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Abstract

In this paper we address two related challenges in multimodal
local search applications on mobile devices: first, correctly
displaying the business names, and second, harvesting
language model training data from an inconsistently labeled
corpus.  We investigate the impact of common text
normalization and the quality of language model training
corpus on the accuracy of displayed results. We propose a
new language model framework that eliminates the need for
explicit inverse text normalization. The same framework can
be applied to sift through corrupted language model training
data. Our new language model is 25% more accurate while
25% smaller in size.

Index Terms: text normalization, inverse text normalization,
language model, multimodal, voice search, transduction,
language resources.

1. Introduction

Text Normalization (TN) has become a common practice in
the development of various applications with a voice user
interface, such as automated directory assistance (ADA)
[1,2]. While this process [3,4] (e.g. “Kwik Kopy” -> “Quick
Copy”, “4X4” -> “Four by Four”) improves speech
recognition efficiency and accuracy, as well as the recall of
the search, it poses challenges on Inverse Text Normalization
(ITN), or Pretty Print, in multimodal voice search
applications[5] where recognized utterances have to be
displayed in original business names for users to verify. For
example, if the word “Rite” is text-normalized (TNed) to
“Right”, then the task of ITN is to convert the recognized
phrase “Right Aid” back to “Rite Aid”. Without correct ITN,
the text normalized name “Right Aid” will be displayed and
create a confusing user experience of not knowing if the
incorrect display form is really what the user wanted.

The adoption of Statistical Language Models (SLM) in
voice search [5,6,8,9] has shown great potential in adding
robustness and in improving task completion rates.
Unfortunately, the data available (source feed, web queries,
human transcribed utterances, caller confirmed recognition
results, etc,) is never “clean”, that is, the data is either
inconsistently labeled, incompatible, or irrelevant to the task.
It requires substantial development efforts to clean up the
data, and thus limits this approach from reaching its potential.

In this paper, we present a novel ITN framework to
prevent context information from being lost in TN so as to
preserve original business names. We then show that ITN can
also be used to clean up a corrupted corpus to achieve better
system performance.

This paper is organized in three parts. Section 2 describes
the TN and ITN process in our voice search application. We
compares the baseline unigram-based ITN with our proposed
new approach using longer context and then shows a novel

Copyright © 2008 ISCA
Accepted after peer review of full paper

2179

juliano}@microsoft.com

implicit ITN LM architecture that uses the unified LM to
eliminate the need for a decoder after speech recognition.
Section 3 discusses why salvaging a corrupted corpus can be
viewed as an ITN task, and demonstrates that our new implicit
ITN framework provides a principled approach to this
problem. Finally, section 4 reports some findings, challenges
the common belief of the benefit of traditional TN, suggests
effective remedies we learned from our experiments, and
concludes with the discussion.

2. Text normalization (TN) and inverse
text normalization (ITN)

2.1. Text normalization (TN)

Text Normalization determines the word units in the speech
recognition and/or synthesis systems. It is the mostly used
procedure that speech application developers take to control
speech recognition performance.

For ADA and other voice search applications, three types
of normalization are usually applied:

e Symbols & Digits (e.g. “#” -> “Number”, “24/7” -
“Twenty Four Seven”) - as defined by rules,

e Homonyms & Abbreviations Replacement (e.g. “G8T” -
> “Great”, both “Lowe’s” and “Loews” -> “Lows”) - as
defined in a dictionary, and

e Word Breaking (e.g. “Accuvision” -> “Accu Vision™) —
as defined using a dictionary and common pre- and
post-fixes.

Using more popular words produces a more consistent and
smaller set of vocabulary and practically eliminates deficiency
of the letter-to-sound (LTS) module from guessing the
pronunciations for unseen words. In addition, in speech user
interface, it also saves users from answering questions like
“Are you looking for Alan or Allen?” in situations where they
can’t see the different spellings.

For telephony-based directory assistance [1,6] and voice

search[5], all three TN categories resulted in significant
improvements in both CPU resources and SR accuracy.

2.2. Inverse text normalization (ITN)

For our application, we noticed that roughly 30% of business
names (e.g. 55,515 out of the 181,438 Seattle based business
listings) were modified by our TN procedure. Since we
decided to display the recognition results on mobile devices
for users to confirm before sending them to a separate local
search engine, it quickly became obvious that we needed an
ITN module to recover the original names. While users or
search engines might tolerate some incorrect word breakings
(e.g. “Outback” vs. “Out Back”), they may not accept
homonyms like “Right Aid Pharmacy” or “Lows Hardware”.
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A straightforward implementation based on unigram
popularity was examined but proven to be of insufficient
accuracy. As an example, based on word frequency, all the
words in the “Less Popular” column of Table 1 were “mis-
ITNed” to the “More Popular” form. Overall, this approach
made mistakes more than 23% (12,798) of the time (Table 2).
This motivated us to conduct further investigation and to use
more context information to improve ITN accuracy.

Less Popular More Popular TN rule
Right(55) Rite(109) Right
Allan(32), Alan(110) | Allen(130) Allan
Loews(11) Lowe’s(34) Lows
Arc(12) Ark(15) Ark
Kraft(18) Craft(74) Craft
Total Mistakes (238) | Correct(362)

Table 1: Sample TN distribution & Base Line ITN

2.3. ITN using N-Gram language model
We formulated the ITN task in Equation (1) as a typical

optimization problem similar to the one performed by an
automatic speech recognition (ASR) system

(1

w =arg max p(w|s)=arg max p(s|w)p(w)
where s is the recognized text (spoken form), and w is the
word sequence hypothesis in display form. p(s|w) is the TN
rule (implemented as a dictionary), and p(w) is the language
model (LM) probability. Since w is the word in the display
form (i.e. pretty print), this framework calls for two separate
language models: one for speech recognition and the other for
ITN. We used standard trigram to estimate p(w).

The new approach performed much better than the
baseline approach and made mistakes on only 3% of all
business listings (Table 2). A closer examination found that
most of the 1898 cases were not actually true mistakes, but
that the data feed of the listings was not consistent. For
example, among the 161 listings of the KeyBank branches, 60
were listed as “Key Bank” (as two words) and 101 were listed
as “KeyBank” (one word). Our new ITN converted all of
them to the more popular form, “KeyBank”. We examined
the 600 sample cases listed in Table 1 and found only three
mistakes as compared to 238 mistakes in the previous
approach. All three were due to very similar contexts in the
listings.

Description Number \ (%)
Total number of Entries 181,438 100
Entries modified by TN 55,515 | 30.6
Unigram ITN Mistakes 12,798 23.1
LM ITN Mistakes 1,898 34

Table 2: TN & ITN Performance Statistics

2.4, Implicit ITN architecture with unified LM

While our new approach successfully addresses the issue of
ITN, maintaining and accommodating two separate language
models and decoders requires unnecessary burden and makes
this approach less appealing. In this section, we present a
new infrastructure that merges the two LMs and eliminates
the need for a second ITN decoder.
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We chose to keep the ITN LM because it captures context
necessary for ITN disambiguation. The word unit is chosen
as the common denominator of the TN and ITN rules. For
example, since “Air Lines” and “Blockbuster” are TNed into
“Airlines” and “Block Buster”, we use “[Air Lines]” and
“[Blockbuster]” as word units in our new LM framework to
indicate they need additional TN pronunciations for the
purpose of speech recognition. In our TN process, we apply
the TN rules for each listing and then align the spoken form
with the original display form. A few sample listings with
their corresponding LM training sentences and spoken forms
are shown in Table 3.

Listing LM Training Spoken Form
Sentences

Delta Air Lines Delta [Air Lines] | Delta Airlines

United Airlines United Airlines United Airlines

Blockbuster [Blockbuster] Block Buster

Video Video Video

Table 3: Sample LM training Sentences

Figure 1 shows an example bigram LM in the form of a
finite state machine CFG. We augmented our N-Gram CFG
tool [7] to support the TN pronunciations for these new word
units in square brackets using grammar sub-rules. In
addition, the display form of the special tokens was embedded
as the name of sub-rules so we could use the parse tree to
recover the pretty print from the recognition result. In this
grammar example, it was clear that the contexts for the words
“Rite” and “Right” were preserved.

This unified architecture provides the same ITN results as
the previous two-LM approach that requires two language
models, provided that the LM training and decoding settings
are the same. However, we do need to maintain additional
ITN contexts and embed pronunciations as sub-rule and that
incurs additional computation. Compared with the original
CFG w/o ITN capability, the new CFG is roughly 20% larger
in size and almost 40% more expensive in recognition CPU
time. Nevertheless, the unified LM architecture is still much
more affordable than the two-LM approach and is preferred
by our product group for its simpler deployment story w/o the
need of a second ITN LM and decoder.

P(Right|<s>)

<S>

P P
=
P

p (Aid|[Rite]

P([Rite]|<S>) P(/s>|Aid)

[Rite]

@D

Figure 1: Bigram CFG for "[Rite] Aid" and Right
Away". Thick links are TN sub-rule references. Links
w/o label are unigram back offs

3. Cleanup of a corrupted training corpus

In our application, statistical Language Models need
training data to provide synonyms people often use when
referring to business listings as well as the popularity of each
listing. Data comes in different forms from different sources
and with one thing in common: it is either inconsistently



labeled or transcribed. Since both the quantity and quality of
the data are important, there is a great need to find an
automatic framework for cleaning up the corpus as much as
possible.

In this section, we first argue that cleaning up corrupted
LM training corpus can be treated as an ITN process. We
then provide quantitative analysis of the improvements in
both accuracy and CPU resources possible using our
proposed approach.

3.1. Data cleaning using ITN

Knowing how and where the data was collected helps us
understand the common problems in a corrupted corpus.
Most of the data came from system logs and were engine-
recognized utterances implicitly confirmed by callers.
Different systems or even the same system from different
versions have different TN rules, bugs, or other limitations
that created the inconsistency (e.g. “Rite Aid” might be left
untouched, or “Rite” might be TNed to “Right” in some
versions). Other data, either transcribed by operators or
harvested from web queries, is subject to human errors in
typos, word breakings, homonyms, and styles (e.g. “PF
Chang’s”, “P F Changs”, “P-F Chang”). We also found
some completely irrelevant data that should have been
rejected.

No matter where the data is from, we see great similarity
of the task of data cleanup (Equation 2) and the task of ITN in
Equation (1), with the exception that d is the display form of
w in the corrupted corpus.

W= arg max p(w|d) = arg max p(d | w)p(w) )

We used the same word units in both tasks so we
wouldn’t need any further transformation or intermediate data
forms. Both tasks share the same language model p(w), but
the new task uses a slightly different dictionary p(d|w) which
lists the common, or potential, observed inconsistencies (e.g.
Chang’s has been written as Chang or Changs) for each word
unit. In this dictionary, words, whether they require text
normalization or not, can have multiple definitions.
Sentences failed to be parsed, perhaps due to OOVs, can be
examined further to decide whether they should be discarded,
or fixed by adding new entries into the dictionary.

3.2. Experimental results

Our subsidiary Tellme has been developing and hosting their
telephony-based, end-to-end, directory assistance applications
for years [9]. They have collected a significant amount of
transcribed calls and accumulated sophisticated TN rules over
the years to improve their performance. Their LM training
sentences data is of high quality and is very rich in terms of
synonym expansion and listing priors. We used the complete
set of their data for the Seattle metropolitan area as our
“corrupted LM training corpus”. The data is considered
corrupted, in some senses, to our application because 1)
potentially different word units were used; and 2) some of the
transcriptions, unfortunately, did not follow their TN guide
lines completely. Notice that it is still much cleaner than most
data available. However, as we’ll show later in this section,
we still gained a significant amount of performance
improvement after applying our data cleaning algorithm.

We transcribed 8,697 business listing queries nationwide
from our multimodal local search application log, and found
that 400 were located in the Seattle metropolitan area. In

order to acquire a larger test set for both speech recognition
and ITN, we decided to include all queries as long as they
could be covered by our local listing vocabulary.
Unfortunately, this created instances in which, queries in
Chicago for “Sear’s Tower” were included because Both
Sear’s and Tower are in our vocabulary, but these cases were
far and few. Altogether, we had 7,409 queries.

In table 4, we compare the strict phrase-level top 1 and N-
best (N<10) accuracy, as well as the grammar sizes for these
three configurations: 1) baseline w/ only the business listings
in our data feed; 2) baseline + the LM training corpus as it is;
and finally, 3) baseline + the cleaned up LM training corpus.
For all experiments, we used bigrams w/o pruning or
smoothing. We can see even the corrupted corpus gave us a
12% relative gain in the Topl accuracy, while the cleaned up
corpus yielded another 25.3% relative gain. A closer
examination found that the cleaned up corpus contained 36%
fewer words, reducing the size of our CFG significantly. The
clean corpus doesn’t contain any new words that aren’t found
in our baseline vocabulary. The 42% increase in CFG size
(20.1IMB -> 28.6MB) came completely from the richer
synonyms (as in more new bigrams). We believe the big
accuracy improvement from cleaning up the corpus is
attributed to the more consistent word units and a smaller
vocabulary.

Description Topl TopN Size
Baseline (feed) 32.9% 39.7% | 20.1MB
w/ Corrupted Corpus 36.7% 50.5% | 38.8MB
w/ Clean Corpus 46.0% 55.5% | 28.6MB

Table 4: Accuracy & Resource Comparison

4. Discussion

In this section, we share our observations, discuss new issues
we have identified, propose pragmatic solutions, and suggest
future research work.

4.1. Does multimodal need all TN practices?

While common TN practices are very useful for speech-only
systems, we felt that it was uncertain whether we are getting
the same amount of benefit for multimodal applications where
ITN is needed. In the last experiment, we tried to remove the
TN rules gradually to observe the impact on both the accuracy
and CPU time. As we can see from Table 5, removing the
homonym rules, hyphens, and the breakings from simple
compound word altogether didn’t affect the accuracy much.
On the contrary, the CFG size was smaller and recognition
ran 20% faster. We suspect that the LTS module in our SR
engine didn’t have any trouble pronouncing those words.

Description TopN Size CPU

(MB) (Sec)
All TN 46.0% | 55.5% 28.6 55.0
-Homonym 46.0% | 55.4% 27.7 52.5
-Hyphen 46.0% | 55.4% 27.5 49.4
-Compound word 46.0% | 55.5% 26.4 44.4
-&, Letter 45.5% | 54.8% 25.7 443
No TN 43.6% | 52.6% 27.0 157.4

Table 5: Accuracy & Cost of TN configuration

However as the last row shows, completely removing all
TN rules, leaving listings like “wwwtopcoat.com” or “A-



24/7” as they are, hurt the accuracy and made the recognition
3 times more expensive. The increase in CFG size suggested
that without the help from TN, numerous poor pronunciations
were added for these words by the LTS module.

4.2. How much ITN is necessary?

Despite the obvious benefits of TN/ITN in telephony-based
applications, overdoing it could be a potential problem. Not
only might ITN be useless to users and search engines beyond
a certain point, but, as mentioned earlier, the feed itself is not
clean and consistent (e.g. “Keybank” vs. “Key Bank” and
“Center” vs. “Ctr.”), so attempting to preserve and/or present
all forms may actually pose difficulties for users.

We explored a pragmatic approach to this problem by
collecting a synonym list. When we processed the feed, we
ignored variations in the display form within the same set (for
example, “Mc Donalds,” “Mc-Donald’s,” “McDonald’s,”
etc.) and replaced them with the most popular form, resulting
in a cleaner vocabulary for the following steps. The same list
was also used in cleaning up the LM training corpus.

Currently, this step is largely a manual process and new
entries can be easily added in as required. In the mean time,
we are investigating a more automatic approach by examining
the navigational queries from the web search and from the
click-through data.

4.3. Redundancy in the N-best alternatives

A related issue was the quality of the N-best list presented by
our integrated ITN LM. Usability studies indicated that there
were many redundant or useless variations even after we had
the previous issue (“Macy’s” vs. “Macys”) addressed. Since
we preserved the display form for everybody, there were
homonyms in the word units and most of them showed up in
the recognition N-best list (e.g. “In-N-Out”, “In ‘N Out”, “In
and Out”, “In & Out”, ...etc). Fortunately, they appeared in
the correct order.

The two-LM approach described in section 3.1 guarantees
that the recognition N-best list contain no homonym phrases,
and that the ITN LM only return a single best display form for
each phrase. However, in the unified ITN framework, not
much can be done at the grammar level to prohibit competing
homonyms or similar phrases from appearing on the list. A
post-processing step can be taken to discard the N-best entry
of a display form if it contains the same words as the spoken
form. Another pragmatic approach, if proven affordable,
would be to take a post-processing step to send the N-best list
to a search engine or to a listing look up table, and to only
show the lower alternatives if they generate different final
search results.

4.4. ITN needs more training data

Our ITN uses LM context to disambiguate homonyms both
for displaying recognition results and for cleaning additional
training data. However, having only the business listings
alone is sometimes insufficient. For example, as shown in
Table 1, both “Lowe’s” and “Loews” are normalized to
“Lows”. The business listing data feed only includes
instances like “Lowe’s”, “Lowe’s Home Improvement”,
“Lowe’s Hardware” and “Loews Cineplex”. Our ITN could
not disambiguate context words like Cinema and Movie
Theater, from Building Supply and Construction Supply in the
data corpus and speech queries. As a result, it fell back to use
unigram popularity, making the same mistakes that our
baseline ITN makes.
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Fortunately, just a few additional training sentences is
enough to completely address this issue. We have been
investigating the use of translation models [10] to expand the
synonym training set. The expanded synonyms can provide
adequate contexts to train the ITN LM more effectively.

5. Conclusions

Multimodal applications that display recognition results to
users require ITN for pretty print, which creates new
challenges for common TN practices. We proposed a unified
and self-contained LM framework, which uses the common
denominator of the display form and the spoken form of the
listings as word units. The LM captures the context for
disambiguation, while the CFG topology embeds the display
form. We reported significantly improved ITN accuracy in
our ADA application using our new approach.

We also showed that this framework provides a principled
and systematic approach for harvesting and cleaning data
corpus. In our application with very limited training data, the
original data yielded a 12% relative gain in accuracy and the
cleaned up data yielded a 40% gain.

Finally, while most common TN practices add benefits to
speech user interface, not all of them are necessary or
beneficial for multimodal applications with the pretty print
requirement. Our investigations also suggested the need to
preserve the display form with discretion.
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