Fingerprints for Highly Similar Streams

Yoram Bachracht, Ely Poratl
tMicrosoft Research, Cambridge, UK, yobach@micorosft.com
iBar-Tlan University, Ramat Gan, Israel, porately@cs.biu.ac.il

Abstract

We propose an approach for approximating the Jaccard similarity of two streams,
J(A,B) = }ﬁggi, for domains where this similarity is known to be high. Our
method is based on a reduction from Jaccard similarity to F» norm estimation,
for which there exists a sketch that is efficient in terms of both size and com-
pute time, which we augment by a sampling technique. Our approach offers an
improvement in the fingerprint size that is quadratic in the degree of similarity
between the streams. More precisely, to approximate the Jaccard similarity up

to a multiplicative factor of € with confidence ¢, it suffices to take a fingerprint

2
of size O(In(}) (1;) log t1) where ¢ is the known minimal Jaccard similarity
between the streams. Further, computing our fingerprint can be done in time
O(1) per element in the stream.

1. Introduction

Fingerprinting methods are a key building block for massive dataset pro-
cessing. They store very concise descriptions of big data streams, called “fin-
gerprints” or “sketches”, and allow approximating properties of the streams or
relations between them. As these fingerprints do not allow completely recon-
structing the streams themselves, but are rather designed for very specific pur-
poses, they can be much shorter than standard compression techniques would
allow.

One key problem in massive dataset processing is computing similarity be-
tween streams or sets. Specifically, the Jaccard similarity has important appli-
cations, ranging from duplicate detection [35, 38] to recommender systems [11].
An interesting property of such applications is that they only require a highly
accurate approximation of the Jaccard similarity when this similarity is high.
For example, collaborative filtering based recommender systems attempt to lo-
cate users who examined a set of items that is similar to a target user. The
system “weeds out” users who examined very dissimilar item sets, then takes
the highly similar users and recommends an item based on a highly accurate
estimate of the similarity between their sets and the target user’s set [11].

Similarly, in web page duplicate detection, when testing for near duplicates
of a target web page, if an examined page has a word set that is very dissimilar

Preprint submitted to Information € Computation May 19, 2015

from the target page, it can be ruled out as a duplicate. On the other hand,
if the similarity is high, we must approximate it accurately to determine if the
similarity exceeds the threshold required to classify this page as a near duplicate.

In this paper, we design fingerprints for accurately computing similarity
between two streams, which become more accurate when the streams are highly
similar. Our technique offers a superior performance in terms of the relation
between the fingerprint size and the accuracy and confidence of the similarity
estimate. The more similar we assume the target streams are, the smaller
the space that our fingerprint requires: if we are only interested in the exact
similarity when the Jaccard similarity between the tested streams is at least ¢

(for some % < t < 1), we achieve an accuracy of € using a fingerprint of size

O((1;)2 log 127). Further, we only require a running time of O(1) per element
in the stream, as it only applies one hash from a pairwise independent hash
family and one hash from a 4-wise independent hash family to each stream
element. We compare our method with state of the art sketches in Section 2.

Preliminaries and Paper Outline: Consider a recommender system pro-
viding users with recommendations of items, such as movies or books, from a
universe U of items. Many recommender systems are based on collaborative fil-
tering: when a target user asks for a recommendation, the system first searches
for other users who have similar consumption patterns to the target user; it
then examines the items consumed by these users, seeking for items that many
of these similar users have consumed, but that the user has not yet consumed.
Such items are good candidate items to recommend, as many users who are sim-
ilar to our target user liked these items. However, to use this approach we need
to define a notion of similarity between users, and construct a good algorithm
to compute the similarity between any two users. Each user is characterized by
a set of items they consumed in the past, and the similarity between two users
can be measured by the Jaccard similarity between these two item sets. Given
item sets, A C U and B C U, the Jaccard similarity is: J(A, B) = }igg}.

A naive approach would be storing the full list of items each user has con-
sumed. However, in many large scale systems it is difficult to fit this entire
dataset in memory. An alternative approach in such situations is fingerprinting:
rather than storing the entire set of consumed items for each user, we store a
short representation for each user, called a fingerprint. As opposed to lossless
compression, we cannot use a user’s fingerprint to reconstruct the entire set of
items the user has consumed. Instead, given two fingerprints of two users, we
can get a good approximation for the similarity between these two users (for
example, the Jaccard similarity between the item sets they have consumed).
Good fingerprints are designed to allow this while using very little space, so
that the fingerprints of all users could be stored on main memory. !

1We assume that the user items sets are given in advance. We then apply some processing
on this data to construct the user fingerprints. Clearly, if the set of items representing a
user is changed (for example, when a user consumes a new item), the fingerprint must be
recomputed. However, we do not need to assume a specific order of arrival for the user items,

When providing a recommendation to a target user, most collaborative fil-
tering recommender systems only examine users who are “similar enough” to
the target user. In other words, these systems ignore the items consumed by
users who are dissimilar to the target user (or at least, they place such a low
weight on these users that it suffices to only examine the items of users who
are highly similar to the target user to decide on the recommendation to be
made). We thus assume that we only require an accurate similarity estimate
when the two sets are highly similar, i.e. J(A, B) > ¢ where 0 < ¢ < 1 is some
threshold value. When for two given sets A, B we have a similarity level above
t,s0 J(A, B) > t, we call them t-similar sets. 2.

Given set A of items of a universe U of size |U|, the characteristic vector
of A is a vector vy of length |U| where vali] = 1 if i € A and vali] = 0
when i ¢ A. Given a vector v = (v[1],...,v[n]), its F), norm is defined as:

F,(v) = (Z?Zl(v[z])p)% We note that for a set A C U and its characteristic
vector vg we have Fy(vy) = |A|. Similarly, for two sets A, B C U we have:
Fy(va —vp) =|AUB|—|ANB| = |A|+ |B| —2-|AnN B|. We first show how
to reduce the Jaccard similarity computation between two sets to computing
the Fy norm of a vector created by subtracting the characteristic vectors of the
original sets. As there are excellent known sketches for F5 norm estimation, we
show that this allows a sketch of size O((lzzt)2 logn), for example by using the
method of Thorup and Zhang [37]. We then show that it is possible to improve
the space requirement further, by employing a sampling technique.

Section 3 shows how to reduce the Jaccard approximation problem to F5
norm estimation. We assume that all item streams are ¢-similar, and show that
given a fingerprint that approximates the Fy norm up to a multiplicative factor
of 1+ €, we can get an approximation factor of 1 + €; for the Jaccard similar-
ity, where e; < 2(1 — t)e. When t > I we have 2(1 —t) < 1, so our Jaccard
approximation is more accurate than our F5 approximation. A key property of
our reduction to F5 approximation is that we get an instance with no “heavy”
elements: we reduce the Jaccard similarity problem to an instance of F» norm
computation where all the elements in the input vector are in {—1,0,+1}. By
exploiting this fact together with our assumption that the item sets are at least
t-similar, Section 4 shows how to augment the F5 norm fingerprinting techniques

of [1, 13] with a sampling technique to achieve an improved fingerprint size of

O((1;t)2 log ﬁ) Section 4.1 discusses the F» with the improved space require-

or that the items for two users arrive “in pairs”.

2Choosing the appropriate threshold ¢ is a design choice. In the collaborative filtering
scenario, for example, one may examine a running recommender system and modify it to only
take into account users who are ¢ similar to the target user. For low values of ¢ (i.e. when
the similarity threshold is so low that almost all users are considered when making the rec-
ommendation), the resulting recommendation is unlikely to change. As the chosen value for ¢
becomes higher, this modified recommender is likely to start outputting different recommen-
dations from the original system. We suggest using a value of ¢ where most recommendations
stay the same. This allows applying fingerprinting techniques to improve space requirements,
without changing the resulting recommendations in most cases.

ment, and the required fingerprint size to achieve accuracy e; for the Jaccard

2
similarity, showing that it suffices to use O((1;) log i) bits.
J

2. Related Work

Fingerprinting techniques have many applications, including estimating fre-
quency moments and L, norms [1, 25, 19], data summarization and subpopulation-
size queries [16, 15], approximate membership [32], greedy list intersection [29],
hamming distance sketching [31], approximate edit distance and pattern match-
ing [34, 14, 2], compressed sensing [23], approximating rarity and similarity
for data streams [17, 9] and sketching for recommender systems [11, 7, 6, 4].
Many fingerprints rely on random hashing, typically hashes chosen from a fam-
ily that must exhibit certain independence properties. One example of a hash
family with strong properties is the family of min-wise independent hash func-
tions [33, 12], which are slower to compute than simpler families. For some
approaches it is sufficient to use k-wise independent families of hash functions
with a range R (see for example [18]), where for any k distinct elements and any
k target values, the probability that each element is mapped to its respective
target value under k hashes chosen randomly from the family is ﬁ. As these
hashes are faster to apply, such approaches can achieve a fast running time.
Indyk [24] shows how to build an approximately min-wise independent family
using hashes which are O(log %)—independent, and recently it was shown [20]
that the k smallest elements of a hash randomly chosen from a family of O(1)-
independent hashes behave almost uniformly where k& > O(E%) Our method is
similar to [1, 37], and thus also utilizes random hashes from 2-wise or 4-wise
independent families. However, we utilize the restricted inputs generated when
reducing Jaccard similarity to F» norm estimation.

Current state of the art similarity sketches either require a higher compute
time [9, 10, 21, 22] or more space [37, 21, 26]. Table 2 compares state of the
art approaches, where € is the required accuracy, and t is the minimal Jaccard
similarity between the streams. Note that for a high enough similarity threshold
t we have (1—1t)2log ﬁ < 1 so our approach offers a significant space improve-
ment, while maintaining a constant computation time per element in the set.
Also note that in our statement for the fingerprint size we disregard the space
required to store the hash functions themselves.

We note that our approach is tailored to domains where the streams are
guaranteed to be “similar enough” (¢-similar for some value of t). To achieve
this one may use a different sketch and reject streams where this criterion is not
met. 3

3In some domains, such as recommender systems, one may have a first layer that only
targets users who are likely to be similar to the target user through alternative mechanisms.
For example, when giving recommendations to a target user, one may only examine candidate
users who have a similar personality profile or interest [3]. Such information about users
can be obtained, for example, through social network analytics services. [8, 28, 5, 27|, or by
directly profiling users.

\ Computation time \ Fingerprint size

This paper - reduction to F}, norm o(1) O((lzizt)2 logn
This paper - with sampling o(1) O((1;;)2 log 1=
Bachrach and Porat [9] O(log 1) O(%)
Feigenblat, Porat and Shiftan [21] 0(1) O(z logn)
Thorup [36] 0(1) O(= logn)

Li and Koenig [30] O(Zlog 1) O(%)
Kopelowitz and Porat [26] o(1) O(% log £ +loglogn)
(Given oracle for fully random hashes)

Figure 1: Jaccard similarity fingerprint algorithms

3. Jaccard Similarity Using F,, Norm Estimation

Given two t-similar sets A, B we have J(A, B) > t so Ifxsg} >t,80 |[AUB| <

A0B1 vielding: Fy(va—vp) = |[AUB|—|ANB| < (1—t)-|[AUB| < (=1A0B]

Consider using a fingerprint such as that in Section 4 (or other alterna-

tives [1]), to get an estimator FQ('UA/?’UB) for Fy(vq — vp) with an error guar-
anteed to be small: (1 — €)Fa(va —vp) < Fa(va —vp) < (14 €)Fa(va — vp).

—

Denote the error as: § = Fo(va — vp) — Fa(va —vp). We define several estima-
tors. 4

Definition 1 (Estimators based on an F approximation.). The intersection

—_— — —_—
estimator is: |AN B| = |A|+|B‘_§2(U’4_”B). The union estimator is: |AU B| =
Th |AnB|

|Al + |B| — \A/ﬂ\B| The Jaccard estimator is: J(A, B) =

[AuB|’

We show that the accuracy of our Jaccard estimator is better than that of
the Fy estimator, and that the bound depends on the streams’ similarity.
Theorem 1 (Jaccard approximation using an Fy approximation). The accuracy
of our Jaccard estimator improves with the similarity between the streams:

J(A,B) = (1+2(1 — t)e)J(A, B)

Proof. We denote the errors in the union, intersection and F5 norm estimators as
oy = |A @] B|—|AUB|, or = |A n B|—|AHB‘ and 6 = FQ(’UA — ’UB)—FQ(’UA—UB).

1As |ANB| = w, a natural estimator for the intersection is: |AN B| =

w. Since |AU B| = |A| + |B| — |AN B|, a natural estimator for the union

is: |A/U\B| = |A|+|B| - |A/O\B| Finally, since J(A, B) = %, a natural estimator for the
Jaccard similarity is J(/A—,\B) = 405
|AUB|

Since Fy(va —vp) —eFs(va —vp) < Fg(A —vp) < Fy(va—vp)+eFy(va—vp),
and Fy(va —vp) < (1 —1t)- [AUB| < 12t|AN B| we have:

(1) Fy(va—vp)—e(1—t)-[AUB| < Fy(va — vg) < Fa(va—vp)+e(1—t)-|[AUB]

1—-t¢ — 1-t¢
(2) Fo(va—vp)—¢- |[ANB| < Fa(va —vp) < Fa(va—vp)+e- |ANB|

Thus we have:
(1) —e(l—t)-|JAUB|<d<e(l—1t)-|[AUB|

1—

t 1-1¢
(2) —e- |[ANB| <d<e- |AN B

Since §, the approximation error for F5(v4 —vg), is bounded by €- 1| AN B|
we can also bound d;: Mﬁ—%e-%|AﬁB| <|ANB| < MQW_,_%E.%MQ
B, s0 6; = 6. Thus the estimator |A U B| has an error which is also bounded
by e(1 —t) - |AU B|. We denote 6y = |[AUB| — |AU B|. We note that
by =—06r = —16.

The approximation error for J(A, B) depends ¢; and éy, which in turn
depend on 4. Since § is bounded —e - 1[ANB| < § < e- F£[AN BJ, and

—€e(l1—t)-|AUB| <d <e(l—t)-|AU B|, we obtain a bound for J(/A-,\B):

&;ﬂ;iﬁlj |-f|1; f 1|3| TA.B) < plﬁ%fif(?j I-A/T f |B|
((+ e%(1t—t))|)f|1;f]|5e| J(4.B) < (1(;f(1t—2)|;|1;UB|B|
A < D) < g)
(12 e(1-0)(1-se-—1)J(A, B) < J(A. B) (”(f(_l(_ t()f(f ;ﬁ;lt_t)ﬂfx, B)
(- Lk —) By < JAB) < (fljé;(f__;;Z)J(A,B)

For € < 0.1 and ¢ > 0.5 we can bound J@) in a way that is not tight,
but sufficient for our purposes:

o —

J(A,B) = (1+2(1 — t)e)J(A, B)

Theorem 2. Given t-similar streams, it suffices to use a fingerprint of size

2
O((lg) logn) to approximate the Jaccard similarity with accuracy € and pro-
cessing time O(1) per stream element.

Proof. The Fy linear fingerprint of Thorup-Zhang [37] has a space requirement of
O(1/e?logn), with an O(1) computation time per element. By Theorem 1, if the
item sets are t-similar, the required space for any F5 fingerprint can be reduced

by a factor of (1—t)2, so we get a required fingerprint size of O((1;’5)2 logn). O

4. Fingerprints for restricted F> norm estimation

Section 3 examines a Jaccard fingerprint for ¢-similar sets, using a building
block that estimates the F» norm of two characteristic vectors. Though Fj
norm fingerprints already exist, we propose a more space efficient approach
for a restricted class of inputs. We assume an F» norm computation instance
for a vector where all input vector elements are in {—1,0,+1}, such as the
one generated by our reduction from Jaccard similarity in Section 3. Given
this restriction on the input, in Section 4.1 we design a block fingerprint that
approximates the F5 norm up to a multiplicative factor of €, and computing it
requires O(1) time per element.

Each such F; block fingerprint achieves the required accuracy e with prob-

ability ps = %. To get the desired confidence § we use a fingerprint comprised
of multiple such blocks. Each block i results in an estimate F; that fails to

achieve accuracy e with probability py =1 —p, = % (i.e. with probability ps

the difference between the actual F; norm F' and the estimate using block ¢, Fj,
is too high: |F' — F;| > €), and we use the “median trick” to achieve both the
desired accuracy and confidence. We take the median value from w such blocks,
i.e. the median of {F;}?*,. Denote this median value as M. The median is
inaccurate if it deviates the target value F' by more than € (i.e. |F — M| > €).
This only happens if at least half the F;’s deviate by at least ¢ (i.e. we have
% blocks with an estimation error of at least €). Applying the union bound,

Pr(3Fj,..., Fju st [Fj — F| >¢€) < pf%. To guarantee this error probability
does not exceed §, we make sure that Pr(|F' — M| > €) < p]? < 4, or equiva-

ﬁ is constant (about 2.7), it suffices

to take O(log %) such fingerprint blocks to get the desired confidence level 4.

Norm estimation with sampling: Our technique is based on the Fj
norm fingerprint of [1, 13]. We map elements to “buckets” in either a positive
or negative sign, treating each “bucket” as a counter. As opposed to [1, 13], we
sample elements, so not every element is mapped to a “bucket”, keeping counters
small. This sampling only works due to the fact that the inputs are restricted
to be vectors v which only contain small elements, such as those generated by
the reduction of Section 3, where v; € {—1,0,+1}V1.

Synchronizing a parameter for all item sets: Section 3 assumes each
item set A C U is represented as its characteristic vector, and a fingerprint
fa for this vector is computed such that given the fingerprints fa for A C U

lently w > ﬁ -log(%). Noting that

and fp for B C U we can accurately estimate Fy(vs — vp). When generating
the fingerprint f4 for A we cannot use any information regarding any other
set B # A. To use our approach, we must “synchronize” a certain number
N between the fingerprints of all such sets. To do this, we use the number of
elements in the fingerprinted item set. The number of items in each fingerprinted
set may be different, so at first it may seem hard to see how we could “agree” on
a common number for all item sets. Consider, however, two such sets A, B C U,
with sizes |A| = n and |B| = m. Assume w.l.o.g that n < m. When n and m are
very different, the Jaccard similarity is small: if m < 5, the Jaccard similarity
is bounded: J(A,B) < % We focus on the case of high Jaccard similarity
J(A,B) >t > %, so from now on we assume %n < m < n. To “agree” on a
parameter for all the item sets, we can thus use the closest multiple of two to
the number of elements in each item set. We denote the multiple of two closest
to the number of elements of a set A as N4, and the previous multiple of two
for that set as Ny = %N 4. We repeat the fingerprinting process for any set A
based on both N4 and N/;. Since we are only required to estimate the Jaccard
similarity between two sets when this similarity is high, then either N4 = Np
or Ny = Np.

Formally, to generate the fingerprint for the set A, we choose N = 2¢ such
that 2|A] > N > |A|. In section 4.1 we describe a fingerprinting process for
the chosen value of N. This process is repeated for N/ = % to handle the case
where N is close to |A|. Due to the high Jaccard similarity, for any two item
sets, we can find a fingerprint that was generated using a common parameter
N for both sets. Note that the parameter IV is a part of the fingerprint. Thus,
if for two sets we have parameters that are too far apart, so one parameter is
more than twice the other, we immediately return that the Jaccard similarity

is small.

4.1. F5 Norm Block Fingerprint

Our fingerprint combines the approaches of [1, 37] with a sampling technique.
The algorithm of [1] maps elements to the set {—1,+1}, and sums these up to
get an estimator whose expected value is the F5 norm and whose variance is not
too large. It uses hashes from a 4-wise independent family, and takes the median
of many such average estimators. Our fingerprints use a similar technique, but
we sample only some of the items, and map them into “buckets” of elements,
each of which is used as a counter. Our fingerprint has two parameters, an
integer k and a number p € [0, 1]; p can be thought of as the number of samples
we take (as a proportion of the total number of elements), and k controls the
number of such “buckets”, and is chosen as a function of the target accuracy
level €, so k = O(Z%). The technique is reminiscent of [37], but while [37] maps
each element to a bucket, we may not sample it at all.

Our fingerprints use two hashes, h; : U — [0,1] and he : U — {+1, -1},
where h; is chosen at random from a family of pairwise independent hashes, and
hs is chosen at random from a 4-wise independent family of hashes. The random
choice of the hash functions hq, hy occurs prior to fingerprinting any of the item
sets. These functions are used for all the fingerprints, so when we fingerprint

item sets A and B we always use the same hashes. As explained earlier, we use
a parameter N synchronized across all item sets. Our process takes the item
set and the parameter N and generates a list of k integers, a1, ..., ax (a similar
process is used with the parameter N/ = % to generate another k integers
al,...,a}). Essentially, our process computes “fingerprint bucket summaries”
as follows. We weed out roughly a proportion 1 — kp of the elements, and map
the remaining elements into k£ buckets according to their value under h;. The
value a; is a counter, which is increased if the element is mapped to +1 under
ho and decreased if the element is mapped to —1 under hs.

Definition 2 (Fingerprint Bucket Summaries). Given a “synchronized” num-
ber N and N' = %, the fingerprint block summaries are two tuples of numbers,

ai,...,a, and ay,...,a) computed using the same process, as follows. To gen-
erate ai,...,ar we set p = min(ﬁ, %), To generate a’17 .. 7a§€ we use the

same process, but set p = (177}5)1\[, We treat a; as a “counter” for elements in a

bucket i. Each a; is initialized to zero, and updated as follows:

1. For eachx € A
o rha(z)
(a) i:=[= "]

(b) if i < k then a; := a; + ha(x)

Definition 3 (F, Fingerprint). Given a “synchronized” number N and N’ =
%, the fingerprint of the item set A is (|A|, N,a1,as,...,ax,a}, ... a}), where
ai,ag, ..., ak,ay, ..., a} are the fingerprint bucket summaries of definition 2.

We now show how to estimate F»(va — vg) given the fingerprints fa, f of
two item sets A, B C U.

Definition 4 (Fy(va—vp) Estimator). Given fingerprints fa = (|A], N, a1, as, ...

and fg = (|B], N,b1,ba,...,b;) we estimate Fo(va — vg) as:

_ 1 2
F(va —vp) = ok ;(al bi)

Given the estimator F»(v4 — vp) we compute the Jaccard similarity J(A, B)
as discussed in Section 3, so we desire an accuracy e for this estimator. We now

prove that Fy(va — vp) is an accurate estimation for Fy(vs — vp) and discuss
how p and k are chosen depending on this desired accuracy.

Definition 5 (Bucket elements). Given a bucket i, denote X; = (a; — b;)? and
X =1/(pk) > X;. Denote the unique elements as D = (AU B)\ (AN B) and
the unique elements falling in bucket i as D; = {x € D|(i — 1)p < hy(z) < ip}.

Lemma 1 (Estimator expectation). For any i the expected value of X; (over
the choice of hashes hy,hy) is p- Fa(va — vg), and the estimator Fy(va — vp)
is unbiased: En, p,(F2(va —vp)) = Fa(va — vp).

Proof. For any z,y we have (ha(z))? =1 and E(ha(z)h2(y)) = 0 and Pry, [z €

Dj] = psowe obtain: En, 4,[Xi] = Eny 0, [(Xep, h2(2))?] = Eny ho[Xpep, ho(x)?]+
2

2Eh, by [Zx<y€Di (hQ(z) : h2())} = Eny hy [erDi hQ(I)] = En, h, [erDi 1] -
> zeaunn(anp) Prlz € Dil-1=p-[(AUB)\ (AN B)| = p- F>(va —vp). Thus,
By ny (F2(va = vp)) = E(5; 32, Xi) = o5 k-p-Fa(va—vp) = Fa(va—vp). O
21
Pur 40>
Fy(va —vp) is within a factor e of the correct value Fy(vg — vp). Consider
and fix any hash h;. The elements that are mapped to “bucket” i are those
elements z € (AU B) \ (AN B) for which (i — 1)p < hi(z) < ip. Denote by
Ep,[X;|D;] the expected value of X; (under hy) given that the elements mapped
to bucket i are exactly those in D;. Denote by Fp,[X;|D1, Do, ..., D] the ex-
pected value of X; given that for any j € {1,2,...,k} the elements mapped to
bucket j are D;. Denote by Ey,[X|D;] and Ej,[X|D1, Do, ..., Dy] the expected
value of X under the above conditions, respectively.

Our goal is to show that with probability of at least our estimate

Lemma 2 (Counters given unique bucket elements). The expected counter val-
ues are: Ey,[X;|Di] = |Di| and Ep,[X|Dy, Dy, ..., D] = % 320 |Di.

PTOOf' Ehz [X1|Dl] = Ehz[(Z:peDi hQ(‘r))Q} = Eh2 [ZzeDi h%(x)+2 Ea:<y€Di hg(.ﬁ)hg(y)} =

Ea:EDi Eh2 [h%(]})] +2 Zw<y€Di Ehz [hQ(x)hQ(y)] = ZZEGDi Eh2 [1] = |Dl‘
Thus we also obtain: Ej,[X|Dy,Da,...,Di] = Ep, [pik Zle X;|D1,Ds,...,Dk] =
k k
o Lie1 Ena (Xl Di] = 55 350, Dal. O
Denote by Vi, (X;|D;) the variance, over our choice of hg, of X; given that the
elements that were mapped to bucket ¢ are exactly those in D;. Similarly, denote

by Vi, (X|D1,Ds..., Dy) the variance of X given that for any i € {1,2,...,k}
the elements that were mapped to bucket ¢ are exactly those in D;.

Lemma 3 (Estimator variance given unique bucket elements). The variance of

counter values is Vi, (X;|D;) = 4(‘%"). Our estimator’s variance is: Vi, (X |D1, D2 . ..

p24k2 Zf:l (‘gil)'

Proof. Vi, (Xi|D;i) = Ep,[XZ|Di] — E} [Xi|Di] = En,[(Xsep, ha(x))*|Di] -
(Coep, 1)? = e, Enalha(@)] + 632, ep, Ena[h3(2)h3(y)] — (C,ep, 12 +
2Zx<y€Di 11) = ZzeDi 146 Zz<y€Di 1_Zm€Di 1-2 Zm<y€Di 1= 4Zx<y€Di 1=
4('%"). Denote by Ep,[X;X;|D;, D;] the expectation of X; - X, given that

the elements mapped to bucket i are exactly D; and those mapped to j are

exactly D;. As D, N D; = () then x; # y; and hy is chosen from a 4-
wise independent family: Ej,[h3(x)ha(y1)ha(y2)] = En,[h3(y)ha(x1)he(z2)] =

10

Ep,[ha(x1)ha(z2)ha(y1)he(y2)] = 0, so we obtain:
En, [XiX;|Di, Dj]

=En, [(Z ha(z))%(Z ha(y))?|Ds, D] =

zeD; yED;
=En,[(Y h3()+2 D ha(z1)ha(2))-
z€D; z1<x2€D;
(> m3w)+2 > ha(y1)ha(y2))|Di, D;]
yeD; y1<y2€D;
=En,[Y h3(@)h3(y)|Di, D;] = |Dil| Dy
xeD;,yeD;

Vhy (X|D1,Ds...,Dy) =
=En,[X?|D1, D2 ..., Di] = Epp 4, [X|D1, Dy ..., Dy]

k k
1 1
:E,w[(]E > Xi)’|D1,Dy...,Dy] - E}%z[ﬁ > Xi|D1, Dy ..., Dy
i=1 =1

k k k
1
=gz (Bna D X242 XiX;|D1, Dy, D — (Y En,[Xi|Di))?)

i=1 i<j i=1
k k
= ZEh2 [X?|D;] + 22Eh2 [XiX;|Di, D] = > Eny [X Dil* = 2 En,[X:|Di) En, [X5]D;])
p = 1<j i=1 1<j
1 k k
ZW(Z(EM[XﬂD} Eny[Xi|Di?) + 2 (En,[XiX;|D;, Dj] — Ey, [X;|Di] En, [X;]D;)))
i=1 1<j
1 2 2 1 ‘D|
:kaQ(Z(Ehhhz [Xz |Dl] - Ehhhz [X1|D1])) 2k2 ZV}LQ X |D ng Z
=1

O
We show that the variance V;,,(X|Dy, Dz ..., D)) is probably small.

Lemma 4 (Estimator variance bound). The probability of a having a high vari-

ance of the estimator is low: Pry, [V, (X) > W] < i
Proof. Consider the variables Z, , where Z, , = 1 if there exists 1 < ¢ < k such
that x,y € D; and 0 otherwise. Z, , is a characteristic variable which is one if
and y are mapped to the same bucket under h; (i.e. they are a collision in some
bucket). Let Z = Zx<y€(AUB)\(AnB) Zzy- 24 is a random variable representing
the number of collisions (i.e. pairs of elements in D = (AU B) \ (AN B) which

map to the same bucket under hy). If p < 1 then Ej, [Z,,] = Zle p? = p?k.

D Fo(va —v
Ehl Ehl Z Z:cy Z Ehl a)y (|2|>p2k:p2k(2(A2 B))

z<yeD r<yeD

11

As Z is a positive random variable, we can apply Markov’s inequality ° :
Prip,|Z > 2p*kFi(va —vp)] < Prp,[Z > 4p2k:(F2(”A27”B))] < 1/4. If d elements
are mapped to bucket ¢, then there are ([21) pairs mapped to bucket i. Thus Z =

. . 2 —v .
iy (151), s0 we obtain: Pry, [Vi, (X) > 2022220 = Pry, [0, (157) >

2(va—v F(va—v
Saliatnl) — pPry, ez > SR)) — Py, (2> 2pPkFR(0a — vp)] <
1
I O
Lemma 5. Fork = 19 if the estimator variance is small, Vj,,(X) < w,

then it probably does not deviate significantly from its expected value: Prp,[|X —
2 —
o8 Tt | Dill > §Fa(va — vp)| Vi (X) < 222220 < 4

. . k e
Proof. We use Chebychev’s inequality: Prp,[|X — pik doic1 IDill > §Fs(va —

18F2 (pq—
vB)|Vihy (X) < $8F3(va —vp) < éif%éﬁ“‘_é%g = ké)Q = 2%. We choose k =

2 —v
190 and get: Pry,[|1X — 4 S0, Dil] > §Fa(va —vp)| Vi, (X) < Hlp=t0d) <

1
L 0

Our goal is to show our estimator Fj (a?vg) = pik > oi(a; — b;)? is close to
Fy(va —wvg). If p= 1 then each unique element from D = (AU B)\ (AN B)) is
mapped to exactly one bucket, so Zle |D;| = Fa(va —vp). In this case, due

to Lemmas 4 and 5, with probability of at least 1 — % — é > % our estimator

X is within an error factor of at most § from Fy(v4 — vp). Thus for this case
with the required success probability % we estimate Fy(v4 — vp) with an error
less than the required accuracy e. We now handle the case where p < %

Lemma 6. The probability that pik Zle |D;| deviates significantly from Fa(va—

vp) 18 low: Pry,| kaZle |D;i| — Fa(va —vB)| > §F2(va —vB)] < 55

Proof. If p < % then by Definition 2, p = ﬁ Note that Fy(va —vg) =
(AUB)\(ANB)|>(1-t)]AUB| > (1-t)|4] > LtN so p > m It
remains to prove that: Prhl[\pik Zf;l |D;|— Fa(va—vB)| > £Fa(va—vB)] < 4.

We observe that Zle |D;| is a binomial random variable B(pk, Fo(va —
vg)). Therefore: Eh1[2§:1 |D;|] = pkFa(va —vpB); Vhl(Zle |D;]) = pk(1 —
Pk)Fa(va—vB); Ep, [S50, [Dil] = Fa(va—vp); Vi, (5 iy [Dil) < & Fa(va—
vg).

AspFy(va—vg) > 1, and applying Chebychev’s inequality we get: Pry,, || ﬁ Zle |D;|—
e pif2(va—vp) 1 1 1
Bava—va)l> 5B(va—ve)] < traa—my = smwa vk < w57 S o

5Note that if we chose hi from a 4-wise independent family, we could apply Chebychev’s
inequality here and obtain better constants.

12

Theorem 3 (Accuracy and confidence for the Fy(vq — vp) fingerprint). Our
estimator Fo(va —vp) = ﬁzi(ai — b;)? is accurate up to an multiplicative

error of € with probability at least 2L: Pry, p,[|[Fa(va — vp) — Fa(va —vg)| >

eFy(va —up)] < %.

Proof. We combine Lemmas 4, 5 and 6. In order for our estimator Fy(va — vpg)
to have a big error, either its variance is high, or it deviates significantly from its
expected value ﬁ Zle |D;| or this expected value deviates significantly from
Fy(va —vp). Applying the union bound, our approximation has the required

1_1_ 1 _21 =

accuracy with probability at least 1 — 3 — = — 15 = 13-

Fingerprint size analysis: Our overall desired accuracy is €;. Denote the
required accuracy for the F5 norm approximation as e. We use a variable length
integer encoding, storing an integer = using 2logx + 1 bits. 6

Theorem 4 (Improved Fingerprint For Similar Streams). When item sets are

assumed to be t-similar, if suffices to use a fingerprint of size O((lzzt)2 log i)
J

to approximate the Jaccard similarity.

Proof. For all i we have Ej, [D;] < 72;. We bound the probability of getting a
high D; using Markov’s inequality : Pry, [D; > c125] < Pry, [D; > cE[D;]] < L.
Thus we obtain: Pry,[log D; > log ﬁ + < 2% The expected size of the
fingerprint is bounded by k - 2log ﬁ + k, and with high probability it will not
be significantly bigger: Prp, pn,[size(fingerprint) > k- 2log ﬁ + ck] < %

In order to approximate J(A,B) = (1 £ (1 — t)es)J(A, B), we must use a
fingerprint of size O(k - log +22) = O(Ei2 log i) Thus, if we want to estimate
J

-t
log 1+5). O

AR (1-1)*

J(A,B) = (1+e;)J(A, B), we require a fingerprint size of O(

2
€7

5. Conclusions

We provided a fingerprint for approximating the Jaccard similarity between
streams, whose accuracy increases in the similarity between the streams. Our
method reduces the Jaccard similarity problem to a restricted case of Fy norm
approximation, which for ¢-similar streams we solve using fingerprints of size

O((13)2 log ﬁ) The fingerprint computation requires O(1) time per element,
so our approach outperforms state of the art methods in both space and time.

Our key running example was of a highly scalable recommender system,
where it is impossible to store the items sets that all users have consumed. In
this case, a tractable alternative is storing concise fingerprints of the users’ item
sets, so that the similarity between any two users can be approximated. We

6Though there may exist slightly better encodings, we assume the following encoding for
storing x: 1M1°812110sign(2z)binary(z)

13

note, however, that the technique is general, and can be used in any domain
where we need to approximate the Jaccard similarity between any two highly
similar streams.

One takeaway from this work is that restricting our attention to streams
that exhibit a certain relation (in our case, to streams which are known to be
highly similar), can allow designing much more efficient algorithms. In the case
of recommender systems, the key insight is that while in theory we may wish
to compute the degree of similarity between any two users, in practice we only
use this information further down the pipeline if the similarity is high enough
(i.e. we only consider users which are highly similar to the target user when
choosing which item to recommend); thus, restricting our attention to streams
exhibiting the required degree of similarity does not pose a real limitation on
the such systems.

Several questions remain open for future research. Are there more efficient
fingerprints for ¢-similar streams? Could our approach be generalized to other
fingerprints? Finally, are there other fingerprints which can be improved based
on restrictions regarding input properties (such as their similarity, their heavy
hitters etc.)?

[1] Alon, N., Matias, Y., Szegedy, M., 1999. The Space Complexity of Approx-
imating the Frequency Moments. J. Computer and System Sciences 58 (1),
137-147.

[2] Andoni, A., Goldberger, A., McGregor, A., Porat, E., 2013. Homomor-
phic fingerprints under misalignments: Sketching edit and shift distances.
In: Proceedings of the forty-fiftth annual ACM symposium on Theory of
computing. ACM, pp. 931-940.

[3] Bachrach, Y., Ceppi, S., Kash, I. A.; Key, P., Radlinski, F., Porat, E.,
Armstrong, M., Sharma, V., 2014. Building a personalized tourist attrac-
tion recommender system using crowdsourcing. In: Proceedings of the 2014
international conference on Autonomous agents and multi-agent systems.
International Foundation for Autonomous Agents and Multiagent Systems,
pp. 1631-1632.

[4] Bachrach, Y., Finkelstein, Y., Gilad-Bachrach, R., Katzir, L., Koenigstein,
N., Nice, N., Paquet, U., 2014. Speeding up the xbox recommender system
using a euclidean transformation for inner-product spaces. In: Proceedings
of the 8th ACM Conference on Recommender systems.

[6] Bachrach, Y., Graepel, T., Kohli, P., Kosinski, M., Stillwell, D., 2014.
Your digital image: factors behind demographic and psychometric predic-
tions from social network profiles. In: Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems. International
Foundation for Autonomous Agents and Multiagent Systems, pp. 1649—
1650.

14

[6]

Bachrach, Y., Herbrich, R., 2010. Fingerprinting ratings for collaborative
filteringtheoretical and empirical analysis. In: String Processing and Infor-
mation Retrieval. Springer, pp. 25-36.

Bachrach, Y., Herbrich, R., Porat, E., 2009. Sketching algorithms for ap-
proximating rank correlations in collaborative filtering systems. In: SPIRE.

Bachrach, Y., Kosinski, M., Graepel, T., Kohli, P., Stillwell, D., 2012.
Personality and patterns of facebook usage. In: proceedings of the 3rd
annual ACM web science conference. ACM, pp. 24-32.

Bachrach, Y., Porat, E., 2010. Fast pseudo-random fingerprints.

Bachrach, Y., Porat, E., 2013. Sketching for big data recommender systems
using fast pseudo-random fingerprints. In: Automata, Languages, and Pro-
gramming. Springer, pp. 459-471.

Bachrach, Y., Porat, E., Rosenschein, J. S., July 2009. Sketching techniques
for collaborative filtering. In: IJCAI. Pasadena, California.

Broder, A., Charikar, M., Frieze, A., Mitzenmacher, M., 2000. Min-wise
independent permutations. JCSS 60 (3), 630-659.

Charikar, M., Chen, K., Farach-Colton, M., 2002. Finding frequent items
in data streams. Automata, Languages and Programming, 784-784.

Clifford, R., Jalsenius, M., Porat, E., Sach, B., 2012. Pattern matching
in multiple streams. In: Combinatorial Pattern Matching. Springer, pp.
97-109.

Cohen, E., Duffield, N., Kaplan, H., Lund, C., Thorup, M., 2007. Sketch-
ing unaggregated data streams for subpopulation-size queries. In: PODS.
ACM.

Cohen, E., Kaplan, H., 2007. Summarizing data using bottom-k sketches.
In: PODC. ACM, pp. 225-234.

Datar, M., Muthukrishnan, S., 7?7?77 Estimating rarity and similarity over
data stream windows. Algorithms ESA 2002, 323-335.

Dietzfelbinger, M., 1996. Universal hashing and k-wise independent random
variables via integer arithmetic without primes. STACS 96, 567—-580.

Feigenblat, G., Itzhaki, O., Porat, E., 2010. The frequent items problem,
under polynomial decay, in the streaming model. Theoretical Computer
Science 411 (34), 3048-3054.

Feigenblat, G., Porat, E., Shiftan, A., 2011. Even better framework for
min-wise based algorithms.

15

[21]

[22]

[23]

Feigenblat, G., Porat, E., Shiftan, A., 2011. Exponential time improvement
for min-wise based algorithms. In: SODA.

Feigenblat, G., Porat, E., Shiftan, A., 2012. Exponential space improve-
ment for minwise based algorithms. In: FSTTCS. pp. 70-85.

Gilbert, A., Li, Y., Porat, E., Strauss, M., 2010. Approximate sparse re-
covery: optimizing time and measurements. In: Proceedings of the 42nd
ACM symposium on Theory of computing. ACM, pp. 475-484.

Indyk, P., 2001. A Small Approximately Min-Wise Independent Family of
Hash Functions. Journal of Algorithms.

Kane, D., Nelson, J., Porat, E., Woodruff, D., 2011. Fast moment estima-
tion in data streams in optimal space. In: STOC.

Kopelowitz, T., Porat, E., 2005. Efficient bit space and time complexities
for bottom-k sketching.

Kosinski, M., Bachrach, Y., Kohli, P., Stillwell, D., Graepel, T., 2014.
Manifestations of user personality in website choice and behaviour on online
social networks. Machine Learning 95 (3), 357-380.

Kosinski, M., Stillwell, D., Graepel, T., 2013. Private traits and attributes
are predictable from digital records of human behavior. Proceedings of the
National Academy of Sciences 110 (15), 5802-5805.

Krauthgamer, R., Mehta, A., Raman, V., Rudra, A., 2008. Greedy list

intersection.

Li, P., Koenig, C., 2010. b-Bit minwise hashing. In: Proceedings of the
19th international conference on World wide web. ACM, pp. 671-680.

Lipsky, O., Porat, E., 2007. Improved sketching of hamming distance with
error correcting. In: CPM. pp. 173-182.

Lovett, S., Porat, E., 2010. A lower bound for dynamic approximate mem-
bership data structures. In: Foundations of Computer Science (FOCS),
2010 51st Annual IEEE Symposium on. IEEE, pp. 797-804.

Mulmuley, K., 1996. Randomized geometric algorithms and pseudorandom
generators. Algorithmica 16 (4), 450-463.

Porat, B., Porat, E., 2009. Exact and approximate pattern matching in the
streaming model. In: FOCS.

Theobald, M., Siddharth, J., Paepcke, A., 2008. Spotsigs: robust and ef-
ficient near duplicate detection in large web collections. In: Proceedings
of the 31st annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, pp. 563-570.

16

[36] Thorup, M., 2013. Bottom-k and priority sampling, set similarity and sub-
set sums with minimal independence. In: STOC.

[37] Thorup, M., Zhang, Y., 2004. Tabulation based 4-universal hashing with
applications to second moment estimation. In: SODA. pp. 615-624.

[38] Xiao, C., Wang, W., Lin, X., Yu, J., Wang, G., 2011. Efficient similarity
joins for near-duplicate detection. ACM Transactions on Database Systems
(TODS) 36 (3), 15.

17

