2. Text normalization (TN) and inverse 
text normalization (ITN) 

2.1. Text normalization (TN) 

Text Normalization determines the word units in the speech 
recognition and/or synthesis systems.  It is the mostly used 
procedure that speech application developers take to control 
speech recognition performance.   

For ADA and other voice search applications, three types 
of normalization are usually applied: 
� Symbols & Digits (e.g. “#” -> “Number”, “24/7” -> 

“Twenty Four Seven”) - as defined by rules, 
� Homonyms & Abbreviations Replacement (e.g. “G8T” -

> “Great”, both “Lowe’s” and “Loews” -> “Lows”) - as 
defined in a dictionary, and 

� Word Breaking (e.g. “Accuvision” -> “Accu Vision”) – 
as defined using a dictionary and common pre- and 
post-fixes. 

Using more popular words produces a more consistent and 
smaller set of vocabulary and practically eliminates deficiency 
of the letter-to-sound (LTS) module from guessing the 
pronunciations for unseen words.  In addition, in speech user 
interface, it also saves users from answering questions like 
“Are you looking for Alan or Allen?” in situations where they 
can’t see the different spellings. 

For telephony-based directory assistance [1,6] and voice 
search[5], all three TN categories resulted in significant 
improvements in both CPU resources and SR accuracy.   

2.2. Inverse text normalization (ITN) 

For our application, we noticed that roughly 30% of business 
names (e.g. 55,515 out of the 181,438 Seattle based business 
listings) were modified by our TN procedure.  Since we 
decided to display the recognition results on mobile devices 
for users to confirm before sending them to a separate local 
search engine, it quickly became obvious that we needed an 
ITN module to recover the original names. While users or 
search engines might tolerate some incorrect word breakings 
(e.g. “Outback” vs. “Out Back”), they may not accept 
homonyms like “Right Aid Pharmacy” or “Lows Hardware”.   
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A straightforward implementation based on unigram 
popularity was examined but proven to be of insufficient 
accuracy.  As an example, based on word frequency, all the 
words in the “Less Popular” column of Table 1 were “mis-
ITNed” to the “More Popular” form.  Overall, this approach 
made mistakes more than 23% (12,798) of the time (Table 2).  
This motivated us to conduct further investigation and to use 
more context information to improve ITN accuracy. 

 
Less Popular More Popular TN rule 
Right(55) Rite(109) Right 
Allan(32), Alan(110) Allen(130) Allan 
Loews(11) Lowe’s(34) Lows 
Arc(12) Ark(15) Ark 
Kraft(18) Craft(74) Craft 
Total Mistakes (238) Correct(362)  

Table 1: Sample TN distribution & Base Line ITN 

2.3. ITN using N-Gram language model 

We formulated the ITN task in Equation (1) as a typical 
optimization problem similar to the one performed by an 
automatic speech recognition (ASR) system 

)()|(maxarg)|(maxargˆ wpwspswpw
ww

��  (1) 

where s is the recognized text (spoken form), and w is the 
word sequence hypothesis in display form. p(s|w) is the TN 
rule (implemented as a dictionary), and  p(w) is the language 
model (LM) probability.  Since w is the word in the display 
form (i.e. pretty print), this framework calls for two separate 
language models: one for speech recognition and the other for 
ITN.  We used standard trigram to estimate p(w). 

The new approach performed much better than the 
baseline approach and made mistakes on only 3% of all 
business listings (Table 2).  A closer examination found that 
most of the 1898 cases were not actually true mistakes, but 
that the data feed of the listings was not consistent.  For 
example, among the 161 listings of the KeyBank branches, 60 
were listed as “Key Bank” (as two words) and 101 were listed 
as “KeyBank” (one word).  Our new ITN converted all of 
them to the more popular form, “KeyBank”.  We examined 
the 600 sample cases listed in Table 1 and found only three 
mistakes as compared to 238 mistakes in the previous 
approach.  All three were due to very similar contexts in the 
listings. 

 
Description Number   (%) 
Total number of Entries 181,438 100 
Entries modified by TN 55,515 30.6 
Unigram ITN Mistakes 12,798 23.1 
LM ITN Mistakes 1,898 3.4 

Table 2: TN & ITN Performance Statistics 

2.4. Implicit ITN architecture with unified LM 

While our new approach successfully addresses the issue of 
ITN, maintaining and accommodating two separate language 
models and decoders requires unnecessary burden and makes 
this approach less appealing.  In this section, we present a 
new infrastructure that merges the two LMs and eliminates 
the need for a second ITN decoder.  

We chose to keep the ITN LM because it captures context 
necessary for ITN disambiguation.  The word unit is chosen 
as the common denominator of the TN and ITN rules.  For 
example, since “Air Lines” and “Blockbuster” are TNed into 
“Airlines” and “Block Buster”, we use “[Air Lines]” and 
“[Blockbuster]” as word units in our new LM framework to 
indicate they need additional TN pronunciations for the 
purpose of speech recognition.  In our TN process, we apply 
the TN rules for each listing and then align the spoken form 
with the original display form.  A few sample listings with 
their corresponding LM training sentences and spoken forms 
are shown in Table 3. 

 
Listing LM  Training 

Sentences 
Spoken Form 

Delta Air Lines Delta [Air Lines] Delta Airlines 
United Airlines United Airlines United Airlines 
Blockbuster 
Video 

[Blockbuster] 
Video 

Block Buster 
Video 

Table 3: Sample LM training Sentences 

Figure 1 shows an example bigram LM in the form of a 
finite state machine CFG. We augmented our N-Gram CFG 
tool [7] to support the TN pronunciations for these new word 
units in square brackets using grammar sub-rules.  In 
addition, the display form of the special tokens was embedded 
as the name of sub-rules so we could use the parse tree to 
recover the pretty print from the recognition result.  In this 
grammar example, it was clear that the contexts for the words 
“Rite” and “Right” were preserved. 

This unified architecture provides the same ITN results as 
the previous two-LM approach that requires two language 
models, provided that the LM training and decoding settings 
are the same.  However, we do need to maintain additional 
ITN contexts and embed pronunciations as sub-rule and that 
incurs additional computation.  Compared with the original 
CFG w/o ITN capability, the new CFG is roughly 20% larger 
in size and almost 40% more expensive in recognition CPU 
time.  Nevertheless, the unified LM architecture is still much 
more affordable than the two-LM approach and is preferred 
by our product group for its simpler deployment story w/o the 
need of a second ITN LM and decoder. 

 

<S> </S>

Right

[Rite]

Aid

Away

Backoff (<s>) P(</s>)
P(Right

P([Rite])
P(Aid)

P(</s>|Away)

P([Rite]|<S>)

P(Right|<s>)

P(Away|Right)

P(Away)

p (Aid|[Rite])

P(</s>|Aid)

[Rite] </s>Right

backoff

 
Figure 1: Bigram CFG for "[Rite] Aid" and Right 
Away". Thick links are TN sub-rule references.  Links 
w/o label are unigram back offs 

3. Cleanup of a corrupted training corpus 
In our application, statistical Language Models need 

training data to provide synonyms people often use when 
referring to business listings as well as the popularity of each 
listing.  Data comes in different forms from different sources 
and with one thing in common: it is either inconsistently 
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labeled or transcribed.  Since both the quantity and quality of 
the data are important, there is a great need to find an 
automatic framework for cleaning up the corpus as much as 
possible. 

In this section, we first argue that cleaning up corrupted 
LM training corpus can be treated as an ITN process.  We 
then provide quantitative analysis of the improvements in 
both accuracy and CPU resources possible using our 
proposed approach. 

3.1. Data cleaning using ITN 

Knowing how and where the data was collected helps us 
understand the common problems in a corrupted corpus.  
Most of the data came from system logs and were engine-
recognized utterances implicitly confirmed by callers.  
Different systems or even the same system from different 
versions have different TN rules, bugs, or other limitations 
that created the inconsistency (e.g. “Rite Aid” might be left 
untouched, or “Rite” might be TNed to “Right” in some 
versions).  Other data, either transcribed by operators or 
harvested from web queries, is subject to human errors in 
typos, word breakings, homonyms, and styles (e.g. “PF 
Chang’s”, “P F Changs”, “P-F Chang”).  We also found 
some completely irrelevant data that should have been 
rejected. 

No matter where the data is from, we see great similarity 
of the task of data cleanup (Equation 2) and the task of ITN in 
Equation (1), with the exception that d is the display form of 
w in the corrupted corpus.   

)()|(maxarg)|(maxargˆ wpwdpdwpw
ww

��  (2) 

We used the same word units in both tasks so we 
wouldn’t need any further transformation or intermediate data 
forms. Both tasks share the same language model p(w), but 
the new task uses a slightly different dictionary p(d|w) which 
lists the common, or potential, observed inconsistencies (e.g. 
Chang’s has been written as Chang or Changs) for each word 
unit.  In this dictionary, words, whether they require text 
normalization or not, can have multiple definitions.  
Sentences failed to be parsed, perhaps due to OOVs, can be 
examined further to decide whether they should be discarded, 
or fixed by adding new entries into the dictionary. 

3.2. Experimental results 

Our subsidiary Tellme has been developing and hosting their 
telephony-based, end-to-end, directory assistance applications 
for years [9]. They have collected a significant amount of 
transcribed calls and accumulated sophisticated TN rules over 
the years to improve their performance. Their LM training 
sentences data is of high quality and is very rich in terms of 
synonym expansion and listing priors. We used the complete 
set of their data for the Seattle metropolitan area as our 
“corrupted LM training corpus”.  The data is considered 
corrupted, in some senses, to our application because 1) 
potentially different word units were used; and 2) some of the 
transcriptions, unfortunately, did not follow their TN guide 
lines completely.  Notice that it is still much cleaner than most 
data available.  However, as we’ll show later in this section, 
we still gained a significant amount of performance 
improvement after applying our data cleaning algorithm. 

We transcribed 8,697 business listing queries nationwide 
from our multimodal local search application log, and found 
that 400 were located in the Seattle metropolitan area.  In 

order to acquire a larger test set for both speech recognition 
and ITN, we decided to include all queries as long as they 
could be covered by our local listing vocabulary.  
Unfortunately, this created instances in which, queries in 
Chicago for “Sear’s Tower” were included because Both 
Sear’s and Tower  are in our vocabulary, but these cases were 
far and few.   Altogether, we had 7,409 queries. 

In table 4, we compare the strict phrase-level top 1 and N-
best (N<10) accuracy, as well as the grammar sizes for these 
three configurations: 1) baseline w/ only the business listings 
in our data feed; 2) baseline + the LM training corpus as it is; 
and finally, 3) baseline + the cleaned up LM training corpus.  
For all experiments, we used bigrams w/o pruning or 
smoothing.  We can see even the corrupted corpus gave us a 
12% relative gain in the Top1 accuracy, while the cleaned up 
corpus yielded another 25.3% relative gain. A closer 
examination found that the cleaned up corpus contained 36% 
fewer words, reducing the size of our CFG significantly.  The 
clean corpus doesn’t contain any new words that aren’t found 
in our baseline vocabulary.  The 42% increase in CFG size 
(20.1MB -> 28.6MB) came completely from the richer 
synonyms (as in more new bigrams). We believe the big 
accuracy improvement from cleaning up the corpus is 
attributed to the more consistent word units and a smaller 
vocabulary. 

 
Description Top1 TopN Size 

Baseline (feed) 32.9% 39.7% 20.1MB 
w/ Corrupted Corpus 36.7% 50.5% 38.8MB 
w/ Clean Corpus 46.0% 55.5% 28.6MB 

Table 4: Accuracy & Resource Comparison 

4. Discussion 
In this section, we share our observations, discuss new issues 
we have identified, propose pragmatic solutions, and suggest 
future research work. 

4.1. Does multimodal need all TN practices? 

While common TN practices are very useful for speech-only 
systems, we felt that it was uncertain whether we are getting 
the same amount of benefit for multimodal applications where 
ITN is needed.  In the last experiment, we tried to remove the 
TN rules gradually to observe the impact on both the accuracy 
and CPU time.  As we can see from Table 5, removing the 
homonym rules, hyphens, and the breakings from simple 
compound word altogether didn’t affect the accuracy much.  
On the contrary, the CFG size was smaller and recognition 
ran 20% faster. We suspect that the LTS module in our SR 
engine didn’t have any trouble pronouncing those words.     
  

Description Top1 TopN Size 
(MB) 

CPU 
(Sec) 

All TN 46.0% 55.5% 28.6 55.0 
-Homonym 46.0% 55.4% 27.7 52.5 
-Hyphen 46.0% 55.4% 27.5 49.4 
-Compound word 46.0% 55.5% 26.4 44.4 
-&, Letter 45.5% 54.8% 25.7 44.3 
No TN 43.6% 52.6% 27.0 157.4 

Table 5: Accuracy & Cost of TN configuration 

      However as the last row shows, completely removing all 
TN rules, leaving listings like “wwwtopcoat.com” or “A-
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24/7” as they are, hurt the accuracy and made the recognition 
3 times more expensive. The increase in CFG size suggested 
that without the help from TN, numerous poor pronunciations 
were added for these words by the LTS module. 

4.2. How much ITN is necessary? 

Despite the obvious benefits of TN/ITN in telephony-based 
applications, overdoing it could be a potential problem. Not 
only might ITN be useless to users and search engines beyond 
a certain point, but, as mentioned earlier, the feed itself is not 
clean and consistent (e.g. “Keybank” vs. “Key Bank” and 
“Center” vs. “Ctr.”), so attempting to preserve and/or present 
all forms may  actually pose difficulties for users. 

We explored a pragmatic approach to this problem by 
collecting a synonym list. When we processed the feed, we 
ignored variations in the display form within the same set (for 
example, “Mc Donalds,” “Mc-Donald’s,” “McDonald’s,” 
etc.) and replaced them with the most popular form, resulting 
in a cleaner vocabulary for the following steps.  The same list 
was also used in cleaning up the LM training corpus. 

Currently, this step is largely a manual process and new 
entries can be easily added in as required.  In the mean time, 
we are investigating a more automatic approach by examining 
the navigational queries from the web search and from the 
click-through data. 

4.3. Redundancy in the N-best alternatives 

A related issue was the quality of the N-best list presented by 
our integrated ITN LM.  Usability studies indicated that there 
were many redundant or useless variations even after we had 
the previous issue (“Macy’s” vs. “Macys”) addressed.  Since 
we preserved the display form for everybody, there were 
homonyms in the word units and most of them showed up in 
the recognition N-best list (e.g. “In-N-Out”, “In ‘N Out”, “In 
and Out”, “In & Out”, …etc).  Fortunately, they appeared in 
the correct order. 

The two-LM approach described in section 3.1 guarantees 
that the recognition N-best list contain no homonym phrases, 
and that the ITN LM only return a single best display form for 
each phrase.  However, in the unified ITN framework, not 
much can be done at the grammar level to prohibit competing 
homonyms or similar phrases from appearing on the list.  A 
post-processing step can be taken to discard the N-best entry 
of a display form if it contains the same words as the spoken 
form.  Another pragmatic approach, if proven affordable, 
would be to take a post-processing step to send the N-best list 
to a search engine or to a listing look up table, and to only 
show the lower alternatives if they generate different final 
search results. 

4.4. ITN needs more training data 

Our ITN uses LM context to disambiguate homonyms both 
for displaying recognition results and for cleaning additional 
training data.  However, having only the business listings 
alone is sometimes insufficient. For example, as shown in 
Table 1, both “Lowe’s” and “Loews” are normalized to 
“Lows”.  The business listing data feed only includes 
instances like “Lowe’s”, “Lowe’s Home Improvement”, 
“Lowe’s Hardware” and “Loews Cineplex”.  Our ITN could 
not disambiguate context words like Cinema and Movie 
Theater, from Building Supply and Construction Supply in the 
data corpus and speech queries.  As a result, it fell back to use 
unigram popularity, making the same mistakes that our 
baseline ITN makes. 

Fortunately, just a few additional training sentences is 
enough to completely address this issue.  We have been 
investigating the use of translation models [10] to expand the 
synonym training set.  The expanded synonyms can provide 
adequate contexts to train the ITN LM more effectively. 

5. Conclusions 
Multimodal applications that display recognition results to 
users require ITN for pretty print, which creates new 
challenges for common TN practices.  We proposed a unified 
and self-contained LM framework, which uses the common 
denominator of the display form and the spoken form of the 
listings as word units. The LM captures the context for 
disambiguation, while the CFG topology embeds the display 
form.  We reported significantly improved ITN accuracy in 
our ADA application using our new approach.   

We also showed that this framework provides a principled 
and systematic approach for harvesting and cleaning data 
corpus.  In our application with very limited training data, the 
original data yielded a 12% relative gain in accuracy and the 
cleaned up data yielded a 40% gain.  

Finally, while most common TN practices add benefits to 
speech user interface, not all of them are necessary or 
beneficial for multimodal applications with the pretty print 
requirement.  Our investigations also suggested the need to 
preserve the display form with discretion. 
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