
An FPTAS for #Knapsack and Related Counting Problems

Parikshit Gopalan? Adam Klivans† Raghu Meka† Daniel Štefankovǐc‡ Santosh Vempala§ Eric Vigoda§

Abstract— Givenn elements with non-negative integer weights
w1, . . . , wn and an integer capacityC, we consider the counting
version of the classic knapsack problem: find the number of distinct
subsets whose weights add up to at mostC. We give the first de-
terministic, fully polynomial-time approximation scheme (FPTAS)
for estimating the number of solutions to any knapsack constraint
(our estimate has relative error1± ε). Our algorithm is based on
dynamic programming. Previously, randomized polynomial-time
approximation schemes (FPRAS) were known first by Morris and
Sinclair via Markov chain Monte Carlo techniques, and subse-
quently by Dyer via dynamic programming and rejection sampling.

In addition, we present a new method for deterministic approxi-
mate counting usingread-once branching programs.Our approach
yields anFPTAS for several other counting problems, including
counting solutions for the multidimensional knapsack problem with
a constant number of constraints, the general integer knapsack
problem, and the contingency tables problem with a constant
number of rows.

1. INTRODUCTION

Randomized algorithms are usually simpler and faster
than their deterministic counterparts. In spite of this, it is
widely believed that P=BPP (see, e. g., [3]), i.e., at least up
to polynomial complexity, randomness is not essential. This
conjecture is supported by the fact that there are relatively
few problems for which exact randomized polynomial-time
algorithms exist but deterministic ones are not known.
Notable among them is the problem of testing whether
a polynomial is identically zero (a special case of this,
primality testing was open for decades but a deterministic
algorithm is now known, [1]).

In approximation algorithms, however, there are many
more such examples. The entire field of approximate count-
ing is based on Markov chain Monte Carlo (MCMC) sam-
pling [13], a technique that is inherently randomized and has
had remarkable success. The problems of counting match-
ings [11], [14], colorings [10], various tilings, partitions
and arrangements [18], estimating partition functions [12],
[24], or volumes [7], [17] are all solved by first designing
a random sampling method and then reducing counting to
repeated sampling. In all of these cases, when the input

?Microsoft Research, Silicon Valley, Mountain View, CA 94043. Email:
parik@microsoft.com.

†Department of Computer Science, UT Austin, Austin TX 78712.
Email:{klivans,raghu}@cs.utexas.edu.

‡Department of Computer Science, University of Rochester, Rochester,
NY 14627. Email: stefanko@cs.rochester.edu. Research supported in part
by NSF grant CCF-0910415.

§School of Computer Science, Georgia Institute of Technology, Atlanta
GA 30332. Email:{vempala,vigoda}@cc.gatech.edu. Research supported
in part by NSF grants CCF-0830298 and CCF-0910584.

is presented explicitly, it is conceivable that deterministic
polynomial-time algorithms exist.

Our interest is in obtaining adeterministicapproxima-
tion algorithm orFPTAS (fully polynomial approximation
scheme) for #P-complete counting problems. We desire an
algorithm that for an input instanceI and a given approxi-
mation factorε > 0, estimates the number of solutions for
I within a relative factor1 ± ε in time polynomial in the
input size|I| and1/ε.

There are far fewer examples of deterministic approxi-
mation schemes for #P-complete problems. One of the first
examples is due to Ajtai and Wigderson [2] (see also Luby
and Velĭcković [19, Corollary 13]) who gave an algorithm
for approximating the number of solutions to a DNF formula
where each term has constant length. A notable recent
example of anFPTAS for a #P-complete problem is Weitz’s
algorithm [25] for counting independent sets in graphs of
maximum degree∆ ≤ 5. Similar approaches to Weitz’s
algorithm were later used for counting all matchings of
bounded degree graphs [4], andk-colorings of triangle-free
graphs with maximum degree∆ whenk > 2.84∆ [9] .

1.1. An FPTAS for #Knapsack

Here we consider one of the most basic counting prob-
lems, namely approximately counting the number of0/1
knapsack solutions. More precisely, we are given a list
of non-negative integer weightsw1, . . . , wn and an integer
capacity C, and wish to count the number of subsets
of the weights that add up to at mostC. (The decision
version of this problem is NP-hard, but has a well-known
pseudo-polynomial algorithm based on dynamic program-
ming.) From a geometric perspective, for then-dimensional
Boolean hypercube, we are given as input ann-dimensional
hyperplane, and our goal is to determine the number of
vertices of the hypercube that lie on one side of the given
hyperplane. We give anFPTAS for the problem, that is,
a deterministic algorithm that for anyε > 0 estimates the
number of solutions to within relative error1 ± ε in time
polynomial inn and1/ε.

Motivation: Our result follows a line of work in the
literature. Dyer et al. [8] gave a randomized sub-exponential
time algorithm for this problem, based on near-uniform
sampling of feasible solutions by a random walk. Morris
and Sinclair [21] improved this, showing a rapidly mixing
Markov chain, and obtained anFPRAS (fully-polynomial
randomizedapproximation scheme). In a surprising devel-
opment, Dyer [6], gave a completely different approach,

combining dynamic programming with simple rejection
sampling to also obtain anFPRAS. Although much simpler,
randomization still appears to be essential in his approach—
without the sampling part, his algorithm only gives a factor√

n approximation.
Additionally, there has been much recent work on con-

structing pseudorandom generators (PRGs) for geometric
concept classes, in particular halfspaces (e.g., [5], [20],
[22]). It is easy to see that pseudorandom generators for
halfspaces imply deterministic approximation schemes for
counting solutions to knapsack constraints by enumerating
over all input seeds to the generator. The estimate obtained,
however, has small additive error, rather than our desired
relative error. Further, the seed-lengths of these generators
are too large to yield anFPTAS. Still, a clear goal of this
line of research has been anFPTAS for counting knapsack
solutions, which we obtain here for the first time.

Techniques:Our algorithm, like Dyer’s algorithm men-
tioned above, is based on dynamic programming and is
inspired by the pseudo-polynomial algorithm for the de-
cision/optimization version of the knapsack problem. The
complexity of the pseudo-polynomial algorithm isO(nC),
where C is the capacity bound. A pseudo-polynomial al-
gorithm for the counting problem can be achieved as well
using the following recurrence:

S(i, j) = S(i− 1, j) + S(i− 1, j − wi),

with appropriate initial conditions. HereS(i, j) is the num-
ber of knapsack solutions that use a subset of the items
{1, . . . , i} and their weights sum to at mostj.

Roughly speaking, since we are only interested in approx-
imate counting, Dyer’s idea was the following. He scales
down the capacity to a polynomial inn, and scales down
the weights by the same factor where the new weights are
rounded down if necessary. He then counts the solutions
to the new problem efficiently using the pseudo-polynomial
time dynamic programming algorithm. The new problem
could have more solutions (since we rounded down) but
Dyer showed it has at most a factor ofO(n) more for a
suitable choice of scaling. Further, given the exact counting
algorithm for the new problem, one gets an efficient sampler,
then uses rejection sampling to only sample solutions to
the original problem. The sampler leads to a counting
algorithm using standard techniques. Dyer’s algorithm has
running time O(n3 + ε−2n2) using the above approach,
andO(n2.5

√
log(ε−1)+n2ε−2) using a more sophisticated

approach that also utilizes randomized rounding.
To remove the use of randomness, one might attempt to

use a more coarse-grained dynamic program, namely rather
than consider all integer capacities1, 2, . . . , C, what if we
only consider weights that go up in some geometric series?
This would allow us to reduce the table size ton log C rather
thannC. The problem is that varying the capacity even by
an exponentially small factor(1 + n/2n) can change the

number of solutions by a constant factor! Instead, we index
the table by the prefix of items allowed and the number
of solutions with the entry in the table being the minimum
capacity that allows these indices to be feasible. We can
now consider approximate numbers of solutions and obtain
a small table. Our first result is the following:

Theorem 1.1. Let w1, . . . , wn and C be an instance of a
knapsack problem. LetZ be the number of solutions of the
knapsack problem. There is a deterministic algorithm which
for any ε ∈ (0, 1) outputsZ ′ such thatZ ≤ Z ′ ≤ Z(1+ ε).
The algorithm runs in timeO(n3ε−1 log(n/ε)).

The running time of our algorithm is competitive with that
of Dyer. One interesting improvement is the dependence on
ε. Our algorithm has a linear dependence onε−1 (ignoring
the logarithm term), whereas Monte Carlo approaches, in-
cluding Dyer’s algorithm [6] and earlier algorithms for this
problem [21], [8], have running time which depends onε−2.

1.2. Counting using Branching Programs

Given our counting algorithm for the knapsack problem,
a natural next step is to count solutions to multidimensional
knapsack instances and other related extensions of the
knapsack problem. Unfortunately, the dynamic programming
based approach for knapsack does not generalize for the
multidimensional case. We overcome this hurdle by present-
ing a different, more generalFPTAS for counting knapsack
solutions under a much wider class of weighted distributions.
In doing so, we present a general framework for deter-
ministic approximate counting using read-once branching
programs (for a definition of the branching programs we
use see Section 3.1) that we believe to be of independent
interest.

It is not difficult to see that a read-once branching program
of possibly exponential width can compute the set of feasible
solutions of a knapsack instance. Meka and Zuckerman [20]
observed that there exist small-width, read-once branching
programs that approximate the set of feasible solutions for
any knapsack instance to within a small additive error.

We build on this observation and show that there exist
small-width, read-once branching programs for computing
knapsack-type constraints to within a small relative error.
Further, the approximations hold with respect to any small-
space source, which is a large class of (not necessarily
uniform) distributions on{0, 1}n. We then combine these
ideas with the dynamic programming results of Dyer [6] to
obtain anFPTAS for several other related counting prob-
lems, including counting solutions to the multidimensional
knapsack problem, and counting solutions to the contingency
tables problem.

In the multi-dimensional knapsack problem, we are given

k knapsack instances
{(

w
(j)
1 , w

(j)
2 , . . . , w

(j)
n , C(j)

)}k

j=1
,

and the goal is to compute the number of solutions satisfying

all constraints; i.e., compute the cardinality of the set of
solutions:

{S ⊂ {1, . . . , n} : for all 1 ≤ j ≤ k,
∑
i∈S

w
(j)
i ≤ C(j)}.

Morris and Sinclair [21] and Dyer [6] showed that their
approaches to #Knapsack extend to the multidimensional
problem, yielding anFPRAS whenk is constant. We obtain
anFPTAS for the multi-dimensional knapsack problem also
whenk is constant:

Theorem 1.2. Let
{(

w
(j)
1 , w

(j)
2 , . . . , w

(j)
n , C(j)

)}k

j=1
be an

instance of a multidimensional knapsack problem. LetW =∑
i,j w

(j)
i +

∑
j C(j) and ε > 0. There is anFPTAS which

for any ε > 0 computes a1 ± ε relative approximation of
the number of solutions to the multidimensional knapsack
instance in timeO((n/ε)O(k2) log W).

Our algorithm works via a reduction from counting multi-
dimensional knapsack solutions under the uniform distri-
bution to solvingk (one-dimensional) knapsack counting
problems, but under a carefully chosen small-space distri-
bution constructed using Dyer’s results. Thus the fact that
our second algorithm works for all small-space sources is
crucially used.

A yet more sophisticated application of our approach
yields anFPTAS for counting the number of integer-valued
contingency tables. Given row sumsr = (r1, . . . , rm) ∈ Zm

+

and column sumsc = (c1, . . . , cn) ∈ Zn
+, let CT (r, c) ⊆

Zm×n
+ denote the set of integer-valued contingency tables

with row and column sums given byr, c:

CT (r, c) = {X ∈ Zm×n
+ :

∑
j

Xij = ri, i ∈ [m],∑
i

Xij = cj , j ∈ [n] }.

Note that, as in the case of knapsack, the magnitude of
the row and column sums could be exponential inn. Dyer
[6] gave anFPRAS for counting solutions to contingency
tables (with a constant number of rows) based on dynamic
programming. We give anFPTAS for this problem.

Theorem 1.3. Given row sumsr = (r1, . . . , rm) ∈ Zm
+

and column sumsc = (c1, . . . , cn) ∈ Zn
+ with R =

maxi ri and ε > 0, there is anFPTAS that computes a
(1 ± ε)-relative error approximation for|CT (r, c)| in time
(nO(m)(log R)/ε)m.

In Section 2 we present the dynamic programmingFPTAS
for #Knapsack, proving Theorem 1.1. In Section 3 we
define read-once branching programs and present theFPTAS
for the multidimensional knapsack problem (Theorem 1.2).
We also present anFPTAS for counting solutions to the
general integer knapsack problem in Section 4. The proof
of Theorem 1.3 is deferred to the full version of the paper.

2. SIMPLE DYNAMIC PROGRAMMING ALGORITHM FOR

#KNAPSACK

In this section we present our dynamic programming
algorithm. Fix a knapsack instance and fix an ordering on
the elements and their weights.

We begin by defining the functionτ : {0, . . . , n}×R≥0 →
R ∪ {±∞} whereτ(i, a) is the smallestC such that there
exist at leasta solutions to the knapsack problem with
weightsw1, . . . , wi and capacityC. It is not clear how to
compute the functionτ efficiently since the second argument
has exponentially many possible values (the number of
solutions is an integer between0 and 2n). Nevertheless,τ
will be used in the analysis and it is useful for motivating
the definition of our algorithm.

Note that, by definition,τ(i, a) is monotone ina, that is,
a ≤ a′ =⇒ τ(i, a) ≤ τ(i, a′). For i = 0, using standard
conventions, the value ofτ is given by:

τ(0, a) =

{ −∞ if a = 0,
0 if 0 < a ≤ 1,
∞ otherwise.

(1)

Note that the number of knapsack solutions satisfies:Z =
max{a : τ(n, a) ≤ C}. We will show thatτ(i, a) satisfies
the following recurrence (we explain the recurrence below).

Lemma 2.1. For any i ∈ [n] and anya ∈ R≥0 we have

τ(i, a) =min
α∈[0,1]

max

{
τ
(
i− 1, αa),

τ
(
i− 1, (1− α)a

)
+ wi.

(2)

Intuitively, to obtaina solutions that consider the firsti
items, we need to have, for someα ∈ [0, 1], αa solutions
that consider the firsti − 1 items, and(1 − α)a solutions
that contain thei-th item and consider the firsti− 1 items.
We try all possible values ofα and take the one that yields
the smallest (optimal) value forτ(i, a).

Proof of Lemma 2.1: Fix any α ∈ [0, 1]. Let B =
max{τ

(
i − 1, αa), τ

(
i − 1, (1 − α)a

)
+ wi}. SinceB ≥

τ
(
i − 1, αa), there are at leastαa solutions with weights

w1, . . . , wi−1 and capacityB. Similarly, sinceB − wi ≥
τ
(
i−1, (1−α)a), there are at least(1−α)a solutions with

weightsw1, . . . , wi−1 and capacityB−wi. Hence, there are
at leasta solutions with weightsw1, . . . , wi and capacityB,
and thusτ(i, a) ≤ B. To see that we did not double count,
note that the first type of solutions (of which there are at
leastαa) hasxi = 0 and the second type of solutions (of
which there are at least(1− α)a) hasxi = 1.

We established

τ(i, a) ≤ min
α∈[0,1]

max

{
τ
(
i− 1, αa),

τ
(
i− 1, (1− α)a

)
+ wi.

(3)

Consider the solution of the knapsack problem with
weights w1, . . . , wi and capacityC = τ(i, a) that has at
least a solutions. Letβ be the fraction of the solutions

that do not include itemi. Then τ(i − 1, βa) ≤ C,
τ(i− 1, (1− β)a) ≤ C − wi, and hence

max{τ(i− 1, βa), τ(i− 1, (1− β)a) + wi} ≤ C = τ(i, a).

We established

τ(i, a) ≥ min
α∈[0,1]

max

{
τ
(
i− 1, αa),

τ
(
i− 1, (1− α)a

)
+ wi.

(4)

Equations (3) and (4) yield (2).
Now we move to an approximation ofτ that we can

compute efficiently. We define a functionT which only
considers a small set of valuesa for the second argument
in the function τ ; these values will form a geometric
progression.

Let Q := 1 + ε
n+1 and lets := dn logQ 2e = O(n2/ε).

The functionT : {0, . . . , n} × {0, . . . , s} → R≥0 ∪ {∞} is
defined using the recurrence (2) that the functionτ satisfies.
Namely,T is defined by the following recurrence:

T [i, j] =min
α∈[0,1]

max

{
T
[
i− 1, bj + lnQ αc

]
,

T
[
i− 1, bj + lnQ(1− α)c

]
+ wi.

The second argument ofT is, approximately, the logarithm
(with baseQ) of the second argument ofτ . (Note thatlnQ α
and lnQ(1− α) are negative.)

More precisely,T is defined by the following algorithm
CountKnapsack.

CountKnapsack
Input: Integers w1, w2, . . . , wn, C and ε > 0.

1. Set T [0, 0] = 0 and T [0, j] = ∞ for j > 0.
2. Set Q = (1 + ε/(n + 1)) and s = dn logQ 2e.
3. For i = 1 → n, for j = 0 → s, set

T [i, j] =min
α∈[0,1]

max

{
T
[
i− 1, bj + lnQ αc

]
,

T
[
i− 1, bj + lnQ(1− α)c

]
+ wi,

(5)
where, by convention, T [i − 1, k] = 0 for
k < 0.

4. Let j′ := max{j : T [n, j] ≤ C}. Output Z ′ :=
Qj′+1.

Note, the recurrence (5) is over allα ∈ [0, 1]. However,
since the second arguments (namely,bj + lnQ αc andbj +
lnQ(1−α)c) are step functions ofα, it suffices to consider
a discrete setS of α which yields all possible values of
the second arguments. Forj ∈ {0, 1, . . . , s}, the setS is
S = S1 ∪ S2 where:S1 = {Q−j , . . . , Q0} andS2 = {1 −
Q0, . . . , 1 − Q−j}. The setS1 captures thoseα pertaining
to the argumentbj + lnQ αc in (5), andS2 captures those
for bj + lnQ(1− α)c. By only considering this subsetS of
possibleα we will be able to computeT efficiently.

The key fact is thatT approximatesτ in the following
sense.

Lemma 2.2. Let i ≥ 1. Assume that for allj ∈ {0, . . . , s}
we have thatT [i − 1, j] satisfy (6). Then for allj ∈
{0, . . . , s} we have thatT [i, j] computed using (5) satisfies:

τ(i, Qj−i) ≤ T [i, j] ≤ τ(i, Qj). (6)

Proof: By the assumption of the lemma and the mono-
tonicity of τ we have

T
[
i− 1, bj + lnQ αc

]
≥ τ(i− 1, Qbj+lnQ αc−(i−1)) ≥

τ(i− 1, αQj−i), (7)

and

T
[
i−1, bj+lnQ(1−α)c

]
≥ τ

(
i− 1, Qbj+lnQ(1−α)c−(i−1)

)
≥ τ(i− 1, (1− α)Qj−i). (8)

Combining (7) and (8) with min and max operators we
obtain(

min
α∈[0,1]

max

{
T
[
i− 1, bj + lnQ αc

]
,

T
[
i− 1, bj + lnQ(1− α)c

]
+ wi

)
≥(

min
α∈[0,1]

max

{
τ(i− 1, αQj−i),
τ(i− 1, (1− α)Qj−i) + wi

)
= τ(i, Qj−i),

establishing thatT [i, j] computed using (5) satisfy the lower
bound in (6).

By the assumption of the lemma and the monotonicity of
τ we have

T
[
i−1, bj+lnQ αc

]
≤ τ(i−1, Qbj+lnQ αc) ≤ τ(i−1, αQj),

(9)

T
[
i− 1, bj + lnQ(1− α)c

]
≤ τ(i− 1, Qbj+lnQ(1−α)c) ≤

τ(i− 1, (1− α)Qj). (10)

Combining (9) and (10) with min, max operators we obtain(
min

α∈[0,1]
max

{
T
[
i− 1, bj + lnQ αc

]
,

T
[
i− 1, bj + lnQ(1− α)c

]
+ wi

)
≤(

min
α∈[0,1]

max

{
τ(i− 1, αQj),
τ(i− 1, (1− α)Qj) + wi

)
= τ(i, Qj),

establishing thatT [i, j] computed using (5) satisfy the upper
bound in (6).

We can now prove that the outputZ ′ of the algorithm
CountKnapsack is a (1 ± ε) multiplicative approximation
of Z. Note thatZ ′ is never an underestimate ofZ, since,

C < T [n, j′ + 1] ≤ τ(n, Qj′+1),

that is, there are at mostQj′+1 solutions. We also have

τ(n, Qj′−n) ≤ T [n, j′] ≤ C,

that is, there are at leastQj′−n solutions. Hence

Z ′

Z
≤ Qj′+1

Qj′−n
= Qn+1 ≤ eε.

This proves that the outputZ ′ of CountKnapsack
satisfies the conclusion of Theorem 1.1. It remains to show
that the algorithm can be modified to achieve the claimed
running time.

Running Time:As noted earlier, the minimum overα in
the recurrence (5) only needs to be evaluated at the discrete
subsetS = S1∪S2 defined earlier. Since|S| = O(s), T [i, j]
can be computed inO(s) time. Since there areO(ns) entries
of the table ands = O(n2/ε) the algorithmCountKnap-
sack can be implemented inO(ns2) = O(n5/ε2) time.

The running time can further be improved to
O(n3ε−1 log(n/ε)) by observing that we can do binary
search over bothS1 and S2 to find the optimalα, see the
full version of the paper for details.

3. APPROXIMATE COUNTING USING BRANCHING

PROGRAMS

In this section we give anFPTAS for the multidimensional
knapsack problem, thereby proving Theorem 1.2. To solve
the multidimensional case, it will be convenient for us to rep-
resent knapsack instances as read-once branching programs
(ROBPs). Here we describe read-once branching programs
and explain their relevance for deterministic, approximate
counting. Using this machinery we also give anFPTAS for
all the problems considered in Dyer’s paper [6].

3.1. Preliminaries

Definition 3.1 (ROBP). An (S, T)-branching programM
is a layered multi-graph with a layer for each0 ≤ i ≤ T
and at mostS vertices (states) in each layer. The first layer
has a single vertexv0 and each vertex in the last layer is
labeled with0 (rejecting) or1 (accepting). For0 ≤ i ≤ T ,
a vertexv in layer i has two outgoing edges labeled0, 1
and ending at vertices in layeri + 1.

Note that by definition, an(S, T)-branching program is
read-once and oblivious in the sense that all the vertices
in a layer are labeled by the same variable (these are
also known asOrdered Binary Decision Diagrams in the
literature). We also use the following notation: LetM be
an (S, T)-branching program andv a vertex in layeri of
M .

1. For a stringz, M(v, z) denotes the state reached by
starting fromv and following edges labeled withz.

2. For z ∈ {0, 1}n, let M(z) = 1 if M(v0, z) is an
accepting state, andM(z) = 0 otherwise.

3. AM (v) = {z : M(v, z) is accepting inM} andPM (v)
is the probability thatM(v, z) is an accepting state for
z chosen uniformly at random.

4. L(M, i) denotes the vertices in layeri of M .
5. For a setU , x ∈u U denotes a uniformly random

element ofU .
Given an instance of the knapsack problemw1, . . . , wn and
C, let W =

∑
i |wi|. It is easy to see that the set of accepting

strings for this knapsack instance are computed exactly by
a (W,n)-branching program. Intuitively, given an inputx,
the jth layer of this branching program keeps track of the
partial sum after readingj bits of input, namely

∑j
i=1 wixi.

Since the partial sum cannot exceedW , a width-W ROBP
suffices to carry out the computation.

Monotone ROBPs:We will also require that the branch-
ing programs we work with satisfy a monotonicity condition
and can be described implicitly. We discuss these two
notions below.

Definition 3.2 (Monotone ROBP). A (W,n)-branching pro-
gram M is monotone if for alli ≤ n, there exists a total
ordering≺ on the vertices inL(M, i) such that ifu ≺ v,
thenAM (u) ⊆ AM (v).

Monotone ROBPs were introduced by Meka and Zuck-
erman [20] in their work on pseudorandom generators for
halfspaces. It is easy to see that the branching program for
knapsack satisfies the above monotonicity condition: Given
partial sumsvj , vk we sayvj ≺ vk if vj > vk, since a larger
partial sum means that fewer suffix strings will be accepted.

Since we deal with monotone ROBPs that potentially have
width exponential inn, we require that the monotone ROBP
M be described implicitly in the following sense (we assume
that the following two operations are of unit cost):
1. Ordering: given two statesu, v we can efficiently check

if u ≺ v and if so find aw that ishalfway betweenu, v,
i.e., | |{x : u ≺ x ≺ w}| − |{x : w ≺ x ≺ v}| | ≤ 1.

2. Transitions: Given any vertex ofM we can compute the
two neighbors of the vertex.
Small-Space Sources:Let M be a ROBP computing

an instance of knapsack. We are interested in computing the
quantity M̂ = Prx∈{0,1}n [M(x) = 1] deterministically, as
2n · M̂ equals the number of solutions to the knapsack in-
stance. As we will see in the next section, we will also need
to estimatePrx∼D[M(x) = 1] whereD is a non-uniform
distribution over{0, 1}n that corresponds to conditioning
on certain events. As such, we will need to use the notion
of a small-spacesource, which is a small-width branching
program that encodes a distribution on{0, 1}n (we will often
abuse notation and denote the distribution generated by a
branching program and the branching program itself byD).

Small-space sources were introduced by Kamp et al. [15]
in their work on randomness extractors as a generalization of
many commonly studied distributions such as Markov-chain
sources and bit-fixing sources.

Definition 3.3 (small-space sources, Kamp et al. [15]).
A width w small-space source is described by a(w, n)-

branching programD and additional probability distribu-
tions pv on the outgoing edges associated with vertices
v ∈ D. Samples from the source are generated by taking
a random walk onD according to the distributionspv and
outputting the labels of the edges traversed.

Several natural distributions such as all symmetric distri-
butions and product distributions can be generated by small-
space sources. We will use the following straightforward
claims:

Claim 3.4. Given a ROBPM of width at mostW and a
small-space sourceD of width at mostS, Prx∼D[M(x) = 1]
can be computed exactly via dynamic programming in time
O(n · S ·W).

Claim 3.5. Given a(W,n)-ROBPM , the uniform distribu-
tion overM ’s accepting inputs,{x : M(x) = 1} is a width
W small-space source.

3.2. Main Structural Result and Applications

As mentioned earlier, the set of accepting strings for
a knapsack instance of total weightW can be computed
exactly by a(W,n)-branching program. Unfortunately, this
observation does not help in counting solutions to knapsack
asW can be exponentially large. To handle the large width,
we exploit the fact that the natural ROBP for computing
knapsack solutions is monotone to efficiently compute a
small-width ROBP that approximates the knapsack ROBP
with small relative error. Moreover, we are able to com-
pute such an approximation small-width ROBP with small
relative error under arbitrary small space sources, which is
critical for the multi-dimensional case.

Our main counting results are obtained by proving the
following key structural theorem for monotone ROBPs that
we believe is of independent interest:

Theorem 3.6. Given a(W,n)-monotone ROBPM , δ > 0,
and a small-space distributionD over {0, 1}n of width at
mostS, there exists an(O(n2S/δ), n)-monotone ROBPM0

such that for allz, M(z) ≤ M0(z) and

Pr
x∼D

[M(z) = 1] ≤ Pr
x∼D

[M0(z) = 1] ≤ (1+δ) Pr
x∼D

[M(z) = 1].

Moreover, given an implicit description ofM and an explicit
description ofD, M0 can be constructed in deterministic
time O(n3S(S + log(W)) log(n/δ)/δ).

We first show how to use Theorem 3.6 to obtain an
FPTAS for the multidimensional knapsack problem. We then
give a proof of Theorem 3.6 in Section 3.3. Notice that an
FPTAS for the (one dimensional) knapsack problem follows
immediately from Theorem 3.6 and the earlier observation
that a weightW knapsack instance is a(W,n)-monotone
ROBP. In fact, we can approximately count knapsack solu-
tions with respect to all symmetric and product distributions,
as each of these can generated by a small-space source.

There are two subtle issues in applying Theorem 3.6
directly for the multidimensional knapsack problem. Firstly,
the natural ROBP for multidimensional knapsack obtained
by taking the intersection of ROBPs for the individual
knapsack constraints need not be monotone. Secondly, even
starting with small-width, low relative-error approximating
ROBPs for each individual knapsack constraint, it is not
clear how to obtain a low relative-error approximating ROBP
for the multidimensional case. This is because taking the
intersection of the approximating ROBPs only preserves
approximation inadditive error and not in relative error
which is what we want. We handle these issues by using
the following elegant result due to Dyer, which essentially
helps us reduce the problem of obtaining relative-error
approximations to obtaining additive-error approximations
with respect to small space sources.

Theorem 3.7 (Dyer, [6]). Given knapsack instances{(
w

(i)
1 , . . . , w

(i)
n , C(i)

)}k

i=1
we can deterministically, in

time O(n3), construct a new set of knapsack instances{(
u

(i)
1 , . . . , u

(i)
n , B(i)

)}k

i=1
, each with a total weight of at

mostO(n3) such that the following holds. For1 ≤ i ≤ k,
let Si, S

′
i denote the feasible solutions for the knapsack

instances
(
w

(i)
1 , . . . , w

(i)
n , C(i)

)
,
(
u

(i)
1 , . . . , u

(i)
n , B(i)

)
re-

spectively. Then,Si ⊆ S′i and∣∣∣ ⋂
i∈[k]

S′i

∣∣∣ ≤ (n + 1)k
∣∣∣ ⋂

i∈[k]

Si

∣∣∣.
Proof of Theorem 1.2: We first use Theorem 3.7 to

obtain low-weight knapsack instances. As each instance has
weight at mostO(n3), they are each computable exactly
by a (O(n3), n)-ROBP. It is straightforward to check that
the intersection of several ROBPs is a computable by a
ROBP with width at most the product of the widths of
the original ROBPs. Therefore, the intersectionU = ∩i S′i
is computable by a(O(n3k), n)-ROBP. Thus, ifD is the
uniform distribution overU , then by Claim 3.5,D can be
generated by an explicitO(n3k) space source.

For i ∈ [k], let M i be a (W,n)-ROBP exactly com-
puting the feasible set of thei’th original knapsack in-
stance. Recall that we wish to approximate the quantity
Prx∈u{0,1}n [∧iM

i(x) = 1]. We can rewrite this as follows:

Pr
x∈u{0,1}n

[∧iM
i(x) = 1] =

Pr
x∈u{0,1}n

[x ∈ U] · Pr
x∼D

[∧iM
i(x) = 1].

Since the multidimensional knapsack instance output by
Dyer’s algorithm has low-weight, we can apply Claim 3.4 to
computePrx∈u{0,1}n [x ∈ U] exactly. Theorem 3.6 will give
us a relative-error approximation toPrx∼D[∧iM

i(x) = 1]
and complete the proof. We now proceed more formally.

Let δ = O(ε/k(n + 1)k) to be chosen later. For ev-
ery i ∈ [k], by Theorem 3.6 we can explicitly in time
nO(k)(log W)/δ construct a(nO(k)/δ, n)-ROBP N i such
that,

Pr
x∼D

[N i(x) 6= M i(x)] ≤ δ.

Let M be the(nO(k2)/δk, n)-ROBP computing the inter-
section ofN i for i ∈ [k], i.e.,M(x) = ∧iN

i(x). Then by a
union bound we havePrx∼D[M(x) 6= ∧iM

i(x)] ≤ kδ. On
the other hand, by Theorem 3.7,Prx∼D[∧iM

i(x) = 1] ≥
1/(n + 1)k. Therefore, from the above two equations and
settingδ = ε/2k(n + 1)k, we get that

Pr
x∼D

[M(x) = 1] ≤ Pr
x∼D

[∧iM
i(x) = 1]

≤ (1 + ε) Pr
x∼D

[M(x) = 1].

Thus, p = Prx∈u{0,1}n [x ∈ U] · Prx∼D[M(x) = 1] is
an ε-relative error approximation toPrx∈u{0,1}n [x ∈ U] ·
Prx∼D[∧iM

i(x) = 1] = Prx∈u{0,1}n [∧iM
i(x) = 1].

The theorem follows as we can computep in time
(n/δ)O(k2) using Claim 3.4, asD is a small-space source of
width at mostO(n3k) andM has width at most(n/δ)O(k2).

3.3. Proof of Theorem 3.6

We start with some notation. LetD denote the small space
generator of width at mostS. ForA ⊆ {0, 1}n we useD(A)
to denote the measure ofA underD. Let U1, . . . , Un be the
vertices inD with U i being thei’th layer of D. For a vertex
u ∈ U i, let Du be the distribution over{0, 1}n−i induced by
taking a random walk inD starting fromu. Given a vertex
v ∈ L(M, i) andu ∈ U i, let PM,u(v) denote the probability
of accepting if we start fromv and make transitions inM
according to a suffix sampled from distributionDu.

We will start from the exact branching programM
and work backwards, constructing a sequence of programs
Mn = M, . . . , M0, whereM i is obtained fromM i+1 by
“rounding” the (i + 1)st layer. The construction is similar
in spirit to the work of Meka and Zuckerman [20], who
showed how to round a halfspace constraint with respect
to the uniform distribution and obtain small additive error:
partial sums can be grouped together if they result in similar
“suffix acceptance probability.” Here we work with relative
error and small-space sources; we do the rounding in such
a way as to ensure the acceptance probabilities are well
approximated under each of the possible distributions on
suffixesDu. Further, after layeri is rounded, it will be of
small width. Thus, the branching programM0 will be a
small-width program.

The rounding process for creatingM i has two steps. First,
we need to create “breakpoints” for the(i + 1)’st layer
of M i+1. Then, we have to round the edges going from
layer i to layer i + 1. We now create our breakpoints. Let
L(M i+1, i + 1) = {v1 ≺ v2 · · · ≺ vW }. Fix a vertexu ∈
U i+1. We define a setBi+1(u) = {vu(j)} ⊆ L(M i+1, i+1)

of breakpoints foru as follows. We start withvu(1) = vW

and givenvu(j) definevu(j+1) by

vu(j+1) = max v s.t.v ≺ vu(j) and

0 < PMi+1,u(v) < PMi+1,u(vu(j))/(1 + ε) (11)

Let Bi+1 = ∪u∈Ui+1Bi+1(u) = {b1 ≺ · · · ≺ bN} be the
union of breakpoints for allu. We setL(M i, i+1) = Bi+1.
The vertices in all other layers stay the same as inM i+1.
Figure 1(a) (page 8) shows the breakpoints (in blue) for a
single vertexu of the small space source, and Figure 1(b)
(page 8) shows the complete set of breakpoints.

Now we describe the edges ofM i. All the edges except
those from layeri to i+1 stay the same as inM i+1, and we
round these edgesupward as follows: letv′ ∈ L(M i+1, i)
and for z ∈ {0, 1}, let M i+1(v′, z) = v ∈ L(M i+1, i + 1).
Find two consecutive verticesbk, bk+1 ∈ L(M i, i + 1) such
that bk ≺ v � bk+1. We set M i(v′, z) = bk+1. Note
that this only increases the number of accepting suffixes
for v′. Figure 1(b) shows the rounding of edges. This
completes the construction of theM is. The following claim
is straightforward:

Claim 3.8. The branching programM i is monotone where
the ordering of vertices in each layer is the same asM .

We also obtain the following simple lemma:

Lemma 3.9. For v ∈ M i, AMi+1(v) ⊆ AMi(v). Thus
PM,u(v) ≤ PMi,u(v) for all u ∈ U i.

Proof: It suffices to prove the claim whenv ∈ L(M i, i).
Fix z ∈ {0, 1} and let v′ = M i+1(v, z). We have
M i(v, z) = bk+1 where bk ≺ v′ � bk+1. By Claim 3.8,
we haveAMi(v′) ⊆ AMi(bk+1). Thus the set of accepting
suffixes only increases for either value ofz.

Further, we claim thatM0 can be computed efficiently.We
now show that the number of accepting solutions does not
increase too much.

Lemma 3.10. For v ∈ L(M i, j) and u ∈ U j , we have
PMi,u(v) ≤ PM,u(v)(1 + ε)n−i.

Proof: It suffices to show that PMi,u(v) ≤
PMi+1,u(v)(1 + ε). This claim is trivial forj ≥ i + 1 since
for such vertices,PMi,u(v) = PMi+1,u(v). The crux of the
argument is whenj = i. SinceM i+1 andM i are identical
up to layeri, the claim forj < i will follow.

Fix v ∈ L(M i, i) and u ∈ U i. Let u0, u1 denote the
neighbors ofu in D. Then we have

PMi,u(v) = pu(0)PMi,u0(M
i(v, 0))+

pu(1)PMi,u1(M
i(v, 1)). (12)

We first boundPMi,u0(M
i(v, 0)). Let b′, b′′′′ be the break-

points in Bi+1(u0) such thatb′ ≺ M i+1(v, 0) � b′′′′

and leta2, a3 be the breakpoints inBi+1 such thatb′′ ≺
M i+1(v, 0) � b′′′. Note that M i(v, 0) = b′′′, by the

...· · · ...

(1 + ε)PMi+1,u(vu(2)) ≤
PMi+1,u(vu(1))

vu(2)

vu(k−1)

vu(k)

· · ·

Layer i Layer i+ 1

Start
Final Layer

!""#$%&

'#(#"%&

vu(1)

...· · · ... · · ·

Layer i Layer i+ 1

Start
Final Layer

!""#$%&

'#(#"%&

(1 + ε)PMi+1,u(bN) ≤
PMi+1,u(bN−1), ∀u ∈ U i+1

bN

bN−1

b1

b2

v
v′

...

(a) (b)

Figure 1. RoundingM i+1 to M i. (a): Breaking points (blue squares)Bi+1(u) for a fixedu. (b): Edge rounding: the original edge (black solid) from
v′ to v is rounded up (blue dashed) tob3 - the next “higher” vertex tov in Bi+1.

construction of M i. Since Bi+1(u0) ⊆ Bi+1, we get
b′ � b′′ ≺ M i+1(v, 0) � b′′′ � b′′′′. By the def-
inition of breakpoints, we havePMi+1,u0(b

′′′′) ≤ (1 +
ε)PMi+1,u0(M

i+1(v, 0)) and by the monotonicity ofM i+1

PMi+1,u0(b
′′′) ≤ PMi+1,u0(b

′′′′), which together show that

PMi+1,u0(b
′′′) ≤ (1 + ε)PMi+1,u0(M

i+1(v, 0)).

Since b′′′ ∈ L(M i, i + 1), we have PMi,u0(b
′′′) =

PMi+1,u0(b
′′′). Thus

PMi,u0(M
i(v, 0)) ≤ (1 + ε)PMi+1,u0(M

i+1(v, 0)).

Similarly, we can show

PMi,u1(M
i(v, 1)) ≤ (1 + ε)PMi+1,u1(M

i+1(v, 1)).

Plugging these into Equation 12 gives

PMi,u(v) ≤ (1 + ε)(pu(0)PMi+1,u0(M
i+1(v, 0))+

pu(1)PMi+1,u1(M
i+1(v, 1))) = (1 + ε)PMi+1,u(v)

which is what we set out to prove.
We now analyze the complexity of constructingM0 from

M :

Claim 3.11. The branching programM0 can be constructed
in time O(n2S(S + log(W)) log(nS/ε)/ε).

Proof: Observe that for everyi andu ∈ U i, |Bi(u)| ≤
2n
ε and hence|Bi| ≤ 2nS

ε . Let us analyze the complexity
of constructingM i from M i+1. We will assume inductively
that the setBi+2 is known and stored in a binary tree along
with the valuesPMi+1,u(b), for every b ∈ Bi+2 and u ∈
U i+2. Hence, givenv ∈ L(M, i+1), we can findbk, bk+1 ∈
Bi+2 such thatbk ≺ v � bk+1 in time log(nS/ε). This
ensures that if we are given a vertexv′ ∈ L(M i+1, i+1) and
u ∈ U i+1, we can computePMi+1,u(v′) in time log(nS/ε).
To see this, note that

PMi+1,u(v′) =
∑

z∈{0,1}

pu(z)PMi+1,uz
(M i+1(v′, z))

where uz ∈ U i+2 denotes the vertex reached inD when
taking the edge labeledz from u. To computeM i+1(v′, z)
we first computev = M(v′, z) using the fact thatM
is described implicitly. We then findbk ≺ v � bk+1 in
Bi+2 and setM i+1(v′, z) = bk+1. Since we have the
values ofPMi+1,uz

(b) precomputed, we can use them to
computePMi+1,u(v′). The time required is dominated by
the O(log(nS/ε)) time needed to findbk+1.

Now, for eachu ∈ U i+1, by using binary search on the set
of vertices, each new breakpoint inBi+1(u) can be found
in time O(log(W) log(nS/ε)). Thus finding the setBi+1

takes timeO(nS log(W) log(nS/ε)/ε).
Once we find the setBi+1, we store it as a binary tree. We

compute and store the values ofPMi,u(b) = PMi+1,u(b) for
eachb ∈ Bi+1 andu ∈ U i+1 in time O(nS2 log(nS/ε)/ε).

Thus overall, the time required to constructM0 from M
is O(n2S(S + log(W)) log(nS/ε)/ε).

Proof of Theorem 3.6: Chooseε = Ω(δ/n) so that
(1 + ε)n ≤ (1 + δ). We construct the programM0 from
M and outputPM0,u(s) where s is the start state ofM
andu is the start state ofS. By Claim 3.11, this takes time
O(n3S(S +log(W)) log(nS/δ)/δ). Applying Lemmas 3.10
and 3.9, we conclude that

PM,u(s) ≤ PM0,u(s) ≤ PM,u(s)(1 + δ).

Note thatPM,u(s) andPM0,u(s) are respectively the prob-
abilities thatM and M0 accept a string sampled from the
distributionD. This completes the proof.

4. AN FPTAS FOR GENERAL INTEGERKNAPSACK

In this section, we address the problem of count-
ing solutions to knapsack where the feasible solutions
can take integer values instead of being restricted to be
0/1 valued. Given, non-negative integer weightsw =
(w1, . . . , wn), a capacityC and non-negative integer ranges
u = (u1, . . . , un), the goal here is to estimate the size of
the set of solutionsKNAP(w,C, u) = {x :

∑
i≤n wixi ≤

C, 0 ≤ xi ≤ ui}. Note that the range sizesu1, . . . , un

could be exponential inn. Dyer [6] gave anFPRAS for

integer-valued knapsack as well. We obtain aFPTAS for
the problem.

Theorem 4.1 (integer knapsack). Given a knapsack in-
stanceKNAP(w,C, u) with weight W =

∑
i wiui + C,

U = maxi ui and ε > 0, there is a deterministic
O(n5(log U)2(log W)/ε2) algorithm that computes anε-
relative error approximation for|KNAP(w,C, u)|.

As in the case of{0, 1}-knapsack we start with the exact
branching programM for KNAP(w,C, u), where each state
in L(M, j) corresponds to a partial sumvj =

∑
i≤j wixi

and has(uj+1 + 1) outgoing edges corresponding to the
possible values of variablexj+1. We then approximate this
program with a small-width branching program as was done
for {0, 1}-knapsack. However, unlike the previous case,
where we only had to worry about the width being large,
the programM can have both exponentially large width
and degree. To handle this, we observe that the branching
programM is an interval ROBP in the sense defined below,
which allows us to shrink the state space as well as obtain
succinct descriptions of the edges of the new branching
programs we construct.

Definition 4.2 (Interval ROBPs). For u = (u1, . . . , un) ∈
Zn

+, S, T ∈ Z+, an (S, u, T)-interval ROBPM is a layered
multi-graph with a layer for each0 ≤ i ≤ T , at mostS
states in each layer. The first layer has a single (start) vertex,
each vertex in the last layer is labeled accepting or rejecting.
A vertexv in layer i − 1 has exactlyui + 1 edges labeled
{0, 1, . . . , ui} to vertices in layeri. Further, there exists a
total order≺ on the vertices of layeri for 0 ≤ i ≤ T such
that the edge labelings respect the ordering in the following
sense: for a vertexv in layer i − 1, if M(v, k) denotes
the k’th neighbor ofv for 0 ≤ k ≤ ui, then M(v, ui) �
M(v, ui − 1) � · · · � M(v, 0).

An interval ROBP defines a natural Boolean function
M : {0, . . . , u1}×{0, . . . , u2}×· · ·×{0, . . . , un} → {0, 1}
where on inputx = (x1, . . . , xn), we begin at the start
vertex and output the label of the final vertex reached when
traversingM according tox.

Note that the caseu = (1, 1, . . . , 1) corresponds to a
special class of monotone ROBPs. The intuition behind the
definition of interval ROBPs is that even if an interval ROBP
M has large degree, the edges ofM can be represented
succinctly: Given an(S, u, T)-interval ROBP M , and a
vertexv in layer i− 1, the edges out ofv can be described
exactly by a subset of at most2S edges irrespective of how
large the degree ofv ui is. For, if v′ is a vertex ini’th layer,
and E(v, v′) = {0 ≤ k ≤ ui : M(v, k) = v′} is the set of
edge labels going fromv to v′, thenE(v, v′) is an interval,
meaningE(v, v′) = {lv,v′ , lv,v′ + 1, lv,v′ + 2, . . . , rv,v′} for
some integerslv,v′ , rv,v′ . Thus, the set of edgesE(v, v′)
is completely described bylv,v′ and rv,v′ . We exploit
this observation critically when computing the small-width

approximating branching program.
In analogy to the case of{0, 1}-knapsack, given an

instanceKNAP(w,C, u) of integer knapsack, there is an in-
terval ROBP that exactly computes the setKNAP(w,C, u).
Let M denote this interval ROBP with edges between layer
i − 1 and layer i labeled byxi ∈ {0, . . . , ui} and for
v ∈ L(M, i − 1), 0 ≤ xi ≤ ui we haveM(v, xi) =
v + wixi ∈ L(M, i).

Given a vertexv ∈ L(M, i) we usePM (v) to denote
the probability thatM(v, z) accepts, forz chosen uniformly
form {0, . . . , uj+1} × · · · × {0, . . . , un}. As in the proof of
Theorem 3.6, we construct a series of progressively simpler
interval ROBPsMn = M,Mn−1, . . . ,M0 with a similar
rounding procedure.

We next describe how to obtainM i from M i+1. This
involves two steps: we first create “breakpoints” to sparsify
thei+1’th layerL(M i+1, i+1) of M i+1 and then round the
edges going from layeri to layeri+1. We setL(M i, i+1) =
{v1, . . . , v`} ⊆ L(M i+1, i + 1) where thevj ’s are defined
as follows: Letv1 = 0. Given vj , let

vj+1 = min v such that v > vj and

0 < PMi+1(v) < PMi+1(vj)/(1 + η). (13)

Let I1 = {v1, . . . , v2 − 1}, . . . , I` = {v`, . . .}, where` ≤
n(log U)/η as PMi(v1) ≤ 1 and PMi(v`) ≥ U−n. Next
we redirect the transitions going from leveli to level i + 1.
If we have an edge labeledz ∈ {0, . . . , ui+1} entering a
vertex v ∈ Ij , then we redirect the edge to vertexvj . The
redirection will be done implicitly in the sense that for any
vertex v in level i and a vertexvj , we only compute and
store the end points{lv,vj

, rv,vj
} of the intervalE(v, vj) =

{0 ≤ k ≤ ui+1 : M i(v, k) = vj}.
Our branching programs have the following approximat-

ing properties analogous to Lemmas 3.8, 3.9, 3.10 and Claim
3.11. The proofs are deferred to the full version.

Lemma 4.3. For any v ∈ L(M i, j) and 0 ≤ k ≤ l ≤ uj+1,
M i(v, k) ≤ M i(v, l). Let v, v′ ∈ L(M i, j) and v ≤ v′. For
any suffixz, M i(v, z) ≤ M i(v′, z).

Lemma 4.4. For v ∈ M i, we haveAMi+1(v) ⊆ AMi(v).
Further, for any v ∈ L(M i, j) where j ≤ i, we have
PM (v) ≤ PMi(v) ≤ PM (v)(1 + η)n−i.

Lemma 4.5. Each vertexvj ∈ L(M i, i+1) can be computed
in time O(n(log U)(log W)/η).

Proof of Theorem 4.1:We setη = δ/2n and use the
above arguments to construct the branching programM0

and compute the value ofPM0(s) wheres is the start state.
By Lemma 4.4

PM (s) ≤ PM0(s) ≤ PM (s)(1 + η)n ≤ (1 + δ)PM (s),

where the last inequality holds for small enoughδ. Finally,
note that the number of solutions|KNAP(w,C, u)| is pre-

ciselyPM (s)
∏

i(ui+1). Hence we outputPM0(s)
∏

i(ui+
1).

REFERENCES

[1] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P.Ann.
of Math., 160(2):781–793, 2004.

[2] M. Ajtai and A. Wigderson. Deterministic simulation of
probabilistic constant depth circuits.Advances in Computing
Research - Randomness and Computation, 5:199–223, 1989.
A preliminary version appears inProceedings of the 26th
Annual Symposium on Foundations of Computer Science
(FOCS), 11-19, 1985.

[3] S. Arora and B. Barak.Computational complexity: A Modern
Approach. Cambridge University Press, Cambridge, 2009.

[4] M. Bayati, D. Gamarnik, D. Katz, C. Nair, and P. Tetali.
Simple deterministic approximation algorithms for counting
matchings. InProceedings of the 39th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 122–127, 2007.

[5] I. Diakonikolas, P. Gopalan, R. Jaiswal, R. A. Servedio, and E.
Viola. Bounded independence fools halfspaces. InProceed-
ings of the 50th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 171–180, 2009.

[6] M. Dyer. Approximate counting by dynamic programming. In
Proceedings of the 35th Annual ACM Symposium on Theory
of Computing (STOC), pages 693–699, 2003.

[7] M. Dyer, A. Frieze, and R. Kannan. A random polynomial-
time algorithm for approximating the volume of convex
bodies.J. ACM, 38(1):1–17, 1991.

[8] M. Dyer, A. Frieze, R. Kannan, A. Kapoor, L. Perkovic,
and U. Vazirani. A mildly exponential time algorithm for
approximating the number of solutions to a multidimensional
knapsack problem.Combin. Probab. Comput., 2(3):271–284,
1993.

[9] D. Gamarnik and D. Katz. Correlation decay and deter-
ministic FPTAS for counting list-colorings of a graph. In
Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1245–1254, 2007.

[10] M. Jerrum. A very simple algorithm for estimating the
number ofk-colorings of a low-degree graph.Random Struct.
Algorithms, 7(2):157–165, 1995.

[11] M. Jerrum and A. Sinclair. Approximating the permanent.
SIAM J. Comput., 18(6):1149–1178, 1989.

[12] M. Jerrum and A. Sinclair. Polynomial-time approximation
algorithms for the Ising model.SIAM J. Comput., 22(5):1087–
1116, 1993.

[13] M. Jerrum and A. Sinclair. The Markov Chain Monte Carlo
Method: An Approach To Approximate Counting and Integra-
tion. In D. S. Hochbaum, editor,Approximation Algorithms
for NP-hard Problems, pages 482–520. PWS Publishing,
1996.

[14] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time
approximation algorithm for the permanent of a matrix with
nonnegative entries.J. ACM, 51(4):671–697, 2004.

[15] J. Kamp, A. Rao, S. P. Vadhan, and D. Zuckerman. Deter-
ministic extractors for small-space sources. InProceedings of
the 38th Annual ACM Symposium on Theory of Computing
(STOC), pages 691–700, 2006.

[16] R. M. Karp and M. Luby. Monte Carlo algorithms for
the planar multiterminal network reliability problem.J.
Complexity, 1(1):45–64, 1985.

[17] L. Lovász and S. Vempala. Simulated annealing in convex
bodies and anO∗(n4) volume algorithm.J. Comput. System
Sci., 72(2):392–417, 2006.

[18] M. Luby, D. Randall, and A. Sinclair. Markov chain al-
gorithms for planar lattice structures.SIAM J. Comput.,
31(1):167–192, 2001.

[19] M. Luby and B. Velĭcković. On deterministic approximation
of DNF. Algorithmica, 16(4/5):415–433, 1996.

[20] R. Meka and D. Zuckerman. Pseudorandom generators for
polynomial threshold functions. InProceedings of the 42nd
Annual ACM Symposium on Theory of Computing (STOC),
pages 427–436, 2010.

[21] B. Morris and A. Sinclair. Random walks on truncated cubes
and sampling 0-1 knapsack solutions.SIAM J. Comput.,
34(1):195–226, 2004.

[22] Y. Rabani and A. Shpilka. Explicit construction of a small
epsilon-net for linear threshold functions. InProceedings of
the 41st Annual ACM Symposium on Theory of Computing
(STOC), pages 649–658, 2009.

[23] A. Sly. Computational transition at the uniqueness threshold.
In Proceedings of the 51th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 287–296,
2010.

[24] D. Štefankovǐc, S. Vempala, and E. Vigoda. Adaptive simu-
lated annealing: a near-optimal connection between sampling
and counting.J. ACM, 56(3):1–36, 2009.

[25] D. Weitz. Counting independent sets up to the tree threshold.
In Proceedings of the 38th Annual ACM Symposium on
Theory of Computing (STOC), pages 140–149, 2006.

	Introduction
	An FPTAS for #Knapsack
	Counting using Branching Programs

	Simple Dynamic Programming Algorithm for #Knapsack
	Approximate Counting using Branching Programs
	 Preliminaries
	Main Structural Result and Applications
	Proof of Theorem 3.6

	An FPTAS for General Integer Knapsack
	References

