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Abstract— Givenn elements with non-negative integer weights is presented explicitly, it is conceivable that deterministic
wi, ..., wy and an integer capacity/, we consider the counting olynomial-time algorithms exist.
version of the classic knapsack problem: find the number ofdistincP Our interest is in obtaining aeterministicapproxima-

subsets whose weights add up to at mdstwWe give the first de- . lgorith FPTAS (full | ial . .
terministic, fully polynomial-time approximation schenfeP(TAS) tion algorithm or (fully polynomial approximation

for estimating the number of solutions to any knapsack constrainBcheme) for #P-complete counting problems. We desire an
(our estimate has relative errar+ ). Our algorithm is based on algorithm that for an input instanceand a given approxi-

dynamic programming. Previously, randomized polynomial-timemation factore > 0, estimates the number of solutions for

approximation scheme§RPRAS) were known first by Morris and 1 \\ithin a relative factorl + ¢ in time polynomial in the
Sinclair via Markov chain Monte Carlo techniques, and subse-

quently by Dyer via dynamic programming and rejection sampling.Input size|I| and1/e. o )
In addition, we present a new method for deterministic approxi- There are far fewer examples of deterministic approxi-
mate counting usingead-once branching program&ur approach  mation schemes for #P-complete problems. One of the first
yields anFPTAS for several other counting problems, including examples is due to Ajtai and Wigdersan [2] (see also Luby
counting solutions for the multld!mensmnal knapsa_ck problem Wlthz_knd Veltkovic [I9, Corollary 13]) who gave an algorithm
a constant number of constraints, the general integer knapsa . . .
problem, and the contingency tables problem with a constantO” approximating the number of solutions to a DNF formula
number of rows. where each term has constant length. A notable recent
example of arFPTAS for a #P-complete problem is Weitz's
1. INTRODUCTION algorithm [25] for counting independent sets in graphs of
Imaximum degreeA < 5. Similar approaches to Weitz’'s
algorithm were later used for counting all matchings of
ounded degree graphs [4], ahetolorings of triangle-free
graphs with maximum degre& whenk > 2.84A [9] .

Randomized algorithms are usually simpler and faste
than their deterministic counterparts. In spite of this, it is
widely believed that P=BPP (see, e. @], [3]), i.e., at least u
to polynomial complexity, randomness is not essential. Thi
conjecture is supported by the fact that there are relatively 1. An FPTAS for #Knapsack

few problems for which exact randomized polynomial-time Here we consider one of the most basic counting prob-

algorithms exist but deterministic ones are not known.Iems namely approximately counting the numberogt
Notable among them is the problem of testing whether, ’ Y app y g

a polynomial is identically zero (a special case of this’knapsack solutions. More precisely, we are given a list

primality testing was open for decades but a deterministicOf nor!—negatlve mteger weightss, . .., w, and an integer
algorithm is now known,J1]) capacity C, and wish to count the number of subsets

L i of the weights that add up to at moét. (The decision
In approximation algorithms, however, there are many . : :

N ; version of this problem is NP-hard, but has a well-known
more such examples. The entire field of approximate count-

ing is based on Markov chain Monte Carlo (MCMC) Sam_pseudo-polynomial algorithm based on dynamic program-

pling [13], a technique that is inherently randomized and hammg') From a geometric perspective, for thalimensional

. oolean hypercube, we are given as inputadimensional
had remarkable success. The problems of counting match- . )
: - ) . o ” hyperplane, and our goal is to determine the number of
ings [11], [14], colorings [[10], various tilings, partitions

and arrangement$ _[[18], estimating partition functidng [12] vertices of the hypercube that lie on one side of the given

[24], or volumes|[[¥], [[17] are all solved by first designing hyperplane. We give aPTAS for the problem, that is,

. : . a deterministic algorithm that for any > 0 estimates the

a random sampling method and then reducing counting to : - ) o
. . umber of solutions to within relative errdr+ ¢ in time

repeated sampling. In all of these cases, when the inpu -

polynomial inn and1/e.
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combining dynamic programming with simple rejection number of solutions by a constant factor! Instead, we index

sampling to also obtain afPRAS. Although much simpler, the table by the prefix of items allowed and the number

randomization still appears to be essential in his approach—-ef solutions with the entry in the table being the minimum

without the sampling part, his algorithm only gives a factorcapacity that allows these indices to be feasible. We can

\/n approximation. now consider approximate numbers of solutions and obtain
Additionally, there has been much recent work on con-a small table. Our first result is the following:

structing pseudorandom generators (PRGs) for geometr'Li:

concept classes, in particular halfspaces (eld., [5] [20] :
: napsack problem. Lef be the number of solutions of the
[22]). It is easy to see that pseudorandom generators f ﬁnapsack problem. There is a deterministic algorithm which

halfspaces imply deterministic approximation schemes fog

heorem 1.1. Let wy,...,w, and C be an instance of a

! !
counting solutions to knapsack constraints by enumeratin pranye € (0,1) out_puth sugh_t?atZ <7 <Z(l+e).
over all input seeds to the generator. The estimate obtaine he algorithm runs in time(n"c ™" log(n/e)).
however, has small additive error, rather than our desired The running time of our algorithm is competitive with that
relative error. Further, the seed-lengths of these generatots Dyer. One interesting improvement is the dependence on
are too large to yield afPTAS. Still, a clear goal of this . Our algorithm has a linear dependenceeon (ignoring
line of research has been &RTAS for counting knapsack the logarithm term), whereas Monte Carlo approaches, in-
solutions, which we obtain here for the first time. cluding Dyer’s algorithm[[5] and earlier algorithms for this
Techniques:Our algorithm, like Dyer’s algorithm men-  problem [21], [8], have running time which dependseort.
tioned above, is based on dynamic programming and is
inspired by the pseudo-polynomial algorithm for the de-1.2. Counting using Branching Programs
cision/optimization version of the knapsac_k problem. The  Given our counting algorithm for the knapsack problem,
complexity of the pseudo-polynomial algorithm @&¥(nC), 5 natural next step is to count solutions to multidimensional
where C is the capacity bound. A pseudo-polynomial al- \nansack instances and other related extensions of the
gorithm for the counting problem can be achieved as welknansack problem. Unfortunately, the dynamic programming
using the following recurrence: based approach for knapsack does not generalize for the
S@i,7)=8G—1,5)+S3i—1,j —w), multidimensional case. We overcome this hurdle by present-
_ o N _ ing a different, more gener&PTAS for counting knapsack
with appropriate initial conditions. Her(i, j) is the num-  sq|ytions under a much wider class of weighted distributions.
ber of knapsack solutions that use a subset of the itemg, doing so, we present a general framework for deter-
{1,...,i} and their weights sum to at mogt ministic approximate counting using read-once branching
Roughly speaking, since we are only interested in approxXprograms (for a definition of the branching programs we
imate counting, Dyer’s idea was the following. He scales;go gee Section 3.1) that we believe to be of independent
down the capacity to a polynomial in, and scales down nierest.
the weights by Fhe same factor where the new Welghts_ are |t js not difficult to see that a read-once branching program
rounded down if necessary. He then counts the solutiongs yossibly exponential width can compute the set of feasible
to the new problem efficiently using the pseudo-polynomialgy|ytions of a knapsack instance. Meka and Zuckerian [20]
time dynamic programming algorithm. The new problemgpcerved that there exist small-width, read-once branching
could have more solutions (since we rounded down) buprograms that approximate the set of feasible solutions for
Dyer showed it has at most a factor 6f(n) more for a 5y knapsack instance to within a small additive error.
suitable choice of scaling. Further, given the exact counting \ye puild on this observation and show that there exist
algorithm for the new problem, one gets an efficient samplergy, o) \yidth, read-once branching programs for computing
then uses rejection sampling to only sample solutions tqnansack-type constraints to within a small relative error.
the original problem. The sampler leads to a countingg,,ther, the approximations hold with respect to any small-
algor'lthm.usmg standard technllques. Dyer’s algorithm ha%pace source, which is a large class of (not necessarily
running 2t|5me O(n® + 5722”2)2 using the above approach, niform) distributions on{0,1}". We then combine these
andO(n**°/log(e™1) +n”e"*) using @ more sophisticated jyeas with the dynamic programming results of Dyer [6] to
approach that also utilizes randomized rounding. obtain anFPTAS for several other related counting prob-
To remove the use of randomness, one might attempt ¢ - incjuding counting solutions to the multidimensional

use a more coarsg-gralned dyn_a_m|c program, narr_]ely rath%apsack problem, and counting solutions to the contingency
than consider all integer capacitiés2,...,C, what if we tables problem

onl_y consider weights that go up in Some geometric series? In the multi-dimensional knapsack problem, we are given
This would allow us to reduce the table sizeittog C rather ] @ ) G) )

thannC. The problem is that varying the capacity even by* knapsack instance (w1 swy s wn, CY }j:1

an exponentially small factofl + n/2™) can change the and the goal is to compute the number of solutions satisfying



all constraints; i.e., compute the cardinality of the set of 2. SMPLE DYNAMIC PROGRAMMING ALGORITHM FOR
solutions: #KNAPSACK

{(Sc{l,....n}: forall1<j<k, sz(j) <O}, In this section we present our dynamic programming
algorithm. Fix a knapsack instance and fix an ordering on
the elements and their weights.

We begin by defining the function: {0,...,n}xR>g —

U {xoo} where(i,a) is the smallesC' such that there
exist at leasta solutions to the knapsack problem with
weightswy, ..., w; and capacityC. It is not clear how to
. compute the function efficiently since the second argument
Theorem 1.2. Let{(ng),wéj)7..., ' C(j))} bean has exponentially many possible values (the number of

solutions is an integer betwedénand 2"). Neverthelessr
will be used in the analysis and it is useful for motivating
the definition of our algorithm.
Note that, by definitions (¢, a) is monotone i, that is,
<d = 7(i,a) < 7(i,d"). Fori = 0, using standard
conventions, the value af is given by:

icS

Morris and Sinclair[[2ll] and Dyel [6] showed that their
approaches to #Knapsack extend to the multidimension
problem, yielding arFPRAS whenk is constant. We obtain
an FPTAS for the multi-dimensional knapsack problem also
whenk is constant:

instance of a multidimensional knapsack problem et
iy w? + >-;CY) ande > 0. There is anFPTAS which
for any e > 0 computes al + ¢ relative approximation of
the number of solutions to the multidimensional knapsack
instance in timeO((n/e)°**) log W).

Our algorithm works via a reduction from counting multi- ;

. . . ) . -0 if a=0,
dimensional knapsack solutions under the uniform distri- .

) . . . . (0,a) = 0 if0<a<i, Q)
bution to solvingk (one-dimensional) knapsack counting .
2 oo otherwise

problems, but under a carefully chosen small-space distri-
bution constructed using Dyer’s results. Thus the fact thalNote that the number of knapsack solutions satisfies:
our second algorithm works for all small-space sources isnax{a : 7(n,a) < C}. We will show thatr(i,a) satisfies
crucially used. the following recurrence (we explain the recurrence below).

A yet more sophisticated application of our approach

yields anFPTAS for counting the number of integer-valued Lemma 2.1. For anyi € [n] and anya € R, we have

contingency tables. Given row sums= (r1,...,7y,) € Z7' ‘ _ 7(i —1,0a)
and column sumg = (ci,...,c,) € Z7, let CT(r,c) C 7(i,a) Sminmax (o N (1- a)a) + wi. 2
7" denote the set of integer-valued contingency tables ’ ’ ’
with row and column sums given hy c: Intuitively, to obtaina solutions that consider the first
items, we need to have, for somee [0, 1], ca solutions
CT(r,c) ={X € Z"™ : Y Xy =ri,i € [m)], that consider the first — 1 items, and(1 — a)a solutions
' that contain the-th item and consider the firgt— 1 items.
ZXU' =cj,j €[n]}. We try all possible values af and take the one that yields

the smallest (optimal) value far(i, a).

Note that, as in the case of knapsack, the magnitude of ~ ~100f Of Lemmd 2]1: Fix any o € [0,1]. Let B =
the row and column sums could be exponentiahirDyer maX{T(Z - Laa),7(i = 1,(1 — a)a) + w;}. Since B >
[6] gave anFPRAS for counting solutions to contingency ” (¢ — 1,«a), there are at leasta solutions with weights
tables (with a constant number of rows) based on dynamlf:”l’ .-, w;—1 and capacityB. Similarly, sinceB — w; >
programming. We give aRPTAS for this problem. T(i— 1 (1 —a)a), there are at leastl — «)a solutions with

WelghtSwl, ...,w;_1 and capacityB —w;. Hence, there are
Theorem 1.3. Given row sumsr = (ry,...,7,) € Z  atleast solutions with weightsuy, . . ., w; and capacitys,
and column sumg = (ci,...,¢,) € Z} with R =  and thusr(i,a) < B. To see that we did not double count,

max; r; and e > 0, there is anFPTAS that computes a note that the first type of solutions (of which there are at
(1 £ ¢)-relative error approximation fofCT'(r,c)| in time  |eastaa) hasz; = 0 and the second type of solutions (of
(n°™ (log R)/e)™. which there are at leagt — a)a) hasz; = 1.

In Sectior]  we present the dynamic programniiRg AS We established
for #Knapsack, proving Theorefn 1.1. In Sectiph 3 we . . (i — 1, aa),
define read—.oqce brgnchlng programs and preseRAAS 7(i,a) < agl[}){ll] maX{ (i —1,(1 - a)a) + w;. ©)
for the multidimensional knapsack problem (Theoienj 1.2).
We also present affPTAS for counting solutions to the Consider the solution of the knapsack problem with
general integer knapsack problem in Secfign 4. The prooWveights w,,...,w; and capacityC' = 7(i,a) that has at

of Theoren] 1.8 is deferred to the full version of the paper.least a solutions. Let3 be the fraction of the solutions



that do not include itemi. Then 7(i — 1,8a) < C,
7(i—1,(1 - pB)a) < C —w;, and hence

max{7(i — 1,0a),7(i — 1,(1 = B)a) + w;} < C = 7(i,a).
We established
. . 7(t — 1, aa),
7(i,a) > Jnin max{ TEi “1(1- a)a) + . 4)
Equationg (3) anf (%) yield (2). ]

Now we move to an approximation af that we can
compute efficiently. We define a functioh' which only

considers a small set of valuesfor the second argument
in the function r; these values will form a geometric

progression.

Let Q := = [nlogg 2] = O(n?/e).
The functionT : {0,...,n} x {0,...,s} = R>o U {oo} is
defined using the recurrenice](2) that the functiosatisfies.
Namely, T is defined by the following recurrence:

Tti, j] ac[0,1] i—1,17+Ing(l— oz)j] + w.

The second argument @f is, approximately, the logarithm

(with base()) of the second argument of (Note thating «
andlng(1 — «) are negative.)

More precisely,T is defined by the following algorithm

CountKnapsack.

CountKnapsack

Input: Integers wi, Wa, ..., wy,C and & > 0.
1.Set T[0,0]=0 and TI0,j] =0 for j >O0.

where, by convention,
k <O0.
i’ := max{j

2.8et Q=(1+¢/(n+1)) and s= [nlog,?2].

3.For i=1—-mn, for j=0-—s, set
oo T[i—1,[j+Ingal],

T[i, j] —arerl[g?l]rnax {T i—1,[j +Ing(1 — )] +w;,

: Tln,j] < C}. Output 7' =

(®)
Tli—1,k] = 0 for

Note, the recurrende (5) is over all € [0,

since the second arguments (namely;+ Ing o] and [j +

Ing (1 —«)]) are step functions of, it suffices to consider
a discrete setS of « which yields all possible values of
the second arguments. Fgre {0,1,...,
S =8, US, where:S; = {Q7,...
Q% ..., 1 —Q77}. The setS; captures those: pertaining

to the argumentj + Ing | in [(5), and S, captures those

s}, the setS is
,Q% and Sy = {1 —

for |j +Ing(1 — @)]. By only considering this subsét of
possiblea we will be able to comput§” efficiently.

1]. However,

The key fact is thafl” approximatesr in the following
sense.

Lemma 2.2. Leti > 1. Assume that for alj € {0,..., s}
we have thatT'[i — 1,j] satisfy[(6). Then for allj €
{0,..., s} we have thaf'[¢, j] computed usin (b) satisfies:

(i, Q'7") < TTi, j] < 7(5, Q7). (6)

Proof: By the assumption of the lemma and the mono-
tonicity of 7 we have

T[i -1, |7+ Ing ozj] >7(i — 17QLJ‘+1nQ aJ—(i—l)) >
(i —1,a@Q’™%), (7)

and

T[i—1, |j+Ing(1—a)| ( 1,QU+IHQ<1—Q>J—“—1))
>71(i—1,(1—a)@%). (8)

Combining[(7) and (8) with min and max operators we
obtain

. T[i—1,[j + Ingal],
R I E
{ (i —1,0Q9) ) — (0. Q)

(i —1,(1 — )Q" %) + w;
establishing thaf[i, j] computed usinfy (§) satisfy the lower
bound in[(6).
By the assumption of the lemma and the monotonicity of
T we have
T[i—l, Lj+Ing aJ] < T(Z‘_]_’QLJ"HHQ aj) < 7-(1'_1,&623’)7
9)
Tli—1,[j+Ing(l —a)]] <7(i—1,QU ey <
7(i—=1,(1 - @)Q’). (10)

Combining (9) and (I0) with min, max operators we obtain
: T[i—1,j+Ingal],
<
<Jél[t?u max{ T{z’ ~ 1L+ mg = a)]] 4w |~

<ar€r1[%)r’11]max{ 7(i —1,aQ7), ) =7(i,Q%),

7(i—1,(1 — a)Q?) + w;
establishing thaf[i, j] computed usinfy (b) satisfy the upper
bound in[(6).
We can now prove that the outpat’ of the algonthm
CountKnapsack is a (1 & ¢) multiplicative approximation
of Z. Note thatZ’ is never an underestimate &f, since,

C < Tnj +1) < 7(n, Q7+,

min max
a€l0,1]

that is, there are at mog§}’'*! solutions. We also have

7(n, Q") < Tn,j'] < C,



that is, there are at leag’ — solutions. Hence 4. L(M,1) denotes the vertices in layerof M.
y 5. For a setU, z €, U denotes a uniformly random
Z/ Qj + n+1 £
<t —=Q < ef. element ofU.
zZ - Given an instance of the knapsack problesy.. ., w, and
This proves that the outpuZ’ of CountKnapsack C,letW =" |w;|. Itis easy to see that the set of accepting
satisfies the conclusion of Theorém]1.1. It remains to shovstrings for this knapsack instance are computed exactly by
that the algorithm can be modified to achieve the claimeda (W, n)-branching program. Intuitively, given an input
running time. the jth layer of this branching program keeps track of the
partial sum after reading bits of input, namely>~7/_, w;z;.
Running Time:As noted earlier, the minimum overin Since the partial sum cannot exceBd a width4/ ROBP
the recurrencg (b) only needs to be evaluated at the discreseiffices to carry out the computation.
subsetS = S; U S, defined earlier. SinckS| = O(s), T'[i, j] Monotone ROBPsWe will also require that the branch-
can be computed i®(s) time. Since there ar@(ns) entries  ing programs we work with satisfy a monotonicity condition
of the table ands = O(n?/¢) the algorithmCountKnap-  and can be described implicitly. We discuss these two
sack can be implemented i) (ns?) = O(n®/e?) time. notions below.

OTgeilrlunnmg t|l;ne bcan . furttrr:ert' be 'mp(;o"? 0 Definition 3.2 (Monotone ROBP) A (W, n)-branching pro-
(n°c™" log(n/e)) by o serving that we can do binhary gram M is monotone if for alli < n, there exists a total
search over botty; and S; to find the optimala, see the ordering < on the vertices in(M, i) such that ifu < v

full version of the paper for details. then Anr (1) C Aps(v).
3. APPROXIMATE COUNTING USING BRANCHING Monotone ROBPs were introduced by Meka and Zuck-
PROGRAMS erman [20] in their work on pseudorandom generators for

In this section we give aRPTAS for the multidimensional  halfspaces. It is easy to see that the branching program for
knapsack problem, thereby proving Theorgm 1.2. To solv&napsack satisfies the above monotonicity condition: Given
the multidimensional case, it will be convenient for us to rep-Partial sumsv;, v, we sayv; < vy if v; > vy, since a larger
resent knapsack instances as read-once branching prografi@tial sum means that fewer suffix strings will be accepted.
(ROBPS) Here we describe read-once branching programs Since we deal with monotone ROBPs that potentially have
and explain their relevance for deterministic, approximatewidth exponential im, we require that the monotone ROBP
counting. Using this machinery we also give BRTAS for M be described implicitly in the following sense (we assume

all the problems considered in Dyer’s paper [6]. that the following two operations are of unit cost):
o 1. Ordering: given two states, v we can efficiently check

3.1. Preliminaries if uw < v and if so find aw that ishalfway betweenu, v,

Definition 3.1 (ROBP) An (S, T)-branching programM e, |[{z:u<z<w}l —|{z:w<z<v}| <L

is a layered multi-graph with a layer for eadh < i < T 2. Transitions: Given any vertex @ff we can compute the
and at mostS vertices (states) in each layer. The first layer ~ two neighbors of the vertex.

has a single vertex, and each vertex in the last layer is Small-Space Sourced:et M be a ROBP computing
labeled with0 (rejecting) or1 (accepting). For0 <i < T,  an instance of knapsack. We are interested in computing the
a vertexv in layer : has two outgoing edges labelédl  quantity M = Pr,c(o13+[M(z) = 1] deterministically, as
and ending at vertices in layer+ 1. 2n . M equals the number of solutions to the knapsack in-

Note that by definition, ar{S, T')-branching program is stance. As we will see in the next section, we will also need
read-once and oblivious in the sense that all the verticel? e.St'matePrmD[M@) = 1] where D is a non-uniform
in a layer are labeled by the same variable (these ardistribution over{0,1}" that corresponds to conditioning
also known asOrdered Binary Decision Diagrams in the ~ ©ON certain events. As such, we will need to use the notion
literature). We also use the following notation: Lef be  ©Of @ small-spacesource, which is a small-width branching

an (S, T)-branching program and a vertex in layer; of ~ Program that encodes a distribution i 1}™ (we will often
M. abuse notation and denote the distribution generated by a

branching program and the branching program itselfy

Small-space sources were introduced by Kamp et al. [15]
in their work on randomness extractors as a generalization of
many commonly studied distributions such as Markov-chain
sources and bit-fixing sources.

1. For a stringz, M(v,z) denotes the state reached by
starting fromv and following edges labeled with

2. For z € {0,1}", let M(z) = 1 if M(vg,2) is an
accepting state, andl/ (z) = 0 otherwise.

3. Ay (v) = {z: M(v,z) is accepting inM } and Py (v)
is the probability thatV (v, z) is an accepting state for Definition 3.3 (small-space sources, Kamp et &l [[15])
z chosen uniformly at random. A width w small-space source is described by(a,n)-



branching programD and additional probability distribu- There are two subtle issues in applying Theoren] 3.6
tions p, on the outgoing edges associated with verticesdirectly for the multidimensional knapsack problem. Firstly,

v € D. Samples from the source are generated by takinghe natural ROBP for multidimensional knapsack obtained
a random walk onD according to the distributiong, and by taking the intersection of ROBPs for the individual
outputting the labels of the edges traversed. knapsack constraints need not be monotone. Secondly, even

C ... .starting with small-width, low relative-error approximatin
Several natural distributions such as all symmetric distri- 9 P 9

. Lo OBPs for each individual knapsack constraint, it is not
butions and product distributions can be generated by small- . ) L
. : : clear how to obtain a low relative-error approximating ROBP
space sources. We will use the following straightforward

L for the multidimensional case. This is because taking the
claims: . . U
intersection of the approximating ROBPs only preserves
Claim 3.4. Given a ROBPM of width at mostiW and a  approximation inadditive error and not in relative error
small-space sourc® of width at mostS, Pr,..p[M (z) = 1] which is what we want. We handle these issues by using
can be computed exactly via dynamic programming in timehe following elegant result due to Dyer, which essentially
O(n-S-W). helps us reduce the problem of obtaining relative-error

Claim 3.5. Given a(WW, n)-ROBP M, the uniform distribu- apprOX|mat|ons to obtaining additive-error approximations
. ) 0 . : with respect to small space sources.
tion over M'’s accepting inputs{z : M (x) = 1} is a width

W small-space source. Theorem 3.7 (Dyer, ]LG]). Given knapsack instances
(4) (@) (i . .
3.2. Main Structural Result and Applications {(wl oo, Cf ))}i=1 we can deterministically, in

. X .
As mentioned earlier, the set of accepting strings fofime O(n”), construct a new set of knapsack instances

a knapsack instance of total weight can be computed . ,uﬁf),B(z))} , each with a total weight of at

exactly by a(W, n)-branching program. Unfortunately, this most0(n3) such that the following holds. Far < i < F,

observation does not help in counting solutions to knapsaclet g, S’ denote the feasible solutions for the knapsack

asW can_be exponentially large. To handle the large W'qth’instances wy)’ o 7wg)7 C“)) 7 (ugi)7 o ,qu% B(’?)) re-

we exploit the fact that the natural ROBP for computing velv. Th c  and

knapsack solutions is monotone to efficiently compute apectively. en; € 5; an

small-width ROBP that approximates the knapsack ROBP , &

with small relative error. Moreover, we are able to com- ’ ﬂ Si| < (n+1) ‘ Q]Si :
i€k

pute such an approximation small-width ROBP with small

relative error under arbitrary small space sources, which is  pygof of [Theorem 1]2: We first use Theorerfi 3.7 to

critical for the multi-dimensional case. _ obtain low-weight knapsack instances. As each instance has
Our main counting results are obtained by proving thevveight at mostO(n?), they are each computable exactly

following key structural theorem for monotone ROBPs thatby a (O(n®),n)-ROBP. It is straightforward to check that

we believe is of independent interest: the intersection of several ROBPs is a computable by a

Theorem 3.6. Given a(W, n)-monotone ROBR/, § > 0,  ROBP with width at most the product of the widths of

and a small-space distributiom over {0,1}" of width at the original ROBPs. Therefore, the intersectiGn= N, 5

mostS, there exists afO(n2S/§), n)-monotone ROBRA/® IS computable by dO(n**),n)-ROBP. Thus, ifD is the

such that for allz, M(z) < M°(z) and uniform distribution overUU, then by Clain] 35D can be
generated by an explicid(n?*) space source.

[M(z) =1].  Fori e [k], let M’ be a(W,n)-ROBP exactly com-

. Lo - . .. puting the feasible set of théth original knapsack in-

Moreqvgr, given an |(§an|C|t description a¢ qnd an EXP"‘?"_ stance. Recall that we wish to approximate the quantity

description of D, M" can be constructed in deterministic Proc. 0.1+ [AM(z) = 1]. We can rewrite this as follows:

time O(n?S(S + log(W)) log(n/3)/9).

i€ (k]

PrM(z)=1] < Pr[M°(z) =1] < (1+49) Pr

We first show how to use Theorem B.6 to obtain an Pr "[Ai]\/[i(x) =1] =
FPTAS for the multidimensional knapsack problem. We then r€u{0.13" .
give a proof of Theorem 3,6 in Section B.3. Notice that an e '{Dorl}n[ﬂf e U] PriniM'(z) = 1].

FPTAS for the (one dimensional) knapsack problem follows

immediately from Theorerp 3.6 and the earlier observation Since the multidimensional knapsack instance output by
that a weightW knapsack instance is @V, n)-monotone  Dyer’s algorithm has low-weight, we can apply Clgim|3.4 to
ROBP. In fact, we can approximately count knapsack solucomputePr ¢ (o 13»[2 € U] exactly. Theore6 will give
tions with respect to all symmetric and product distributions,us a relative-error approximation ®r,..p[A;M*(x) = 1]

as each of these can generated by a small-space source. and complete the proof. We now proceed more formally.



Let 6 = O(e/k(n 4+ 1)¥) to be chosen later. For ev- of breakpoints foru as follows. We start withv, 1) = vy

ery i € [k], by [Theorem 3)6 we can explicitly in time and givenv,; definev,(;.1) by

n®®) (log W) /6 construct a(n®® /§,n)-ROBP N* such

that, Vu(j+1) = Maxv s.t.v < v,(;) and

[NZ(.Z‘) 7& MZ(.Z‘)] <4 0< P]wwrl,u(v) < PMi+1,u(Uu(j))/(1 +E) (11)

Let B = Uycpit1 BT (u) = {by < -+ < by} be the
, i ; ; union of breakpoints for all. We setL(M?,i+1) = B+,
section ofN* for i € [k], i.e., M(z) = A:N'(x). Then by @ he ertices in all other layers stay the same agii!.

union bound we haver,.p[M(z) # A;M'(z)] < k6. On [ e

. gure[1(a) (pag€]8) shows the breakpoints (in blue) for a
the otherkhand, by Theorem B.Rr..p[AiM"(x) :,1] = single vertexu of the small space source, and Figlite 1(b)
1/(n + 1)%. Therefore, from the above two equations a”d(page@) shows the complete set of breakpoints.

. _ k .
settingd = ¢/2k(n +1)", we get that Now we describe the edges 8f*. All the edges except

Pr
x~D

Let M be the(n®**) /% n)-ROBP computing the inter-

Pr[M(z) =1 < Pr [AMi(z) =1] those from layei to i+ 1 stay the same as ib/**', and we
a~D a~D round these edgespward as follows: letv’ € L(MiT1,4)
< (1+¢) PriM(z)=1]. and forz € {0,1}, let Mt (v/, 2) = v € L(M*T1 i +1).

Find two consecutive verticds,, b1 € L(M®,i+ 1) such
that by < v =< bry1. We set Mi(v',2) = byyq. Note
that this only increases the number of accepting suffixes
for . Figure[](b) shows the rounding of edges. This
completes the construction of thé’s. The following claim

is straightforward:

Thus,p = Pryc, o1ynz € U] - Proop[M(z) = 1] is
an e-relative error approximation t®r,c o1y [zr € U] -
Pro~p[AiM'(z) = 1] = Proc, 0,13 [N M*(2) = 1].

The theorem follows as we can computein time
(n/8)0 %) using, a® is a small-space source of
width at mostO (n3%) and M has width at mostn,/§)°*"). '

m Claim 3.8. The branching programl/* is monotone where
3.3. Proof of Theorerh 3.6 the ordering of vertices in each layer is the sameds

We start with some notation. Lé? denote the small space
generator of width at mosf. For A C {0,1}"™ we useD(A) _
to denote the measure dfunderD. LetU!,... U bethe Lemma 3.9. For v € M', Appii(v) C Appi(v). Thus
vertices inD with U’ being thei'th layer of D. For a vertex P, (v) < Py o (v) for all w € U".

u € U*, let D" be the distribution ovef0, 1}"* induced by Proof: It suffices to prove the claim whane L(M?, ).
taking a random walklirD starting fromu. Given a vertex » € {0,1} and letv/ = Mit'(v,2). We have
v € L(M,4) andu € U, let Py, (v) denote the probability Mi(v,z) = b;H where by < o' < bj1. ,By Claim ,
of accepting if we start fronv and make transitions i/ o haveA s (V') C Apgi (bpsr). Thus the set of accepting
according to a suffix sampled from distributidn“. suffixes only increases for either value of =

We will start from the exact branching prograd/ Further, we claim thad/° can be computed efficiently.We

We also obtain the following simple lemma:

M™ = M,...,M°, whereM! is obtained fromM**! by
“rounding” the (i + 1) layer. The construction is similar } }
in spirit to the work of Meka and Zuckermah [20], who Lemma 3.10. For v € L(M",j) andu € U’, we have
showed how to round a halfspace constraint with respecPasi w(v) < Paru(v)(1+4¢)" "

to the uniform distribution and obtain small additive error: Proof: It suffices to show that Py, (v) <
E)artlgl sums can be groupgd tf)gether if they resylt in S|r'n|langy_+1_’u(U)(1 + ). This claim is trivial forj > i+ 1 since
suffix acceptance probability.” Here we work with relative ¢, ¢,,ch verticesPyyi ,(v) = Pyyis1 o(v). The crux of the

error and small-space sources; we do the rounding in S“CQrgument is when = 4. Since M**+! and M’ are identical
a way as to ensure the acceptance probabilities are WeLIJp to layeri, the claim forj < i will follow

approximated under each of the possible distributions on" g, v € L(M',i) andu € U'. Let up,u; denote the
suffixes D*. Further, after layei is rounded, it will be of neighbors ofu in D. Then we have
small width. Thus, the branching program® will be a
smTa;:I-Widthdprogram. f g h - Prri (V) = pu(0)Pagi g (M (v, 0))+

e rounding process for creatifid® has two steps. First, , i
we need to create “breakpoints” for the + 1)'st layer Pull) Pas (M7 (0,1)). (12)
of M**!. Then, we have to round the edges going fromWe first boundPy;: ,,,(M*(v,0)). Let &, b"" be the break-
layer i to layeri + 1. We now create our breakpoints. Let points in Bi*!(ug) such thatt) < M i(v,0) =< b
L(M*i4+1) = {v; < va--- < vy} Fix a vertexu €  and letas, a3 be the breakpoints iB**! such thatt” <
U1, We define a seB"*! (u) = {v,(;)} € L(M**1i+1) M (v,0) < b"”. Note that M'(v,0) = b", by the

increase too much.



~ ~

(1 + 6)PM"’JFI,u(rU'u,(‘Z)) <

PMi+1’u(’Uu(1)>

/

(A + e)Pprivr o (bn) <

PAl'ﬁ+1’u(bN71)7 Yu € Uittt

@ AR @ st
Start ) Start
Uy Final Layer Final Layer
\ Layer ¢ Layer 7 + 1 / \\ Layer < Layer < + 1 /
(@) (b)
Figure 1. RoundingV/‘*! to M*. (a): Breaking points (blue squaregj‘+!(u) for a fixedu. (b): Edge rounding: the original edge (black solid) from

v’ to v is rounded up (blue dashed) bg - the next “higher” vertex ta in B*+1.

construction of M?. Since Bi*!(ug) C B!, we get
Vo< b < Mtl(v,0) < ¥ < b". By the def-
inition of breakpoints, we haveP i+, (b"") < (1 +
&) Pasi+1 o (M*T1(v,0)) and by the monotonicity oft/¢*+*
Pppivt o (0") < Pppitr o, (b"), which together show that

Pugist g (0") < (14 €) Pagisa g (M (0,0)).

Since b € L(M')i + 1), we have Py, (b")
P]\/[H»l’uO (b/”). Thus

Pusi g (M (0,0)) < (1 + &) Ppgist o (M7 (v,0)).
Similarly, we can show
Pgi iy (M(0,1)) < (1+€) Pagisn y, (M7 (0,1)).
Plugging these intp Equation |12 gives
Puri (V) < (14 €)(pu(0) Pagivt g (M (0,0))+
Pu(1)Pasit oy (M7 (0,1))) = (14 €) Pagins o (0)

which is what we set out to prove. ]
We now analyze the complexity of constructing® from
M:

Claim 3.11. The branching progrand/° can be constructed
in time O(n25(S + log(W)) log(nS/¢)/e).

Proof: Observe that for everyandu € U?, | Bi(u)| <
22 and hencgBY| < @ Let us analyze the complexity
of constructingh/¢ from M+, We will assume inductively
that the setB*? is known and stored in a binary tree along

whereu, € U2 denotes the vertex reached in when
taking the edge labeled from u. To computeM 1 (v/, 2)
we first computev M(v', z) using the fact thatM/

is described implicitly. We then find, < v =< bgyq In
Bi*? and setM*t!(v',z) = byy1. Since we have the
values of Pyi+1,,_ (b) precomputed, we can use them to
compute Pyi+1,,(v"). The time required is dominated by
the O(log(nS/e)) time needed to findy. ;.

Now, for eachu € U1, by using binary search on the set
of vertices, each new breakpoint i#*!(u) can be found
in time O(log(W)log(nS/¢)). Thus finding the seBi*!
takes timeO(nS log(W)log(nS/e)/e).

Once we find the seB’**, we store it as a binary tree. We
compute and store the valuesBf;: ,,(b) = Pasi+1,,(b) for
eachb € B! andu € U™ in time O(nS? log(nS/¢)/e).

Thus overall, the time required to construdt’ from M
is O(n25(S + log(W)) log(nS/e)/e). [ |

Proof of Theorenj 3|6: Chooses = Q(4/n) so that
(1 +¢e)" < (1+§). We construct the program/® from
M and outputPyn0 ,(s) wheres is the start state ofi/
andu is the start state of. By Claim[3.1], this takes time
O(n®S(S +1log(W)) log(nS/3)/5). Applying Lemmas 3.10
and[3.9, we conclude that

Prr.u(5) < Paou(s) < Paru(s)(1+0).

Note thatPy;,,(s) and Py ,,(s) are respectively the prob-
abilities thatM and M° accept a string sampled from the
distribution D. This completes the proof. ]

4. AN FPTAS FOR GENERAL INTEGERKNAPSACK

In this section, we address the problem of count-
ing solutions to knapsack where the feasible solutions
can take integer values instead of being restricted to be
0/1 valued. Given, non-negative integer weighis =
(w1, ..., w,), a capacityC' and non-negative integer ranges
u = (u1,...,uy), the goal here is to estimate the size of
the set of solution$KNAP(w,C,u) = {z : >, , wiz; <
C, 0 < z; < u;}. Note that the range sizes,,...,u,
could be exponential im. Dyer [6] gave anFPRAS for

with the valuesPy;i+1,(b), for everyb € B*2 andu €
Ut+2. Hence, givery € L(M,i+1), we can findby, by 1 €
B2 such thatb, < v =< bgyq in time log(nS/e). This
ensures that if we are given a vertéxc L(M**! i+1) and
uw € U™, we can computé®ysi+1,(v') in time log(nS/e).
To see this, note that

Z pu(z)PMH'l,uz (MH_l(vI? Z))
z€{0,1}

PM“'l,u(v/)



integer-valued knapsack as well. We obtairFRTAS for approximating branching program.
the problem. In analogy to the case of0,1}-knapsack, given an
instanceKNAP(w, C, u) of integer knapsack, there is an in-
terval ROBP that exactly computes the 88MAP(w, C, ).
Let M denote this interval ROBP with edges between layer
i — 1 and layer: labeled byz; € {0,...,u;} and for
v e L(Mi—-1),0 <z < u, we haveM(v,z;) =
v+ wiz; € L(M,1).

As in the case 0f0, 1}-knapsack we start with the exact ~ Given a vertexv € L(M,i) we use Py (v) to denote
branching programd/ for KNAP(w, C, u), where each state the probability thatV/ (v, z) accepts, for chosen uniformly
in L(M, j) corresponds to a partial sumy = >, w;z;  form {0,...,uj1} x -~ x{0,...,u,}. As in the proof of
and has(u;,1 + 1) outgoing edges corresponding to the[Theorem 3.6, we construct a series of progressively simpler
possible values of variable; ;. We then approximate this interval ROBPsM™ = M, M"~1 ... M° with a similar
program with a small-width branching program as was doneounding procedure.
for {0,1}-knapsack. However, unlike the previous case, We next describe how to obtaif/® from M1, This
where we only had to worry about the width being large,involves two steps: we first create “breakpoints” to sparsify
the programM can have both exponentially large width thei+1'th layer L(M*+1 i+1) of M**! and then round the
and degree. To handle this, we observe that the branchingdges going from layeirto layeri+1. We setL(M?,i+1) =
programM is aninterval ROBP in the sense defined below, {vy,...,v,} € L(M*T! i+ 1) where thev;'s are defined
which allows us to shrink the state space as well as obtaias follows: Letv; = 0. Given vy, let

succinct descriptions of the edges of the new branching _
programs we construct. vj41 = minv such thatv > v; and

Definition 4.2 (Interval ROBPs) For u = (u1,...,u,) € 0 < Paris(v) < Pagess (v)/ (1 +1). (13)
7y, S, T € Zy, an (S,u, T)-interval ROBPM is a layered  Let I; = {vy,...,v3 — 1},...,I; = {v,...}, wherel <
multi-graph with a layer for eact) < i < T, at mostS  n(logU)/n as Py:(vy) < 1 and Py:(vy) > U™ Next
states in each layer. The first layer has a single (start) vertexwe redirect the transitions going from levieto level i + 1.
each vertex in the last layer is labeled accepting or rejectingif we have an edge labeled € {0,...,u;41} entering a
A vertexv in layer i — 1 has exactlyu; + 1 edges labeled vertexv € I;, then we redirect the edge to vertex The
{0,1,...,u,} to vertices in layeri. Further, there exists a redirection will be done implicitly in the sense that for any
total order < on the vertices of layei for 0 <i < T such  vertexv in level i and a vertexv;, we only compute and
that the edge labelings respect the ordering in the followingstore the end pPOINt§l,, , , 7., } Of the intervalE(v, v;) =
sense: for a vertew in layer i — 1, if M(v,k) denotes {0 <k < wu;yy: Mi(v, k) = v }.

Theorem 4.1 (integer knapsack)Given a knapsack in-
stance KNAP(w, C,u) with weight W = > . w;u; + C,
U = max;u; and e > 0, there is a deterministic
O(n®(logU)?(log W)/€?) algorithm that computes am-
relative error approximation fotKNAP(w, C, u)|.

the £’th neighbor ofv for 0 < & < u;, then M (v, u;) < Our branching programs have the following approximat-
M(v,u; —1) 2 -+ 2 M(v,0). ing properties analogous to Lemnjas] §:8] B.9,]3.10 and Claim

An interval ROBP defines a natural Boolean function@, The proofs are deferred to the full version.
M :{0,...,u1} x{0,...;us} x---x{0,...,u,} — {0,1}
where on inputz = (z1,...,z,), we begin at the start
vertex and output the label of the final vertex reached whe
traversing M according toz.

Lemma 4.3. For anyv € L(M?, j) and0 < k <1 < uj41,
I{\/["(11, k) < M'(v,l). Letv,v' € L(M?,j) andv < v'. For
any suffixz, Mt(v,z) < M(v', 2).

Note that the cases = (1,1,...,1) corresponds to a Lemma 4.4.For v e M, we haved,s i (v) © Apyi(v).

special class of monotone ROBPs. The intuition behind th&urther, for anyv € L(M", j) vxﬁ?rej < 4, we have
definition of interval ROBPs is that even if an interval ROBP £ (V) < Pari (v) < Par(0)(1+m)" ™",

M has large degree, the edges laf can be represented | emma 4.5. Each vertex; € L(M?,i+1) can be computed
succmctl_y: leep an(S,u, T)-interval ROBP M, and_ a in time O(n(log U)(log W) /7).

vertexv in layeri — 1, the edges out of can be described _

exactly by a subset of at mo26 edges irrespective of how Proof of| Theorem 4]1:We set;) = §/2n and use the
large the degree af u; is. For, if v’ is a vertex ini'th layer, above arguments to construct the branching progrdih
and B(v,v') = {0 < k < u; : M(v,k) = '} is the set of and compute the value d?y;0(s) wheres is the start state.
edge labels going from to v/, then E(v, ') is an interval, By [Cemma 4.4

meaningE (v, v") = {ly v, low + Ll +2,..., 74} fOr Pry(s) < Puro(s) < Pr(s)(1Lm)" < (14 8)Py(s
some integerd,, ,/,7,... Thus, the set of edgeB(v,v’) h(s) < Paro(s) < Par(s)(1+m)" < ( JPa (),

is completely described by, . and r,,. We exploit where the last inequality holds for small enoughFinally,
this observation critically when computing the small-width note that the number of solutionKNAP(w, C,u)| is pre-



cisely Pys(s) [T;(u; +1). Hence we outpuPyso (s) [T, (u; +

).
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