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Abstract—A 201.4 GOPS real-time multi-object recognition
processor is presented with a three-stage pipelined architecture.
Visual perception based multi-object recognition algorithm is
applied to give multiple attentions to multiple objects in the input
image. For human-like multi-object perception, a neural percep-
tion engine is proposed with biologically inspired neural networks
and fuzzy logic circuits. In the proposed hardware architecture,
three recognition tasks (visual perception, descriptor generation,
and object decision) are directly mapped to the neural perception
engine, 16 SIMD processors including 128 processing elements,
and decision processor, respectively, and executed in the pipeline to
maximize throughput of the object recognition. For efficient task
pipelining, proposed task/power manager balances the execution
times of the three stages based on intelligent workload estimations.
In addition, a 118.4 GB/s multi-casting network-on-chip is pro-
posed for communication architecture with incorporating overall
21 IP blocks. For low-power object recognition, workload-aware
dynamic power management is performed in chip-level. The
49 mm� chip is fabricated in a 0.13 m 8-metal CMOS process
and contains 3.7M gates and 396 KB on-chip SRAM. It achieves
60 frame/sec multi-object recognition up to 10 different objects for
VGA (640 480) video input while dissipating 496 mW at 1.2 V.
The obtained 8.2 mJ/frame energy efficiency is 3.2 times higher
than the state-of-the-art recognition processor.

Index Terms—Multi-casting network-on-chip, multimedia pro-
cessor, multi-object recognition, neural perception engine, visual
perception, workload-aware dynamic power management, three-
stage pipelined architecture.

I. INTRODUCTION

O BJECT recognition is a fundamental technology for in-
telligent vision applications such as autonomous cruise

control, mobile robot vision, and surveillance systems [1]–[5].
Usually, it contains not only pixel based image processing for
object feature extraction but also vector database matching for
final object decision [6]. For object recognition, first, various
scale spaces are generated by a cascaded filtering for input video
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stream. Then, key-points are extracted among neighbor scale
spaces by local maxima/minima search, and each of them is con-
verted to a descriptor vector that describes the magnitude and
orientation of it. Last, the final recognition is made by nearest
neighbor matching with pre-defined object database that gener-
ally includes over ten thousands of object descriptor vectors.

Since each stage of the object recognition requires huge
amount of computations, its real-time operation is hard to be
achieved with a single general purpose CPU [3]. To achieve
real-time performance over 20 frame/sec with low power con-
sumption under 1 W, many multi-core based vision processors
have been developed [1]–[5]. In massively parallel single
instruction multiple data (SIMD) processors [1], [2], hundreds
of processing elements (PEs) of are employed to maximize
data-level parallelism for per-pixel image operations such as
image filtering and histogram. However, their identical oper-
ations are not suitable for key-point or object level operations
such as descriptor vector generation and database matching.
On the other hand, the multi-core processor of [3] exploits
coarse-grained PEs and memory-centric network-on-chip
(NoC) for task-level parallelism over data-level parallelism;
however, it cannot provide enough computing power for
real-time object recognition due to its data synchronization
overhead. Unlike the previous processors, a NoC based parallel
processor [4] adopts a visual attention engine (VAE) [7] to
reduce the computational complexity of the object recognition.
Motivated from human visual system, the VAE selects mean-
ingful key-points out of the extracted ones to give attentions to
them before the main object recognition processing aforemen-
tioned. Although it reduces the execution time of the whole
object recognition, however, its performance is still limited
because its visual attention, object feature extraction and de-
scriptor generation, and database matching are performed in
series in time domain due to their unbalanced workloads.

In this work, we propose a real-time low-power multi-object
recognition processor with a three-stage pipelined architecture.
The previous visual attention is enhanced to visual perception to
give multiple attentions to multiple objects in the input image.
For human-like multi-object perception, neural perception en-
gine is proposed with biologically inspired neural networks and
fuzzy logic circuits. In the proposed processor, a three-stage
pipelined architecture is proposed to maximize the throughput
of object recognition. The mentioned three object recognition
tasks are pipelined in frame level and their execution times are
balanced based on intelligent workload estimations to improve
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Fig. 1. Visual perception based object recognition model.

pipelining efficiency. In addition, a multi-casting NoC is pro-
posed for the integration of overall 21 IP blocks of the processor.
For low power consumption, workload-aware dynamic power
management is performed in chip-level. As a result, the pro-
posed processor achieves 60 frame/sec 496 mW multi-object
recognition up to 10 different objects for VGA (640 480)
sized video input.

The rest of this paper is organized as follows. Section II de-
scribes a visual perception based multi-object recognition algo-
rithm in detail. Then, Section III explains system architecture of
the proposed processor. Detailed designs of each building block
are explained in Section IV. Section V describes the proposed
NoC communication architecture. The chip implementation and
evaluation results follow in Section VI. Finally, Section VII
summarizes the paper.

II. VISUAL PERCEPTION BASED MULTI-OBJECT RECOGNITION

A. Visual Perception Based Object Recognition Model

Fig. 1 shows the concept diagram of the proposed visual per-
ception based multi-object recognition model. The visual per-
ception is an extended mechanism of the previous visual atten-
tion [4] to multi-object cases. Based on visual attention, it ad-
ditionally selects the seed points of the objects and performs
seeded region growing to detect the regions-of-interest (ROIs)
for objects. Compared with the previous attention, the visual
perception gives multiple attentions to multiple objects of the
input image by highlighting ROI of each object. After the visual
perception, the next object recognition tasks such as key-point
extraction and database matching are performed with focusing
only on the selected ROIs. By processing only critical regions
out of the whole image, computational cost of the object recog-
nition is also reduced in proportional to the area of selected
ROIs.

B. Overall Algorithm

Fig. 2 shows the overall algorithm of the proposed multi-
object recognition processor. It is divided into three stages by

the role of each stage: visual perception, descriptor generation,
and object decision. This algorithm is devised to recognize
around 50 office stuffs in real-time, which is applicable for
autonomous mobile robot’s vision system.

The visual perception stage is proposed to estimate the ROIs
of objects, a global feature of the image, in advance to main
object recognition processing. Based on Itti’s visual attention
model [8], it extracts not only static features such as intensity,
color, and orientation, but also a dynamic feature such as motion
vector from the down-scaled input image to generate saliency
map. Based on this saliency map, the visual perception selects
the seed points of objects and performs seeded region growing
to detect ROI of each object [9]. Finally, it determines the ROIs
for multiple objects in a unit of 40 40 pixel sized tile, called
a grid-tile. For the implementation of visual perception stage, a
special hardware block with bio-inspired neural networks and
fuzzy logic circuits is proposed to mimic operations of human
visual system.

The descriptor generation stage extracts key-points of objects
out of the selected ROI grid-tiles from the visual perception
stage, and generates descriptor vectors for them. To this
end, various algorithmic methods such as KLT, Harris-corner
detector, affine transformations, and scale invariant feature
transform (SIFT) exist [6]. In our algorithm, the SIFT is se-
lected because it is robust to noise injection as well as scale
and rotation variances. For the implementation of descriptor
generation stage, a parallel processor consisting of many pro-
cessing units is adopted to tackle parallel and complex image
processing tasks. To be applicable for various algorithms, each
processing unit is designed as a programmable device.

The object decision stage determines the final recognition re-
sults by performing database matching for selected regions. It
matches the descriptor vectors out of the descriptor generation
stage with the object database including thousands of object
vectors. A vector matching is to search the minimum distance
vector out of the vectors in the database with an input inquiry
vector. To accelerate these repeated vector matching operations,

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 29, 2009 at 00:41 from IEEE Xplore.  Restrictions apply. 



34 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 1, JANUARY 2010

Fig. 2. Three-stage multi-object recognition algorithm.

dedicated vector distance calculation units are employed in the
object decision stage.

Overall, the proposed algorithm employs grid-based ROI pro-
cessing that divides the input image into a number of two-di-
mensional (2-D) grid-tiles and performs the processing based
on them. It enables fine-grained ROI extraction of multiple ob-
jects and reduces the effective processing area of input images.
To evaluate the proposed algorithm, we perform experiments
with 50 office objects out of Columbia object image library
(Coil-100) [10]. It is applied to 2400 sample images that include
random objects in natural background scenes, with a 16384-
entry database made by the SIFT. As a result, overall recog-
nition rate by the proposed algorithm is measured as 92%. For
evaluations of the ROI detection by visual perception, true pos-
itive rate that represents the ratio of correctly detected region
out of ground truth ROI and false positive rate that represents
the ratio of incorrectly detected region out of not interested re-
gion [11] are measured as 70% and 5%, respectively. The visual
perception barely affects the overall recognition rate while re-
ducing the processing area of the images to 32.8% on average.

III. SYSTEM ARCHITECTURE

Fig. 3 shows the overall block diagram of the proposed pro-
cessor. It consists of 21 IP blocks: a neural perception engine
(NPE), a SPU task/power manager (STM), 16 SIMD processor
units (SPUs), a decision processor (DP), and two external
memory interfaces. The NPE is responsible for the first visual
perception stage. It extracts the ROI grid-tiles for each object
and sends them to 16 SPUs for detailed image processing.
The 16 SPUs, whose power domain is separated into four, are
responsible for the second descriptor generation stage. They
extract object features out of the selected ROIs and convert

them to descriptor vectors. The descriptor vectors out of the
16 SPUs are gathered at the DP. The DP accelerates the vector
matching process of descriptor vectors for the third object
decision stage. The STM is specially devised to distribute the
tasks of the ROI grid-tiles from the NPE to the 16 SPUs and to
manage them. It also controls the pipeline stages of the overall
processor and manages four power domains of 16 SPUs. The
overall 21 IP blocks are interconnected through the proposed
multi-casting NoC.

To increase parallelism and hardware utilization of the pro-
posed processor, the proposed three stages are executed in the
pipeline in frame level as shown in Fig. 4. The pipelined data are
ROI grid-tiles and descriptor vectors between the first–second
stage and second–third stage, respectively. Unlike the execu-
tion time of the first visual perception stage is constant due to its
fixed computation amount, the execution time of the second de-
scriptor generation and third object decision are varying with the
number of ROI grid-tiles and descriptor vectors. In order to bal-
ance the execution times of three stages, the STM estimates the
workload of the following descriptor vector and object decision
stage based on the number of extracted ROI grid-tiles and de-
scriptor vectors, respectively, and controls their execution times
using two pipeline time balancing schemes.

To control the execution time of the descriptor generation
stage, the STM performs workload-aware task scheduling
(WATS) that differs the number of scheduling SPUs according
to the stage’s input workload. Fig. 5(a) shows the flow chart
of the WATS. First, the STM measures the number of ROI
grid-tiles from the NPE and classifies it to one of N work-
load levels divided by N-1 threshold values. And then, the
STM determines the number of operating SPUs according to
the classified workload level. Since it allocates the SPUs in
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Fig. 3. Overall block diagram of proposed processor.

Fig. 4. Three-stage pipelined architecture.

proportional to the amount of workload, the execution time
of the overall descriptor generation stage is kept in constant.
The overall execution time is adjusted by modifying threshold
values of classification process. By lowering threshold values,
the execution time is decreased because more SPUs are as-
signed for the same amount of workload. On the other hand, the

execution time increases when threshold values become high,
while the number of operating SPUs is reduced.

To control the execution time of object decision stage, the
STM performs applied database size control (ADSC), shown
in Fig. 5(b). Based on the vector matching algorithm of the DP
[12], the overall execution time of the object decision stage is
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Fig. 5. (a) Workload-aware task scheduling. (b) Applied database size control.

Fig. 6. Block diagram of neural perception engine and SPU task/power manager.

proportional to the number of input descriptor vectors and the
size of applied database. Based on these, the execution time
of the object decision stage can be controlled by configuring
coverage rate of database. First, the STM measures the number
of descriptor vectors from the SPUs and calculates the expected
execution time of the vector matching. Then, it compares the
expected execution time with the target pipeline time and
configures the database coverage rate of the DP to meet the
pipeline time. However, reducing coverage rate should be care-
fully performed because it can degrade the overall recognition
rate. With a 16384-entry database for 50 objects recognition,
correctly matched rate degrades 0.6% and 1.3%, when the
coverage rate is 0.95 and 0.90, respectively. With the help of
the WATS and ADSC, the execution times of the three stages
can be balanced to the target pipeline time, 16 ms, even under

the workload variations. As a result, the proposed processor
achieves 60 frame/sec frame-rate for VGA (640 480) sized
video input.

IV. BUILDING BLOCK DESIGN

A. Neural Perception Engine

Fig. 6 shows the block diagram of the NPE. For efficient ROI
detection, the NPE employs a 32-bit RISC controller and three
hardware engines; motion estimator (ME), visual attention en-
gine (VAE), and object detection engine (ODE). The ME is em-
ployed to extract dynamic motion vectors between two sequen-
tial frames and implemented by array PEs with a full search
block matching method [13]. The VAE is employed to extract
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Fig. 7. Detailed visual perception algorithm.

static features such as intensity, color, and orientation and gen-
erate the saliency map that combines the extracted feature maps
through repeated normalizations. The ODE is proposed to per-
form the final ROI classification for each object using the gener-
ated saliency map. The RISC controller takes a role in control-
ling the three dedicated engines and performing software ori-
ented operations between the dedicated operations of the en-
gines. A 24 KB memory is used for storing original images and
data communication among the three engines by sharing inter-
mediate processing data. After the final ROI classification, the
NPE transfers information of the obtained ROI grid-tiles to the
STM through a FIFO queue.

Fig. 7 shows the detailed visual perception algorithm oper-
ated by the NPE, which broadly consist of saliency map gen-
eration and ROI classification. The saliency map generation is
mainly based on Itti’s saliency based visual attention [8] and ac-
celerated by the VAE. First, the RGB channels of VGA sized
input image are down-sized to 80 60 pixels and an inten-
sity feature map and two color feature maps are generated by
per-pixel filtering operations. Four orientation feature maps, for
the direction of 0, 45, 90, and 135 , are generated from the in-
tensity feature map with the Gabor filtering. After generating
multi-scale Gaussian pyramid images for each of 7 maps, each
image is transformed by a center-surround mechanism to en-
hance the parts of the image that differ from their surround-
ings. Finally, the saliency map is generated by repeated com-
bination of normalized feature maps. The motion vector map,
generated by the ME, is also combined in this step. Among

these processes, computationally intensive image filtering op-
erations such as Gabor, Gaussian, and center-surround filtering
are accelerated by the hardware accelerator VAE. The normal-
ization processes, which include irregular operations and can be
performed in different ways, are performed by software by the
RISC controller. After saliency map generation, ROI classifica-
tion is performed by the ODE. First, the 10 most salient points
are selected as the seed points out of the saliency map. Then,
from the most salient seed point, the ROI of an object grows
from neighbor pixels of the seed through repeated homogeneity
classifications. For the classification of each pixel, an intensity,
saliency, and location are used for homogeneity evaluation. The
similarities between the seed and target pixel are measured for
above three metrics, and based on the summated result, the final
classification that the target pixel is determined to be joined to
the ROI or not is determined. In case that the other seed points
are included by the grown region, they are inhibited from the
seed points in the next ROI classification. After repeating clas-
sification processes for 10 seed points, the ROI of each object
in pixel unit is quantized to the small sized grid-tile unit.

In the design of the VAE and ODE, biologically inspired cel-
lular neural networks and neuro-fuzzy classifier are employed
for fast feature extraction and robust classification, respectively.
In the VAE, 2-D cellular neural networks are used to rapidly ex-
tract various features from the input image using its regional
and collective processing [7]. Fig. 8 shows overall block di-
agram, circuits, and measured waveforms of the ODE. It em-
ploys Gaussian fuzzy membership and single-layer neural net-
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Fig. 8. Block diagram, circuits, and measured waveforms of object detection engine.

work for similarity measure and decision making, respectively.
In circuit design, the ODE exploits analog-based mixed-mode
circuits to reduce area and power overhead of Gaussian func-
tion circuits and neural synaptic multipliers. Except the digitally
implemented learning part, data processing parts of the ODE
are implemented by analog circuits. To exploit the analog data
processing, 8-bit intensity, saliency, and location values of the
target and seed pixel are converted to analog signals by DACs.
After that, three Gaussian function circuits measure the simi-
larities between the two pixels for three metrics. A Gaussian
function circuit is realized by the combination of MOS differ-
ential pair and minimum follower circuit in current mode con-
figuration. The differential pair circuit outputs the symmetric
differential signals, each of which has exponential non-linearity
characteristics. And the minimum follower circuit generates the
Gaussian-like output by following the minimum between the
symmetric differential signals. A 2-D Gaussian function circuit
can be implemented by two consecutive Gaussian function cir-
cuits by connecting the output of a Gaussian function circuit to
the bias current input tail of the next Gaussian function circuit.
Finally, current-mode neural synaptic circuits merge the three
measured similarities with multiplying their weight values, and
comparator circuit make the final decision through thresholding.
With a Hebbian learning [14], the weight values of the neural
synaptic circuits, which play a role in classification criteria,
are updated every cycle. As a result, the ODE completes the
ROI detection for 1 object within 7 s at 200 MHz operating
frequency. And its analog-based mixed-mode implementation
reduces the area and power consumption by 59% and 44%,
respectively, compared with those of digital implementation.

Fig. 8 also shows the measurement waveforms of mixed-mode
ODE. They include DAC output signal, Gaussian function cir-
cuit output signal, and final classification signal. As shown in
the enlarged waveforms, the Gaussian output signal varies with
the similarity of two analog input signals, and the final classifi-
cation signal is made based on it.

B. SIMD Processor Unit

The SPU is designed to accelerate parallel image processing
tasks of the descriptor generation stage. As shown in Fig. 9,
the SPU consist of a SPU controller, eight SIMD controlled
dual-issued very long instruction word (VLIW) PEs, 128-bit-
wide data memory, and 2-D DMA. The eight PEs perform pixel
parallel image processing operation such as Gaussian filtering,
local maximum search, and histogram operation. The SPU con-
troller controls the overall program flow of the SPU, decodes the
instruction for the eight PEs, and performs data transfer between
the eight PEs and data memory. For the data memory of the eight
PEs, a 128-bit unified memory is used rather than eight 16-bit
memories to reduce the area and power consumption by 30.4%
and 36.4%, respectively. The two data aligners between the data
memory and eight PEs facilitate the data movement by rotating
the unified 128-bit data in 16-bit unit. The 2-D DMA performs
the data transfer between the external memory and internal data
memory in parallel with the PE operation. It automatically gen-
erates the addresses for 2-D data access for the data transactions
of vision applications.

The detailed block diagram of each dual-issued VLIW PE
is also shown in Fig. 9. It consists of two independent data
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Fig. 9. SIMD processor unit and its dual-issued VLIW PE.

paths for data processing operations such as ALU, shift, mul-
tiply, and multiply-and-accumulation (MAC), and data transfer
operations such as load and store. A 51-bit dual-issued VLIW
instruction enables parallel execution of the data processing and
data transfer operation for every cycle. Utilizing its own reg-
ister file with five-read and three-write ports, the PE can exe-
cute complex instructions for image processing such as two-way
multiply/MAC, three-operanded min/max compare, and 32-bit
accumulation in a single cycle. The register files of the other PEs
can be directly accessed for window based image processing. In
addition, each PE can be conditionally executed for the same in-
struction using its independently managed status register.

C. Decision Processor

The object decision stage is composed of repeated vector
matching processes that search the nearest vector of each
input descriptor among object database. These repeated vector
matching can be a performance bottleneck because distance
calculations between the input vector and each of thousands
of vectors in database require a lot of processing time. In the
proposed processor, the DP accelerates the vector matching to
make the object decision stage to be operated over 60 frame/sec

frame rate for the database including more than 15,000 vectors.
To reduce the search region of database without accuracy loss,
the DP exploits the H-VQ algorithm presented in the previous
vector matching processor [12]. However, as shown in Fig. 10,
the hardware is redesigned to increase the throughput of vector
matching with two modifications. First, the H-VQ algorithm
is performed with dedicated three-stage pipelined datapath
for vector distance calculation and comparison. Second, the
bandwidth of database vector memory is increased twice, from
256-bit to 512-bit. For the vector matching operations of the
DP, descriptor vectors are gathered in feature vector memory
from the SPUs as the first step. Then, the H-VQ algorithm is
performed by a controller with the dedicated datapath. Once an
input inquiry vector is set, the DP can obtain the index of the
minimum distance vector by reading vectors from the database
memory because the distance calculations and minimum vector
updates are automatically performed in pipelined datapath
stages. Since the DP can read two 256-bit vectors from the
database memory in a single cycle, the throughput of the DP
is two vector distance calculations per cycle at 200 MHz.
In overall, the DP matches 256 descriptor vectors with a
16384-entry database within 3M cycles.
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Fig. 10. Block diagram of decision processor.

V. MULTI-CASTING NETWORK-ON-CHIP

As the number of IP blocks increases to address computing
requirements of recent multimedia processing, conventional
shared medium based communication reveals its limitations
to handle simultaneous data transactions among multiple IP
blocks. As an alternative, a network-on-chip (NoC) is high-
lighted as suitable communication architecture in multi-core
era in spite of its high implementation costs compared with
conventional bus, because it provides sufficient bandwidth to
multiple IP blocks and has good scalability with distributed
router switches [15]–[17]. In this processor, a multi-casting
network-on-chip (MC-NoC) is proposed to integrate all of 21
IP blocks. To cope with the processor’s application-driven data
transactions such as 1-to-N broad/multi-casting and inter-pro-
cessor data communications, the MC-NoC has a new combined
architecture and supports a multi-casting capability.

Fig. 11 shows the proposed MC-NoC architecture that con-
sists of a 9 10 system network and four 7 7 SPU cluster
(SPC) networks. The 16 SPUs are connected to the system
network through the four SPC networks while the NPE, STM,
DP, and two external interfaces are directly connected to the
system network. It adopts a hierarchical star topology [15] as
a basic topology for low latency data communications, and
then, supplements a ring topology to the SPC networks for
high-speed inter-SPU data transactions. The additional network
links for the combined topology provides 25.6 GB/s aggregated
bandwidth between the SPC networks and allows each SPU to
access the other SPUs in neighbor clusters in two switch hops.
In overall, topology-combined MC-NoC provides a 118.4 GB/s
total bandwidth with the switch hop latency of less than 3. The
proposed MC-NoC adopts a wormhole routing protocol whose
packet is composed of header, address, and data flow control
units (FLITs). Each FLIT consists of 2-bit control signals and
34-bit data signals including 2-bit FLIT type indicator. The
header FLIT contains all information for the entire packet
transmission such as 4-bit burst length for burst data transaction

Fig. 11. Proposed multi-casting NoC architecture.

up to eight FLITs and 2-bit priority level for quality-of-service.
The 16-bit source defined routing information (RI) allows four
switch traversals for normal packets and multi-casting to arbi-
trary SPUs for multi-casting packets. In case of multi-casting
packets, each bit of 16-bit RI indicates each destination SPU.

In the MC-NoC, multi-casting from the NPE/STM to the 16
SPUs is supported to accelerate 1-to-N data transactions such
as program kernel distribution and image data download. To
this end, each network switch is designed to have multi-casting
ability. Fig. 12 shows a four-stage pipelined multi-casting
crossbar switch and its multi-casting port. It consists of input
ports, arbiters, mux based crossbar fabric, and output ports.
At first, the incoming FLITs are buffered at the 8-depth FIFO
queue that contains the synchronization interface [18] for
heterogeneous clock domain conversion. Then, each active
input port sends a request signal to its destination arbiter to get
a grant signal to traverse the crossbar fabric. For scheduling of
grant signals, the arbiters perform a simple round-robin sched-
uling according to the priority levels. In case of multi-casting
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Fig. 12. Four-stage pipelined multi-casting switch and its multi-casting port.

packet, a multi-casting input port sends multiple requests to all
destination arbiters at the same time and waits until all grant
signals are returned. To this end, in the multi-casting input
port, a multi-port requester decodes the 16-bit RI and generates
corresponding request signals and a grant checker holds the
multi-casting packet until the registered request signals are
equal to the received grant signals. After all grants are gathered,
multi-casting is performed using the existing broad-casted
wires of crossbar fabric without any additional wires. A vari-
able strength driver is specially employed for the multi-casting
port to provide sufficient driving strength for multi-casting. As
a result, the MC-NoC’s multi-casting capability accelerates the
program kernel distribution and image data download task of
the target object recognition by 6.56 and 1.22 , respectively.

VI. LOW-POWER TECHNIQUES

To reduce power consumption during the object recognition
processing, chip-level power management is performed by the
STM. Fig. 13 shows power management architecture of the
proposed processor and its workload-aware dynamic power
management. In the chip, power domain of the 16 SPUs is
divided into four domains and each of them is independently
controlled by the STM. To control the power domains, off-chip
power gating method [19] is employed for low cost implemen-
tation. An external regulator with enable signal is employed

for each of the power domains. The rest parts of the chip, the
NPE, STM, DP and NoC, are placed in always-on domain.
For efficient power gating of the chip, workload-aware power
gating (WAPG) is adopted with workload-aware task sched-
uling (WATS). When the STM measures the workload of the
SPUs based on the number of ROI grid-tiles and determines
the number of activating SPUs, it also determines the number
of activated power domains in proportional to the workload
amount, as shown in the flow chart of Fig. 13. After that, the
STM sends request signals to external regulators to gate unused
power domains of SPUs before it assigns the ROI grid-tile tasks
to the SPUs. Considering a few hundreds of s settling time of
external regulators, the requests for power gating occur only
once per frame. By the WAPG, the number of activated power
domains adaptively varies according to the workload of input
frame as shown in Fig. 13.

For further reduction of dynamic power in activated power
domains, software controlled clock gating is applied to each op-
erating SPU as shown in Fig. 14. The clock of SPU can be gated
by two software requests, end request and wait request. Each
request is made by writing operation of the SPU to pre-defined
address. The end request occurs when the SPU has finished its
assigned task. On the other hand, the wait request is generated
in situation that the SPU should stop its operation and wait for
other module’s operation. To this end, the SPU writes the index
value at the pre-defined wait address to notify the index of wait
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Fig. 13. Workload-aware dynamic power management.

Fig. 14. Software controlled clock gating.

conditions to be resolved. In this case, the clock is automati-
cally restored when all the wait conditions are resolved. With
the WAPG and software controlled clock gating, the power con-
sumption of the 16 SPUs is reduced by 38%, from 542 mW to
336 mW, while the power consumption of the overall processor
amounts to 496 mW at 60 frame/sec frame-rate.

VII. CHIP IMPLEMENTATION AND EVALUATION

The proposed recognition processor is fabricated in a 0.13 m
1-poly 8-metal CMOS technology and its mm chip con-
tains 36.4M transistors including 3.7M logic gates and 396 KB
on-chip SRAM. Fig. 15 shows the chip micrograph and Table I
summarizes its features. The operating frequency is 200 MHz
for IP blocks and 400 MHz for the NoC. Its peak performance
amounts to 201.4 giga operations per second (GOPS) when 695
mW is dissipated. Specifically, 128 PEs of 16 SPUs, each of
which performs up to five operations per cycle with a two-way
MAC instruction, performs 128 GOPS. The NPE performs 54

Fig. 15. Chip micrograph.

GOPS; 40 linear PEs of the VAE perform 24 GOPS, four parallel
analog-digital mixed datapaths of the ODE perform 20 GOPS,
parallel SAD units of the ME perform 9.8 GOPS, and a con-
trol RISC performs 0.2 GOPS. The DP performs 19.4 GOPS
using its 32 16-bit SAD distance calculation and compare units.
The average power consumption of the processor is 496 mW
at the supply voltage of 1.2 V while the proposed multi-object
recognition is running at 60 frame/sec frame-rate. Table II shows
power break-down of the proposed processor. The 16 SPUs ac-
count for about two thirds of overall power consumption.

Fig. 16 shows performance comparisons of the proposed pro-
cessor with previous vision processors [2]–[4], [20]. Fig. 16(a)
shows power efficiency comparison. The GOPS/W, which
normalizes the GOPS performance with the power, is adopted
as a performance index where the 1 operation means 16-bit
fixed-point operation. The proposed processor achieves 290
GOPS/W, which is 1.36 times higher than the previous vision
processors. Fig. 16(b) shows energy efficiency comparison in
object recognition, which is obtained by energy consumption
per each frame. With 60 frame/sec operation by the pipelined
architecture and under 0.5 W power consumption by the
workload-aware dynamic power management, the proposed
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Fig. 16. (a) GOPS/W comparison. (b) Energy/frame comparison.

Fig. 17. Demonstration system.

TABLE I
CHIP SUMMARY

TABLE II
POWER BREAK-DOWN

processor achieves 8.2 mJ energy dissipation per frame for
VGA sized video input, which is 3.2 times lower than the best
of the previous object recognition processor.

For the validation of the fabricated chip, a demonstration
system for real-time object recognition is developed as shown
in Fig. 17. It is composed of target objects, video camcorder,
evaluation board, and LCD display. The evaluation board
is composed of three floors, which are for host processor,
video decoder and fabricated recognition chip, and peripheral
interfaces such as LCD display, serial, USB, and Ethernet,
respectively. In the demonstration system, the fabricated chip is
used as a vision processing accelerator while the host processor
controls the whole program sequences and accesses peripheral
modules to display the results and to interface with the external
devices. The overall object recognition is performed by three
steps. First, the input image of the target objects is captured
from the video camcorder and decoded to three-channel RGB
pixel data by the video decoder. Then, the decoded image
frame is processed by the proposed multi-object recognition
processor. Last, the final recognition results are displayed with
the key-points at the LCD screen by the host processor.

VIII. CONCLUSION

In this work, we have proposed a real-time multi-object
recognition processor with a three-stage pipelined architec-
ture. The visual perception based multi-object recognition
algorithm has been developed to give multiple attentions to
multiple objects in the input image. For human-like multi-ob-
ject perception, a neural perception engine has been proposed
with biologically inspired neural networks and fuzzy logic
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circuits. In hardware architecture, a three-stage pipelined ar-
chitecture has been proposed to maximize the throughput of
recognition processing. The three object recognition tasks are
executed in the pipeline and the execution times of the three
tasks are balanced for efficient pipelining based on intelligent
workload estimations. In addition, a 118.4 GB/s multi-casting
network-on-chip has been proposed for communication archi-
tecture with incorporating overall 21 IP blocks of the processor.
Finally, workload-aware dynamic power management was
performed for low-power object recognition. The 49 mm
chip contains 3.7M gates and 396 KB on-chip SRAM in a
0.13 m CMOS process. With a demonstration system, the
fabricated chip achieves 60 frame/sec multi-object recognition
up to 10 different objects for VGA (640 480) video input
while dissipating 496 mW at 1.2 V. The obtained 8.2 mJ/frame
energy dissipation is 3.2 times lower than the state-of-the-art
recognition processor.
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