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Figure 1.  The Juggling Display is a custom projector-camera system demonstrating our motion prediction strategies for reducing 

the effects of latency on projection alignment. Through prediction, our system improves target illumination by 30%. 

ABSTRACT 

Projector-camera (pro-cam) systems afford a wide range of 

interactive possibilities, combining both natural and mixed-reality 

3D interaction. However, the latency inherent within these systems 

can cause the projection to ‘slip’ from its intended target, detracting 

from the overall experience. Because of this, pro-cam systems have 

typically shied away from truly dynamic scenarios. In turn, research 

has been exploring latency reduction techniques across a range of 

domains, but these techniques typically focus on custom hardware, 

limiting their widespread adoption. We explore software-only 

predictive approaches to minimize the effects of latency in pro-cam 

systems. In this paper, we focus our predictive approaches on real-

world objects under fast motion and on-body projection, improving 

projection accuracy on fast moving targets. Alongside this we 

explore automatic latency measurement techniques, allowing our 

system to determine and account for its own latency.  We detail 

predictive approaches and provide results of a series of empirical 

investigations; achieving a 37% improvement in projection 

accuracy on objects in free flight (at speeds approaching 5m/s), and 

a 43% improvement in on body projection (with movement circa 

1.5m/s). Through our work we aim to facilitate the wider 

exploration of pro-cam systems for 3D interaction in dynamic 

settings and showcase the accuracy achievable with off-the-shelf 

hardware.  

 

Author Keywords: Latency; projection lag; projector-camera 

system, mixed-reality interaction, natural 3D interfaces. 

 

Index terms: H.5.2 [Information interfaces and presentation]: User 

Interfaces. - Graphical user interfaces  

1. INTRODUCTION 

Projector-camera (pro-cam) systems afford a wide range of 

interactive possibilities, including mixed-reality games (e.g. [1], 

[2]), interaction-anywhere (e.g. [3], [4]) and motion tutorial systems 

(e.g. [5]–[7]). All of these interactive systems are subject to the 

effects of latency, whether in visual delays when interacting with 

virtual objects (e.g. [2]) or projection misalignment when 

overlaying graphics on moving physical objects (e.g. [8], [5]). 

These misalignments and delays all result in the projection 

‘slipping’ from its expected position and can easily have an adverse 

impact on the immersive experience. In order to avoid this 

projection ‘slip’, the speed of motion in pro-cam systems is 

typically heavily constrained and truly active scenarios have been 

avoided. For example, on person projection for coaching has been 

restricted to static pose guidance [6] and slow-motion tasks [5].  

Pro-cam system latency is a combination of the latencies of each 

individual component, including: shutter delay, on-camera image 

processing, data transfer, tracking, projector buffering etc. Previous 

work has been conducted to reduce system latency through 

customized hardware (e.g. [9]) or advanced multi-camera tracking 

systems (e.g. [10]), but the requirement for significant expertise 

renders this approach at odds with the lightweight, easily-adoptable 

development approaches currently favored by both the enthusiast 

and research communities (as supported by readily available depth 

cameras such as the Microsoft Kinect). As a result of this, we 

explore the feasibility of software-only prediction approaches to 
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combatting the effects of latency. Through our work we aim to 

provide methods for improving projection alignment in pro-cam 

systems using off-the-shelf hardware, in turn encouraging further 

exploration of dynamic pro-cam systems and facilitating a wider 

range of interactive, mixed-reality experiences. 

 

 

Figure 2. Images illustrating the visible effect of counteracting 

latency in our system. From the left, each subsequent image 

shows the result of a reduction in pro-cam latency of an 

additional 33%. 

In this paper we focus on using motion prediction to reduce pro-

cam latency, enabling accurate projection on fast-moving physical 

objects. Within this, we consider two example scenarios: objects in 

free flight and on-body projection (exploring prediction methods 

for human motion). We also use these domains to better situate our 

approaches and provide an opportunity for evaluation. 

We explore different levels of motion predictability and provide 

methods that ensure promising projection alignment results with no 

requirement for hardware changes. We present a lightweight 

latency measurement process (alongside measurement values to act 

as a guideline for current hardware configurations) and detail a 

system that automatically measures and adapts to its own latency. 

Through two empirical evaluations we show an improvement in 

projection accuracy on a fast moving target from 14% to 50% of 

individual ball’s flight time and a 43% increase in on-body 

projection accuracy. 

2. RELATED WORK 

Understanding and combatting latency in interactive systems is a 

popular area of work. We highlight the effects of latency on existing 

pro-cam research and draw upon research on hardware and software 

based latency reduction. 

2.1. Pro-Cam Systems Affected by Latency 

Within the scope of our work, we review pro-cam systems that 

demonstrate the effects of latency on interaction, whether 

acknowledged or not, such as in OmniTouch [3], LightGuide [5], 

YouMove [6], and MirageTable [11]. For example, in LightGuide 

[5], an instructive system to help guide users through hand motion 

tasks via on-body projections, participants are limited to 

movements of 30mm/s in order to maintain projection alignment. It 

becomes quickly apparent that this is unnaturally slow for the 

completion of most tasks. Building on LightGuide, YouMove 

provides a whole-body motion training system [6]. However, where 

LightGuide constrained users’ movement speeds, YouMove 

delivers motion training through a pose-by-pose approach. While 

not specifically addressed, by avoiding real-time motion training 

and opting for pose-by-pose, the effects of latency on performance 

feedback could be significantly reduced. In a different domain, the 

OmniTouch [3] video shows the effects of latency on projection 

alignment when overlaying a number-pad on a piece of paper and 

when tracking the user’s fingers across their hand. While these 

latency effects do not preclude the use of projection mapping, they 

serve to constrain the user's performance.  

2.2. Hardware-based Latency Reduction 

The effects of latency and frame-rate are important topics across 

a range of domains. For example, latencies in head tracking have 

very negative effects on the experience of Augmented and Virtual 

Reality (e.g., [12]–[14]). Papadakis et al. [15] minimize latency in 

head-tracked immersive simulations by reducing buffering latency 

in their display hardware, achieving a reduction in overall system 

latency of 50%. 

In Lumospheres [10], Yamaguchi et al. present a hardware 

optimization approach to accurately project on balls under 

projectile motion. Our work is complementary to this and we build 

upon it in several ways. Firstly, Yamaguchi et al use 6 synchronized 

cameras capturing at 250Hz. We present a software-only approach 

that utilizes a single off-the-shelf depth camera capturing at 30Hz. 

We explore different levels of predictability, presenting a range of 

solutions, with examples across 2 different scenarios. Through this, 

we present a solution that applies broadly across a range of 

interactive domains and thus supports the wider transition of pro-

cam systems to dynamic settings. Finally, by examining a similar 

scenario with a different focus (a Juggling Display), we can 

highlight the cost-accuracy tradeoffs that play a key role in this 

domain.  

Similarly to the hardware approach of LumoSpheres, Okumura 

et al. developed a low latency camera for ball tracking [16]. This 

involves an intricate series of ‘saccade mirrors’ [17] and a camera 

capable of capture and processing at >1000Hz in order to maintain 

a ball position in the center of the frame. In a different domain, Ng 

et al., use novel hardware optimization to control the latency of 

touch screen devices down to approximately 1ms [9]. While users 

were able to perceive additional latency improvements below 10ms, 

further reduction below this point had minimal impact on task 

performance [18].  

2.3. Software-based Latency Reduction 

Xia et al. seek to find a camera and software-based approach for 

latency reduction on touchscreens [19]. They use a high-speed 

(120Hz) tracking camera and finger markers to track user finger 

movement. While their addition of a camera and finger markers 

would suggest a hardware-based approach, it is their in-software 

methods that are most relevant to our work, thus we include this as 

a software-based approach. Based on collected training data, Xia et 

al. estimate touch down locations and trigger device interactions in 

advance. Our work builds on Xia et al.’s principles in 2 key ways 

to explore latency reduction in pro-cam systems. Firstly, as Xia et 

al.’s work focused on a touchscreen with a known interface, prior 

knowledge of possible target locations could increase the accuracy 

of their prediction. We explore prediction within a less constrained 

environment, where the scope of motion is much greater (whole 

body movement) and no prior knowledge of target locations is 

available. Secondly, instead of applying an average user model for 

prediction, we learn from each user’s individual approach, drawing 

on per-user expertise to provide a more personalized prediction.  

A number of attempts have been made to explore and predict 

projectile motion. Kitani et al. [20] place a camera inside a ball and 
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use image processing to determine its speed of rotation, triggering 

the camera at precise moments to capture the scene below.  There 

is a large body of work on the prediction of projectile motion within 

a military setting. For example, in [21], Fairfax et al, combine low-

cost sensors and cameras into an Extended Kalman filter to predict 

object landing zones.  

Our approach of using the Kalman Filter for prediction of motion 

in the future is similar to Liang et al. [13], who compensate for the 

delay in orientation data when head-tracking, as well as Friedman 

et al. [22], who predict collisions between drumsticks and virtual 

drums, to reduce the sound latency.  

3. COMBATTING PRO-CAM LATENCY WITH MOTION 
PREDICTION 

To reduce the effects of latency on projection misalignment in 

dynamic scenarios we focus on using motion prediction to model 

and derive the future states of objects. This enables us to model 

where an object will be and project on its future location, taking into 

account any system latency. Before outlining our example dynamic 

scenarios and predictable motion categories, we examine example 

pro-cam latency and clarify additional sources of projection slip.  

 

 

Figure 3. The Juggling Display pro-cam unit consisting of 

InFocus IN1503 projector and a Kinect for Windows camera. 

3.1. Estimating Pro-Cam Latency 

To gain an understanding of end-to-end latency in pro-cam 

systems, we measured the latencies of 9 projectors (Dell 4320, 

Infocus IN1503, BenQ 720, LG HX350T, BenQ W1080ST, Infocus 

LP70, NEC VT46, Infocus IN1102 – all projecting at 60Hz) when 

paired with Microsoft’s Kinect for Windows (30Hz).  

In the spirit of our non-hardware augmented approach, we 

adopted an easy to implement frame-counting technique (as 

opposed to the more complex, hardware augmented, sub-frame 

accuracy achieved by Steed [23] and others [12], [24]). We capture 

a tennis ball in free fall with the Kinect and re-project the captured 

image back onto a co-planar surface. Using an additional high speed 

camera (120Hz), we capture both the real and projected tennis ball 

simultaneously and calculate the differences in position (given 

known refresh rates) to gain a ballpark latency measurement.  

Over all of our projectors, the average latency with the Kinect 

camera (when processing color and depth) was 102.5ms (std. dev. 

6ms). By processing only the color image, this latency reduced on 

average by 10%. While not directly relevant to our work (as we 

utilize both the color and depth images), this reduction highlights 

the importance of careful design and implementation decisions 

when developing systems of this style. 

3.2. Sources of Projection Slip 

In this work we explore latency as the principle cause of 

projection slip in systems involving dynamic motion. However, it 

is important to acknowledge other factors that contribute to 

projection misalignment. 

Throughout our work, we utilise a first generation Kinect for 

Windows camera as it enables easy 3D registration of our scene and 

is popular in work of this kind (e.g. [5], [6]). The Kinect itself is 

subject to a range of errors. First, the color and IR cameras may be 

subject to inadequate calibration, resulting in inaccurate conversion 

between world- and camera-space [25]. Second, the depth 

measurements degrade increasingly with the square of the depth 

[25]. At a depth around 2m, Kinect is reportedly accurate +/- 1cm 

[26] (though this improves if averaged over time and can be further 

improved through morphological filtering [27]). Thirdly, both of 

the cameras utilise an electronic ‘rolling’ shutter which builds the 

image from the top down, resulting in the elongation of an object' 

representation when under motion. The extent of this elongation is 

relative to the object’s motion. In our juggling scenario, the 

elongation of the ball’s image changes significantly during flight as 

our ball’s velocity decreases towards the zenith before increasing 

again towards the catch, thus introducing further measurement 

(tracking) error.  Finally, the color and depth images are not time-

synchronized, introducing further error when considering them 

side-by-side.  

Alongside camera errors, there exist errors across the pro-cam 

system as a whole. First, there is an error as a result of the 

unpredictable interaction between the refresh rates of our camera 

and our projector which do not run on a synchronized clock. For 

example, if the image capture rate is not perfectly aligned to the 

projector refresh rate, it is possible that the result will be buffered 

and wait for one extra projector frame (16ms) before being 

displayed. While the effects of this synchronization could be 

reduced through the use of additional hardware technology such as 

NVidia’s GSYNC, the requirement for additional hardware renders 

it outside the scope of our software-only approach. Finally, while a 

careful calibration procedure between the camera and projector is 

conducted, there also exist errors here. 

4. PROJECTION ON FAST MOVING PHYSICAL 
OBJECTS 

In order to focus our work on enabling dynamic pro-cam systems 

through software-based latency reduction, we explore two example 

domains. We present a range of general approaches that can be used 

to predict motion and provide practical examples in these domains. 

Through prediction we seek to minimize the effects of system 

latency and maximize on-target projection time.  

4.1. Scenario 1: Objects in Free Flight; the Juggling 
Display 

We develop a Juggling Display, a prototype pro-cam system 

where juggling balls are projected on, augmenting the juggler’s 

performance with additional graphics (Figure 3).  

In a typical pro-cam system, a 30Hz camera captures the scene, a 

computer tracks and renders graphics, and a 60Hz projector 

displays back onto the scene. As our preliminary investigation has 

shown, latency here is typically in the region of 100ms. Now 

imagine a juggler performing standard 3-ball juggling (as in Figure 

1). The juggling balls are small and fast moving, with launch speeds 

easily exceeding 5m/s, resulting in 50cm of projection slip at 

launch. At the zenith of the ball’s trajectory fleeting alignment 

occurs due to reduction in velocity, but this is short-lived as the ball 

quickly begins to accelerate downwards and the projection slip 

again increases. Without any motion prediction, only a small 

portion of the ball’s flight is illuminated (14% - as shown in our 
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results). We explore latency reduction approaches to maximizing 

the possible display time during the ball’s flight. Juggling provides 

a good target scenario for our exploration, as it includes both fast 

motion and a range of predictable features (including the ball’s 

flight path and the juggler’s hand motion – as we explain later). In 

this example, we use the Juggling Display simply as a visually 

compelling scenario, but it could also be used as a method for 

adding a narrative story to a juggling performance or for assisting 

in training novice jugglers.  

While we take juggling as an example here, our techniques are 

generalizable to any scenario with objects moving with predictable 

motion paths. For example, one could imagine projected graphics 

on objects in free flight, free fall, objects that are swinging or 

bouncing, or objects with prescribed mechanical movement. As 

long as the motions are describable using physical laws (e.g., 

kinematics) we can predict the object’s location and compensate for 

latency in projection.  

4.2. Scenario 2: On-body Projection 

Similarly to previously mentioned related work, such as 

LightGuide [5] and OmniTouch [3], we explore on-body projection 

for visual feedback. In contrast to the related work, our system 

specifically focuses on fast, dynamic motion. As in our juggling 

example, a person's hand movements can easily reach speeds that 

would result in projection misalignment due to system latency. 

Where our juggling scenario provides examples of inherently 

predictable features, such as the ball’s flight path, this scenario 

requires the prediction of human motion, which is more subject to 

random variation and personalization.  

While our focus here is on aligning projection with real-world 

objects, the human-motion prediction approaches we present could 

equally be applied to improve the responsiveness of interaction with 

virtual objects or, for example, in Kinect-enabled video games. 

5. PREDICTABLE MOTION CATEGORIES 

We split the motion prediction of objects observed by the pro-

cam system into 3 categories: predictable, semi-predictable and 

unpredictable. 

5.1. Predictable Motion 

Predictable objects are those where, given a set of laws, their 

position at any point in time can be accurately determined. For 

example, due to the laws of physics, the projectile motion of our 

juggling balls falls into this category, as well as previously 

mentioned free fall, swinging, bouncing, locomotion, etc. While 

outside the scope of our scenarios (and more complex to predict), 

thermo-dynamics, magnetic fields and acoustics (for example) also 

fall within this category.  

5.2. Semi-Predictable Motion 

Semi-predictable motion includes objects whose motion typically 

follows a pattern or includes some repetition. Examples of these 

include a wide range of human motions, including walking, dancing 

given certain types of music (e.g., with a beat), or movement in 

sports [28].  

Flash et al. show that human motion seeks to reduce ‘jerk’ 

(increase acceleration smoothness) in performance [29]. In its most 

basic form, this results in a linear motion between any two targets 

with acceleration following a bell curve. This is similar to the 

motion observed by Xia et al., when examining participant’s 

movement towards a target on a touchscreen [19]. In more complex 

examples, research suggests that tennis player’s moves can be 

anticipated (predicted) based on motion data, such as racquet 

position, shoulder rotation and lower body motion [30]. While not 

explicit, this implies the repetition of different tennis moves. 

Similarly, research highlights the cyclical nature of a juggler’s 

motion [31]. Their hands move in an up-down (slightly elliptical) 

pattern – travelling upwards towards ball release and downwards 

during capture. Throughout this motion, the reduction of 

acceleration ‘jerk’ leads to a smooth movement.  

Derived from these observations, we can begin to predict human 

motion based on individual performances. Following an initial 

performance, for example the interaction with a specific virtual 

target, we use a memory lookup table for prediction. We use current 

position and motion as input and an interpolated future predicted 

position as output. As the performance continues a more 

personalized and accurate model of motion can be developed. This 

estimation approach is explored later in this paper.  

5.3. Unpredictable Motion 

Motion that is random, such as a lay person’s performance of a 

random task, is categorized as unpredictable. These provide us with 

no cues with which to reduce the effect of latency and are not 

addressed in our work. 

6. METHODS FOR LATENCY REDUCTION 

To begin to combat the effects of latency we explore predictable 

motion. We combined a Kinect camera and a DLP projector with 

an end-to-end system latency of 110ms as measured previously. We 

calibrated our projector to our Kinect camera, using a technique 

similar to that used in OmniTouch [3]. Of our two scenarios, the 

Juggling Display includes a predictable feature – the ballistic 

motion of the balls in free flight. Thus, we begin by exploring the 

ball’s predictable ballistic trajectory. We use this motion estimation 

to predict the ball’s location 110ms in to the future, projecting on to 

that location and thus reducing the effects of latency. 

6.1. Predictable Motion – Kalman Filter with a Ballistic 
Model 

Kalman filters are a popular approach to smoothing sensor data 

and estimating future data [13]. By fitting a Kalman filter with a 

ballistic motion model (in our case), the Kalman filter’s prediction 

can take into account known physical behavior. In this instance, our 

projectile motion model is based on the following recurrence 

relation (using initial launch velocities and angles of release): 

𝒙𝑡
∗ = 𝒙𝑡−1 + 𝒗𝑡−1∆𝑡 + 

1

2
𝒂𝑡−1∆𝑡2 

where 𝒙𝒕
∗ is a prediction of the value of xt given xt-1. Given 

observation zt of the target’s position, we update the estimated 

position, velocity and acceleration with: 

𝒙𝑡 = 𝒙𝑡−1 + 𝒌𝑥 ∗ (𝒛𝑡 − 𝒙𝑡
∗) 

𝒗𝑡 = 𝒗𝑡−1 + 𝒌𝑣 ∗ (𝒛𝑡 − 𝒙𝑡
∗) 

𝒂𝑡 = 𝒂𝑡−1 + 𝒌𝑎 ∗ (𝒛𝑡 − 𝒙𝑡
∗) 

where Kalman gains kx, kv, ka are computed according to [34] and 

relate the error in prediction of position, to changes in our estimates 

in position, velocity, and acceleration. For clarity, “*” denotes an 

element-wise operation while the rest are vector operations.  

The Kalman filter incorporates our knowledge of sensor noise 

and recursively incorporates all previous observations to give us the 

principled means to set the value of Kalman gain given uncertainty 

in both prediction 𝒙𝒕
∗ and observation zt [34]. For in-air motions, 

such as those of our juggling balls, we can assign very high certainty 
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to our acceleration estimate since the only force acting on the object 

is due to gravity (i.e., acceleration is constant at 9.81m/s2). While a 

detailed explanation of the Kalman Filter is beyond the scope of this 

paper, we refer the reader to Welch and Bishop [34] for a good 

introduction. 

In addition to this model, we specify low values for process noise, 

but relatively high uncertainty values for our observations due to 

quantization error (tracking through a rolling shutter and camera 

calibration errors). Observational data can be passed into the 

Kalman filter and as the filter’s covariance and error estimates 

develop, increasingly accurate predictions can be made.  

6.1.1. Application in the Juggling Display 

We segment the balls from our depth image through an adaptive 

threshold and convert their position to real-world coordinates such 

that their size, location and velocity can be calculated at sub-pixel 

accuracy. Balls are tracked between frames using connected 

components. We use the Kalman filter’s predictive step (with a 

variable time step) to estimate the future state of our system at any 

time; in our case, the future location of the juggling balls (similar to 

the approach in [22]). By predicting ahead according to our latency 

measures and using that prediction as a projected graphics location, 

we can project onto the real-world location of the ball (see Figure 1 

and Figure 2). Without prediction, the projection only aligns with 

the ball at the zenith of the trajectory, equating to 14% of the ball’s 

flight (as we show later in our results). Through prediction, we can 

align our projection with a greater portion of the ball’s flight (Figure 

4.)  

However, due to the latency prediction step performed, further 

error is introduced by any interaction with the ball. Therefore, the 

projection continues passed the catch point for 110ms, or 3 further 

frames, introducing a new projection slip error.  

 

 

Figure 4. (A) Given a large predictive step, the projection can 

easily overshoot the juggler's hand. (B) By predicting the hand-

ball intersection point, this overshoot can be avoided. 

6.2. Semi-Predictable Motion – A Memory Lookup Model 

When exploring predictable motion we used a Kalman filter fit 

with a known motion model. However, as motion becomes less 

predictable, we cannot provide an accurate relational model and 

thus look to other methods of prediction. One popular method of 

prediction in this case is the use of training data, such as used on 

touchscreens by Xia et al. [19]. However, as the scale of interaction 

increases, the variation in performance also increases, thus making 

a general training model less suitable.  

Given a repetitive task, such as performed during a video game, 

when juggling or during sport (albeit repetitive over a longer 

window), we suggest a user’s motion can be more accurately 

predicted based on their own previous performances (Figure 5). In 

contrast to a more generalized model, this approach takes into 

account the intricacies of personal performance, such as individual 

acceleration patterns, maximum reach and personal style. To this 

end, we present a memory lookup model. Through this model, 

movement details are stored as they are performed and then used to 

provide personalized training data for ongoing or subsequent 

performance. Given an action, we can perform a lookup into the 

memory model (based on speed, acceleration and position), locating 

previous examples of similar motion and interpolating between the 

subsequent stored data to provide an estimate of a future state. As 

performance continues, and further repetitions occur, this 

modelling technique increases in accuracy. 

 

Figure 5. Image showing projection slip on fast human motion 

under no prediction and alignment under full latency 

prediction with memory lookup approach. 

Both of our example scenarios, the Juggling Display and the on-

body projection, include semi-predictable human motion and make 

use of our memory lookup model.  

6.2.1. Application in the Juggling Display 

In order to minimize error and maximize symmetry jugglers 

attempt to move as consistently as possible [32]. However, human 

error (such as angle, location and velocity of release) ensures that 

no two throws or catches are exactly the same [33]. As juggling 

motion repeats over a very short window, with hands moving in an 

ellipse to launch and catch balls typically more than once a second, 

we store the last 60 seconds of movement as provided through the 

skeleton tracking system. By creating a memory lookup model of 

the juggler’s movement pattern, we predict future hand positions 

and thus determine the time and locations of catches. In turn, we 

can stop the projection at the point of catch and eliminate post-catch 

projection slip (as visible on the right of Figure 4).  

6.2.2. Application for On-Body Projection 

In our on-body scenario, where movement takes place over a 

greater number of patterns (moving towards 4 different target areas) 

and thus repeats less frequently, we adapt our memory store to store 

a greater amount of previous data. The player’s hand positions are 

retrieved from the Kinect’s skeleton data, converted to be relative 

to the base of the neck (‘shoulder center’ joint) and added to the end 

of a lookup list. We convert the hand positions from ‘absolute’ to 

‘relative to a central joint’ so that previous positional data can be 

drawn upon as the player moves around their environment. When a 

new hand position arrives, speed and acceleration values are 

calculated from the last hand positions (the end of the lookup list). 

These values (location, speed and acceleration) are used as a lookup 

into the memory model. As the on-body scenario involves the 

player moving at fast speeds (> 3m/s), the Kinect’s skeleton 

accuracy begins to degrade, resulting in reported hand values that 

fluctuate around the hand’s true position (circa +/- 10cm.) This 

inaccuracy in sensing is taken into account when looking into the 

memory model. Our lookup process is as follows (and can be seen 

in Figure 4 below): 
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1. Locate all previously measured positions within a 10cm radius 

of our current hand position (relative to the center of the 

player’s shoulders) (Figure 6: A and B). 

2. Compare located positions motion with our lookup’s motion, 

keeping only those travelling in a similar direction at a similar 

velocity (Figure 6: C). 

3. Interpolate forward 110ms (our measured latency), from each 

located position, into the memory model to find the resultant 

position (Figure 6: C). 

4. Find the average vector and calculate an average predicted 

location. (Figure 6: D). 

It is worth noting, that we allow for 60 frames of data to be 

collected prior to using the lookup table such that some reference 

data exists (and then only use the table when a suitable match is 

found). Therefore, the initial 2 seconds of motion are subject to the 

same projection ‘slip’ as if no latency were being accounted for and 

the prediction accuracy increases as the user settles in to their 

motion and rhythm.  

 

 

Figure 6. Memory table lookup steps. A) Determine hand 

position. B) Find near-located points (taking into account 

Kinect tracking error). C) Identify points with similar motion. 

D) Calculate average vector and use to predict location. 

7. AUTOMATIC LATENCY TUNING 

As an extension of our work on measuring and reducing latency 

in interactive systems, we developed both of our example scenarios 

to automatically measure and account for their own latency. We 

utilize the color camera to determine the location of the projected 

graphics in comparison to the center of the tracked object in any 

frame. (The projected graphics measure is converted to the depth 

camera space for accurate comparison.) Due to quantization error 

as a result of non-synchronization between our projector and 

camera, we use a recursive, latency traversal approach to finding 

the local minima for automatic latency tuning as opposed to a one-

off minimization calculation based on two measurements. 

We start with no prior assumption of latency and thus begin our 

measurement from 0ms. First, we step through the latencies in 33ms 

increments (the frame rate of the Kinect) until a local minima is 

found. We then refine our estimate using proportionally smaller 

latency changes, down to +/- 5ms. We found this to be sufficiently 

accurate given the minimum 16ms quantization due to projector 

frame rate and human perceivable accuracy changes below 5ms.  

We use this value in our motion prediction calculations. Due to the 

unlikely event of changing device configurations during use, we do 

not run the latency tuner continuously. However, we continue to 

monitor the Kinect and projector refresh rates, such that the update 

and predictive steps in our Kalman filters can be made with accurate 

time intervals. 

The ability to automatically calculate and monitor the latency in 

pro-cam systems is an important step towards ensuring that 

interactive rates and a high rate of projection alignment can be 

maintained across different pro-cam setups and configurations.  

8. SYSTEM EVALUATION 

We assess the success of our pro-cam latency reduction 

techniques through empirical studies. Using our 2 example 

scenarios (predictable and semi-predictable motion), we provide an 

indication of how accurate our motion prediction and associated 

projection is to the object’s actual position and at what speeds our 

system can accurately model human movement.  

Across all of our studies we used a laptop PC with a core i5 

processor (i5-3320M), 4GB of RAM and integrated Intel graphics. 

The system was built on Windows 7 and our rendering was through 

a Direct3D dedicated full-screen application which bypassed all 

operating system related compositing and rendering passes.  

Throughout our evaluation, we compare our latency 

compensation with no latency compensation. We provide two 

different accuracy measurements. First, we capture an average 

projection distance offset using our automatic latency measurement 

approach. As this distance offset also illustrates calibration error. 

Second, we simultaneously use a frame counting technique to 

present a binary “projection aligned vs. projection missed measure” 

to clarify our results, which is computed by considering all the 

frames with an estimated >10% projection alignment. This 

additional measure is captured using an external camera (capture at 

25fps, shutter at 1/60th second). In combination, these techniques 

provide an indication of our approach’s success.  

8.1. Study 1: Evaluation of our Predictable Motion 
Approach 

In Study 1 we explore the success of our predictable motion 

Kalman filter approach through our Juggling Display. Three 

jugglers performed a 3 ball cascade (‘standard’ 3-ball juggling) for 

2 minutes under no latency correction and full latency correction. 

The jugglers used softballs (9.7cm diameter) as they provide a clear 

projection surface and slightly larger image to track through the 

relatively low resolution Kinect depth camera. Our participants 

stood 2.5m from the pro-cam unit. 

Alongside the automated offset measurements captured through 

the Kinect, a random 20 second segment from each 2 minute period 

was analyzed using frame counting (excluding the initial 10 seconds 

to allow for the development of a rhythm). The number of balls in 

flight and the number of balls under some projection were counted 

in all frames. In total, 1800 frames were analyzed per latency 

condition. 

8.1.1. Results 

Under no latency correction, we found that 14% of balls in flight 

are projected upon and that the average projection offset is 20.7cm. 

As previously suggested, we found that the majority of illumination 

occurs at the zenith of each ball’s flight, where the speed 

approaches 0m/s. Under full latency compensation, we achieve 

50% projection accuracy and an average projection offset of 

7.47cm. This projection occurs from the zenith of the trajectory 

back to the juggler’s hand.  

While each individual ball is under projection for 50% of its 

travel time, due to the overlapping flight paths of the balls, 73% of 

our total captured frames contained some projection illumination. 

Without prediction, only 22% of frames contain any projection. 
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Figure 7. Average projection offset in cm and on target 

projection % under ‘no’ and ‘full’ latency compensation. 

8.1.2. Analysis 

Given a 30Hz camera and a 60Hz projector, we believe that our 

results approach the maximum projection alignment achievable by 

modelling predictable features of the activity.  

To initialize the ball’s flight in our Kalman filter we require two 

frames of data (to calculate velocity and angle of launch). An 

additional camera frame is required to smooth our observation data 

before we begin to predict the ball’s location in the future (110ms 

per our latency measurement). Thus, initialization, smoothing and 

prediction equate to approximately 6 frames of Kinect data. Given 

an average ball flight duration of 0.5s or 15 Kinect frames, this 

results in between 6 and 7 frames, or 210ms, of missed projection. 

This leaves approximately 56% of the frames available for 

projection, as illustrated in Figure 8. At 50%, our achieved 

projection approaches this. We suggest that further accuracy is 

prevented by 2 features of our space.  

First, a Kalman Filter’s accuracy increases as more observations 

are incorporated. As our Kinect captures at 30Hz, we receive 

approximately 15 frames of data per-ball flight. From this data, we 

need to begin predicting future locations after only 3 observations, 

giving the filter little time to smooth our observation noise (as a 

result of the fast motion of the balls and rolling shutter of the 

camera). Furthermore, the quality of the filter’s estimates decrease 

as the prediction window increases (predictions further into the 

future are made) [13], [22]. We need to estimate approximately 3.5 

frames into the future and, even given our predictable motion 

model, we are subject to increased error in our Kalman filter’s 

prediction.  

Secondly, a ball traveling at 4m/s moves 13.2cm during a single 

camera frame (33ms @ 30Hz). Therefore, the quantization errors 

from the capture system alone contribute about 6.6cm to our error. 

Furthermore, at 2.5m from our pro-cam unit, each camera pixels 

measures 4.2x4.1mm and each projector pixel measures 

2.7x3.25mm. Thus, our ball measures only 22 pixels across in 

camera space and 35 pixels across in projector space. This small 

size introduces further error into both our tracking and measurement 

systems.  

So although our techniques enable us to increase projection 

accuracy on objects in free flight, we are unable to achieve complete 

projection given our hardware configuration and prediction 

techniques.  

 

 

Figure 8. An illustration of the portion of flight where 

projection occurs given no latency compensation (left) and full 

latency compensation through predictable motion (right). 

8.2. Study 2: Evaluation of Semi-Predictable Motion 
Correction – Memory table lookup Approach 

In Study 2 we evaluate the success of our memory table’s ability 

to predict fast human motion. Three participants performed up-

down and circular hand movements, pivoting at the elbow, at 1m/s 

and 1.5m/s in an up-down motion and 1.5m/s in a circular motion. 

A 10cm diameter graphic was projected onto the hand’s location, as 

provided by the Kinect’s skeletal tracker.  The system provided 

visual cues as to what range of movement to perform. In order to 

allow a personalized approach, the participants were provided with 

a target movement speed but no assistive timing feedback was 

provided. Each participant performed each movement for 15s. The 

participants were all right-handed and performed the movements 

with their right hands. As in our previous study, we provide both a 

projection offset and binary ‘on target’ measure. 

Although in this instance we do have access to known target 

locations, as we are interested in our prediction’s applicability in 

situations where no additional knowledge is available, we do not 

use target location to influence our prediction.  

The participants completed the study using both our memory 

model and a Kalman filter model. A Kalman filter could also be 

used for prediction here, but is likely less accurate than our 

approach due to the fast changes in acceleration and direction, a 

large predictive step and our inability to provide an accurate motion 

model. We would expect the Kalman filter to track effectively 

during linear motion, but overshoot upon dynamic changes in 

direction. We configured a Kalman Filter to track and update based 

on both the velocity and acceleration of the juggler’s hands. We 

assigned high uncertainty to our estimate of acceleration, while 

assigning a strong weighting to our sensor data, such that the filter 

performs responsively. It may be possible to further improve the 

Kalman filter with a human kinematic motion model, but this is 

outside the scope of our paper.  

8.2.1. Results 

Our overall results show (Figure 9) that 69% of the projected 

frames fall on-target with the memory model at full latency 

compensation, with an average projection offset of 7.3cm. Without 

compensation, only 26.3% of frames fall on target (average offset 

12.8cm). In comparison, the Kalman Filter achieved accuracy of 

only 16.45% at full latency compensation, with an offset of 17.9cm.  
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Figure 9. The projection accuracy comparison between the 

memory model and the Kalman Filter approach. Values show 

the percentage of frames that landed on-target during semi-

predictable portion of the ball motion. 

8.2.2. Analysis 

At 69% we again believe our results are near the best projection 

accuracy achievable within our system. For our target position of 

the hand we use the value reported by Kinect’s skeletal tracking. 

Kinect skeletal tracking filters each joint value, which makes it 

likely that the accuracy degrades at higher speed. Indeed, at 1m/s+, 

we are approaching the limits of the Kinect’s skeleton tracking. 

While it is possible to modify the amount of filtering, we chose to 

keep the default settings in order to make our results easily 

comparable to other pro-cam systems using Kinect. Anecdotally, 

we identified approximately 10cm of noise in the Kinect’s reporting 

of our skeletal location at speeds greater than 1m/s.  

Interestingly, the Kalman filter results are relatively linear across 

both latency compensations. When predicting ahead during linear 

motion, the Kalman filter provides increasingly accurate location 

predictions with increases in latency compensation. However, with 

an increased latency prediction, the changes in direction cause a 

greater projection error, compensating any gain experienced 

through the linear phase.  

9. DISCUSSION 

The results of our studies support our approach of utilizing 

software based techniques to negate the effect of latency in high 

motion pro-cam systems. We increased projection accuracy on 

objects in free flight, from 14% of the ball’s flight to 50% in our 

juggling scenario, drastically reducing the average projection offset 

from 20.7cm to 7.47cm. We also increased on-body projection by 

43%. 

We suggest that, given the latencies inherent within a pro-cam 

setup of this kind (with a 30Hz camera and a 60Hz projector) our 

results approach the maximum achievable projection accuracy. In 

our system, a small data sample size (15 frames on average per 

throw) and noisy data (whether from the Kinect skeletal tracker or 

rolling shutter effects), combined with a large predictive step (circa 

100ms) make it impossible to achieve perfect projection accuracy. 

Furthermore, at these speeds, the human observation of the balls is 

also subject to motion blur. For this reason, while the projection 

time is relatively short, the juggling display is compelling to 

observe. We encourage the reader to see the accompanying video 

of our system in action to see the results of our approaches. 

Ultimately, reducing latency in a system requires both hardware 

and software optimizations. However, in this paper we specifically 

chose to focus on software-only approaches to demonstrate that, 

even with relatively high-latency pro-cam configurations, one can 

drastically improve the system latency by considering the 

predictability of features of the use case. Thus our approach offers 

a solution for enabling compelling fast-motion pro-cam systems 

with off the shelf hardware. 

10. CONCLUSION  

In this paper, we explored software approaches for reducing the 

effects of latency in a pro-cam system, with the intention of 

enabling wider exploration of dynamic pro-cam settings. Our 

results show that our approaches of addressing latency are 

promising and we encourage the reader to watch our video to see 

the system in action. We present a 36% increase in projection time 

on individual balls, a 51% increase in number of total frames 

including projection and a 43% increase in human motion 

predictability. We specifically avoided making any adjustments to 

our hardware and used typical off-the-shelf devices with relatively 

high latencies.  

While these are not the only solutions to combat pro-cam system 

latency, we believe that our approaches add valuable solutions to 

the palette of options that should be considered when designing pro-

cam systems. In addition, the approaches presented here are 

applicable to many other interactive systems that deal with latency 

due to object motion. We hope that our latency compensation 

solutions enable wider adoption of pro-cam systems for highly 

interactive fast-moving scenarios.  
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