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Abstract—Communication among wireless sensor nodes that
employ cheap low-power transceivers is often very sensitive to
the variations of the wireless channel. Sensor network routing
protocols thus strive to continually adapt to temporal variations
in wireless links in order to avoid wasteful transmissions over
low-quality links. Such adaptive routing protocols must rely on
a scheme that can not only accurately estimate the quality of
wireless links in terms of a quantitative measure, such as the
packet success rate (PSR), but also quickly adapt to temporal
dynamics of the links. Traditionally, the PSR is estimated from
the fraction of successful transmissions over a window of test-
packets. However, we demonstrate that counting based methods
do not react to changes in the wireless channel fast enough and
that the only way to address this problem is to estimate the PSR
based on the receiver’s characteristics and on the signal to noise
ratio (SNR) at the receiver. We thus propose a scheme that uses
a pre-calibrated SNR-PSR relationship and instantaneous SNR
estimates to calculate the PSR of the link. In our scheme, each
receiver continuously tracks the SNR using a Kalman Filter to
minimize the estimation error and uses a locally available SNR-
PSR curve to estimate the PSR. Through extensive experiments
we demonstrate that our scheme adapts to variations in the
channel faster than counting-based PSR estimators and that it
also provides better PSR estimates than these counting-based
approaches.

I. INTRODUCTION

The vision that drives sensor network research is the pro-
liferation of low-cost wireless devices that interact with the
physical world to enhance the observability and controllability
of the environment. Two crucial requirements that often dictate
the behavior of these networks are self-organization and effi-
cient power-management due to the low-power characteristic
of these simple devices.

The first step in designing an energy-efficient wireless sen-
sor network is to ensure that routes exist among sensor nodes
that can guarantee multi-hop communication while minimizing
the energy expended in wasteful re-transmissions over low-
quality wireless links. What makes the design of these routing
mechanisms particularly challenging is the fact that sensor
nodes typically employ inexpensive, low-power radios that
operate at "low” signal-to-noise ratios (SNRs). This makes

communication among the nodes much more susceptible to
spatiotemporal variations in the wireless links ( [1]-[3] ). Thus,
significant effort has been devoted to the design of routing
mechanisms that adapt to the time-varying nature of wireless
links ( [3]-[5] ).

The success of any adaptive routing protocol invariably
depends on two factors: i) A scheme that accurately measures
the quality of a link ("link-quality”), and ii) A routing metric
that uses the link-quality information to evaluate the relative
efficiency of possible routes. The routing protocol needs to
select the best routes based on the routing metric and adapt
quickly to changes in the wireless links.

Many researchers have focused on the design of routing pro-
tocols and related routing metrics for wireless ad-hoc and mesh
networks. Expected Transmission Time (ETX) by DeCouto
et al. [6], modified Expected Transmission Time (mETX) by
Koksal et al. [2], per-hop Round Trip Time (RTT) by Adya
et al. [5], Weighted Cumulative Expected Transmission Time
(WCETT) by Draves et al. [4], and Required Number of
Packets (RNP) by Cerpa et al. [3] are prominent examples
of this work. Naturally, the framework and design criteria
of these approaches depends on the characteristics of the
wireless networks the authors are considering — usually IEEE
802.11a/b/g networks. In this paper we intend to consider wire-
less sensor networks and to take their more severe limitations
into account.

More importantly, it has been reported by Draves et al. [7],
that routing mechanisms based on RTT and ETX do not react
quickly enough in mobile-sender scenarios. We believe that the
main limitation of these routing metrics is that they either rely
on counting packets to estimate the packet success rate (PSR),
such as ETX and ETX-variants, i.e., mETX and WCETT, or
they probe the channel with unicast messages to discover
high quality links, as is done in RTT. Even RNP, which
takes the temporal characteristics of the wireless channel into
account, basically counts the number packets sent before the
packet is successfully received [3]. We demonstrate that such
counting based approaches cannot adapt to changes in the
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wireless channel fast enough. Hence we propose an adaptive,
light-weight channel-quality estimation scheme that should
offer many benefits to link quality based routing schemes by
feeding them accurate link quality information. Furthermore,
our algorithm is especially well-suited for environments in
which the wireless channel changes due to effects such as
other nodes’ communications that cause interference or objects
moving in the environment.

Our goal is thus fast estimation of the channel characteristics
of wireless links as a function of the signal-to-noise ratio
(SNR). To account for the channel’s time variations, a Kalman
filter is used to continually track the SNR while providing
accurate estimates. The computational demands of the Kalman
Filter are modest and fit well within the constraints of low-
complexity sensor nodes, while preserving the adaptability to
the dynamic nature of the wireless links. Kalman filters are
very well understood, so our contribution is using them to
estimate link quality in sensor networks. However, SNR alone
cannot provide enough insight into the quality of the link,
since the mapping between the SNR and the channel quality
is dependent on the actual sensor hardware itself - and even
on outside effects, such as temperature. Hence we map our
SNR-estimate into a packet success rate (PSR) estimate via
a precalibrated SNR-PSR mapping curve, and express our
link quality metric in terms of this PSR-estimate. Through
experiments, we observe that our scheme reflects the changes
in the channel faster in the PSR estimate and it provides better
PSR estimates than counting-based approaches, which we
show are overly pessimistic and converge slower. We believe
that our low-cost link-quality estimate in terms of PSR can
be used by researchers to make their routing schemes adapt
rapidly and accurately to changes in the wireless medium.

This paper is organized as follows: Section II uses an
example to illustrate the unreliability of counting-based link-
quality estimation schemes. Section III provides a brief dis-
cussion of the behavior of wireless channels and their effect
on PSR. Then, we introduce our system model in Section IV,
present our link quality estimation scheme in Section V, and
provide performance results in Section VI. We conclude with
a discussion of future work in Section VII.

II. ILLUSTRATIVE EXAMPLE

In this section, we use a simple example to illustrate why
we believe that estimating packet success rate (PSR) with
counting successfully received packets is not reliable. While
a significant effort has been dedicated towards designing
appropriate routing metrics, a surprisingly small amount of
the literature questions the fidelity of the PSR estimate itself.
The prevalent technique for estimating PSR involves counting
the number of successful packet transmissions over a window
of test-packet transmissions, e.g., if 9 packets out of the last
10 transmissions were successfully received, the link PSR is
deemed to be 0.9. However, there is an approximately 26%
chance that we received 9 packets successfully out of 10,
when the true link PSR was actually 0.8 instead of 0.9, which
can be calculated assuming a binomial distribution for the
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Fig. 1. Channel Behavior

number of successfully received packets. In other words, there
is an approximately 26% chance that our PSR estimate has an
error of 10%. Thus, the PSR estimation scheme is prone to
estimation error. To make matters worse, wireless links seldom
remain constant, being subject to multi-path and interference
effects.

Inaccuracy in PSR estimates can lead to inefficient routes
even though the routing metric may in itself be quite effi-
cient. Another consequence of inaccurate PSR estimates are
unnecessarily frequent route changes. A node may receive
all 9 out of 10 packets correctly in one window and only
7 packets in the next even though the true PSR of the link
never really changed and was 0.8 all the time. The routing
scheme will infer this as a drop in the link’s PSR from 90%
to 70% and switch to another route. Such switching creates
overhead in terms of transmission of routing update messages.
One solution to decrease the estimation error is to increase
the number of test packets. However, this would result in an
increased estimation latency and slow adaptability to channel
dynamics. On the other hand, an attempt to decrease estimation
latency will result in an increased estimation error.

The only way to circumvent these fundamental limitations
is to look into the functioning of the receiver that leads to the
packet losses, rather than counting the number of successful
transmissions. One way to achieve this is by measuring the
SNR at the receiver and relating the SNR to the PSR of the
link, which is our approach in this paper.

III. EXPERIMENTAL OBSERVATIONS AND MOTIVATION

In this section, we provide a brief description of the be-
havior of wireless channels supplemented by some of our
observations from experiments conducted in a typical office
environment. The experimental data was collected over a time
span of 14 hours, while sampling the channel every 2 ms.
We used standard sensor motes with IEEE 802.15.4 (ZigBee)
compliant CC 2420 transceivers and MSP430 microprocessors
and considered two settings: i) The transceiver-receiver pair
has line-of-sight communications, and ii) They do not have
line-of-sight. The observations in this section helped us design
our PSR estimator.

Fig.1 depicts typical behavior of the received signal strength
(RSS) at the receiver when a transmitter sends packets every
2ms. The RSS is relatively constant but varies significantly,
even in extremely short time durations of a few 100 ms.
Through copious experiments we found that this variation
is much larger for non-line-of-sight transmitter receiver pairs
compared to those placed in line-of-sight. In several practical
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Packet Success Rate vs. Average SNR w. and w/o Line-of-Sight
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Fig. 2. Experimental Results on Average SNR vs. PSR for Line-of-Sight
and Non-Line-of-Sight channels with PSR=89.19% and 86.73% respectively.

TABLE I
STATISTICS OF OBSERVED SNR AND PSR VALUES FOR BOTH CHANNELS

Setting | SNR  osnr  PSR(%)
Line-of-Sight (Tx Power= -25 dBm) 6.21 0.84 89.19
Non-Line-of-Sight (Tx Power=0 dBm) 8.53 4.94 86.73

deployments, we have found that RSS variation can often
be as large as 15-20 dB within an interval of few tens of
seconds for non-line-of-sight wireless links. Fig.2 shows two
scatter plots of SNR vs. PSR collected over 14 hours for
the same transmitter-receiver pair in line-of-sight and non-
line-of-sight settings. Each (PSR,SNR) sample is an average
over 100 consecutive packets. As seen from Fig.2 the non-
line-of-sight channel shows a much higher variation in SNR
than the line-of-sight channel. The overall SNR and PSR
averages obtained for the two scenarios are summarized in
Table 1. As seen in Table I, both channels show similar PSR
characteristics, although the mean SNR (SN R) on the non-
line-of-sight channel is higher than SN R on the line-of-sight
channel — PSR on the high SNR and non-line-of-sight channel
is even slightly lower. As stated in previous work by other
researchers [2], we also conjecture that such a phenomenon is
due to the higher variance of SNR on the non-line-of-sight
channel. Therefore any realistic link quality metric should
account for the variance of the SNR on top of its mean.
In the next section, we will present our system model, and
how we developed our metric while taking our experimental
observations into consideration.

IV. SYSTEM MODEL

The performance of a wireless communication link gener-
ally depends on two factors: i) Signal-to-noise ratio (SNR)
at the receiver and ii) The hardware characteristics of the
receiver. Hence we model the problem in two stages.

A. SNR-Behavior at the Receiver

Based on our observations on the channel behavior in
Section III, we can conclude that neither instantaneous signal-
to-noise ratio (SNR) nor mean values are sufficient to fully
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Fig. 3. A Typical SNR-PSR curve

characterize the quality of the channel. Hence, we approached
the problem from an estimation point of view, and we con-
jecture that our framework, which accounts for the mean and
variance of the channel, give better insight into the behavior
of the wireless link.

We consider a static wireless network setting in which the
received signal strength (RSS) at the receiver node at time
point k can be modeled as follows':

ey

2k =T+ vk, (2)

Tk = Tk—1+ Wk

where xy, is the received signal strength (RSS) to be estimated
at time k£ and z; is the RSS measurement obtained when a
packet is received. The noise in the process is modeled with
the Gaussian random variable wy_; ~ N (0, Q) with variance
@, and the measurement noise is captured by vy ~ N(0, R),
where R is its variance. As it can be seen in (1) and (2),
we require two models: i) A model for the RSS behavior
(1) and ii) A model for measurement errors (2) that can
arise from measurement errors in the hardware and can be
modeled as a Gaussian random variable. Having an estimate
of RSS(dBm), SNR(dB) can be calculated by subtracting the
noise floor(dBm) from the RSS estimate.

B. Hardware Characteristics of the Receiver — SNR-PSR Map

The efficacy of a receiver is often characterized by the SNR-
PSR curve (Fig.3), whose accuracy itself is subject to minor
errors due to differences in hardware, temperature and nature
of the interference from other wireless sources. Since we are
trying to characterize the channel quality in terms of the packet
success rate (PSR), the mapping between the RSS (or SNR)
estimates and PSR is necessary. Hence a natural alternative to
counting the number of successful packets is to estimate PSR
by using this pre-calibrated SNR-PSR curve. We are aware that
there are possible sources of error in estimating the PSR using
the SNR-PSR curve: i) Variations in the Channel, ii) Error in
RSS Measurements, and iii) Error in the SNR-PSR Curve.
We believe, that our model of RSS(or SNR) estimation in (1)
and (2) and careful pre-calibration efforts can overcome these

'Note that parameters in our model are all in dBm.
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limitations. Hence we developed our PSR estimation scheme
via the SNR-PSR mapping, which we will present in the next
section.

V. LINK QUALITY ASSESSMENT BASED ON KALMAN
FILTER

Our system model in Section IV follows a two stage ap-
proach to characterize the link and identifies two main factors,
i.e., SNR behavior and hardware characteristics. Hence, our
proposed scheme accounts for these factors in two different
stages (Fig. 4). In our algorithm, in the SNR-estimation stage,
the system first applies a Kalman Filter to estimate the
received signal strength (RSS) and then calculates the SNR by
subtracting from this RSS estimate the noise floor estimate.
Then, in the PSR-estimation stage, the SNR estimates from
the SNR-estimation stage are mapped to a packet success rate
(PSR) estimate. The details of both stages are described as
follows:

A. Kalman Filter based RSS Estimation

For the system defined by (1) and (2), the update equations
are as follows: ( [8]-[11]):

o Time Update Equations:

T, =T, 3)
P =P1+Q, “)
« Filter Measurement Equations:
K, =P (P; +R)", 5)
Ty =3, + Ke(ze —2) » (6)
P, =(1-K)P, , (7)

where £,/ and &y, are the a priori and a posteriori estimates of
RSS, respectively, P, and P, are the a priori and a posteriori
estimation error variances, and K, is the Kalman Gain.

An important advantage of Kalman Filters, which fits into
the framework we are considering, is that that the Kalman
Filter takes the variation in the process into account since the
a-priori and a-posteriori error variances P and Py implicitly
exist in the filter update equations,i.e., at each time point the

Kalman filter keeps track of P, and P, and updates the
estimates according to them. More importantly, the Kalman
Filter is an iterative method to minimize the mean square error
(MSE) in the process and is optimal in the mean square sense
if the noise variables wy_1 and v; are Gaussian. Hence, this
approach is especially well suited for our observations on the
effect of variance on the channel quality presented in Section
III, in particular in Fig. 2 and Table L.

Naturally, the system needs the parameters () and R to start
the estimation procedure ((4) and (5)). @ can be estimated at
an initialization process before starting the estimation proce-
dure by computing the variance of z; —z;_1 over a set of test
transmissions. Since it is possible for () to change slowly over
large periods of time such as several hours, it is reasonable to
estimate () periodically. Nevertheless, an error in the exact
value of @ only effects the latency of convergence of the
estimate and not its accuracy. In practice, it is also hard to
estimate R, hence for our calculations we used the variance
in the noise floor as R. Furthermore, for the Kalman Filter to
be optimal, P, (or Py) needs to calculated, which implicitly
includes the initial condition P, [9]. However, due to the fact,
that this initial covariance is not known, no Kalman Filter is
optimal in practice, unless the signal-generator model is time-
invariant. In this case, it can be shown under certain conditions,
that the filter can be asymptotically optimal, no matter what
the initial guess on Py is. A common practise is to use () as
the initial guess Py [9].

B. SNR-PSR Mapping

Upon receiving a packet, the RSS estimate is updated using
the Kalman Filter update equations ((5)-(7)). This value, then,
is mapped to a PSR value using the SNR-PSR curve. Obtaining
this mapping before or at initial stages of deployment of the
sensor motes can allow us to characterize the link quality in
terms of PSR very fast by estimating the SNR performance of
the system. Then the system will be more adaptable compared
to the packet counting scheme, which takes some time until
the successfully received packets are counted, during which
the channel quality can change abruptly.

VI. PERFORMANCE OF THE PROPOSED SYSTEM
A. Experiment Setup

We have evaluated the performance of our PSR estimation
scheme through experiments conducted in an office environ-
ment in the non-commercial 2.4 GHz band with the same
home-built sensor nodes in Section III. A typical experiment
consisted of two nodes, a transmitter and a receiver that are not
within line-of-sight of each other. A test-packet is transmitted
by the the transmitter every 2ms consisting of transmitter id, a
four byte packet sequence number and 10 bytes of fixed data.
Upon receiving each packet, the receiver records the packet
sequence number and the RSS (the RSSI measurement pro-
vided by CC2420). Furthermore, after receiving each packet
the receiver samples the RSS 8 times successively and takes
the average to obtain an estimate of the instantaneous noise
power. Every 10ms the collected 3-tuples <packet sequence
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Performance of the SNR Estimation under Fast Changing Channel Conditions
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Fig. 5. Smoothing vs. adaptation trade-off in the channel behavior in terms
of (a) instantaneous SNR and (b-e) SNR estimates under sudden changes in
the communication channel for n = 2,4, 20 and 200ms. With longer update
intervals, the estimates are smoother but less responsive to changes in the
channel.

number, RSS, noise power> are sent over the UART to a PC
for storage. Each experiment lasted 14 hours, and, in order
to simulate sudden changes in the link quality, the transmitter
abruptly reduces its transmission power by about 16dB, from
20dB to 4dB at pre-determined times.

B. Experimental Results

For demonstrating our results we have chosen a time-slice
of 1000ms of SNR data. The transmission power was abruptly
reduced by about 16dB at about 520ms from the start of the
time-slice (Fig.5). The Kalman filter continuously tracks the
RSS based on every packet it receives using the time and filter
update equations, and the SNR is calculated by subtracting
current noise floor estimate from the RSS estimate obtained
from the Kalman filter.

Fig. 5 depicts the functioning of our Kalman filter based
SNR tracking at transmission intervals of n = 2,4,20 and
200ms (Fig. 5(b-e)) respectively, and it can be concluded
that our Kalman filter based scheme tracks the variation in
SNR very closely even at n = 200ms. For n = 200ms, the
degradation in channel quality was detected only from the
reception of a single packet at 600ms. On the other hand,
it can also be observed in Fig. 5, that with more frequent
updates (with lower update intervals 7 = 2 and 4ms), the
estimates follow the channel behavior more closely (Fig. 5(b-
¢)) and thus are more adaptable to the changes. However, the
estimates with less frequent updates, n = 20 and 200ms, are
smoother (Fig. 5(d-e)).

For comparing the performance of our scheme with count-
ing based PSR estimation schemes, we assume the following
scenario: A routing algorithm requires a new link update
from an underlying PSR estimator, where the PSR estimation

SNR-PSR Map

4 a5 5
SNR (dB)

Fig. 6. A sample SNR-PSR Curve based on Experimental Observations

process involves periodically transmitting test-packets (or data
packets), as it is common practise. We consider 2 cases: 1)
Counting successfully received packets, and ii) Our scheme,
where we estimate the SNR upon receiving the test or data
packets and feed these SNR estimates into the PSR-SNR map
which is a piecewise constant function implemented as a look-
up table as depicted in Fig. 6.

In the case of counting, the rate of transmission of test-
packets is A packets/time, and this value can be reduced in
order to save energy. With rate ), the transmitter sends a
packet every = 1/A, and the PSR is estimated based on %
transmitted packets. We examine the performance of counting-
based schemes for different values of 1 and a fixed value
of T. Fig. 7(a) depicts the PSR estimates obtained by PSR
estimation based on counting successful packets for n = 4, 10
and 20ms. Although the link quality degrades abruptly at
520ms by 16dB(indicated by the straight line) and the true
link PSR drops significantly, estimators at all three window
sizes converge at roughly around 950ms - almost 400ms after
the link degradation, although the first indications of link
degradation are seen around 600ms upon the reception of the
first few packets in the degraded link. Due to the degraded
channel quality, reception of packets and hence updates in the
estimates become very infrequent. Furthermore, for smaller
window sizes, higher variance in the link estimates is observed.

On the other hand, the PSR estimates obtained by our
proposed Kalman Filter based scheme can be seen in Fig. 7(b).
One can conclude that our scheme is much quicker to reflect
the changes in the link quality, because even a single packet
reception can provide significant information with regards to
the link PSR. The most striking result is depicted at the
transmission interval of 77 = 200ms, when the link quality has
been detected reasonably accurately based on only one packet.
This is impossible to achieve based on any counting technique,
since one packet can never reveal enough information to
estimate PSR or reveal the fact that the link quality might have
degraded. Most importantly, our scatter plots for a non-line-
of-sight channel in Fig. 2, as well as our precalibrated PSR-
SNR curve in Fig. 6 show a PSR value between 0.7 — 0.8 for
4dB SNR. Since the SNR at the receiver dropped from 20dB
to around 4dB (Fig.5), we expect to observe a drop in PSR
from 1 to 0.7 — 0.8. Our scheme behaves consistently with
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Fig. 7. Performance of the proposed scheme vs. counting based PSR estimation schemes under sudden changes in the communication channel. We imposed
a SNR drop of 16dB (from 20dB to 4dB at the receiver (Fig.5)) at 520ms, and expect a drop in PSR from 1 to 0.7 — 0.8 based on our experiments (see
our scattered plot for non-line of sight channel in Fig. 2). We observe that our scheme alters the PSR much faster in response to changes in the channel than
counting-based schemes. Furthermore, the counting-based schemes converge to PSR values that are clearly more pessimistic than they should be.

this expectation (Fig. 7(b)), and the counting-based schemes
converge to PSR values that are clearly more pessimistic than
they should be (Fig. 7(a)).

VII. CONCLUSION

In this paper, we examined the problem of packet suc-
cess rate (PSR) estimation, which is used in several routing
schemes. We argue that schemes that estimate PSR by count-
ing the number of successfully received packets are both slow
to respond to abrupt changes in the wireless links and are also
wasteful in-terms of the number of transmissions required to
accurately estimate the PSR.

To overcome these limitations, we proposed a Kalman filter
based PSR estimation scheme that tracks the signal-to-noise
ratio (SNR) of the link and uses a pre-calibrated SNR-PSR
map to estimate the PSR. Our scheme has been validated
through experiments and has been shown to require an order
of magnitude fewer test-packets to react to changes in the
link quality. Our contribution is that we provide a link quality
estimate in terms of PSR via an adaptive light-weight scheme
that researchers can use for their routing metrics to enable
them adapt more appropriately to changes in the wireless
medium.

We are currently incorporating our scheme into standard
routing methods to show the contribution of our framework
to these routing mechanisms compared to ETX [6], mETX
[2], WCETT [4], RTT [5], and RNP [3]. Furthermore, we are
also investigating the possible performance improvement by
using more complicated channel models, such as the time-
varying, low-pass tapped delay line model for time-varying
channel estimation [12]. We also plan to develop our own
routing scheme to reflect the effects of channel variation and
packet losses in the most efficient way.
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