
K-Nearest Neighbor Temporal Aggregate Queries

Yu Sun †1, Jianzhong Qi †2, Yu Zheng ‡3, Rui Zhang †4

† Department of Computing and Information Systems, University of Melbourne, Victoria, Australia
{1 sun.y, 2 jianzhong.qi, 4 rui.zhang}@unimelb.edu.au

‡Microsoft Research, Beijing, P.R.China
3 yuzheng@microsoft.com

ABSTRACT

We study a new type of queries called the k-nearest neigh-

bor temporal aggregate (kNNTA) query. Given a query point
and a time interval, it returns the top-k locations that have
the smallest weighted sums of (i) the spatial distance to
the query point and (ii) a temporal aggregate on a cer-
tain attribute over the time interval. For example, find a

nearby club that has the largest number of people visiting in

the last hour. This type of queries has emerging applica-
tions in location-based social networks, location-based mo-
bile advertising and social event recommendation. It is a
great challenge to efficiently answer the query due to the
highly dynamic nature and the large volume of the data
and queries. To address this challenge, we propose an index
named TAR-tree, which organizes locations by integrating
the spatial and temporal aggregate information. We per-
form a detailed analysis on the cost of processing kNNTA
queries using the TAR-tree. The analysis shows that the
TAR-tree results in much fewer node accesses than alterna-
tives. Furthermore, we propose two enhancements for the
kNNTA query: (i) an algorithm suggesting the least amount
of weights to be adjusted to explore different query results
and (ii) a collective processing scheme to share index traver-
sal among a batch of queries. We conduct extensive exper-
iments using real-world data sets. The results validate the
accuracy of the cost analysis and show that the TAR-tree
outperforms alternatives by up to ten times in node accesses.
The results also show that the weight adjustment algorithm
and collective processing scheme outperform their baselines
by significant margins.

1. INTRODUCTION
Location-based services (LBSs) have a large market and

this market is growing rapidly. A well-known global market
research company MarketsandMarkets forecasts in a recent
report that the LBSs market will grow from $8.12 billion in
2014 to $39.87 billion in 2019. Location-based social net-
works (LBSNs) [31] have been a driving force for the growth

c© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

of LBSs. Many emerging applications enable users to ex-
plore their neighborhood with rich social information in a
highly customized fashion. For example, using the function-
ality Places Nearby (e.g., in Facebook or Foursquare), users
may want to find nearby attractions that have the most vis-
its recently or find a nearby club that is gathering the most
people in the last hour; using the functionality Explore (e.g.,
in Flickr or Instagram), users may want to browse photos
taken nearby and have the most likes lately.

These applications require ranking locations (or geotagged
media contents) based on two criteria: (i) the spatial dis-
tance and (ii) a temporal aggregate on a certain attribute
(e.g., the visits or likes). The spatial distance indicates the
degree of closeness while the temporal aggregate reflects the
social opinion in a certain period. These applications ex-
hibit three key characteristics, which create a highly dy-
namic environment: (i) The visits or likes happen contin-
uously, making the aggregate data grow rapidly. For in-
stance, there were 3 million check-ins per day in Foursquare
by May 2014. The number of the aforementioned requests
is also very large. (ii) The time interval a user interested in
is highly customized, which may vary from hours (e.g., for
retrieving current events) to years (e.g., for long term anal-
yses). (iii) The users may adjust their weighting on the two
criteria widely to explore results of different preferences.

The skyline operator [6] can support multi-criteria deci-
sion problems. However, the skyline operator is computa-
tionally expensive even for static data and queries. The
highly dynamic environment and the large volume of re-
quests and objects generated in LBSNs make it prohibitive
to use the skyline operator. Moreover, users are not given
the flexibility in determining their preference over the two
criteria. Following existing studies [9][15][22], we rank the
locations using a weighted sum of the spatial distance and
the temporal aggregate. We formulate the problem as the
k-nearest neighbor temporal aggregate (kNNTA) query (for-
mally defined in Section 3). Apart from the above applica-
tions in LBSNs, kNNTA queries are useful in many other
applications in urban computing [32] where the spatial dis-
tance and a temporal aggregate are considered simultane-
ously, such as location-based mobile advertising and social
event recommendation.

The kNNTA query requires quick response since users usu-
ally use the query to browse locations or geotagged media
contents in the neighborhood. Due to the dynamic nature
and the huge volume of the data and queries, having an effi-
cient solution to this type of queries is challenging. Existing
indexing structures cannot manage the locations effectively



based on both spatial closeness and temporal aggregate in-
formation simultaneously (detailed discussion in the related
work, Section 2). To efficiently process the kNNTA query,
we propose a novel index named the TAR-tree, in which the
locations are organized by integrating the spatial and tem-
poral aggregate information. We perform a detailed analy-
sis on the cost of query processing using the TAR-tree. The
analysis shows that the TAR-tree results in much fewer node
accesses than alternatives that organize the locations based
on only the spatial or the temporal aggregate information.
The analysis can also be used as a cost model for query
optimization. Furthermore, we propose two enhancements
for the kNNTA query: (i) To help users explore results of
different preferences, we propose an efficient algorithm sug-
gesting the least amount of weights to be adjusted between
the two criteria so that the query results will change. (ii)
To handle large number of queries, we propose a collective
processing scheme to share index traversal among a batch of
queries. In summary, the main contributions of this paper
are as follows.

• We propose a query called the k-nearest neighbor tem-
poral aggregate (kNNTA) query to address emerging
applications that requires ranking locations on both (i)
the spatial distance and (ii) a temporal aggregate on
a certain attribute.

• We propose a novel index named the TAR-tree to ef-
ficiently process the kNNTA query. We perform a de-
tailed analysis on the cost of query processing using
the TAR-tree, which shows that the TAR-tree results
in much fewer node accesses than alternatives.

• We propose two enhancements for the kNNTA query:
(i) an algorithm suggesting the least amount of weights
to be adjusted to explore different query results and (ii)
a collective processing scheme to share index traversal
among a batch of queries.

• We conduct extensive experiments using real-world data
sets. The results validate the accuracy of the cost anal-
ysis, and show that the TAR-tree outperforms alterna-
tives by up to ten times in node accesses. The results
also show that the weight adjustment algorithm and
collective processing scheme outperform their baselines
by significant margins.

The rest of the paper is organized as follows. Section 2 re-
views related work. Section 3 formalizes the kNNTA query.
Section 4 presents the TAR-tree. Section 5 discusses group-
ing strategies. Section 6 provides the analysis. Section 7
gives two enhancements. Section 8 reports the experiment
results and Section 9 concludes the paper.

2. RELATED WORK
Queries. Previous spatial aggregate queries focus on the

range aggregate [25], which returns the summarized informa-
tion of POIs falling in a hyper rectangle (e.g., find the maxi-
mum or minimum weight among POIs intersecting the query
rectangle). Temporal range aggregate queries [26] have also
been studied, which add the temporal dimension to range
aggregate queries (e.g., return the number of cars in the
city center during the last hour). The kNNTA query dif-
fers from these queries in that (i) it returns the POIs rather
than the aggregate value (e.g., the number of cars) and (ii)
its aggregate is over the history of individual POIs (e.g., the

check-in history) rather than spatial regions. Spatial key-
word queries [9] retrieve the top-k objects such that their
locations are close to the query point and their textual de-
scriptions are relevant to the query keywords. The kNNTA
query differs from spatial keyword queries in that instead of
the keywords query time intervals are given, and a dynamic
aggregate attribute (e.g., the count of check-ins) rather than
the textual relevance is considered. Given two data sets
P and Q (queries), an aggregate nearest neighbor (aNN)
query [19] retrieves the points in P that have the small-
est aggregate distances to the points in Q. The aNN query
aggregates on the distances of a group of points, different
from the kNNTA query which aggregates in the time di-
mension. Therefore, the algorithms for aNN queries cannot
apply. Many other types of queries aggregating on different
objects such as moving objects [10][16], data streams [29] or
locations [13][20][21] are also studied. These queries are all
different from the kNNTA query, and hence the algorithms
for them cannot apply.

Indexes. Indexes such as aR-tree [17] and aP-tree [25]
were proposed to process range aggregate queries. They
cannot be adapted to process the kNNTA query because
only one aggregate is maintained. The kNNTA query re-
quires the temporal aggregate over various time intervals.
Papadias et al. [26] proposed the aRB-tree to process tem-
poral range aggregate queries. The aRB-tree combines the
R-tree and B-tree, making each entry of the R-tree point to
a B-tree which stores historical aggregates of the entry over
each timestamp. To address the distinct counting problem in
aRB-tree, i.e., an object will be counted multiple times if it
remains in the query rectangle for more than one timestamp,
Tao et al. [24] proposed the sketch index which is similar to
the aRB-tree but with the B-tree storing historical count-
ing sketches of the regions in its subtree. The aRB-tree
and sketch index cannot be adapted to process the kNNTA
query when the epochs are of varied lengths, since the B-
tree cannot index time intervals. Even if the epochs are of
equi-length, the aRB-tree and sketch index pay no attention
to entry grouping strategies and group the entries based on
only spatial extents, which, as will be shown in our analysis
and experiments, is not effective for processing the kNNTA
query. Sun et al. [23] divided the space into regular grid and
proposed an adaptive multi-dimensional histogram (AMH)
to answer temporal range aggregate queries. AMH cannot
be adapted to answer the kNNTA query either, since the
histogram buckets only maintain the aggregate and cannot
retrieve individual POIs. Even if we use extremely fine gran-
ularity such that each cell in the grid only contains one POI,
the buckets are grouped mainly by the aggregate dimension
which, as will be shown, is also an ineffective strategy. Cong
et al. [9] proposed the IR-tree for spatial keyword queries
by integrating the R-tree and inverted indexes. Variants of
the IR-tree, such as DIR-tree, group the R-tree entries by
minimizing a weighted sum of the spatial closeness and text
similarities, which is not optimal since it introduces another
parameter, precludes existing optimization techniques for R-
tree and makes it difficult to estimate the query processing
cost. When designing the TAR-tree, our main focus is to de-
velop a robust and effective grouping strategy. Many other
spatial indexes [14][30] for nearest neighbor queries are also
proposed. These indexes cannot be adapted to process the
kNNTA query as they only focus on the spatial dimensions
and are unable to tackle the temporal aggregate.



3. PROBLEM FORMULATION

3.1 Query Definition
The locations, which may have spatial extents, are here-

after termed as points-of-interest (POIs). The visits, likes,
and so on are termed as checked-ins. A k-nearest neighbor

temporal aggregate (kNNTA) query returns the top-k POIs
based on a weighted sum of (i) the spatial distance to the
query point and (ii) a temporal aggregate on the check-ins
over a time interval. More precisely, we rank the POIs by a
function f that computes the ranking score of a POI p as

f(p) = α0d(p, q) + α1(1− g(p,Iq)), (1)

where αi > 0 (a constant) is the weight, 0 ≤ d(p, q) ≤ 1 is
the normalized Euclidean distance between p and the query
point q, and 0 ≤ g(p,Iq) ≤ 1 is the normalized temporal
aggregate of p over a query time interval Iq. We use the
weighted sum due to its simplicity and common usage in
the literature [9][15][22], although the same result can be
achieved by any monotonic function on the two criteria. We
normalize the spatial distance d(p, q) and temporal aggre-
gate g(p,Iq) by dividing each by its range (i.e., maximum
− minimum), so that the value is in the range [0, 1]. The
normalization prevents one criterion from overpowering the
other if it has a relatively large value. Without loss of gener-
ality, we let α0+α1 = 1, since the ranking does not change if
α0 and α1 is multiplied by a positive constant. The smaller
the ranking score is, the higher p ranks and the better it
suits the query.

The temporal aggregate can be count, min, max, sum or
average (i.e., sum

count
). In this paper, we focus on the aggre-

gate that counts the number of check-ins at a POI, but the
methods easily extend to other aggregates. In the rest of
this paper, we omit “temporal” when the context is clear
and simply use “aggregate” to refer to the “temporal aggre-
gate”. Let t0 be the starting of the application and tc be
the current time. We discretize the time axis in to epochs.
Each epoch may be a second, an hour or of varied lengths
(e.g., one hour, two hours, four hours, eight hours and so
on) depending on the application. The aggregate g(p,Iq) is
computed by adding up the number of check-ins at p whose
epoch intersects Iq . We summarize the definition of the
kNNTA query as follows.

Definition 1. K-Nearest Neighbor Temporal Aggre-
gate (kNNTA) Query. Given a query point and a time

interval, a k-nearest neighbor temporal aggregate query re-

turns a set R of k POIs with the minimum ranking scores

computed by the ranking function f given by Equation 1,

i.e., ∀p ∈ R and p′ ∈ P \ R, f(p) ≤ f(p′).

3.2 A Straightforward Approach
Figure 1 gives an example. The circles are the POIs. Ta-

ble 1 presents the number of check-ins that each POI has
in epochs [t0, t1), [t1, t2) and [t2, tc], respectively. A kN-
NTA query is issued with a query point q denoted by the
small square, a time interval [t0, tc], α0 = 0.3 (α1 = 0.7)
and k = 1. The ranking score of e is computed by f(e) =
0.3 · 2.24

15.6
+ (1 − 0.3) · (1 − 2

12
) = 0.626, where 2.24 is the

Euclidean distance between e and q, 15.6 is the maximum
distance between any two points in the space, 2 is the ag-
gregate at e over [t0, tc] and 12 is the maximum aggregate

a

b
c

d

e

f

g
h

i

j
k

l

q

Figure 1: POIs and the
query point

POI t0→ t1→ t2→

a 1 1 0
b 1 0 1
c 2 2 2

d 2 0 0
e 1 1 0

f 3 5 4
g 2 3 1

h 1 1 0
i 2 2 2
j 2 0 0

k 1 0 1
l 1 0 1

Table 1: Aggregate
distribution

among all POIs. We obtain f as the query result, whose spa-
tial distance to q equals 3 and aggregate equals 3+5+4 = 12.
The ranking score of f is 0.3· 3

15.6
+(1−0.3)·(1− 12

12
) = 0.058.

To handle the kNNTA query, a straightforward approach
is sequential scan. Assume that the check-ins have already
been counted within each epoch (as shown in Table 1). We
first add up the number of check-ins in each epoch in the
query time interval and obtain the aggregate for each POI.
We then compute the ranking score of each POI, and return
the top-k POIs. The time complexity is O(m′N +N logm+
k logN ), where m′ is the number of epochs in the query
time interval, N is the number of POIs, m is the number of
epochs in [t0, tc] (e.g., 3 in the above example) and k is the
number of returned POIs. Both N and m′ are very large
in real social networks. For instance, N = 60, 000, 000 in
the LBSN Foursquare, and m′ = 8, 760 if the query time
interval is one year and each epoch is one hour. The high
cost makes this approach inapplicable in real applications.

4. INDEX DESIGN
We design an index called the temporal aggregate R-tree

(TAR-tree) to efficiently process the kNNTA query.

4.1 Index Structure
The TAR-tree is a variant of the R-tree.The algorithms for

indexing the spatial extents of the POIs remain the same. A
leaf entry is a minimum bounding rectangle (MBR) enclos-
ing a POI. A leaf node contains a number of leaf entries. An
entry in an internal node points to a child node (leaf node
or internal node), and has an MBR enclosing the MBRs
contained in the child node.

The difference between the TAR-tree and R-tree is that
each entry of the TAR-tree also points to a temporal index.
The temporal index stores the non-zero aggregate (at least
one check-in) over each epoch, and keeps each record as a
triple 〈ts, te, agg〉, where ts is the start time and te is the end
time of the epoch, and agg is the aggregate value during the
epoch. For brevity, we refer to the temporal index as the
TIA (temporal index on the aggregate). The TIA of a leaf
entry stores the aggregate of the POI it contains. The TIA
of an internal entry stores the largest aggregate value of the
TIAs in the child node for each epoch. For example, if two
TIAs are in the child node and they store records {〈t0, t1, 2〉,
〈t1, t2, 2〉, 〈t2, ∗, 2〉} and {〈t0, t1, 2〉, 〈t1, t2, 3〉, 〈t2, ∗, 1〉}, re-
spectively, then the TIA of the internal entry pointing to this
node stores the records {〈t0, t1,max{2, 2}〉, 〈t1, t2,max{2, 3}〉,
〈t2, ∗,max{2, 1}〉}. Any temporal index can be used to im-
plement the TIA. We have used the disk-based multi-version
B-tree [2] in our implementation as it has been proven to be



a

b
c

d
e

fg

h

i

j k

l

R1

R2

R3

R4

R5

R6

R7

(a)

TIAs

f c g b a e d h k i l j

〈t0,t1,3〉
〈t1,t2,5〉
〈t2, ∗ ,4〉

〈t0,t1,2〉
〈t1,t2,2〉
〈t2, ∗ ,2〉

〈t0,t1,2〉
〈t1,t2,3〉
〈t2, ∗ ,1〉

〈t0,t1,1〉

〈t2, ∗ ,1〉

〈t0,t1,1〉
〈t1,t2,1〉

〈t0,t1,1〉
〈t1,t2,1〉

〈t0,t1,2〉 〈t0,t1,1〉

〈t2, ∗ ,1〉

〈t0,t1,1〉

〈t2, ∗ ,1〉

〈t0,t1,2〉
〈t1,t2,2〉
〈t2, ∗ ,2〉

〈t0,t1,1〉

〈t2, ∗ ,1〉

〈t0,t1,2〉

R1 R2 R3 R4 R5

R6 R7

〈t0,t1,3〉
〈t1,t2,5〉
〈t2, ∗ ,4〉

〈t0,t1,2〉
〈t1,t2,1〉

〈t0,t1,3〉
〈t1,t2,5〉
〈t2, ∗ ,4〉

〈t0,t1,2〉
〈t1,t2,2〉
〈t2, ∗ ,2〉

〈t0,t1,2〉

〈t2, ∗ ,1〉

〈t0,t1,2〉
〈t1,t2,3〉
〈t2, ∗ ,2〉

〈t0,t1,2〉
〈t1,t2,2〉
〈t2, ∗ ,2〉

(b)
Figure 2: TAR-tree example

asymptotically optimal.
In most applications, the aggregate update (i.e., inserting

check-ins) is much more frequent than the spatial update
(i.e., inserting POIs). We maintain the spatial and aggre-
gate information in different components to enable quick
digestion of new check-ins. Figure 2 presents an example of
TAR-tree indexing the POIs shown in Figure 1. Figure 2(a)
shows the MBRs of the entries. Figure 2(b) shows the index
structure. The temporal records indexed by TIAs are en-
closed by dashed lines. Empty lines in the TIAs mean that
no records are stored for the epoch due to a zero aggregate.
As we will see, the most important aspect for TAR-tree to
efficiently process the kNNTA query is the strategy to group
the entries. We will discuss the entry grouping strategy in
Section 5.

4.2 Index Maintance
We briefly discuss how to insert check-ins and POIs. Dele-

tion is the same as R-tree and hence omitted.
Inserting Check-ins. When an epoch ends, we compute

the aggregate of each POI by the check-ins (in this epoch),
and then insert the non-zero aggregates in a batch fashion.
Specifically, starting from the root node of TAR-tree, if an
entry contains a POI whose aggregate is non-zero, we tra-
verse the sub-tree rooted at the entry recursively. When
reaching a leaf node, we store the non-zero aggregate into
the POI’s TIA, and return the largest aggregate in this node
to the parent. Such an update procedure is efficient, since
we only traverse part of the R-tree (which can be kept in
main-memory) and insert only one record into the TIA.

Inserting POIs. When we insert a POI, the inserted
path in TAR-tree is determined by the entry grouping strat-
egy (which will be discussed in Section 5). For each entry in
the inserted path, we update its MBR to include the POI,
and update its TIA if in an epoch the aggregate of the POI
is larger. If the insertion causes some POIs to be reinserted,
we first remove these POIs from the TAR-tree, update the
MBRs and TIAs in the inserted path, and then insert these
POIs as described above. If the insertion causes some node
to split, we redistribute the entries in the node by the entry
grouping strategy.

4.3 Query Processing
We use the best-first search (BFS) [12] for query process-

ing, which works as follows: (i) the entries in the root node
are first inserted into a priority queue, in which the priority
is determined by the entry’s ranking score (detailed in the
next paragraph), and then (ii) the front entry of the queue
is ejected. If the entry is a leaf entry, the POI it contains is
added to the result list; otherwise, each of its child entries
is inserted into the queue. (iii) Step (ii) is repeated until k
POIs are obtained.

The ranking score of an entry e is the weighted sum of the
spatial distance from the query point to the MBR of e and
the aggregate computed by the TIA of e. Given a query
time interval Iq, the TIA returns the records whose time
interval [ts, te] is contained in Iq. We obtain the aggregate
over Iq by adding up the agg field of each returned record.

According to [12], the BFS produces correct query results
as long as the entry’s priority is computed by a consis-

tent function. For the TAR-tree, the consistence can be
expressed as: if ec is an entry in the node pointed by en-
try e, then f(e) ≤ f(ec). We prove the consistency of the
ranking function f as follows.

Property 1. Given any query point q and query time in-

terval Iq, we have f(e) ≤ f(ec), where ec is a child entry of

entry e in the TAR-tree.

Proof. We have f(e) = α0d(e, q)+α1(1− g(e,Iq)). Due
to the TAR-tree design, it follows that d(e, q) ≤ minec∈e d(ec, q)
and g(e,Iq) ≥ maxec∈e g(ec, Iq). Therefore,

f(e) ≤ α0 min
ec∈e

d(ec, q) + α1(1−max
ec∈e

g(ec, Iq))

≤ α0d(ec, q) + α1(1− g(ec, Iq)) = f(ec) ∀ec ∈ e,

i.e., f(e) ≤ f(ec).

5. ENTRY GROUPING STRATEGIES
We now discuss the strategies for grouping the TAR-tree

entries. As proved above, the BFS will provide the correct
query results on the TAR-tree no matter which grouping
strategy is used. The BFS has been proven to be optimal
per TAR-tree instance in that only the TAR-tree nodes that
intersect the search region will be accessed by the BFS [4].
However, different entry grouping strategies may result in
different TAR-tree instances and hence vastly different num-
ber of node accesses. The performance of the BFS on the
TAR-tree is roughly proportional to the number of accessed
nodes, since similar operations are performed on each ac-
cessed node and the TAR-tree is most likely disk resident
due to its large size as we discussed in Section 4.1. There-
fore, we aim at minimizing the node extents in the TAR-tree
so that fewer nodes are accessed by the BFS.

5.1 Two Straightforward Strategies
Since the TAR-tree is a variant of the R-tree, one straight-

forward strategy is to group the entries based on the spatial
extents as R-tree does. Here we briefly review the grouping
method of R*-tree [3]. When inserting a POI, we choose
the entry that has the least overlap with other entries after
containing the POI, if the entry points to a leaf node. If the
entry points to an internal node, we choose the one that has
the least area enlargement after including the POI. When a



node incurs overflow and this is the first time overflow hap-
pens in this level, we reinsert several entries of the node.
When a node splits, we first choose a split axis, along which
the sum of all possible new MBR margins is minimized. We
then redistribute the entries (along the chosen split axis)
such that the two new nodes have the minimum overlap.

Another straightforward strategy is to group the entries
that have similar aggregate distributions. The similarity or
distance between two aggregate distributions can be mea-
sured by the Manhattan distance (or Earth mover’s distance
and the like). For example, in Table 1, the distance between
the TIA of c and TIA of g equals 0+1+1 = 2, while the dis-
tance between the TIA of c and TIA of l equals 1+2+1 = 4.
When a POI is added, we insert the POI into the node that
has the smallest distance to it. When a node splits, we re-
distribute the entries such that the distance between the two
new nodes is maximized.

5.2 Integral 3D Strategy
As our analysis and experiments will show, the above two

entry grouping strategies are not effective. We propose to
group the entries by integrating the spatial and aggregate
information to minimize the node extents. Specifically, we
group the entries as 3-dimensional bounding boxes, in which
two are the spatial dimensions and the third is a dimension
capturing the aggregate information. As the aggregate in-
formation is distributed as aggregate values in many epochs.
Here the trick lies in how to sufficiently represent the aggre-
gate information as a single value (i.e., the coordinate of the
third dimension). We have designed the third dimension as
the following value

λ̂p =
1

m

m∑

i=1

vi,

where m is the number of epochs in [t0, tc] and vi is the
aggregate value in the ith epoch (and as usual the bound-
ing box of an internal entry encloses the bounding boxes of
its child entries). This value is an estimate of the expected
number of check-ins at the POI p contained by the leaf entry
in an epoch (because we can model the number of check-ins
at a POI in an epoch using the Poisson distribution). If two
entries have similar such values, they may also have similar
aggregates over the query time interval. It can significantly
reduce the node extents if we group the entries having both
similar spatial distances to the query point and similar ag-
gregates over the query time interval.

Since the two types of information are of very different
nature and do not have a unified domain range, when us-
ing this strategy, we normalize the spatial and aggregate
dimensions by the ranges of their domains, respectively. In
particular, to align with the ranking function, the normal-
ized coordinate zp of the third dimension for a leaf entry

equals zp = 1− λ̂p

maxp λ̂p
. Note that only when we group the

entries they are treated as 3-dimensional bounding boxes.
When processing the kNNTA query, the spatial extents of
the entry are obtained from the MBR and the aggregate
from the TIA.

6. COST ANALYSIS AND COMPARISON OF

GROUPING STRATEGIES
In this section, we analyze the query processing cost using

Table 2: Powerlaw fitting

Data n β̂ x̂min p-value

NYC 72,273 3.20 31 0.68
LA 45,591 3.07 16 0.18
GW 1,280,969 2.82 85 0.29
GS 182,968 2.19 59 0.21

the TAR-tree (with our proposed integral 3D entry grouping
strategy). Through the cost analysis, we show that the TAR-
tree results in much fewer node accesses than alternatives
that use the other two grouping strategies. The analysis
can also be used as a cost model for query optimization
purposes. As mentioned before, we measure the cost by the
number of node accesses. In the BFS, the accessed nodes
are those intersecting the query search region, which is in
turn determined by the data distribution. Therefore, we first
analyze the distribution of the aggregate data in Section 6.1,
and then estimate the search region and the number of node
accesses in Sections 6.2 and 6.3, respectively. We compare
the three entry grouping strategies in Section 6.4.

6.1 Distribution of the Aggregate Data
Like many other types of data in real life [8], we observe

that the aggregate value (i.e., the number of POIs having a
certain aggregate value) follows the power-law distribution
very well. Let the discrete random variable X be the count
aggregate over a certain time interval, among the aggregates
of all POIs, the probability that X has an observed value x
is computed by

p(x) = Pr(X = x) = Cx−β,

where C is a normalization constant. The power-law indi-
cates that a small number of the POIs having a large pro-
portion of the check-ins (roughly 80% of the check-ins are at
20% of the POIs). We test the power-law hypothesis on four
real LBSN data sets (detailed at the beginning of Section 8)
with the method in [8]. We list in Table 2 the results from
the fitting of a power-law to each of the data sets, where n
is the number of the tested POIs, β̂ is the estimated scaling
parameter, x̂min is the estimated lower-bound to the power-
law behavior and p-value is the goodness-of-fit indicator. It
is suggested in [8] that the power-law hypothesis is ruled out
if p-value is less than or equal to 0.1. Since the p-values of
the four data sets are all clearly larger than 0.1, we argue
that they all follow the power-law very well.

6.2 Estimation of the Query Search Region
Similar to the k-nearest neighbor query, the search region

of the kNNTA query is determined by the ranking score of
the kth POI, which is denoted by f(pk). For ease of expo-
sition, we describe the ranking score and search region in
a normalized 3-dimensional unit cube, where two are the
spatial dimensions and the third is the aggregate dimension.
Figure 3 illustrates the ranking score with the query example
in Section 3.2. The line segment qg′ represents the normal-
ized spatial distance and gg′ represents the normalized ag-
gregate of g. The ranking score of g equals α0|qg′|+α1|gg′|.

In the 3-dimensional unit cube, the query search region is
of a cone shape. Its height and base radius, denoted by hl

and r0, are computed by

r0 =
f(pk)

α0
and hl =

f(pk)

α1
,



l j
h

k
b

d
a

e

c

g
i

f
q r0hl

0.00

0.50

0.83

g′a
g
g
re
g
a
te

d
im

en
si
o
n

Figure 3: Cost analysis example

respectively. For example, in Figure 3, the cone illustrates
the search region. Recall that in the query example we have
α0 = 0.3, α1 = 0.7 and f(pk) = 0.058, which implies that
r0 = 0.192 and hl = 0.082. By definition, k POIs are in the
search region. For instance, in the above example k = 1 and
only f is in the search region. If k = 2, the search region will
expand until it reaches a second POI. We use this property
to estimate the size of the search region.

We observe that in the 3-dimensional unit cube, the POIs
are only on a few layers at a specific height. Moreover,
the number of such layers is countable. This is because
the aggregate values (before normalization) are integers rep-
resenting the number of check-ins. For example, in Fig-
ure 3, the POIs are only on three layers: a, b, d and so
on have an aggregate value 2, and thus are on the layer at
height 1 − 2

12
= 0.83; c, g and i are on the layer at height

1− 6
12

= 0.5; and f and the query point q are on the layer at
height 0. For simplicity, we denote each layer by the aggre-
gate value x. By the power-law distribution, the probability
p(x) that a POI has an aggregate value x is computed by

p(x) =
x−β

ζ(β, xmin)
,

where

ζ(β, xmin) =
∞∑

i=0

(i+ xmin)
−β

is the Hurwitz zeta function [8]. The expected number of
POIs on layer x, which is denoted by N (x), is computed by

N (x) = N · p(x),
where N is the total number of POIs. Let the horizontal
cross-section of the search region cut by layer x be D(q, rx).
The radius rx of D(q, rx) is computed by

rx =
hl − hx

hl

· r0,

where hx is the height of layer x. Assume that the POIs are
uniformly distributed on each layer. We can estimate the
expected number of POIs in D(q, rx) byN (x)·πr2x. However,
the boundary effects cannot be neglected. Boundary effects
represent the problem that some parts of the search region lie
out of the 3-dimensional unit cube (e.g., when k = 2 in the
above example). Taking the boundary effects into account,
according to [4], the expected number of POIs bounded by
D(q, rx) is computed by

N (x) · E[SD(q,rx)∩Ux
],

where E[SD(q,rx)∩Ux
] is the expected area that D(q, rx) in-

tersects layer x. Assuming that the query point is uni-
formly distributed, according to [27], we can approximate

bands

cross-sections

search region

nodes

a
g
g
re
g
a
te

d
im

en
si
o
n

Figure 4: Node accesses estimation example

E[SD(q,rx)∩Ux
] by






(√
π · rx − πr2x

4

)2

,
√
π · rx < 2

1, otherwise.

Adding up the number of POIs bounded by the cross-section
on each layer, f(pk) can be estimated by solving the follow-
ing equation:

k =

∞∑

x=Ω

N (x) ·E[SD(q,rx)∩Ux
],

where Ω is the minimum aggregate value.

6.3 Estimation of the Number of Node Accesses
We estimate the number of node accesses by computing

the number of nodes intersecting the search region. Without
loss of generality, we only estimate the number of leaf nodes
intersecting the search region since the number of internal
nodes is much smaller than the number of leaf nodes. Also,
the following analysis applies to internal nodes straightfor-
wardly. The main challenge in the estimation is that the
node extents are not uniform along the aggregate dimension
due to the power-law distribution. The unit cube is divided
into several bands along the aggregate dimension (computing
the range of each band is detailed below). For example, in
Figure 4, each square represents the extents of a node. The
squares are small among higher layers and large among lower
layers. The nodes of different extents form three bands. We
first estimate the node extents and then the number of node
accesses in each band.

Following existing cost analyses on the R-tree [12][5][27],
we assume that the leaf nodes are of a cubic shape. We
estimate the node extents by the extent along the aggre-
gate dimension and the extents along the spatial dimensions.
Starting from the top layer x, we proceed downward along
the aggregate dimension. When we reach layer y, the node
height equals ∆h = hx − hy . Meanwhile, according to [5]
the node extents along the spatial dimensions equal

Sy =

(
1− 1

f

)(
min

{
f∑y

i=x
N (i)

, 1

}) 1

2

,

where f is the fanout (the average number of entries in a
node which typically equals 69% of the node capacity [28]).
We obtain the node extents by solving the equation Sy = ∆h
(or Sy − ∆h < ǫ). We refer to the space from layer x to
layer y as a band (as shown in Figure 4). We then compute
the expected number of nodes accesses in this band. The
probability Py that a node in a band intersects the search
region is computed by the Minkowski sum [5] of the node
extents Sy and the cross-section D(q, ry) cut by the layer
y (as illustrated in Figure 4). Taking the boundary effects



l
j

h k

b
d

a

e

c
g

i

f
q

(a)

l j h
k

b
d

a
e

c

g
i

f
q

(b)
Figure 5: Entry grouping examples

into account, according to [27], Py can be estimated by

Py =






(
4Ly − (Ly + Sy)

2

4(1− Sy)

)2

, Ly + Sy < 2,

1, otherwise,

where

Ly =

[
2∑

i=0

((
2

i

)

· S2−i
y ·

√
πi

Γ(i/2 + 1)
· riy
) ] 1

2

.

The expected number of node accesses NAy in this band is
thus computed by

NAy =

∑y

i=x
N (i)

f
· Py ,

where
∑y

i=x
N (i)

f
is the number of nodes in this band. We

then proceed with x = y + 1 and repeat the above steps
until all layers are processed. The expected number of leaf
node accesses, denoted by NA(α, k), equals the sum of the
number of node accesses computed in each band, i.e.,

NA(α, k) =
∑

y

NAy .

6.4 Comparison of Entry Grouping Strategies
Based on the above analysis (which is validated by our

experiments), we qualitatively compare the three grouping
strategies (discussed in Section 5).

If we use the spatial extents to group the entries, the nodes
have weak pruning power in the aggregate dimension. The
reason is that the nodes will be of a hyper-rectangle shape
due to the power-law distribution. For example, in Fig-
ure 5(a) the hyper-rectangles represent the nodes. The lower
part of such a node may intersect the search region with a
high probability. The entries at the top of the unit cube
are less likely to contain query results, however, they are
accessed if the lower part of the node intersects the search
region. The power-law indicates that 80% of the entries are
at the top of the unit cube, and hence many nodes will be
accessed unnecessarily.

If we use the aggregate distribution to group the entries,
the nodes have weak pruning power in the spatial dimen-
sions. This is because the nodes will cover a large space
in the spatial dimensions since the spatial proximity is not
considered. For example, Figure 5(b) shows the rectangles
on each layer representing the nodes. We can see that they
have large extents in the spatial dimensions and will be ac-
cessed with a high probability provided the height of the
search region is greater than the layer containing the node.

The above drawbacks can be avoided when we use the
integral 3D strategy. The node extents will follow a power-
law-like distribution as shown in Figure 4. The nodes hence
retain the pruning power of both spatial and aggregate di-
mensions. Therefore, the TAR-tree results in much fewer
node accesses than alternatives that organizes entries using
only the spatial proximity or the aggregate distribution.

7. ENHANCEMENTS FOR THE QUERY
In this section, we propose two enhancement techniques

for the kNNTA query. In Section 7.1, we present an algo-
rithm suggesting the least amount of weights to be adjusted
that can cause the query results to be changed. In Sec-
tion 7.2, we present a collective processing scheme to share
the index traversal among a batch of queries.

7.1 Suggesting the Minimum Weight Adjust-
ment

New users of the kNNTA query may have difficulty in set-
ting the weights between the spatial distance and aggregate
properly. They may adjust the weights to explore different
results. It is discouraging if the results remain the same after
the weights have been changed. We tackle this problem by
suggesting the users the minimum weight adjustment that
can change the current results (here, changing the results
refers to changing the POIs in the kNNTA answer set).

A few existing studies proposed algorithms retaining the
top-k results instead of changing the results. For example,
Mouratidis et al. [15] proposed an algorithm that computes
the immutable regions which is defined as the widest range
of αi that preserves the top-k results (assuming that the
other weight α1−i is kept constant). Soliman et al. [22] stud-
ied finding the maximal hypersphere centered at the weight
vector [α0, α1]

T such that each vector in the hypersphere
preserves (including the order) the top-k results. These al-
gorithms do not apply since they cannot compute the weight
adjustment to change the top-k results.

To solve this problem, we first rewrite the ranking function
f(p). Let the POIs be ranked in a list. We denote the ith

ranked POI by pi and rewrite the ranking function of pi
by f(pi) = α0si,0 + α1si,1, where si,0 = d(pi, q) and si,1 =
1 − g(pi, Iq). For simplicity, we focus on the adjustment of
α0 (since α1 = 1 − α0). Given a top-k POI pi (i ≤ k) and
a lower ranked POI pj (j > k), where f(pi) < f(pj), we
obtain a value range of α0 such that for any α′

0 in the range,
a ranking function f ′(p) defined by α′

0 satisfies f ′(pi) >
f ′(pj). For example, in the ranking list in Table 3, we have
α0 = α1 = 0.5 and k = 2. To let f ′(p1) > f ′(p3), we need
α′
0 > 5

6
. To let f ′(p1) > f ′(p6), we need α′

0 < 1
8
. We

refer to the boundary of the range as the weight adjustment,
denoted by γi,j . Let δi,j,t = si,t − sj,t for t = 0, 1. When
δi,j,0 · δi,j,1 < 0, γi,j is computed by

γi,j =
δi,j,1

δi,j,1 − δi,j,0
.

When δi,j,0 · δi,j,1 ≥ 0, we cannot achieve f ′(pi) > f ′(pj)
since pi dominates pj (i.e., si,t < sj,t for t = 0, 1). The min-
imum weight adjustment (MWA) is the weight adjustments
that are nearest to the current weight, i.e., the max{γi,j}
or min{γi,j} when γi,j is less or greater than the current
weight. For example, in the ranking list in Table 3, to let
f ′(p1) be greater than f ′(p3), f

′(p5), f
′(p6), we need α′

0 > 5
6
,

α′
0 > 20

29
, α′

0 < 1
8
, and to let f ′(p2) be greater than f ′(p4),



Table 3: Ranking list

POI si,0 si,1 POI si,0 si,1

p1 0.25 0.10 p4 0.35 0.25
p2 0.10 0.30 p5 0.025 0.60
p3 0.20 0.35 p6 0.60 0.05

f ′(p5), f
′(p6), we need α′

0 < 1
6
, α′

0 > 4
5
, α′

0 < 1
3
, respec-

tively. The MWA of α0 is either α′
0 < 1

3
or α′

0 > 20
29
, since 1

3

and 20
29

and are nearest to the current weight 0.5 when the
weight adjustment is less and greater than 0.5, respectively.
More precisely, the MWA for α0 comprises two values Γl

and Γu that are computed by:
{

Γl = max{γi,j} for δi,j,0 < 0, i ≤ k, j > k,
Γu = min{γi,j} for δi,j,0 > 0, i ≤ k, j > k.

The MWA will change exactly one of the top-k POIs and
keeps the other top-k POIs (the order within top k may
change). For example, if we change α0 to 0.75 in the above
example, the new top-2 POIs will be the current p2 and p5.

A straightforward way to compute the MWA on the TAR-
tree is as follows: After finding the top-k POIs, for each of
the top-k POIs p, we continue the BFS until the queue is
empty. If the ejected entry e is dominated by p, we continue.
Otherwise, we compute and update the (tentative) MWA if
e is a leaf entry, or continue the BFS if e is an internal entry.
This approach may incur significant cost since it enumerates
each of the top-k POIs and has a very weak pruning power
on the lower ranked POIs (by checking the dominance).

To overcome this drawback, we propose an approach that
makes use of the skyline queries. We observe that: when
δi,j,0 > 0 and δi,j,0 < 0, the weight adjustment computed
from an entry gives an upper and lower bound on the weight
adjustments computed from the child entries, respectively.
The reason is, when δi,j,0 < 0 and δi,j,0 > 0,

γi,j =
δi,j,1

δi,j,1 − δi,j,0
=

1

1− δi,j,0
δi,j,1

=
1

1− si,0−sj,0
si,1−sj,1

increases and decreases with the decrease of sj,1 or sj,0, re-
spectively. Therefore, to compute the MWA, we only need
to consider the weight adjustments when interchange the
POIs on (i) the skyline of the lower ranked POIs and (ii)
the skyline of the top-k POIs with the dominating condition
reversed (i.e., pi dominates pj if si,t > sj,t for t = 0, 1).
Therefore, after finding the top-k POIs, we propose to (i)
first compute the skyline of the top-k POIs with the domi-
nating condition reversed, and then (ii) compute the skyline
of the lower ranked POIs and (iii) obtain the MWA by the
weight adjustments interchanging the POIs on the two sky-
lines. Note that although the proposed TAR-tree is designed
for the kNNTA query, it also enables efficient answering of
the skyline query, since many skyline algorithms are based
on the R-tree (e.g., [18]). It is not difficult to extend the
algorithm to compute the weight adjustment that leads to
multiple top-k POIs being changed.

7.2 Collective Query Processing
To achieve high scalability when processing multiple kN-

NTA queries simultaneously, we propose to process kNNTA
queries in a batch fashion.

Let c be the number of queries in a batch. We use c
priority queues for the BFS of the c queries. In the BFS, we
access a node when the front entry is an internal entry. Some

Table 4: Data Set
Name Time Locations Check-ins

NYC 05/2008-06/2011 72,626 237,784
LA 02/2009-07/2011 45,591 127,924
GW 02/2009-10/2010 1,280,969 6,442,803
GS 01/2011-07/2011 182,968 1,385,223

front entries in the c queues may be the same (pointing to
the same node). For example, if c = 5, after we insert a root
node containing two entries R1 and R2, the front entries of
the c queues may be R1, R1, R2, R2 and R1. To reduce the
number of node accesses, we process the c queues greedily,
i.e., the queues containing the most frequent front entry are
processed first, which makes the accessed node be shared by
the most queries. For instance, in the above example, the
node R1 will be retrieved and the three queues having R1 as
the front entry will be processed first. To further share the
aggregate computation on the TIAs in the accessed node, we
group the queries together if they have the same query time
interval (i.e., the same start time and length) and process
the queries as a batch. Such grouping method is effective
because in real applications users are usually given only a
few options for the query time interval (e.g., one day or one
week from now) by default.

8. EXPERIMENTS
In this section, we empirically evaluate the cost analysis,

the TAR-tree and two enhancements for the kNNTA query.
Experiments Setup. We use four real-world data sets:

NYC, LA, GW and GS. NYC and LA [1] are two LBSNs
for the New York City and Los Angeles, respectively (gen-
erated from Foursquare tips), GW [7] is the LBSN Gowalla
and GS [11] is the LBSN Foursquare (generated from check-
ins posted on Twitter). The details of the data sets are
listed in Table 4. We implement the R-tree with the R*-
tree [3] and the TIA with the Multi-version B-tree. Given
the vast memory capacity of modern computers, the R-tree
is kept in memory and each TIA is assigned a maximum of
10 buffer slots. To simulate real scenarios, unless otherwise
specified, the R-tree node size is set to 1024 bytes (and hence
the node capacities are 50 and 36 for 2- and 3-dimensional
entries respectively), the epoch length is set to 7 days, and
a location needs to have 15, 10, 100 and 50 check-ins for
the four data sets respectively to be treated as an effective
public POI and indexed. For each data set, we generate
1,000 queries with the query point uniformly sampled from
the data set and the query time interval uniformly sampled
from 20, 21, . . . , 29 days. By default k = 10 and α0 = 0.3.

The experiments are conducted on a 64-bit Windows desk-
top computer with a 3.40GHz Intel(R) Core(TM) i7-2600
CPU and 16GB RAM. All algorithms are implemented in
Java. For all sets of experiments (except the validation of
the cost analysis), we measure the CPU time and number
of node accesses. All presented results are averaged over the
1,000 queries. Due to the space limitation, we only present
the results of GW and GS. The results of NYC and LA are
consistent with those of GW and GS, and hence are omitted.

8.1 Validation of the Cost Analysis
In this set of experiments, we evaluate the cost analysis

by comparing the estimated f(pk) and number of leaf node
accesses with the measured ones.



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 5 10 50 100

f
(
p
k
)

k

measured
estimated

(a) GW

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 5 10 50 100

f
(
p
k
)

k

measured
estimated

(b) GS

 0

 200

 400

 600

 800

 1000

1 5 10 50 100

n
o
d
e
 
a
c
c
e
s
s
e
s

k

measured
estimated

(c) GW

 0

 200

 400

 600

 800

1 5 10 50 100

n
o
d
e
 
a
c
c
e
s
s
e
s

k

measured
estimated

(d) GS

Figure 6: Cost analysis validation by varying k

Varying k. We first evaluate the analysis by varying k
from 1 to 100. The results are plotted in Figure 6. Fig-
ures 6(a) and 6(b) show the comparison of the estimated
and measured f(pk). We can see that f(pk) increases with
the increase of k as expected. The estimates are very close
to the actual values when k ≥ 5. The estimate is less accu-
rate when k < 5, especially on GS, which is due to the large
variance of f(pk) when k < 5 and only a few POIs have
large aggregate values. Figures 6(c) and 6(d) present the
comparison of the estimated and measured number of node
accesses. We can see that with the increase of k the number
of leaf node accesses increases and the estimates exhibit the
same growing trend as the actual values. When k ≤ 50, the
estimates approximate the measured values very well. When
k > 50, the estimation is slightly inaccurate due to that the
number of POIs computed by the power-law is less accu-
rate when x is close to x̂min and it happens more frequently
when k is larger. This problem can be addressed by col-
lecting more data or introducing a more complex piece-wise
fitting.

Varying α0. Next, we evaluate the analysis by varying
α0 from 0.1 to 0.9. The results are plotted in Figure 7. Fig-
ures 7(a) and 7(b) depict the comparison of the estimated
and measured f(pk). For all values of α0, the estimates are
almost identical to the actual values. Figures 7(c) and 7(d)
illustrate the comparison of the estimated and measured
number of node accesses. We can see that the number of
node accesses increases moderately with the increase of α0.
The estimates fluctuate closely around the actual values.
When α0 is close to 0.9, the estimates show an opposite
growing trend to the actual values. This is due to the same
problem caused by the error of the power-law fitting when
x is close to x̂min, and can also be addressed by the same
approaches. Overall, the cost analysis is accurate and can
strongly indicate the query processing cost.

8.2 Performance of the TAR-tree
In this set of experiments, we evaluate the performance of

the TAR-tree. We compare the TAR-tree with the two al-
ternatives (discussed in Section 5) using the spatial extents
and the aggregate distribution to group the entries, respec-
tively. We refer to the two alternatives as the IND-spa
and IND-agg, respectively. We also compare the TAR-tree
with the straightforward approach (scanning the aggregate
values and POIs) to measure the query processing speed up,
which is referred to as the baseline.

Effect of the LBSN Growing with Time. First, we

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0.1 0.3 0.5 0.7 0.9

f
(
p
k
)

α0

measured
estimated

(a) GW

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.3 0.5 0.7 0.9

f
(
p
k
)

α0

measured
estimated

(b) GS

 0

 100

 200

 300

0.1 0.3 0.5 0.7 0.9

n
o
d
e
 
a
c
c
e
s
s
e
s

α0

measured
estimated

(c) GW

 0

 100

 200

 300

0.1 0.3 0.5 0.7 0.9

n
o
d
e
 
a
c
c
e
s
s
e
s

α0

measured
estimated

(d) GS

Figure 7: Cost analysis validation by varying α0

evaluate the performance by simulating the growth of the
LBSN with time. We take a snapshot on each data set at
20%, 40%, . . . , 100% of the time. The results are plotted
in Figure 8. Figures 8(a) and 8(b) show the CPU time of
different approaches. We can see that the TAR-tree runs
several times faster than the IND-spa and IND-agg. The
TAR-tree also runs greatly faster than the baseline. With
the growth of the LBSN, the performance of the TAR-tree
may slightly fluctuate (as shown in Figure 8(b)). This is due
to that the TAR-tree does not adjust promptly to adapt to
the current LBSN. To address the problem, we can reinsert
part of the entries periodically or rebuild the TAR-tree when
the performance degrades below some threshold.

Figures 8(c) and 8(d) present the number of node accesses
against the growth of the LBSN. The TAR-tree consistently
has the smallest number of node accesses and outperforms
the IND-spa and IND-agg by a significant margin on both
data sets. On GW, the TAR-sap incurs the largest number
of node accesses, while on GS the IND-agg is the worst.
This indicates that unlike the TAR-tree, the performance
of IND-spa and IND-agg is unstable across different data
sets. On GW, the number of node accesses in the TAR-tree
marginally decreases with the growth of the LBSN. This
implies that the TAR-tree performs better when there are
sufficient aggregate information.

1

10

100

1000

10000

20% 40% 60% 80% 100%

C
P
U
 
t
i
m
e
 
(
m
s
)

time

baseline
IND-agg
IND-spa

TAR-tree

(a) GW

1

10

100

1000

20% 40% 60% 80% 100%

C
P
U
 
t
i
m
e
 
(
m
s
)

time

baseline
IND-agg
IND-spa
TAR-tree

(b) GS

0

200

400

600

800

20% 40% 60% 80% 100%

n
o
d
e
 
a
c
c
e
s
s
e
s

time

IND-agg
IND-spa

TAR-tree

(c) GW

0

200

400

600

800

1000

20% 40% 60% 80% 100%

n
o
d
e
 
a
c
c
e
s
s
e
s

time

IND-agg
IND-spa

TAR-tree

(d) GS

Figure 8: TAR-tree evaluation by simulating the
growth of the LBSN

Effect of k. Next, we evaluate the performance the TAR-
tree by varying k from 1 to 100. The results are presented in
Figure 9. We can see that the TAR-tree constantly outper-



1

10

100

1000

10000

1 5 10 50 100

C
P
U
 
t
i
m
e
 
(
m
s
)

k

baseline
IND-agg
IND-spa

TAR-tree

(a) GW

1

10

100

1000

1 5 10 50 100

C
P
U
 
t
i
m
e
 
(
m
s
)

k

baseline
IND-agg
IND-spa
TAR-tree

(b) GS

0

1000

2000

3000

4000

1 5 10 50 100

n
o
d
e
 
a
c
c
e
s
s
e
s

k

IND-agg
IND-spa

TAR-tree

(c) GW

0

1000

2000

3000

4000

1 5 10 50 100

n
o
d
e
 
a
c
c
e
s
s
e
s

k

IND-agg
IND-spa
TAR-tree

(d) GS

Figure 9: TAR-tree evaluation by varying k

1

10

100

1000

10000

0.1 0.3 0.5 0.7 0.9

C
P
U
 
t
i
m
e
 
(
m
s
)

α0

baseline
IND-agg
IND-spa

TAR-tree

(a) GW

1

10

100

1000

0.1 0.3 0.5 0.7 0.9

C
P
U
 
t
i
m
e
 
(
m
s
)

α0

baseline
IND-agg
IND-spa
TAR-tree

(b) GS

0

1000

2000

3000

4000

0.1 0.3 0.5 0.7 0.9

n
o
d
e
 
a
c
c
e
s
s
e
s

α0

IND-agg
IND-spa

TAR-tree

(c) GW

0

1000

2000

3000

4000

0.1 0.3 0.5 0.7 0.9

n
o
d
e
 
a
c
c
e
s
s
e
s

α0

IND-agg
IND-spa
TAR-tree

(d) GS

Figure 10: TAR-tree evaluation by varying α0

forms all the other approaches. With the increase of k, the
CPU time and number of node accesses of all approaches
increase. This, as indicated by the cost analysis, is because
the search region expands with the increase of k and hence
accesses more nodes. When k ≥ 50, as Figure 9(b) shows,
the performance of the IND-agg deteriorates rapidly and its
CPU time is comparable to that of the baseline. Figures 9(c)
and 9(d) show the number of node accesses. We can see that
when k > 10, the IND-spa and IND-agg have a much larger
growth rate than that of the TAR-tree. This also confirms
the cost analysis (in Section 6.4) that the expanding of the
search region has a larger impact on IND-spa and IND-agg.

Effect of α0. Figure 10 plots the performance of dif-
ferent approaches when the value of α0 is varied from 0.1
to 0.9. When α0 approaches 1, the importance of the spa-
tial distance increases in the kNNTA query. Figures 10(a)
and 10(b) show the CPU time and we can see that when
α0 approaches 1, the performance of the IND-spa and IND-
agg decreases and increases, respectively. This is because
the IND-spa and IND-agg are optimized for the spatial and
aggregate dimensions, respectively. The performance of the
TAR-tree is almost unaffected by the changing of α0 and the
TAR-tree keeps running the fastest. Even when α0 = 0.1
and 0.9, for which the IND-agg and IND-spa are supposed to
have a good advantage, the TAR-tree still performs no worse
than the IND-agg and IND-spa, respectively. Figures 10(a)
and 10(b) present similar results on the number of node ac-
cesses. We can see that when α0 approaches 1, the number
of node accesses in the IND-agg increases radically. This is

1

10

100

1000

10000

1 3 7 14 28

C
P
U
 
t
i
m
e
 
(
m
s
)

epoch length (day)

baseline
IND-agg
IND-spa

TAR-tree

(a) GW

1

10

100

1000

1 3 7 14 28

C
P
U
 
t
i
m
e
 
(
m
s
)

epoch length (day)

baseline
IND-agg
IND-spa
TAR-tree

(b) GS

0

300

600

900

1200

1 3 7 14 28

n
o
d
e
 
a
c
c
e
s
s
e
s

epoch length (day)

IND-agg
IND-spa
TAR-tree

(c) GW

0

200

400

600

800

1000

1 3 7 14 28

n
o
d
e
 
a
c
c
e
s
s
e
s

epoch length (day)

IND-agg
IND-spa
TAR-tree

(d) GS

Figure 11: TAR-tree evaluation by varying the
epoch length

1

10

100

1000

10000

512 1024 2048 4096 8192

C
P
U
 
t
i
m
e
 
(
m
s
)

R-tree node size (byte)

baseline
IND-agg
IND-spa

TAR-tree

(a) GW

1

10

100

1000

512 1024 2048 4096 8192

C
P
U
 
t
i
m
e
 
(
m
s
)

R-tree node size (byte)

baseline
IND-agg
IND-spa
TAR-tree

(b) GS

0

1000

2000

3000

512 1024 2048 4096 8192

n
o
d
e
 
a
c
c
e
s
s
e
s

R-tree node size (byte)

IND-agg
IND-spa
TAR-tree

(c) GW

0

1000

2000

3000

512 1024 2048 4096 8192

n
o
d
e
 
a
c
c
e
s
s
e
s

R-tree node size (byte)

IND-agg
IND-spa
TAR-tree

(d) GS

Figure 12: TAR-tree evaluation by varying the R-
tree node size

because the height of the search region grows rapidly with
the increase of α0, and for the IND-agg, a node is accessed
(with a high probability) as long as the layer containing the
node is less than or equal to the height of the search region.

Effect of the Epoch Length. We now proceed to evalu-
ate the performance by varying the parameters of the TAR-
tree. First, we vary the epoch length from 1 to 28 days and
present the results in Figure 11. Figures 11(a) and 11(b)
show that the CPU time of all approaches (including the
baseline) decreases with the increase of the epoch length.
This is because fewer values are added up to obtain the ag-
gregate. Figures 11(c) and 11(d) show the number of node
accesses and we can see that the longer the epoch length is,
the fewer node accesses the TAR-tree needs to process the
query. The reason is that a longer epoch length strengthens
the pruning power of the TAR-tree because the aggregate of
a parent node is closer to the maximum aggregate computed
from its child nodes. For all epoch lengths, the TAR-tree
outperforms the other approaches both in the CPU time
and number of node accesses.

Effect of the R-tree Node Size. Next, we vary the
R-tree node size from 512 to 8192 bytes and present the re-
sults in Figure 12. As shown in Figures 12(a) and 12(b), the
CPU time of the TAR-tree increases almost linearly with
the increase of the node size. This is because the number
of entries in a node grows linearly as the node size grows
and similar operations are performed on each entry. Fig-



1

10

100

1000

10000

10 50 100 500 1000

C
P
U
 
t
i
m
e
 
(
m
s
)

k

enumerating
pruning

(a) GW

1

10

100

1000

10000

10 50 100 500 1000

C
P
U
 
t
i
m
e
 
(
m
s
)

k

enumerating
pruning

(b) GS

100

1000

10000

100000

1e+006

10 50 100 500 1000

n
o
d
e
 
a
c
c
e
s
s
e
s

k

enumerating
pruning

(c) GW

100

1000

10000

100000

1e+006

10 50 100 500 1000

n
o
d
e
 
a
c
c
e
s
s
e
s

k

enumerating
pruning

(d) GS

Figure 13: Computing the MWA by varying k

1

10

100

1000

0.1 0.3 0.5 0.7 0.9

C
P
U
 
t
i
m
e
 
(
m
s
)

α0

enumerating
pruning

(a) GW

1

10

100

0.1 0.3 0.5 0.7 0.9

C
P
U
 
t
i
m
e
 
(
m
s
)

α0

enumerating
pruning

(b) GS

100

1000

10000

100000

0.1 0.3 0.5 0.7 0.9

n
o
d
e
 
a
c
c
e
s
s
e
s

α0

enumerating
pruning

(c) GW

100

1000

10000

100000

0.1 0.3 0.5 0.7 0.9

n
o
d
e
 
a
c
c
e
s
s
e
s

α0

enumerating
pruning

(d) GS

Figure 14: Computing the MWA by varying α0

ures 12(c) and 12(d) show that the number of node accesses
of all approaches increases with the growth of the node size.
The IND-spa has the largest growth rate and the TAR-tree
has the smallest growth rate. The reason is that with the
increase of the node size, the node represent a larger spatial
region, and thus has a relatively weak pruning power in spa-
tial extents. Under all settings, the TAR-tree consistently
outperforms all the other approaches.

8.3 Performance of the Weight Adjustment Al-
gorithm

In this set of experiments, we compare the performance of
the proposed weight adjustment algorithm with the straight-
forward approach. We refer to the proposed algorithm and
the straightforward approach as pruning and enumerat-
ing, respectively.

Varying k. We first evaluate the algorithm by varying
k from 10 to 1000. We plot the results in Figure 13. From
Figures 13(a) and 13(b), we can see that pruning runs orders
of magnitude faster than enumerating. The performance of
enumerating degrades rapidly as k grows. This is because
each top-k result is enumerated and computed against the
lower ranked POIs. The CPU time of the pruning algorithm
decreases marginally with the increase of k. This is because
computing the skyline of the lower ranked POIs takes much
less time and pays off the time spent on computing the sky-
line of the top-k POIs. Figures 13(c) and 13(d) show consis-
tent results on the number of node accesses except that the
number of node accesses decreases marginally faster than
the CPU time since it incurs no node accesses to compute
the skyline of the top-k POIs.

Varying α0. Next, we evaluate the algorithm by varying
α0 from 0.1 to 0.9. The results are presented in Figure 14.
As Figures 14(a) and 14(b) show, the CPU time of enumer-
ating first decreases and then increases as α0 grows. Since
checking the dominance is the only pruning technique used
by this approach, it indicates that the pruning power of the
technique is weakest when α0 is around 0.1 or 0.9. The
CPU time of the pruning algorithm has an opposite grow-
ing trend to enumerating. This indicates that it is more
efficient to compute the skyline when the weight is skewed.
Figures 14(c) and 14(d) present consistent results on the
number of node accesses. In all settings, the proposed algo-
rithm outperforms the baseline by a significant margin.

8.4 Performance of the Collective Processing
Scheme

In the last set of experiments, we evaluate the collective
processing scheme (collective) against the approach to pro-
cessing the query individually (individual). To investigate
the effect of memory buffering on processing the query indi-
vidually, we assign no buffer to the TIAs.

Varying the Number of Queries. Figure 15 presents
the CPU time and the node accesses as a function of the
number of queries. From Figures 15(a), 15(b) and Fig-
ures 15(c), 15(d), we can see that for the collective process-
ing scheme, the more queries are processed collectively, the
shorter the average processing time is and the smaller num-
ber of node accesses we need, respectively. This is because
more queries share the index traversal. We can also see that
when processing the query individually, changing the num-
ber of queries has little effect on either the CPU time or the
number of node accesses. The collective processing scheme
constantly outperforms processing the query individually by
a big margin.

 0

 1

 2

 3

 4

 5

100 500 1000 5000 10000

C
P
U
 
t
i
m
e
 
(
m
s
)

number of queries

individual
collective

(a) GW

 0

 1

 2

 3

 4

 5

 6

100 500 1000 5000 10000

C
P
U
 
t
i
m
e
 
(
m
s
)

number of queries

individual
collective

(b) GS

 0

 50

 100

 150

 200

100 500 1000 5000 10000

n
o
d
e
 
a
c
c
e
s
s
e
s

number of queries

individual
collective

(c) GW

 0

 50

 100

 150

 200

 250

 300

100 500 1000 5000 10000

n
o
d
e
 
a
c
c
e
s
s
e
s

number of queries

individual
collective

(d) GS

Figure 15: Collective processing by varying the
number of queries

Varying the Number of Query Types. Next, we eval-
uate the collective processing scheme by varying the number
of query time intervals (i.e., query types) from 1 to 100. Fig-
ure 16 presents the results. Since the queries are grouped by
the query time interval, the efficiency of the collective pro-
cessing scheme will decline when the number of query time
interval increases. As Figures 16(a) and 16(b) show, the effi-
ciency of the collective processing scheme does not degrade
too much when there are more than 10 types of queries.
The collective processing scheme keeps running several times
faster than processing the queries individually. Figures 16(c)



and 16(d) present consistent results on the number of node
accesses. In all settings, the collective processing scheme
outperforms the baseline by a significant margin.

 0

 1

 2

 3

 4

1 5 10 50 100

C
P
U
 
t
i
m
e
 
(
m
s
)

types of queries

individual
collective

(a) GW

 0

 1

 2

 3

 4

 5

 6

1 5 10 50 100

C
P
U
 
t
i
m
e
 
(
m
s
)

types of queries

individual
collective

(b) GS

 0

 50

 100

 150

1 5 10 50 100

n
o
d
e
 
a
c
c
e
s
s
e
s

types of queries

individual
collective

(c) GW

 0

 50

 100

 150

 200

 250

 300

1 5 10 50 100

n
o
d
e
 
a
c
c
e
s
s
e
s

types of queries

individual
collective

(d) GS

Figure 16: Collective processing by varying the
number of query types

9. CONCLUSIONS
We proposed a new type of queries called the k-nearest

neighbor temporal aggregate query, which provides highly
customized POI retrieval by integrating the spatial distance
and a temporal aggregate on a certain attribute. We de-
signed a novel index called the TAR-tree by integrating
both types of information to effectively group the entries,
and therefore can support efficient processing of the kN-
NTA query. We performed a detailed analysis on the cost
of query processing using the TAR-tree. The analysis shows
that the TAR-tree has a stronger pruning power than alter-
natives. The accuracy of the cost analysis is validated by
empirical experiments. Furthermore, we proposed two en-
hancements for the kNNTA query: (i) To assist users explore
different results, we devised an efficient algorithm suggesting
the minimum weight adjustment that can change the query
results. (ii) To handle large number of queries, we proposed
an effective collective processing scheme to share the index
traversal among a batch of queries. We conducted extensive
experiments on real-world data sets. The results validate
the efficiency of the TAR-tree and the effectiveness of the
two enhancements for the query.

Acknowledgments. This work is supported by Australian
Research Council (ARC) Discovery Project DP130104587
and Australian Research Council (ARC) Future Fellowships
Project FT120100832.

10. REFERENCES
[1] J. Bao, Y. Zheng, and M. F. Mokbel. Location-based and

preference-aware recommendation using sparse geo-social
networking data. In SIGSPATIAL, pages 199–208, 2012.

[2] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and
P. Widmayer. An asymptotically optimal multiversion
b-tree. VLDBJ, 5(4):264–275, 1996.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The r*-tree: An efficient and robust access method for
points and rectangles. In SIGMOD, pages 322–331, 1990.

[4] S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel. A
cost model for nearest neighbor search in high-dimensional
data space. In PODS, pages 78–86, 1997.

[5] C. Böhm. A cost model for query processing in high
dimensional data spaces. TODS, 25(2):129–178, 2000.

[6] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, pages 421–430, 2001.

[7] E. Cho, S. A. Myers, and J. Leskovec. Friendship and
mobility: User movement in location-based social networks.
In KDD, pages 1082–1090, 2011.

[8] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law
distributions in empirical data. SIAM Review,
51(4):661–703, 2009.

[9] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the
top-k most relevant spatial web objects. PVLDB,
2(1):337–348, 2009.

[10] H. G. Elmongui, M. F. Mokbel, and W. G. Aref.
Continuous aggregate nearest neighbor queries.
GeoInformatica, 17(1):63–95, 2013.

[11] H. Gao, J. Tang, and H. Liu. gscorr: Modeling geo-social
correlations for new check-ins on location-based social
networks. In CIKM, pages 1582–1586, 2012.

[12] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases. TODS, 24(2):265–318, 1999.

[13] J. Huang, Z. Wen, J. Qi, R. Zhang, J. Chen, and Z. He.
Top-k most influential locations selection. In CIKM, 2011.

[14] H. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang.
idistance: An adaptive b+-tree based indexing method for
nearest neighbor search. TODS, 30(2):364–397, 2005.

[15] K. Mouratidis and H. Pang. Computing immutable regions
for subspace top-k queries. PVLDB, 6(2):73–84, Dec. 2012.

[16] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The
v*-diagram: a query-dependent approach to moving knn
queries. PVLDB, 1(1):1095–1106, 2008.

[17] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient olap
operations in spatial data warehouses. In SSTD, 2001.

[18] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In SIGMOD,
pages 467–478, 2003.

[19] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui.
Aggregate nearest neighbor queries in spatial databases.
TODS, 30(2):529–576, 2005.

[20] J. Qi, R. Zhang, L. Kulik, D. Lin, and Y. Xue. The min-dist
location selection query. In ICDE, pages 366–377, 2012.

[21] J. Qi, R. Zhang, Y. Wang, A. Y. Xue, G. Yu, and L. Kulik.
The min-dist location selection and facility replacement
queries. World Wide Web, 17(6):1261–1293, 2014.

[22] M. A. Soliman, I. F. Ilyas, D. Martinenghi, and
M. Tagliasacchi. Ranking with uncertain scoring functions:
Semantics and sensitivity measures. In SIGMOD, 2011.

[23] J. Sun, D. Papadias, Y. Tao, and B. Liu. Querying about
the past, the present, and the future in spatio-temporal
databases. In ICDE, pages 202–213, 2004.

[24] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias.
Spatio-temporal aggregation using sketches. In ICDE,
pages 214–225, 2004.

[25] Y. Tao and D. Papadias. Range aggregate processing in
spatial databases. TKDE, 16(12):1555–1570, 2004.

[26] Y. Tao and D. Papadias. Historical spatio-temporal
aggregation. TOIS, 23(1):61–102, 2005.

[27] Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. An
efficient cost model for optimization of nearest neighbor
search in low and medium dimensional spaces. TKDE,
16(10):1169–1184, 2004.

[28] Y. Theodoridis and T. Sellis. A model for the prediction of
r-tree performance. In PODS, pages 161–171, 1996.

[29] R. Zhang, N. Koudas, B. C. Ooi, and D. Srivastava.
Multiple aggregations over data streams. In SIGMOD,
pages 299–310, 2005.

[30] R. Zhang, J. Qi, M. Stradling, and J. Huang. Towards a
painless index for spatial objects. TODS, 39(3):19, 2014.

[31] Y. Zheng. Location-based social networks: Users. In
Computing with Spatial Trajectories, pages 243–276. 2011.

[32] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban
computing: concepts, methodologies, and applications.
Transaction on Intelligent Systems and Technology, 2014.


