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Abstract
and will heavily influence the effectiveness of the subsequent auction mechanism. However, most existing ad selection

Advertisement (ad) selection plays an important role in sponsored search, since it is an upstream component

methods regard ad selection as a relatively independent module, and only consider the literal or semantic matching between
queries and keywords during the ad selection process. In this paper, we argue that this approach is not globally optimal.
Our proposal is to formulate ad selection as such an optimization problem that the selected ads can work together with
downstream components (e.g., the auction mechanism) to achieve the maximization of user clicks, advertiser social welfare,
and search engine revenue (we call the combination of these objective functions as the marketplace objective for ease of
reference). To this end, we 1) extract a bunch of features to represent each pair of query and keyword, and 2) train a
machine learning model that maps the features to a binary variable indicating whether the keyword is selected or not, by
maximizing the aforementioned marketplace objective. This formalization seems quite natural; however, it is technically
difficult because the marketplace objective is non-convex, discontinuous, and indifferentiable regarding the model parameter
due to the ranking and second-price rules in the auction mechanism. To tackle the challenge, we propose a probabilistic
approximation of the marketplace objective, which is smooth and can be effectively optimized by conventional optimization
techniques. We test the ad selection model learned with our proposed method using the sponsored search log from a
commercial search engine. The experimental results show that our method can significantly outperform several ad selection
algorithms on all the metrics under investigation.

Keywords advertisement selection, sponsored search, probability model

1 Introduction vertisers are required to open accounts in the sponsored
search system, create ad campaigns under each account,
and upload a group of ads (together with keywords and
bids) into each campaign. Given a query submitted by

a user, the sponsored search system selects a set of key-

Sponsored search is the main monetization chan-
nel for the commercial search engines. In sponsored
search, the paid advertisements (ads) are presented to

users along with the organic search results. First, these
ads bring values to the users, in terms of product in-
formation, significant discount, etc. Second, these ads
certainly bring values to the advertisers, since their
marketing campaigns reach the target audience. Third,
these ads also bring values to the search engine, since
the search engine will gain revenue once the ads are
clicked by the users.

Putting it simple, today’s sponsored search systems
basically work in the following manner. First of all, ad-

words by using an ad selection algorithm. Then all the
ads that bid on the selected keywords will be fed into
the downstream modules in the sponsored search sys-
tem. Next these ads will go through an auction process.
The auction mechanism determines which of these ads
will be shown to users (according to a ranking rule)
and how much they need to pay if they are clicked by
the user (according to a pricing rule). The generalized
second-price auction (GSP)"? is one of the most popu-
larly used auction mechanisms. With GSP, the ads are
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ranked in the descending order of the rank score, which
is defined as the product of the ad quality score and the
bid. Quality score is an estimation of how relevant the
ad, keywords, and landing page are to the search en-
gine user who is seeing the ad. Sometimes, people use
the predicted ad click probability as the quality score.
However, it is not a necessity, though both scores can
indicate the quality of the ad. In some research and in-
dustry practice, the predicted ad click probability and
the ad quality score are regarded as two signals. We
will take the latter setting in this paper. In the ranked
ad list, the top-ranked ads are shown to the web user.
If the user clicks on some of the ads, the owner of the
clicked ads will be charged according to a second-price
rule, i.e., the payment is the minimum bid for the ad
to win its current rank position. The process is shown
in Fig.1.

As can be seen from the above description, the ad
selection algorithm resides in the upstream of the spon-
sored search system. It determines which ads (more
accurately, which keywords bidden by the ads) will be
fed into the auction mechanism. Therefore ad selection
plays a very important role. Garbage in, then garbage
out. If the ad selection result is bad, it is almost impos-
sible for the sponsored search system to deliver relevant
ads to users, help the right advertisers to achieve their
campaign goals, and help the search engine gain desired
revenue.

There has been a rich literature on ad selection. We
group the existing ad selection algorithms into two cate-
gories. The first category of methodsl®# mainly relies
on the relevance between queries and keywords. They
often expand the queries and/or keywords using addi-
tional text streams like organic search results, ad copies,
and landing pages, when computing the relevance score.
The second category of methods!®”) performs ad selec-
tion based on the semantic relationship between queries
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and keywords. They usually use historical clicks on the
ads to mine the semantic relationship. It is clear that
both categories of methods regard ad selection as a rela-
tively independent module. In other words, they define
a local criterion for ad selection, without considering
the impact of ad selection on the auction mechanism in
the downstream of the sponsored search system. In this
regard, we argue that these approaches are not globally
optimal.

In our opinion, a better solution to ad selection is
to explicitly consider its global impact, i.e., with the ad
selection results, whether the overall sponsored search
system (including the auction mechanism) can achieve
the maximization of user clicks, advertiser social wel-
fare (defined as the expectation of the realized adver-
tiser values), and search engine revenue. We call the
combination of these objective functions as marketplace
objective for simplicity.

With this global view, what we should do is to for-
mulate ad selection as an optimization problem. In
the problem, the objective function is the aforemen-
tioned marketplace objective. The auction mechanism
(including its sub-component, the quality score compu-
tation algorithm, and/or the ad click prediction algo-
rithm) is regarded as known and fixed, and will be used
in the calculation of the marketplace objective, given a
particular set of ads selected by the ad selection algo-
rithm. The ad selection algorithm combines a number
of features extracted from each query-keyword pair and
generates a binary value, indicating whether an ad is
selected or not. By solving this optimization problem
over historical sponsored search logs, we will be able
to learn the optimal combination coefficients (in other
words, the optimal model parameters) in the ad selec-
tion algorithm, and use them to perform ad selection
in the future.

We would like to state the following two remarks

Ad Selection by Match| Ranking
¢ Exact Match

e Phrase Match

e Broad Match

¢ Advanced Match

Type ¢ Rank Score (RS):
BidXQuality Score

Pricing

¢ Pricing Rule
(2nd-Price):
BidxXRS(Next)/RS

Search Query

Selected Ads

Fig.1. Sponsored search system.
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about the proposed formulation. 1) The proposed me-
thod only affects the ad selection procedure and does
not change the auction mechanism at all. In practice,
this method can be used for advanced match which al-
ready exists in the sponsored search system as a black
box, and thus it will cause little impact on the adver-
tisers’ strategy in an auction. 2) The phrase “global
optimization” in the paper refers to the global view of
ad selection together with the downstream components.
It does not imply a global maximum in the optimization
problem.

The above formalization seems quite natural; how-
ever, it is technically challenging because the market-
place objective is non-convex, discontinuous, and in-
differentiable with respect to the parameters in the ad
selection algorithm due to the ranking and second-price
rules in the auction mechanism. To tackle the challenge,
we propose a probabilistic approximation of the market-
place objective, which is smooth and can be effectively
optimized by conventional optimization techniques. In
particular, we treat ranking scores as random variables
rather than deterministic values. With the distribution
of the rank scores, we can compute the probability of an
ad being ranked at any given position, and the expected
pay per click according to the second-price rules. Be-
sides, we also use some techniques to approximate the
sign function and the maximum function in the mar-
ketplace objective. By doing so, all the discontinuous
and indifferentiable components in the marketplace ob-
jective function are approximated to be differentiable,
and then the optimization problem can be solved by
conventional optimization techniques, such as the gra-
dient method. We evaluate the proposed method in
a sponsored search system. The experimental results
show that our method outperforms several ad selection
methods in terms of several widely used metrics.

To sum up, the contributions of our work are listed
as below.

e As far as we know, this is the first ad selection
method that considers optimizing the marketplace ob-
jective of the entire sponsored search system.

e We propose a probability method to smooth the
marketplace objectives for ease of optimization. This
provides a good reference for solving the complex opti-
mization problems in sponsored search due to the exis-
tence of the generalized second-price auctions.

The rest of the paper is organized as the following.
We give a literature review on the related work in Sec-
tion 2. In Section 3, we introduce the proposed ad se-
lection framework by optimizing the marketplace objec-

tive. In Section 4, we describe the probability method
to approximate the discontinuous and indifferentiable
objective functions. In Section 5, we discuss the effi-
cient solution of the proposed model. In Section 6, we
present the experimental results to show the effective-
ness of the proposed ad selection framework. In the
end, we conclude the paper and suggest the future re-
search direction in Section 7.

2 Related Work

Existing work on ad selection can be organized in
two categories: one is based on the relevance match-
ing among queries and ads/keywords, and the other is
based on mining the relationship among queries and
ads/keywords from the historical ad click data.

The relevance-based methods often suffer from the
short text streams, i.e., the text lengths of queries, key-
words, and ad copies are usually very short. Therefore,
many of these methods are focused on expanding the
text streams of both queries and ads/keywords. Broder
et al.l®! enriched both queries and ads with additional
knowledge features. They used the organic search re-
sults to create relevant documents for the query. As
query expansion can hardly be done in a real-time
system, Broder et al.[%] proposed another approach of
matching the ads against rare queries that can be ac-
complished online. In this method, they built expanded
query representations from the preprocessed related
queries. Choi et al.lYl explored the usage of the land-
ing pages to expand the text stream of ads. Wang et
al.B] proposed an efficient ad search solution that uses
a block-based index to tackle the issues associated with
query expansion. The block-based index was employed
in a retrieval system to return the top relevant ads.

The other category of methods uses the historical
ad click information to mine the relationship among
queries and ads/keywords. Antonellis et al.? built a
click graph from the historical user queries and the cor-
responding ad clicks, and then proposed a new schema
of Simrank++ to suggest the keywords for ad selection.
Fuxman et al.l% conducted the keyword suggestion by
making use of the query logs of the search engine. They
built a bipartite graph between queries and webpages,
and carried out the propagation of the concept tags on
the bipartite graph to make the keyword suggestion. In
the work of Hillard et al.l”), they introduced a machine
learning approach based on the translation models to
predict the ad relevance, which can help select more
relevant ads for the sponsored search system.
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The above methods regard ad selection as a sepa-
rated module of query-keyword matching. They do not
consider the marketplace objective from all the players
in the sponsored search system.

3 Marketplace Objective

As mentioned in the introduction, we propose ex-
plicitly optimizing the marketplace objective when
learning the ad selection algorithm. In this section, we
will discuss how we define the marketplace objective,
and how we compute it given the ad selection algo-
rithm, the click prediction algorithm, and the auction
mechanism.

3.1 Preliminaries

To better illustrate the marketplace objective, we
first give some preliminary notations. Let Q =
(Q,K,A) be the object space in sponsored search,
where @ is the set of input queries submitted by the
users, K is the set of keywords given by the adverti-
sers, and A is the set of ads composed by the adverti-
sers. Usually, an advertiser can bid on several keywords
k; € K for an ad a; € A. Suppose the sizes of K and A
are M and N respectively, then we can use the follow-
ing N x M dimensional matrix B = {b;;} to represent
advertisers’ selected keywords, in which

bas =
7 0, otherwise.

{1, if a; bids k;,

If bj; = 1, there will be a non-zero value %(j,%) in-
dicating the bid of ad a; for keyword k;.

With these preliminary notations, we will go
through the major components in the sponsored search
systems. In the meanwhile, we will encounter more no-
tations. For the sake of clarity and for ease of reference,
we list the major notations in Table 1.

3.2 Ad Selection

In this subsection, we consider the ad selection algo-
rithm. This algorithm takes a pair of query and ad, and
outputs a binary variable indicating whether the ad is
selected or not. In practice, this is done in two steps.
First, the algorithm determines whether a keyword is
selected or not, given the query. Second, it employs
the matrix B to obtain the ads that should be selected.
The details are given as follows.
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Table 1. Notations

Notation  Explanation

Q= Ad space with the query set @, keyword
(Q,K,A) set K, and ad set A

q Query

aj Ad,j=1,--- N

k; Keyword, t =1,--- ,M

r Ad position, r =0,1,--- ,m —1

Indicator vector for keywords.

n; = 1, if k; is selected; otherwise, n; = 0.
(4 Indicator vector for ads.

0; =1, if a; is selected; otherwise, 6; = 0.

c(+) Ad click prediction function

h(-) Ad quality score function

v(+) Highest bid of an ad for a query

g(+) Ad ranking function, g(-) = h(-)v(-)

R(") Marketplace objective

Co(+) Permutation function on the subset Aq

Co L) Ad ranked at position r by permutation ¢
D(r) Discount at position r

s(+) Sigmoid function

a; > aj Ad a; is ranked higher than a; in an auction
11 Ad a; is ranked just one position higher

than a; in an auction

For a pair of query g and keyword k;, one extracts a
group of features :cl(-q) = (xl(-‘lz), e
number of features. Suppose we have a linear function

to combine these features, i.e.,

,xgg)), where n is the

flw, wEQ)) _ meEQ)7

where w is an n-dimension parameter vector. In real ap-
plications, usually complex non-linear models are used.
Given that our goal is to demonstrate the idea of global
optimization, without loss of generality, we consider the
linear model. The output of the linear function is con-
verted to a score indicating how likely k; should be se-
lected given the query. As a common practice, we use a
sigmoid function §(~)@ to compute this score. By com-
paring the score with a threshold, we can get a binary
value 7; indicating whether the keyword k; is selected
or not, i.e.,

n; = sgn(s(@ 2\ — 1), (1)

where sgn(+) is the sign function and ¢ is the threshold.
We use vector m to represent the selection results
for all the keywords, whose element 7); is the binary
indicator for keyword k;.
Given the selection results for the keywords, we need
to retrieve all the related ads. Here we use vector 6 to
denote the selection results for ads, whose element 6;

® Wikipedia. Sigmoid function. http://en.wikipedia.org/w/index.php?title=Sigmoid_function, Feb. 2013.
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indicates whether ad a; € A is selected. 8 can be com-
puted based on the bidding relationship matrix B:

6 = sgn(Bn). (2)
3.3 Auction

Only those ads whose 6; = 1 will enter this stage.
First, the click probabilities will be computed for these
ads. We use ¢(-) to denote the click prediction function,
which takes the pair of the query ¢ and the ad a; as in-
put and predicts the click probability c(j) of a; if it is
ranked at the first position in the ad list. The click pre-
diction function is usually trained using the real click
through rate in the historical sponsored search log. In
the sponsored search system, the click probability c(j)
can be used to estimate the future revenue. Meanwhile,
the system will also compute the quality scores for these
ads. We use h(-) to denote the quality score function,
which also takes the pair of the query ¢ and the ad
a; as input. The quality score is an estimation of how
relevant the ad, keywords, and landing page are to the
search engine user who is seeing the ad. It can be used
for ad ranking and pricing. Note that in some work,
the ad click probability is regarded as the ad quality
score. As mentioned before, we will treat them as two
separate signals.

Then since one ad may bid on multiple selected key-
words, it is associated with multiple bids. We need to
determine which bid to use in the auction process. Ac-
cording to the industry practice, the highest bid will be
used, and we denote it as v(j), i.e.,

v(j) = max{v(4,4)[bj; = L, = 1}. 3)

Given the quality score and the final bid, GSP ranks
ads according to the following rank scorel!l, which is de-
fined as the product of quality score and bid,

Sorting the ads in the descending order of the rank
scores generates a permutation (). For ease of refer-
ence, we use (; ' (r) to denote the index of the ad ranked
at position 7 (r =0,1,--- ,m—1) by permutation (y(-),
and then the permutation can be written as,

Co({a;l0; =1})

A, Ty P, 2yt G, Ty
st g(Ct(r) = g(G H(r+ 1))
vr, 949 L) = 1.

The top ranked ads in the permutation will be
shown to the user. Note that for simplicity we do not
consider the reserve rank score, which is used in prac-
tice to filter out less competitive ads in order to increase
search engine revenue. If some ads are clicked by the
user, the advertisers will be charged according to the
second-price rule, i.e., the payment is

9(G (r+1))
h(y ()

3.4 Utilities

Based on the discussions on the sponsored search
system in Section 1 and Section 3, let us consider how
the marketplace objective is defined and computed.

As mentioned in the introduction, we mainly con-
sider three aspects when defining the marketplace ob-
jective, which reflects the utilities of the users, adver-
tisers, and search engine respectively. In particular:

e We use the expected click to reflect the utility of
the user, with higher click through rate usually indicat-
ing higher satisfaction of the user with the ads shown
to him/her.

e We use the expected bid as the utility of the adver-
tiser, which is a lower bound of the corresponding social
welfare. Note that we assume the advertisers are con-
servative, which means no advertiser is bidding above
his/her own valuation on the keyword. This assump-
tion is reasonable for Leme and Tardos'® have justi-
fied that bidding above the valuation is a dominated
strategy. A strategy is called dominated if it is always
better to play some other strategy, regardless of what
opponents may do. Besides, the same assumption was
also adopted in many other studies like [10-14]. With
this assumption, the expected bid is a lower bound of
the social welfare and thus the maximization of the ex-
pected bid can approach the maximization of the social
welfare. Note that the meticulous analysis of the real
relationship between value and bid is far beyond the
scope of this paper. Besides, almost all existing models
on the strategic behaviors of the advertisers assume full
information is available, which is unrealistic in practice.
Therefore, we take a rough approach, i.e., we regard the
total expected bid, which is the lower bound of the so-
cial welfare, as the utility of the advertiser.

e We use the expected revenue as the utility of the
search engine, which is the total payment from the ad-
vertisers.

With the notations given in Subsections 3.1~3.3, we
can obtain the mathematical forms of the above three
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utilities. We then define the marketplace objective (de-
noted as R(q)) as the convex combination of them:

m—1

R(q) = Z ( a1 x (G (r)) + oz x v(¢y(r)) x

r=0
oG D)
h(Gy ()

c<<gl<r>>) < D(r). (4)

c(Gg (1) +as x

Here «; (i = 1,2,3) are the balancing parameters
satisfying a; > 0 (i = 1,2,3), Z?Zl o; = 1, and m is
the maximal number of ads shown on the search result
page. Because the CTR (click through rate) varies ac-
cording to different positions, we introduce a position
discount function D(r). In the above formulation,

e The term c(¢, '(r)) is the predicted click proba-
bility of the ad a, 1) when it is ranked at the first
position of the ad hst By multiplying it with the posi-
tion discount D(r), we will get the click probability of
this ad when it is ranked at position r. This term cor-
responds to user utility. Note that we ignore the cases
that more than one click happens in a single impression,
which are very rare in practice.

e The term v(¢, ' (7)) x ¢(¢, *(r)) x D(r) is the pro-
duct of the maximal bid of an ad and the ad click proba-
bility at position r. It corresponds to the advertiser
utility.

06, D) o |
ne 1oy < €6 () x D(r) is the

payment of the ad ranked at position r according to
the second-price rule, if it is clicked. This term corre-
sponds to the search engine utility.

e The term

Given the marketplace objective, it is not difficult
to formalize the ad selection problem as the following
optimization problem:

max Z R(q) (5)

qeq
s.t. Uz_Sgn(( T z('q))it)a i:17"'aM7
0 = san(Bn),

v(j) = max{o(i,i)lbj: = 1 = 13,0, = 1,
9(3) = h(j)e(s). v, = 1.

Please note that in the above formulation, our goal is
to learn the parameter w in the ad selection algorithm,
by regarding the click prediction function, the quality
score function, and the auction mechanism as known
and fixed. By solving this optimization problem, we
can get the optimal parameter vector w* and use it in
the future ad selection processes.
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4 Smoothed Approximation

In Section 3, we have described the idea of learning
the ad selection algorithm by maximizing the market-
place objective. However, the learning process is non-
trivial. The optimization problem (5) is a nonlinear
optimization while the marketplace objective (4) is non-
convex, discontinuous, and indifferentiable with respect
to the model parameter of the ad selection algorithm.
To the best of our knowledge, there are no effective
methods for directly solving this kind of problem.

To better understand and hopefully solve the prob-
lems with the discontinuity and the indifferentiability,
we first need to analyze where the discontinuity and the
differentiability come from. Basically, they are due to
the following three functions in the marketplace objec-
tive:

e sgn Function. This discontinuous and indifferen-
tiable function is used in (2), which describes the rela-
tionship between the selected keywords and the selected
ads.

e max Function. This discontinuous and indifferen-
tiable function is used in (3), which finds the highest
bid to determine the bid of an ad for a given query.

o ( Function.
tiable function is used in (4) to define the ranking rule,
which outputs a permutation of ads.

To effectively optimize the marketplace objective,
we propose smoothing the aforementioned three func-
tions. By doing so, we will be able to obtain a conti-

This discontinuous and indifferen-

nuous and differentiable approximation of the market-
place objective. Then conventional optimization meth-
ods can be employed to maximize this approximated
objective function to learn the parameter in the ad se-
lection algorithm. However, even the objective is dif-
ferentiable, it is still non-convex so that we may only
obtain a local optimal. The good news is that the ex-
perimental results in Section 6 show that we can already
get a good solution and it converges stably with random
initial points.

4.1 Smoothed sgn Function

We can directly remove the sgn function as well as
the threshold in (1) and let ; = c(wTacgq)) to represent
the probability of keyword k; being selected. The sgn
function in (2) can be effectively smoothed by using the
sigmoid function ¢(-), i.e.,

M M
6; = sgn <Z bjiﬁi) ~ 26 (Z bjini) -1
i—1 i=1
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The range of Zi‘il b;in; is [0, +00), and thus the range
of 0; is [0,1). We can approximately regard 6; as the
possibility of ad a; being selected as a candidate. Fur-
thermore, we define X; as a Bernoulli random variable
to indicate whether ad a; is selected, with the successful
probability 0;.

4.2 Smoothed max Function

In order to smooth the max function, we employ the
following probabilistic method. Specifically, given that
a; is selected, i.e., X; =1, we define the probability of

0(j,14) as

©(0(4,%))bjin:
Zb]l 1,m>0 %0( (]71))bjl77l,

p(0(,9)|X; =1) =

where ¢(+) is a transformation function which can be
polynomial, exponential, etc. Without loss of genera-
lity, we choose p(z) = ™
tion, where 7 is a positive coefficient.

Suppose 7(j,7) is the highest bid among all ©(j,4).
Then the above formula can be rewritten as below.

as the transformation func-

p(v(5,9)]X; =1)
oG],
Zb_j,:1,n,>o e @b my
@GN,
o tma0 €GO =TGN by
e @GD=2Gp, ,
bty + 2, =1,m >0, 17567(”(] D=0 by

Therefore, when 7 is very large, p(3(j,7)|X; = 1)
will approach 1 and the probabilities corresponding to
the other bids will approach 0. Thus, when we select
aj, v(j) = @(j,%) can be approximately expressed as
the following conditional expectation of v(j,4) on all
the keyword k;, i.e.,

v(j) = E(

@ l

(DX =1)

tl/J:

p(0(4, )| X; = 1)v(j, 1)

.
Il

Note that we only give the definition of v(j) when a;
is selected, for the input set for the maximum function
in (3) will be @ when 6; =0, i.e.,

9]‘:0 — Zb]ﬂhio

= {0(j,9)|bji = 1,m; = 1} = O.
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4.3 Smoothed (¢ Function

The permutation function ( is relatively more dif-
ficult to approximate, because it contains the ranking
function. We employ a method similar to SoftRank!'®!
to smooth it. The basic idea is to regard the rank score
of each ad as a random variable with a Gaussian dis-
tribution. Then the rank of an ad can be analytically
expressed based on the score distribution of all the ads.
With the rank distribution, we will be able to compute
the expected payment for each ad.

Note that any unimodal distribution with good
smoothness and controllable parameters is appropriate.
We follow SoftRank to use Gaussian distribution as an
example in the paper. The experimental results in Sec-
tion 6 suggest that Gaussian distribution has already
led to very promising results. We will investigate on
other unimodal distributions in our future work.

In particular, we use g(j) = h(j)v(j) as the mean
of the Gaussian distribution, and set its variance as o.
That is,

p(si|X; = 1) = N (55155, 0%) = N (s519(5), 02)-

Here s; is the random variable for the rank score. Since
the score distribution is only defined when a; is selected,
the probability should be conditional, given X; = 1.

With the aforementioned score distribution, we can
compute the probability that an ad is ranked above
another. In particular, given ad a; € A, we define
mi; = P(a; > a;) as the probability that another ad
a; € Aisranked above a; in the final ad rank list. Note
that we consider all the ads in A, because we need to go
through all the ads to construct the rank distributions.
Therefore, we will discuss four cases in order to define
this probability.

1) If both a; and a; are selected, the probability that
a; beats a; is P(S; —5; > 0|X; = 1,X; = 1) where S,
and S; are drawn from p(s;|X; = 1) and p(s;|X; = 1)
respectively. Then this probability is the integral of
the difference of the two Gaussian random variables,
which itself is a Gaussian. Therefore, we can write
the probability as P(S; —S; >0|X; =1,X, =1) =
IS N(s]s; — §5,202)ds.

2) If a; is not selected but a; is selected (i.e.,
X, =0, X; = 1), then it is easy to get P(S; —S; >
0| X;, X;) = 0, indicating that a; will never be ranked
above a; in the final ranked list.

3) We have P(S; — S; > 0|X;,X;) = 1 when q; is
selected but a; is not (i.e., X; =1, X; = 0), indicating
that the selected ad a; will always be ranked above the
unselected ad a;.



302

4) To make the definition of the probability com-
plete (the probabilities for all the cases sum up to one),
we set P(Si—SJ > 0|XZ,X]) = 1/2 when X; = 0, Xj =
0, which means a; has half of the possibility to beat a;
if both of them are not selected.

The above discussions can be mathematically writ-
ten as:

P(ai - (lj|Xi, Xj)

Jo S N(slsi — 55,20%)ds, X;=1,X; =1,
_Jo, X;=0,X; =1,
)1, X, =1,X, =0,

1/2, X;=0,X; =0,

P(X;, X;)

0.0, X;=1,X; =1,
@ -0)e;, X;=0,X; =1,
) 6:(1—6y), X;=1,X; =0,

(1-6:)(1-6;), X;=0,X;=0,

mi; = Pla; > aj)
1 1
= > Y P(X;,X;) x P(a; - aj|X;, X;)
X;=0X;=0
= 0;(1—0;) 4+ (1—6;)(1—0;)/2+
09, N (s]5; — 55,202)ds. (6)
0

The permutation appears in the marketplace objec-
tive in two ways: the rank position of an ad (used in
computing the click probability) and the two ads ranked
adjacent to each other (used in computing the second-
price payment). Therefore, to smooth it, we need to
compute the rank distributions and the adjacent-pair
distributions. In the following paragraphs, we demon-
strate how we obtain them by using ;;.

4.3.1 Rank Distribution

With 7;;, we can compute the rank distribution of
Let r; be the rank of ad a;, then its
distribution is denoted as p;(r) = P(r; = r). Here

each ad a;.

we take the same assumption as in [15] that m; (i =
1,---,5—1,74+1,---  N) are independent with each
other with the fixed index j. The range for r; is
0,1,---,N —1.

Then the distribution of 7; can be obtained by con-
sidering the rank 7; as a Binomial-like random variable,
equal to the number of successes of N — 1 Bernoulli tri-
als, where the probability of success is m;;. We can get
this distribution by a recursive process. If we define
the initial rank distribution for the ad a; as pg.l)(r), the
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rank can only be the position 0 since a; is the only ad.
Then we have the rest N — 1 ads to be inserted to the
ranked list.

Py (r) =

5(r), t=1
{pg@-n(r D+ 0 = 7y), @

Here §(x) = 1 if « = 0; otherwise, §(z) = 0.

We further define p;-i)(r) =0 if r < 0 as the trivial
case, and then we can get the final rank distribution
pi(r) = p§N)(r). It is not difficult to see that the ex-
pectation of r; is E[r;] = Z?Ll’#j Tij-

From the above recursive process, we can see that
if an ad a; is selected and it is good enough that every
other ad cannot beat it, then it will be ranked at the
top position with r; = 0. If an ad a; is not selected, it
will be randomly ranked at some position below all the
selected ads. Notice that the calculations on the rank
distributions of different ads are independent, and thus
it is easy to conduct a distributed implementation.

4.3.2 Adjacent-Pair Distribution

Then we compute the adjacent-pair distribution,
ie., pji(r) =P(r; =r,r; =r+1). Given mj;, we can
consider a; and a; together as a union in a recursive
generating process. In the first step, we add the union
of a; and a; into the ranked list and they are placed
at position 0 and position 1 respectively. In each of
the following steps, when we add a new ad a; into the
list, there may be three cases: a; is ranked above a;,
a; is ranked below a;, and a; is ranked between a; and
a;. Given m;;, the conditional probabilities of the three
cases are y;;, 7, and 7;; respectively. (The defini-
tions of the conditional probabilities are shown in Ap-
pendix A.) Here we only care about the first two cases
because we have assumed that a; and a; are ranked
adjacent to each other. Therefore, the recursive ex-
pression of p; ;(r) is written as,
p§-f2(r|7rji) = §(r),when ! =1,
p(rlms) = il D = Umo) i + (8)

pgfi_l)(rhrji)frjmwhen 2 < l < N —1.

Again, we define pglz (r) = 0if » < 0 as the tri-
vial case, and then we can get the final rank probabi-

lity p;i(r) = pgg_l)(rhrji) X mj;. Similar to the rank

distribution, we can regard p;;(r) as a multinomial-
like distribution with p;;(r) = P(Y1 =Y =0,Y3 =
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N —r—2), where Y1, Y5, Y3 denote the random variables
of the numbers that the ad q; is inserted into the above
three positions respectively.

4.4 Smoothed Objective Function

Based on the discussions in Subsections 4.1~4.3, we
can obtain the following smoothed approximation to

the marketplace objective R(-) in (4) as R(+),
N m—1
@ = 303 D) (aps 1)+ aavlins(r) +
j=1 r=0

w 3 fmn)

Note in the above formula, the sum is over the ad in-
dexes rather than the ad rank positions. As a result,
it becomes continuous and differentiable, and therefore
easy to optimize.

5 Solving Optimization Problem

Since the smoothed objective function becomes dif-
ferentiable, we can choose to optimize it using the gra-
dient descent method. In particular, the gradient can
be computed according to the chain rule,

OR _OR nm

dw O Ow’

The first term %—7; can be derived from the

differentiation of p;(r) over i, which can be obtained

recursively similar to p( )( ), i.e.,

OR OR Ov OR .8pj(r) OR _apj,i(T‘)
on v on  opi(r)  om | Opju(r) om

The second term g—z can be easily obtained by the

(Q))

model of the function f(w,zx and the sigmoid func-

tion 7; = ¢(wT Z(-Q)).

The derivation g—R, t=1,---
Tt

N m-—1
-Y Y Gp (lam“)+
0

, M, is

877!5 j=1 r= 877t
Qa2 6;7(7Z')pj(7")+v(j)8?g$>+
Y (i) [ 0v(i) - Op ()
i—%:;ﬁj h(j) ( e pj,z(r)—kv(z)am) .

For simplicity, we denote v; = v(j) and v;; = 9(j, 7).
According to the definition of v(j) in (3), we have

M
> vjip(vsi)bjims

=1
’Uj = IV s
> e(vsi)bjim;
=1

and its derivative is,

Ovj _ vup(vip)be
OSSN (vi)bjing
(vail Uji‘P(Uji)bjmi) ©(vje)bje
2
(Zﬁl (P('Uji)bjini>

M
= <th</?(vjt)bjt > elvj)bjims —

i=1

M
@(’th)bjt X Zvji@(vji)bjini)/

i=1

M 2
(Z SD sz jﬂ?i)

=1
_ () bje S (vge = va) (Vi) byims
S .
(21:1 @(Uji)bjmi)

We also need a recursive process to obtain the

. )
derivative of p;(r). Denoting (bil])(r) = apém(mv we can
get the derivative from (7):
1
61)(0) = 0,
i i1 i—1
¢§,J)-(7") ¢( )(7" — )y + ¢E‘7j )(7")(1 — Tij) +

(-1, 1) — (i-1) ) 57%‘
(-0 -5 00m) 5

The derivative of p; ;(r) can be calculated in a sim-
ilar way to that of p;(r). Denoting

l
apst) (rlmsq)

() _
t,j,i(r) an,

)

we can obtain the derivative from the recursive expres-
sion (8):

o0) =0,
o) = D = D+ ol D 070+

t,j,t 2Jt
aﬂ'l 1—
2yl ()

(B 1)( 87?]-1-1
ony .

—].7'("2'
‘]) 87715

p]z

According to the definition of p;;(r), we can get

Ipji(r)
ony

87rj1-
o

N—-1 N—-1
= N (g + PV ()
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The derivative of m;; over 1, can be expressed as
57T7;j 87rij 89 871’1']' 81:
on, 00 On, ' ov O
a0;
_ (87rij 87‘(’1']') 877t I
00; 00, %
one
ov;
(87TU 87@]) ony
8vi 8vj %
one
From (6) and considering the fact

8‘1 / Nz, 0)dz = N0, o),

we can obtain the derivatives of m;; over 6 and v as

the following forms. %’;’j = 1%91' +0; [7° N (s[5 — 55,

202)ds, when t = i,t # j; ég;lj = —(14+6,)/2+
0; fo° N(s|5; — 5;,202)ds, when t # i,t = j; omy — 0,

90,
when t # i,t # j.

omij

ovg
0;0;u; N (0|usv; — ujvj,202), t=1i,t# 7],
—0,0;u; N (0lu;v; — ujv;,202), t#it=j,
0, it 4.

With the definition of @ in Section 3, we can ob-
tain the derivative of 8 over i easily. The derivatives
of conditional probabilities 7;;, ;5 can be calculated
similarly. To save space, we put the calculation of the
derivatives in an online appendix file®.

Therefore, the gradient method can be implemented
to compute the optimal parameter vector w*. In the
industry practice, there are eract match and advanced
match for query-keyword matching. The trained model
can be used in two ways: 1) we can use it directly in
the online ad selection platform; 2) we can use it of-
fline to generate a static table of query-keyword pairs,
and apply the query-keyword mappings in the table for
advanced match.

6 Experimental Evaluation

In this section, we evaluate our proposed method
by comparing it with four baseline algorithms on a real-

J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

world dataset. We simulated a sponsored search system
to validate the benefit of the ad selection methods for
the users, the advertisers, and the search engine. The
experimental results show that the proposed global op-
timization method significantly outperforms the base-
Furthermore, we provide a
study to elaborate the effectiveness of our method.

lines on several metrics.

6.1 Dataset

The data used in the experiments is sampled from
the sponsored search log of a commercial search engine
in the period of two months. We sampled 14 912 queries
in May 2012 for training and another 17487 queries in
June 2012 for test. We first extracted the keyword can-
didates for these queries using all the matching rules
in the sponsored search system, and then extracted all
the associated ads according to the bidding table in the
ad database. The quality scores and the predicted click
probability of these ads are also extracted for the simu-
lation of the auction mechanism. Finally, we got over
300 thousand query-keyword pairs, over 700 thousand
query-ad pairs and over 1.5 million query-keyword-ad
tuples. The details can be seen in Table 2.

Besides, in order to prepare the training objec-
tives for the baseline methods, we extracted the query-
keyword level normalized click through rate (nCTR),
The normalized click
through rate is calculated based on the sum of adjusted
clicks over the sum of adjusted impressions. The ad-

social welfare, and revenue.

justments are conducted by multiplying the number of
clicks/impressions in different ad positions with the po-
sition discount function D(r). As explained in Subsec-
tion 3.4, we use the sum of bids of the clicked ads to
approximate the social welfare. The revenue is calcu-
lated as the sum of the payoffs from advertisers for the
given query-keyword pair.

6.2 Baselines

As discussed in Section 2, there are two categories
of existing ad selection algorithms. We first calculated
the cosine similarity between query and keyword as the
baseline on behalf of the relevance-based models. Note

Table 2. Statistics of the Dataset

Number of Queries Number of Query-Keyword Pairs Number of Query-Ad Pairs Number of Query-Keyword-Ad Tuples

May 2012
June 2012

14912
17487

342791
427 366

743 050
928 418

1577683
2030186

©) https://www.dropbox.com/s/qczlc9mh6jh8yg2/Appendix.pdf, Jan. 2015.
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that we did not choose the methods of [3-4] because
both of them use external text streams like the landing
pages. It is beyond the scope of our study, for we re-
gard that the external information might be extracted
as features in the models. For the click information
based methods, we chose Simrank++°. Besides the
above two categories, we used a classification method
and a regression method both trained on the query-
keyword features under the supervision of historical in-
formation including nCTR, social welfare, and revenue.
The implementation of the four baselines is explained
as below.

e For the first baseline, the cosine similarity between
query g and keyword k is defined as the similarity be-
tween their vector representations based on term fre-
quency, i.e.,

_ #CommonTerms
B V/Len(q) x \/Len(k)’

where Len(q) and Len(k) are the numbers of terms in
q and k respectively. We denote it by Cosine for ease
of reference.

e For the second baseline Simrank++, we merged
all the queries and keywords appeared in the test data
as one side and extracted the clicked ads in May 2012 as
the other side to build the click bipartite graph. There
are 486 024 queries and keywords in the test data, and
306 816 of them are associated with 1.3 million clicked
ads. The generated click bipartite graph contains 3.2
million edges, the scale of which is even larger than the
main subgraph in [9]. Thus, we implemented the prun-
ing technique in the original Simrank paper!!®l with
a radius 2, and ran 7 iterations as suggested by [16].
Though the click graph is very large, there are still
many pairs of queries and keywords without predicted
similarities. Among the 427 366 query-keyword pairs in
the test data, there are only 231069 pairs with Sim-
rank++ scores, indicating that they do not have com-
mon clicked ads in May 2012, if we regard both the
queries and keywords as input queries. This is also a

Simcosine (Qa k)

limitation of the click information based methods.

e For the third and the fourth baselines, we com-
bined nCTR, social welfare, and revenue as the training
targets. We normalized the three values to standard
normal distribution A/(0,1) and then summed them
up as the targets. Among the 342791 query-keyword
pairs in the training data, there are 233 586 pairs with
impressions and only 80552 pairs of them with clicks.
For the classification model, we used the query-keyword
pairs with more than 20 impressions but with zero click

as the negative training examples, and used the query-
keyword pairs with more than 20 impressions and with
the nCTR higher than 0.04 as the positive training
examples. Both groups of the examples contain more
than 60 thousand query-keyword pairs. For the regres-
sion model, we took use of all the query-keyword pairs
with non-zero impressions. We used SVM-light!'”] to
train the classification and the regression models using
the linear setting. For ease of reference, we denote the
two baselines as SVM-Cls and SVM-Reg respectively.

6.3 Query-Keyword Features

We extracted three categories of query-keyword fea-
tures including keyword related features, query related
features, and query-keyword related features.

o Keyword Related Features. Given a keyword, we
extracted the average bid, the number of ads that bid
it, the number of orders that bid it, the number of cam-
paigns that bid it, and the number of advertisers that
bid it from the advertiser database and the ad database,
and extracted the number of ad impressions, the num-
ber of ad clicks, and the average ad click position for
the keyword in a period of time (e.g., one month) from
the auction log.

e Query Related Features. Given a query, we re-
garded the query as a keyword and extracted the simi-
lar features as the keyword-related features.

o Query-Keyword Related Features. Given a pair of
query and keyword, we extracted the cosine similarity,
edit distance, and word distance between them. We
also used two features computed from the translation

models! 8],

6.4 Evaluation Metrics and Simulation

We run a simulation of the sponsored search system
for the comparing algorithms, and check their perfor-
mance on the estimated nCTR for the users, the esti-
mated social welfare for the advertisers, and the esti-
mated revenue for the search engine.

In the simulation, for a given query, each algorithm
will select a set of keywords and the corresponding ads.
With the quality score and the bid, we can calculate the
rank score of each ad. Then, according to (4), we can
calculate the three parts of the marketplace objective
respectively. After that, we multiply the marketplace
objectives by the normalized query frequencies. Thus,
we can sum all the queries up and obtain the estimated
nCTR, the estimated social welfare, and the estimated
revenue.
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6.5 Scalability

We first make a complexity analysis on the proposed
model, and then explain how we implement it when the
scale of the problem increases.

For a given query, we assume that there are M key-
words and N ads involved, and we consider the top
m positions in the ad list. Then the complexity of
the probability m;; is O(N?), and the complexity of
the rank distribution p;(r) for the top m positions is
O(N?m). The complexity of the triple probability 7;;;
is O(N?), and in each calculation, it will call a nu-
merical integration algorithm. The computation com-
plexity of the adjacent-pair distribution for the top m
positions is O(N3m), and the complexity of calculating
its derivatives is similar. Therefore, the calculation of
the adjacent-pair distribution is the bottleneck for the
proposed model.

There are several ways to speed up the algori-
thm. One way is to approximate the rank distribution
p;(r) with Rank-Binomial distribution as presented in
SoftRank['®!. Similarly, the adjacent-pair distribution
can also be approximated by multinomial-like distri-
These
approximations will significantly reduce the computa-
tional complexity. Another way is to use the paral-
lel computing techniques. As the calculations on rank
distributions of different ads are independent, we can
implement them in parallel. The implementation is be-
yond the scope of the paper.

Besides the above complexity analysis, we should
note that the test process is quite fast and only needs
to perform an inner product to sort the keywords. In
industry practice, we can update historical features fre-

bution as we discussed in Subsection 4.3.2.

quently but only retrain the model parameter in proper
period, which is the strategy that the quality score com-
putation algorithm and the ad click prediction algo-
rithm adopt. We can further control the volume and
quality of the training set according to the computa-
tional capabilities, and then the proposed method can
be deployed to the search engine.

6.6 Parameter Setting

For the parameters of the proposed model, we set
the exponent of the sigmoid function for 1 to 0.2, i.e.,
¢(x) = 1/(1 +e7%2%), to make it like a linear function.
We set the exponent of the sigmoid function for 8 to
3 so that it approaches to a stepwise function, which
looks more similar to the definition of b;;. We set the
variance of the rank score to a fixed value 10 and we
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only consider the top four positions in the ad list, corre-
sponding to the mainline ads. The balancing parame-
ters aq, as, a3 of the marketplace objective are set to
0.8, 0.1, 0.1 to make the three parts of the objective in
the same level of magnitude. Note that a search engine
might balance the benefits of users, advertisers, and it-
self according to some pre-defined curve. We just use
these balancing parameters to show the performance
of the proposed algorithm. The model is trained us-
ing stochastic gradient descent with a random initial
parameter vector w in 20 trails and most of them con-
verge to a stable optimal w* with the relative error less
than 0.2%. We use the best one to compare with the
baselines.

6.7 Ad Selection Performance

We denote the proposed global optimization model
as Global for ease of reference, and compare its per-
formance with those of the baseline algorithms Cosine,
Simrank++, SVM-Cls, and SVM-Reg. We report the
performance of these algorithms with respect to esti-
mated nCTR, estimated social welfare, and estimated
revenue.

We sort the keywords of each query increasingly
according to the predicted scores and split them into
20 buckets. We drop the bucket of keywords with the
smallest scores in each step, and get a declining curve
for every model on each of the three evaluation met-
rics. The curves are shown in Figs. 2~4. Besides, we
also compute the area under curve (AUC) to compare
the performance of these models in Table 3. Note that
we normalize the values under each evaluation metric
by dividing them by a certain value in the correspond-
ing results, to protect the business information of the
involved commercial search engine.
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Fig.2. Dropping curve of simulated nCTR.
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Table 3. AUC of the Five Models on Three Metrics

nCTR Social Welfare Revenue
Cosine 0.8978 0.8423 0.8222
Simrank++ 0.9014 0.8453 0.8176
SVM-Cls 0.8933 0.8160 0.7817
SVM-Reg 0.9008 0.8338 0.8015
Global 0.906 2 0.8807 0.8516

From the experimental results, we have the follow-
ing observations.

e The Global method outperforms the four baselines
in estimated social welfare and estimated revenue in all
buckets. For estimated nCTR, Global only outperforms
the baselines in the middle buckets. However, the AUC
of Global for estimated nCTR is still the largest in Ta-
ble 3. Therefore, we can claim that Global achieves the
best performance in the experiments.

e Global performs better than SVM-Cls and SVM-
Reg, though the three models are trained on the same
feature set. The reason is explained as below. SVM-Cls
and SVM-Reg take the historical information to build
the training targets, and thus the models cannot fit the
future predictions very well. Global considers the effec-
tiveness of the downstream components when comput-
ing its marketplace objective, thereby it can generate
better predictions compared with SVM-Cls and SVM-
Reg.

e Generally, Cosine and Simrank++ perform better
than SVM-Cls and SVM-Reg. It shows that the query-
keyword features are far from enough to build a good
model. They might be easily beaten by some simple
heuristics. We should take a global view in the ad se-
lection problem towards the marketplace objective to
combine the features.

To sum up, the proposed Global model outperforms
the four baseline ad selection methods on all the three
evaluation metrics.

6.8 Statistical Study

We analyze how the Global model outperforms the
baseline methods. Our key conclusion is that: the base-
line methods tend to select the keywords that can maxi-
mize the nCTR, social welfare, and revenue based on
the historical auction and ad click data; differently, the
Global method considers the downstream components
like the auction mechanism in its optimization so that it
can select the keywords that will maximize the nCTR,
social welfare, and revenue in future auctions. To draw
the above conclusion, we conduct the following statis-
tical study.

For each of the five models in the comparison experi-
ments, we keep the top 70% ranked keywords for each
query as selected keywords and put the corresponding
ads in the downstream auction. Then for each metric
(nCTR, social welfare, and revenue), we compute the
percentage of the metric earned by the top 70% key-
words over all the keywords. We check the percentages
of the metrics for the five models in the historical ad
click data in the training set (May 2012), and in the
simulated sponsored search results in the test set (June
2012). The values are listed in Table 4 and Table 5.
For example, the last value 95.66% in the last row in
Table 5 means that the top 70% keywords selected by
the Global method help the search engine earn 95.66%
revenue compared with selecting the 100% keywords on
the simulated results in the training set.

From these tables, we have the following observa-
tions.

e From Table 4, the Global model does not always
perform the best on the metrics. Simrank++ achieves
the best on both nCTR and revenue, while SVM-Cls
achieves the best on social welfare. The reason is ex-
plained as below. The training of Global does not rely
much on the historical data; differently, the training of
some baselines highly depends on the historical data.
For instance, the computation of Simrank++ is con-
ducted on the click graph built from the historical ad
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click data; for another instance, the training target of
SVM-ClIs is a combination of historical nCTR, social
welfare, and revenue.

Table 4. Metric Percentages of the Five Models on
Historical Data in Training Set

nCTR(%) Social Welfare(%) Revenue(%)
Cosine 75.16 99.10 98.09
Simrank++ 81.13 99.27 98.88
SVM-Cls 77.25 99.43 97.89
SVM-Reg 76.42 98.97 97.83
Global 76.30 99.08 97.99

e From Table 5, the Global model outperforms all
the four baselines in all metrics. The reason is explained
below. Our method leverages much information from
the downstream components in a global view in the
training process which is closer to the real application,
and thus our learned model can perform better when
working together with the downstream components in
the test process. The sponsored search system is di-
vided into several parts, but only when these parts fit
each other can it be a united system.

Table 5. Metric Percentages of the Five Models on
Simulated Results in Test Set

nCTR(%) Social Welfare(%) Revenue(%)
Cosine 93.46 91.20 91.81
Simrank—+-+ 94.90 91.22 91.70
SVM-Cls 94.47 88.84 87.95
SVM-Reg 95.02 91.04 91.40
Global 96.75 96.57 95.66

7 Conclusions and Future Work

In this paper, we argued that a good ad selection
algorithm should perform global optimization for the
marketplace objective for the entire sponsored search
system, instead of just optimizing a locally defined ob-
jective.
continuous and indifferentiable, we proposed a set of
smoothing techniques so as to obtain a smoothed ap-
proximation to the marketplace objective. After that,
we employed a gradient descent method to optimize the
smoothed marketplace objective, in order to learn the
desired ad selection model. We tested our proposed
algorithm using the sponsored search logs from a com-
mercial search engine. The experimental results have
shown that the proposed method outperforms several
conventional ad selection algorithms in terms of several
evaluation metrics.

Given that the marketplace objective is dis-

For the future study, we plan to work on the fol-
lowing aspects. First, we will study alternative meth-
ods to smooth the marketplace objective and compare
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their effectiveness. Second, we will study the approxi-
mation ratio of the smoothed marketplace objective, so
as to provide a theoretical guarantee on the proposed
approach. Third, in this paper, we regard the click
prediction algorithm and auction mechanism as fixed
components when learning the ad selection algorithm.
In the future, we plan to optimize all these compo-
nents simultaneously, which may potentially generate
even better results.
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Appendix A Conditional Probabilities

In the first step of the recursive process, we add
the union of a; and a; into the rank list and they are
placed at position 0 and position 1 respectively. In each
of the following steps, when we add a new ad a; into
the list, there will be three cases: a; is ranked above a;,
a; is ranked below a;, and a; is ranked between a; and
a;. The conditional probabilities of the three cases are
calculated as below.
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P(a; - a; - a;
P(a; > ajla; = a;) = Pla - a; = a:)

P(aj >—ai) ’
P(a; > a; = ar)
P(a; = alaj = a;) = —5—————,
(a: - aila; > a;) P(a; > a;)
P(a- - a; =~ ai)
Plaj = a; = aila; = a;) = —2———">.
J I P(aj >ai)

Like the pairwise beat probability, the calculation
of P(a; = a; > ai) can be separated into several cases,

P(a; = a; = ax)

P(Si>Sj >Sk), Xi:Xj:Xk:L
Tijs Xi=X;=0, X;; =1,

= < 0.5, Xi=1 X; =X, =0,
1/6, X =X; =X, =0,
0, otherwise.

We can see that the most difficult part in calcu-
P(S; > S; > Si). As we discussed in Sec-
tion 4, S;,5;,S, are drawn from the Gaussian ran-
dom variables p(s;),p(s;),p(sx) with different means

3;,55,5; but the same variance Uf.

lation is

Here we use
i, [, i to denote the means and o2 to denote the
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variance for simplicity. Since the rank score distribu-
tions are independent, we can get the joint distribution
by simply multiplying them together, i.e., p(s;, s, 51) =
p(si)p(s;j)p(sk). With the joint distribution, we can get

P(S; > S; > Si)

= [ [ e
/mdsf/ (1= ®(s;lmi, %)) p(s;)p(sk)dsn

- / P(5)®(s; 1k, 02) (1 — (s a1, 0%)) s,

)p(Sk)dSi

Here ®(z|p,0?%) = 3 (1 + erf (i;\/gi)) is the cumula-
tive distribution function of normal random variable
N(u,0?), and erf(z) is the error function®. Then we
can calculate this probability with a one-dimensional
There are several standard
methods to compute the numerical integration@

numerical integration.
, and
we can also make some preprocessing to trade space for
time. Combined with the previous formulas, we can

calculate the conditional probabilities.

® Wikipedia. Error function. http://en.wikipedia.org/wiki/Error_function, Jan. 2015.

® Wikipedia. Numerical integration. http://en.wikipedia.org/wiki/Numerical_integration, Jan. 2015.



