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Abstract
Most commercial eye gaze tracking systems are based on
the use of infrared lights. However, such systems may not
work outdoor or may have a very limited head box for
them to work. This paper proposes a non-infrared based
approach to track one’s eye gaze with an RGBD camera
(in our case, Kinect). The proposed method adopts a
personalized 3D face model constructed off-line. To
detect the eye gaze, our system tracks the iris center and
a set of 2D facial landmarks whose 3D locations are
provided by the RGBD camera. A simple onetime
calibration procedure is used to obtain the parameters of
the personalized eye gaze model. We compare the
performance of the proposed method against the 2D
approach using only RGB input on the same images, and
find that the use of depth information directly from
Kinect achieves more accurate tracking. As expected, the
results from the proposed method are not as accurate as
the ones from infrared-based approaches. However, this
method has the potential for practical use with upcoming
better and cheaper depth cameras.
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Introduction
Eye gaze tracking methods can be classified into two
categories based on whether infrared (IR) lights are used
or not. Most existing commercial systems rely on IR lights
and ship with their specific hardware. Non-IR based
methods are less common and the associated techniques
are relatively immature and less accurate. However, they
still remain as a popular research topic because of their
less-strict requirement for hardware and their easiness to
integrate with consumer products, such as laptops and
tablets. In this paper, we mainly focus on non-IR based
approaches, and we provide a brief overview of previous
work below. For a complete survey of eye gaze tracking
techniques, please refer to [3]. Non-IR based methods can
be grouped into the following three categories:
appearance-based approach, iris-based approach, and
face-model-based approach.

Appearance-based approaches [5] attempt to build a
regressor that maps the appearance of the eye to the
screen coordinates where the user is looking at. The
underlining assumption for these methods is that the
appearance changes can be only caused by pupil
movement. However, the appearance may vary due to
other factors such as illumination changes and head
movement. Also, appearance features are usually high
dimensional. This results in the need of more calibration
points to train the regressor, which implies less pleasant
user experience.

Iris-based method [9] first detects iris through an ellipse
fitting procedure. The shape of the ellipse can be used for
determining the normal of 3D iris. The gaze is
approximated by this normal vector. This method is not
accurate because extracting the exact shape of iris is
difficult due to occlusion by the eyelids, specular
reflections in the iris, and noises in the image.

Face-model-based methods [6, 1] first locate facial
landmarks on the image. Their 3D locations are obtained
either through a stereo camera [6] or using a 3D generic
face model [1]. An initial estimation of eyeball center is
made based on the predicted landmarks. Then it is further
refined by a personalized calibration step. The optical axis
is defined by a line crossing the eyeball center and the 3D
pupil center. The use of a generic 3D face model provides
inaccurate 3D locations of the facial landmarks. The
depth from stereo may not be accurate enough for gaze
estimation. Even small errors in the 3D landmarks will
result in large error in gaze estimation. In theory, this type
of approaches is robust to head movement, but their
accuracy highly depends on the results from head pose
estimation and facial feature detection.

Thanks to the recent advances in facial feature detection
research. Its accuracy and efficiency have been improved
rapidly over the past few years. In this paper, we follow
the face-model-based approach by first detecting facial
landmarks using a recent published work [10]. The depth
information in our approach can either come from a depth
camera (a Kinect in this paper) or, if a depth camera is
not available, by minimizing the projection error of a
person-specific 3D face model and the tracked 2D
landmarks. The contributions of this paper are the
following. We give a comparison between the above two
approaches evaluated on simulated data and real-world



data. We propose a method to measure the lower bound
of gaze error using face-model-based approaches. Also,
using simulated data we give an analysis of how the
results of pupil detection and facial feature detection
affect the performance of gaze estimation.

We want to remind our readers that Kinect uses IR to
estimate depth information. We do not use IR illuminated
images in any of our steps. Our approach is not specific
to Kinect and other depth sensors can be used as a
replacement.

Figure 1: Eye gaze model.

Approach
This section presents the major components in our eye
gaze model.

Overview
To define the gaze direction, we use a simple eye gaze
model illustrated in Fig.1. The pupil center p is assumed
to lie on the sphere of eyeball. The optical axis t is
defined by a ray crossing the eyeball center e and the
pupil center p. The visual axis v, namely the gaze
direction, differs from t by two angles, α in the horizontal
direction and β in the vertical direction. For a particular
user, the following parameters are unknown but fixed w.r.t
her head coordinate system centered at h: eyeball center

e, eyeball radius r, and α, β. In section on calibration, we
propose a simple one-time calibration procedure to infer
these parameters. (Note, this model is simpler than the
one usually used in IR-based techniques where the optical
and visual axes of eye gaze are defined with respect to the
cornea center, rather than the eyeball center.)

After this calibration, the user’s gaze direction can be
computed using the following steps under our eye gaze
model. First, we transfer the eyeball center from the head
coordinate to the world coordinate,

et = ht +Rt
he, (1)

where ht and Rt
h are the head center and head rotation

matrix at time t. Section on head pose explains how we
obtain the 3D head pose from a RGBD or RGB image.
The optical axis direction tt can be seen as a normalized
vector from et to pt. The computation of 3D pupil center
is explained in section on iris detection. Once the optical
axis is known, the gaze direction can be found by rotating
t α degrees horizontally and β degrees vertically.
Mathematically speaking,

vt = Rt
hRα,β(R

t
h)

−1tt, (2)

where

Rα,β =

1 0 0
0 cosβ sinβ
0 − sinβ cosβ

cosα 0 − sinα
0 1 0

sinα 0 cosα

 . (3)

Notice that we remove the head rotation before applying
the rotation offset between the optical and visual axes.

System calibration
In our eye gaze model, depth camera, color camera, and
the monitor screen each have their own coordinate



systems. This section describes the calibration steps that
transform them into the world coordinate system (color
camera). We use a technique described in [11] to calibrate
between depth and color cameras. The screen-camera
calibration is done by using an auxiliary camera and a
calibration pattern in front of the screen so that the
auxiliary camera can see both the calibration pattern and
the screen while the color camera associated with the
screen can see the calibration pattern. The detailed
procedure can be found in [12].

Head pose

(a) (b) (c)

Figure 2: a) Facial feature detection results. b). 13 Rigid
points used for head pose estimation. c). An example of 3D
face model

In this section, we use one of the following two methods
to measure user’s 3D head pose depending on whether a
Kinect is available.

The first method assumes that a Kinect is available. First,
we track the 49 facial landmarks on the RGB image using
a Supervised Descent Method (SDM) [10]. An example
output can be found in Fig. 2(a). Based on the 2D
coordinates of the tracked landmarks, we can read out
their corresponding 3D coordinates from a calibrated
Kinect sensor. For tracking head pose, first we need to

build a person-specific 3D face model for each user. We
ask the user to keep a frontal pose to the Kinect for one
second and during that time 10 sets of 3D facial
landmarks are collected and their average is used as the
reference 3D face model, Xref . Xref is a matrix of size
3× n, where n is the number of landmarks and each
column represents the 3D position of one facial landmark.
Fig. 2(c) shows a 3D face model we built for a particular
user. To make the head pose robust to facial expression
changes, we only use 13 rigid points on the face (shown in
Fig. 2(b)).

A subject’s head pose is measured relative to her reference
model. The 3D head pose at frame t (head rotation
matrix Rt

h, translation vector tt) is obtained by
minimizing the following equation,

arg min
Rt,tt

‖Rt
hXref + 11×n ⊗ tt −Xt‖. (4)

⊗ denotes the Kronecker product and 11×n is a row
vector of ones of size n. The above formulation is the
well-known Procrustes problem [8], which can be solved
using Singular Value Decomposition. However, least
squares fitting is known to be sensitive to outliers. Kinect
occasionally gives zero depth values due to sensor noise.
We perform a local neighborhood search for the missing
depth values. When a point is occluded, the depth value
derived from its neighbor’s may deviate from its true
value. We remove the points with fitting errors more than
two standard deviations away from the mean and perform
another minimization on equation 4 using the remaining
points.

The second method only requires a calibrated RGB
camera and the person-specific face model built off-line.
In each frame, after locating facial landmarks on the RGB
image we use the POSIT algorithm [2] to estimate user’s



head pose. POSIT finds object pose by iteratively
minimizing the error between the projection of a known
3D model and 2D landmarks tracked.

Iris detection

Figure 3: Comparison of eye images taken with IR lighting
(left) and without (right).

Figure 4: Example outputs of each major step in our iris
detection algorithm. 1) Cropped eye image. 2) Eye image after
image processing. 3) Detected iris candidate points. 4) Ellipse
fitting.

Without IR lighting pupils may not be visible (See Fig. 3)
so we replace the task of pupil detection with iris
detection. In our approach, iris is modeled as an ellipse
and pupil center is inferred as the center of the ellipse.
Our iris detection is based on the Starburst algorithm [4]
with some modifications. Fig. 4 shows the example
outputs of each major step in the algorithm. First, we
crop the eye region based on the output of facial feature
detection. Histogram equalization is then applied to
increase the contrast of the eye image. A binary image is
created by thresholding each pixel with the mean pixel
value in the image. Connected-component analysis is
performed to fill holes (caused by specular reflection) in
the iris region followed by a Gaussian blur. 30 rays are
emitted from a seed point terminated on the boundary of
the polygon that defines the eye region. The direction of

the rays is uniformly distributed between −45◦ to 45◦ and
135◦ to 225◦. Such range is chosen because the top and
bottom parts of iris are likely to be occluded by eyelids.
The point yielding the highest gradient value along each
ray is considered as a candidate of iris boundary. The
candidate points with gradient value lower than a
predefined threshold are removed. Those remaining points
are then used to fit an ellipse. The candidates with fitting
residuals greater than two standard deviations away from
the mean are considered as outliers and removed. We refit
an ellipse on the remaining candidates.

Given pupil center in the image, [u, v], its 3D position in
the world can easily be obtained following the geometry
illustrated in Fig. 5. The 3D pupil center is the
intersection point between the eyeball sphere and line ~ou.
The camera center o is at the origin.
u = [u− u0, v − v0, f ] is the 3D coordinate of the 2D
pupil center in the world, where [u0, v0] is the image
center from camera intrinsic parameters, f is the camera
focal length in pixels.

Figure 5: 3D pupil center localization.

Personal parameter calibration
All eye gaze systems require a user calibration step due to
the unknown offset between the optical and visual axes.
Besides such offset, our calibration step also automatically
computes the optimal eyeball center and eyeball radius.



During the calibration, the user is asked to look at
predefined 9 points on the monitor screen, from which we
can compute the ground truth gaze direction. The user
calibration is achieved by minimizing the sum of angles
between predicted gaze directions and the ground truth
ones. The initial user parameters are set to be the human
average. For example, the initial estimation of eye radius
is set to be 12mm. We use COBYLA algorithm [7] for
optimization.

Experiments
In this section, we report the experimental results of the
proposed methods on iris detection and gaze estimation.
We are not able to report the results on head pose
estimation because the ground truth is difficult to obtain.

Iris detection
First, we present the results of iris detection method
described in section on Iris Detection. The test data is
collected as follows. We ask each subject to look at nine
points (shown in Fig. 8(a)) on the monitor screen and one
or more images are taken for each point. Eye appearance
may vary across people from different ethnicity
background. In total, we collect 157 images from 13
different individuals. The subjects are from three ethnic
groups: Asian, Indian, and Caucasian (See Fig. 7(b)). We
flip the images to double the test set. The ground truth
iris center is found by manually selecting some points
along the iris boundary and then fitting an ellipse on the
selected points. The error (in pixels) is computed as the
distance between the ground truth iris center and the
predicted one. Out of 628 eyes 555 are detected. The
example results and cumulative error distribution can be
found in Fig. 6 and Fig. 7(a). We found that 55% of the
data has an error under 1 pixel, 75% under 1.5 pixel, and
86% under 2 pixels.

Figure 6: Example outputs from our iris detection. Last row
shows some failure cases. Fitted ellipses are drawn in green
line. Detected iris boundary points are drawn in blue. Green
dots are the facial feature points.
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Figure 7: a). Cumulative error distribution of our iris detection
method. b). Examples of participants in iris data collection.

Gaze estimation on simulated data
This section gives an analysis on how the results of facial
feature detection and pupil detection affect the accuracy
of gaze estimation. We build a simulation program that
allows us to control the noise level of each component in
our eye gaze model. In this simulation, we assume a



perfect system calibration and user parameters are known
in advance. The only sources of errors are from facial
feature detection and pupil detection. The simulation
consists of a virtual camera, a virtual screen, and a 3D
face model. The parameters of these components are kept
similar as they are in the real-world. The ground truth of
facial landmarks is obtained by projecting the face model
onto the image plane using the virtual camera. We apply
the same strategy to pupil center and obtain its ground
truth location in the image.

In Fig. 9, we plot the gaze errors against landmark noise
for both RGBD and RGB solutions. In the RGBD
solution, we add noise directly to the 3D landmarks while
in the RGB solution we add noise to the 2D landmarks.
To put “pixel” in perspective, the interocular distance of
the projected face is 100 pixels in our simulation. For
both solutions, gaze error increases linearly with the noise
added in landmark localization when pupil detection is
almost perfect. The simulation also shows that accurate
gaze estimation requires high quality image and depth
sensors. For example, in the RGBD solution, to achieve a
2◦ gaze accuracy the errors in 3D landmark localization
and pupil detection need to be kept within 2mm and 0.5
pixel, respectively. Achieving the same accuracy using the
RGB solution requires both 2D landmark and pupil
localization error to be under 0.5 pixel. Again, those
numbers are optimistic since we assume a perfect system
calibration and user calibration.

Gaze estimation on real-world data

(a) (b)

Figure 8: a) Nine calibration points we used in the
experiment. b). A subject wearing colored stickers.

This section presents the results of gaze estimation using
real-world data collected from a Kinect. The monitor used
in our experiments has a dimension of 520mm by 320mm.
The distance between a test subject and the Kinect is
between 600mm and 800mm. There are 9 subjects
participated in the data collection. We collect three
training sessions and two test sessions for each subject.
During each training session, nine dots are displayed on
the screen (shown in Fig.8 (a)). The subject is required to
click on each of them (by clicking it enforces the user to
look at the dot) and five images are taken upon each
clicking action. During data collection, the subjects are
free of head movement. After finishing one session, the
subject is asked to move her seating position before
starting recording the next one. A testing session is
recorded in a similar manner but with 15 images per
point. Data collected in training sessions is used for the
user calibration described in section on personal parameter
calibration. The gaze errors are computed on data from
test sessions.

Fig. 10(a) shows the gaze errors from our RGB and
RGBD solutions. We remind our readers that the only
difference between our RGBD solution and RGB one is



the source of depth information. The depth in RGBD
solution comes from a Kinect while RGB solution uses
POSIT algorithm to obtain depth information. The results
are generated by averaging over 18 test sessions. RGBD
solution gives a mean error of 4.4◦ while RGB solution
gives 5.6◦. It is worth mentioning that RGBD solution
consistently outperforms RGB one except for point 5 and
8. When a subject looks at point 5 and 8 her pose is close
to the reference model and therefore, POSIT algorithm
can give an accurate depth estimate.

It would be interesting to know what is the lower bound
of gaze error using our approach. We asked one subject to
wear colored stickers on his face during data collection so
that those stickers can be treated as facial landmarks and
can be tracked perfectly. See Fig. 8(b) for an example.
For iris detection, we manually select some points along
the boundary of iris and then fit an ellipse on those
points. Fig. 10(b) shows the gaze errors that are
computed under the above protocol. Again, the RGBD
solution outperforms RGB’s giving a mean error of 2.1◦

versus 3.2◦ of RGB’s. Given the current generation
Kinect, the lower bound of gaze error estimated under our
eye gaze model is 2.1◦.
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Figure 9: Gaze errors (in degree) on simulated data. a).
RGBD solution. b). RGB solution.

(a) (b)

Figure 10: a). Gaze errors (in degree) evaluated on real-world
data from our RGB (POSIT) and RGBD (KINECT) solutions.
b). The lower bounds of gaze errors on real-world data.

Conclusion
In this paper, we propose a face-model-based approach for
eye gaze estimation. By leveraging a Kinect sensor we are
able to obtain an accurate estimation of a user’s head
pose. The 3D location of the eyeball center is then
inferred from this estimation. Its final location along with
other user parameters are further refined in a calibration
step. In the experiments, we found that the use of depth
information directly from Kinect provides more accurate
gaze estimation compared with the one from only RGB
images. The lower bound for gaze error based on our eye
gaze model and hardware is around 2◦. The proposed
method achieves 4◦ error. The Kinect used in our
experiments is the first generation Kinect. With the
advance of depth sensing technologies, we can only expect
higher accuracy of gaze estimation in the future.
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