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ABSTRACT 
We present a method for efficient and reliable geo-positioning of 
images. It relies on image-based matching of the query images 
onto a trellis of existing images that provides accurate 5-DOF 
calibration (camera position and orientation without scale). As 
such it can handle any image input, including old historical 
images, matched against a whole city.  On such a scale, care needs 
to be taken with the size of the database. We deviate from 
previous work by using 360� panoramas to simultaneously reduce 
the database size and increase the coverage. To reduce the 
likelihood of false matches, we restrict the range of angles for 
matched features. Furthermore, we enhance the RANSAC 
procedure to include two phases. The second phase includes 
guided feature matching to increase the likelihood of positive 
matches. Hence, we devise a matching confidence score that 
separates between true and false matches. We demonstrate the 
algorithm on a large scale database covering a whole city in order 
to show its usefulness for a vision-based augmented reality 
system. 

Categories and Subject Descriptors 

H.2.8 [Spatial databases and GIS, Image databases], I.4.1 
[Imaging geometry], F.2.2 [Pattern matching], I.3.7 [Virtual 
reality] 

General Terms 
Algorithms, Management 

Keywords 
Geo-Tagging, Image Matching, Location Recognition, Panorama, 
Augmented Reality, Urban Mapping; 

1. INTRODUCTION 
The availability of digital cameras and online sharing in the past 
decade has created an abundance of collective ‘digital memories’.  
Pocket point-and-shoot cameras, digital SLRs, camcorders, 
surveillance cameras and cell phones can quickly and easily 
document events. 

The circumstances as well as motivations for taking photographs 
can be numerous, either for personal or for commercial 
applications.  

Some examples of personal uses of a camera are: documenting 
important moments in life, documenting places visited while 
traveling, or simply to capture the aesthetics of a scene. People do 
this either to enhance their own memory, share their experiences 
with other people, create art, or simply because it is virtually free 
these days to take photos even without an obvious reason [1]. 

New methods of sharing digital photographs have emerged and 
taken leadership during the last years. From Photo CDs and DVDs 
through high resolution mobile phones to digital photo frames. 
The web has also provided plenty of online photo sharing and 
social interaction websites such as Flickr [2], Facebook [3], 
Panoramio [4] or Photobucket [5]. These host a quickly growing 
collection which is larger than 10 billion photos at the time of 
writing. 

Lately there has been a growing demand for photos which are 
associated with geographic locations in a process called “Geo-
Tagging”.  It is a useful way of organizing the information, either 
for personal use (“find all the photos from the vacation to 
Hawaii”) and commercial use (“What does that neighborhood 
look like?”).  One common approach is to use a GPS device 
which captures the location (latitude and longitude) continuously 
using satellites or an A-GPS which also uses the cellular network.  
This information can be stored along with the image data (such as 
in the EXIF headers of the digital file) and can then be inserted 
into a spatial index for fast search.   

The advantage of geo-tagged imagery is that it can be displayed 
and browsed in a more natural way. Using a map-interface with 
push-pins or thumbnails representing each image (or image 
cluster) has become the de-facto standard, rather than just 
displaying a linear sequence of photographs.  

The use of GPS has two major drawbacks: availability and 
accuracy. The need to carry an extra device just for storing the 
location is obviously an inconvenience. Furthermore, older 
photographs, such as historical remains do not have such data 
anyways. In fact, most of the available shared photos mentioned 
above, are not geo-tagged.  Accuracy is also a major issue.  A 
typical consumer system can achieve up to about 5 meters of 
accuracy in optimal conditions.  When tagging a mountain this is 
plenty, but in an urban setting that measurement error is too large.  
Moreover, GPS accuracy quickly deteriorates in urban settings 
due to various interference effects such as reflection (GPS 
“shadows”), multipath and atmospheric effects, and clock offsets.  
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These effects result in errors of up to hundreds of meters which 
translate into a completely different city block or landmark. While 
these errors can be reduced by using differential GPS or by 
modeling the error behavior of GPS systems in order to reduce the 
uncertainty [40], remaining errors may still be too large for some 
applications. Other infrastructure-based geo-tagging methods use 
triangulation between locations of known cell phone tower 
positions, or local area network hotspots, which achieve even less 
accurate geo-positioning. Professional uses of digital cameras 
include news reporters, forensic evidence, surveillance cameras 
installed for public safety purposes, traffic and weather cameras. 
Online mapping websites such as Bing Maps [6] and Google 
Maps [7] also put an enormous effort into capturing aerial or 
terrestrial (“streetside”) photographs to augment their map 
information with photo realistic visual data. 

The integration of images with maps continued with the release of 
Photosynth [8], which was based on the work by Snavely et al. 
[33] that automatically creates a 3D reconstruction of a scene by 
using structure from motion algorithms. It uses a collection of 
photographs taken from different perspectives. Functionality to 
geo-reference such “Synths” by aligning the point cloud derived 
from the 3D reconstruction, to natural features observed in an 
aerial view, as well as the option of exploring the Photosynth™ 
collection through a map interface were added later on. 

While a rough geo-location of user photographs already enhances 
the task of exploring images by their location from a top-down 
view, it may not be as pleasant an experience when viewed from a 
“human-scale” perspective, such as within a streetside- or indoor- 
scene. In this case it would be desirable to have a more accurate 
alignment of the photograph with the underlying model - ideally 
pixel-accurate.  

Not only could the image be observed from a perspective similar 
to the one from where it was taken (putting the observed scene in 
the context of its surrounding), but it would also be possible to 
augment the image by relating to it known information about the 
world (such as the names of streets, buildings, shops, etc.). 
Knowledge of a photo’s position and orientation may also enable 
the organization of photos into groups based on scene semantics, 
offering a better browsing experience of the photos [42]. This 
could be done either in an offline process, to more accurately geo-
position a set of images, and augment them with the desired meta-
information. If the process of aligning the image is fast enough, 
and computationally cheap, this could also be done in close to 
real-time, ideally on a mobile device, and be the basis for certain 
augmented reality (AR) scenarios. 

This document describes an image based matching method, to 
perform the alignment of still photographs to a set of accurately 
positioned panorama images, representing the base-layer of the 
geographic world model. While the method described herein is 
not designed to be real-time enabled, as required for real-time AR 
applications, suggestions will be provided for possible ways of 
reducing the computational effort, and thus making the real-time 
goal more achievable. 

One of the goals for this work was to achieve a very high 
matching rate, even with photographs that are substantially 
different from the panorama images in their appearance, due to 
differences in resolution, illumination, perspective, scene content, 
occlusions, etc., while keeping the rate of false matches as low as 
possible. 

The paper is organized as follows. We first describe the image 
matching problem, followed by an overview of previous work in 
the areas of image based location matching and geo-localization 
and pose initialization for AR systems. Next we describe our 
algorithm in detail, and discuss the results. Finally, we will 
summarize our work and discuss possible future extensions and 
improvements. 

2. PROBLEM DESCRIPTION 
The matching of an arbitrary query image to an existing set of 
images. 

For offline-batch processing, as well as for real-time applications, 
the input data consists of a set of images as shown in Figure 1. 
Each is associated with a geo-location (latitude, longitude and 
altitude), as well as some estimate of the error radius r of the used 
geo-tagging method. Not all images in the set necessarily have to 
be outdoor images, or taken in an area where panorama images 
are available. Therefore a matching algorithm needs to be able to 
efficiently decide whether a match is correct, or if it doesn’t fulfill 
some set quality criteria. 

 

Figure 1.     Sample Set of Geo-Tagged Outdoor User 
Photographs from Flickr 

One assumption that was made, is that the images are always 
oriented nearly horizontally, which is true for most of the pictures 
available on photo sharing sites, since users presumably rotate the 
images before they upload them. In addition, newer point and 
shoot digital cameras as well as some cell phone cameras, contain 
accelerometric sensors, which allow an estimate of the gravity 
vector with respect to the image. Hence the images can be 
automatically rotated to the horizontal direction if necessary. 

The accuracy radius r can be estimated automatically based on the 
geo-tags associated with a given input image. Moreover, a search 
area can be defined in which corresponding panorama images 
need to be considered for matching (See Figure 2). As one can 
see, the search area corresponding to a radius r of 100m can span 
multiple city blocks and streets. Therefore, in some cases a large 
number of panorama images (300 to 1000) need to be taken into 
account during the matching process. 

An example of a panorama image captured by a panoramic 
camera head is shown together with a matching user photograph 
in Figure 3. The 360º view has been warped into a continuous 
two-dimensional image. The x-axis corresponds to some angle 
around the vertical panorama axis (“Panorama-Longitude”), and 
the y-axis corresponds to the angle from a horizontal plane in the 
panorama (“Panorama-Latitude”).  

 



 

Figure 2.   Overview of Streetside Panoramas within Search 
Range 

It is reasonable to assume that the panorama images are oriented 
nearly horizontally thus restricting the possible transformations 
between user-photographs and panorama images to a certain 
extent. 

(a)

(b) 

Figure 3.    a) Input Image to be Matched. b) Sample of Bing 
Maps Streetside Panorama Image 

It is important to note, that while the examples given in this paper 
contain only outdoor user-images, as well as panorama images 
captured on the street, the applicability of the method described is 
not limited to this scenario. If the panorama images were replaced 
by indoor-panoramas captured within a building, the same method 
could potentially be applied. Evidently, the chances of matching 
also depend on the contents of the captured images. 

3. RELATED WORK 
The task of matching multiple images according to a set of 
features has already been elaborated for several decades, using 
different kinds of features and algorithmic approaches. This task 
becomes especially challenging if the image contents differ 
significantly in their radiometry, geometry, resolution, perspective 
or other parameters.  The task also becomes more computationally 
expensive if a large number of search images need to be 
considered for a single query image. Typically, either global or 
local image features or combinations of the two classes are used 
for image matching. 

Let us consider some examples of using image matching to 
determine the location of the contents present in a query image 
within a series of search images, or an estimate of the camera pose 
relative to some world coordinate system.  A specific application 

for the second case is the initialization problem for an Augmented 
Reality system. In order to be able to display augmentation about 
the observed scene, the pose of the camera needs to be detected 
accurately, such that subsequent tracking algorithms can be 
initialized sufficiently well. 

Like in our work, the majority of research on location matching, 
such as [15], [17], [25], [30], [31], [35], [38], [47] and [48], makes 
use of local image features, which, in contrast to global features, 
describe properties of smaller regions within the image. The 
advantage of this approach is that when correct correspondences 
between regions of an image pair can be made, they can be used 
to compute a more precise geometric relation between the images. 
On the other hand, local image features usually require more 
processing steps and so are more expensive computationally. 
Matching local features usually requires four steps. First, salient 
image regions need to be found by an interest point detector, 
followed by the extraction of feature descriptors from these image 
regions. Then the feature descriptors of multiple images are 
compared and matched. The matches are verified geometrically. 

Alternatively, the features of multiple search images can first be 
matched against each other, and matches can be used to 
reconstruct the 3D geometry of the scene by Structure from 
Motion, such as in [33], [8], [47] and [48]. In this case, matching 
of query features is done against the features associated with 3D 
point locations rather than the 2D image points. 

Typically, interest point detectors are designed to find salient local 
image regions such as corners or blobs in scale-space, by using a 
mathematical definition (e.g. Harris corners [12], Laplacian corner 
detector, Difference of Gaussian detector etc.). A series of 
research has been performed to develop interest point detectors 
that are possibly invariant to changes in offset, scale [16], [30], 
view point, and illumination [19], and ideally detect the same 
interest point at the same scene location repeatedly. Since 3D 
viewpoint changes usually cause more or less large local 
deformations of image regions, invariance to affine [18], [27] or 
perspective [45] distortions can contribute significantly to the 
matching performance. Other research aims at computing interest 
points very rapidly for applications running on mobile hardware 
(e.g. FAST interest points [36]). More research has been done on 
evaluating and comparing the performance of different interest 
point detectors [26], [29], [52]. 

After the interest point detection, image patches are extracted 
around each point, often considering scale and orientation 
parameters determined by the interest point detector, from which 
feature descriptors can be computed. A primary goal of the feature 
descriptors is to make them significantly smaller in memory 
footprint than the image patch from which they are computed, 
such that features from multiple images can be compared more 
efficiently than by a simple correlation. In addition, features 
should ideally be invariant to some extent for realistic changes in 
scale, position and orientation. This can be achieved by taking 
into account statistical information about the distribution of 
gradients in an image region. The most frequently used feature 
descriptor is SIFT [23], which sub-divides the square image patch 
into 4*4 equally sized regions, and computes for each region a 
histogram of image gradients, which is quantized into 8 bins each. 
This leads to a 128-dimensional descriptor for the image region. 
Alternatives to or derivatives of SIFT are SURF features ([27]), 
Viewpoint Invariant Patches (VIP) - [45] as well as DAISY 
features [39], [51], [53]. Additionally, several comparisons have 



been done to evaluate the quality of the different feature 
descriptors [21], [28], [52]. 

Once the interest points are found, they need to be matched to the 
database images. The simplest matching method is by 
exhaustively comparing each image descriptor from the query 
image to each descriptor in all search images. This can be 
computationally very expensive, since 𝑶(𝒒 × 𝒔 × 𝒊 × 𝒅) 
operations are required, where q is the number of query features, s 
is the mean number of search features per search image, i is the 
number of search images, and d is the number of dimensions per 
feature descriptor. For q=2000, s=5000, i=300, d=128, this means 
that 384 billion byte comparisons need to happen. To speed up the 
matching process, a common method is to organize the descriptors 
of single or multiple images in a K-D-tree structure [9], which 
allows efficient nearest-neighbor search for a given query feature. 
This has been used by the authors of [30], [31], [33] and [48]. 

Even much faster feature matching can be achieved by using 
quantized image features, also referred to as visual words. A large 
number of possible image feature descriptors are clustered into a 
set of visual words (See [20], [34] and [38].), each of which is 
basically represented by a single integer number. For each search 
image, a list of the included words is saved, and an inverted file 
index can be generated which contains for each visual word a list 
of images in which it appears. Matching of a query image 
basically consists of a step that associates each feature descriptor 
to a corresponding visual word, and then uses the inverted file 
table to find possible image matches. Search images can be 
quickly ranked by the number of words overlapping with the 
query image, which is usually weighted by some a-priory 
likelihood for each word. Using this method, millions of images 
can be searched within a very short time, which makes it very 
attractive to large scale image search problems, such as location 
matching. Examples of location matching based on visual words 
are [38] and [49]. 

The last step is typically a geometric verification of the point 
matches, to filter out mismatches, which usually occur frequently. 
This is often done by using the RANSAC algorithm developed by 
Fischler and Bolles [10], for robust model estimation even in the 
case of many outliers. A variety of models, such as Fundamental 
Matrix, Homography, 6-DOF Pose Estimation etc. can be used to 
verify the geometry. 

While the above order of steps is frequently used, other methods 
are also worth mentioning, such as a seed and spawn algorithm 
developed by Lilja [46], that tries to grow the matches starting 
from some strong seeds, by using geometric reasoning through the 
image space and scale space. 

An alternative to local features are global image features, which 
contain a global description of the essence of an image (gist), 
derived typically by simple statistical analysis or by image 
understanding methods, such as color histogram information, 
image texture statistics or statistical descriptions of the image 
content.  

An example of using the time-modulation of image intensity in 
videos recorded by stationary web-cams, by correlating it to the 
pattern of cloud-motion derived from satellite images, has been 
presented by Jacobs et al. in [41]. The major advantage of global 
features is the relatively high speed of matching, even in the 
presence of a very large number of search images (>>1M). 
Nevertheless, this is often outweighed by the disadvantage that 

positioning can usually only be done roughly, and with a large 
remaining uncertainty, which renders this method inappropriate 
for applications such as AR. 

As another alternative to using local feature descriptors for 
matching, edge information (edgels) can be used either to support 
the location matching effort, or for later pose tracking within the 
world model, such as shown by Reitmayr et al. [37]. 

Furthermore, while this paper deals with matching by using 
natural image features, frequently used tools for camera 
localization are artificial markers such as those provided by 
ARToolkit [55]. Artificial markers are designed to be easily 
detectable, even on mobile devices [22], [44], but they impose the 
disadvantage that localization and tracking can only work in very 
limited areas where markers are located. 

4. OUR METHOD 

4.1 Panorama Window Selection 
As it is the case with the majority of related work in the area of 
image matching, our method is based on local image features, 
extracted around salient image regions found by an interest point 
detector in different levels of an image scale space. Specifically, 
we are using a Laplacian interest point detector, detecting a 
similarity reference frame around each location (Offset, Scale and 
Orientation) in combination with a version of a Daisy feature 
descriptor with 32 dimensions developed by Winder et al. [39], 
[51], [53], [46].  
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 (a) 

 (b) 

Figure 4.    a) Input Image with Feature Frames. b) Panorama 
Image with Frames and Histogram of Matches per Image 

Column 

After the initial pre-processing of the query images (which are 
resampled to be ≤ 640 Pixel in dimension, and converted into 
grey-scale), interest-points are detected and corresponding feature 
descriptors are extracted from both the query image as well as the 
search images. The interest point frames FQ and FP for both 
images are visualized in Figure 4. Then, feature matching based 



purely on the feature descriptors is performed to find matching 
couples of descriptor vectors DQ and DP between the query image 
and the panorama image (See Figure 7 a for definition). This is 
done pairwise, by creating a K-D-tree structure from all 
descriptors in a given panorama image, and searching for each 
query feature matching features from the panorama. 

To distinguish reliable matches from unreliable ones, a ratio test is 
performed, comparing the feature distance (in feature space) 
between the query descriptor and the closest and second closest 
descriptor from the panorama image. According to formula {4.1}, 
a feature pair is rejected if the ratio is above some threshold ϑ 
(e.g. 0.8, see [23] for reference), and accepted if the ratio is above 
the threshold. 

Figure 5 shows the selected sub-window from the panorama 
image (a) as well as version of the same image warped into a 
virtual camera view (b). All following explanations of the 
algorithm are based on the assumption, that this sub-window of 
the panorama has already been selected, and that only the features 
from within this sub-window are used for further matching. 

(a) (b) 

Figure 5.    a) Automatically Selected Sub-Window of 
Panorama Image; b) Unwarped Sub-Window 

4.2 Orientation Constrained Matching 
For many applications it can be assumed, that the user photograph 
as well as the panorama image are not rotated around the camera 
axis by more than a certain angle tolerance τ. Therefore it is 
reasonable to assume that for the pairwise feature matching only 
features with reasonably similar feature orientation should be 
matched. Especially for streetside scenes, where repetitive 
structures as well as rotationally symmetrical objects can occur, 
this can lead to a better “signal to noise ratio” in terms of the 
correct matches versus incorrect matches. Figure 6 a) contains 
another sample pair of a query image and a panorama, for which 
the interest points and vectors indicating the orientation angle are 
shown in Figure 6 b). 

Our method subdivides the features into various orientation-bins, 
e.g. 72 bins of 5º width each. The features within one angle bin in 
the query image are only matched to features within a tolerance τ 
from the limits of that bin. The features for the first bin, starting at 
0º and ending at 5º, are shown in Figure 6 c) (Left) together with 
those features in the search image that are within the tolerance 
(Right). The same thing can be seen for a different angle bin in 
Figure 6 d). 

Hence, the algorithm sweeps through all orientation bins, and 
matches only features within the right bins. Eventually, the 
matches for each step in the sweep are concatenated into one 
resulting set of point correspondences M = {{ fQ

i  , f
P

j  }}. 

 

a)                                                b) 

 

c)                                                 d) 

 

Figure 6. Sample pair of query image (Left) and Part of 
Search Panorama Image (Right). 

a) Original images  
b) Location and orientation of detected interest points  
c) Subset of Interest Points for a Given Orientation Window 
in Query Image (e.g. 0º .. 5 º) and Larger Orientation 
Window in Search Image (e.g. 2.5º± 10 º)  
d) Subset of Interest Points for a Given Orientation Window 
in Query Image (e.g. 200º .. 205 º) and Larger Orientation 
Window in Search Image (e.g. 202.5º ± 10 º) 

Since the pairwise feature-based matching with a ratio test is still 
likely to create a large number of mismatches, a geometric 
verification of the matched feature pairs is required. Matching in a 
3D-scene usually entails a model describing the epipolar geometry 
between an image pair. This may be the Fundamental-Matrix 
described in [24] defining the relation of each point in one image 
to a line in the other and vice versa. We found that for urban 
scenes the fundamental matrix provides too much freedom and 
hence allows an unacceptable amount of false positives. 

We decided that for stability reasons it would be better in urban 
cityscapes to use a more restrictive, homography based model, 
which basically assumes that the object points must lie on one or 
more approximately flat surfaces in the 3D-scene. A homography 
can transform each point in one image into exactly one point in 
the other image, and hence is more restrictive when filtering out 
outliers. The advantage of using homography for image matching 
in urban scenes was also noted by Lourakis et al. ([14]). To 
estimate the homography, we use the RANSAC algorithm. 
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The results of RANSAC are the Homography matrix H, 
transforming each set of homogeneous point coordinates [ xi

Q, yi
Q

 

, 1 ]T from the query image into a corresponding set of coordinates 
[ xi

Q’,  yi
Q’ , 1 ]T in the search image {4.2}. In addition, the 

algorithm determines as a set of inlier point correspondences MI 
containing only those point correspondences, for which the 
reprojection error δij between the projected point [ xi

Q’,  yi
Q’ ]T 

and the corresponding point from the search image [ xj
P

 , yj
P ]T is 

less than a threshold ε {4.3}. 



To avoid homographies that would distort the query image in a 
non-desirable way, such as upside-down, mirrored, with 
intersecting image outlines or singularities, several checks are 
performed during the RANSAC process. If homography doesn’t 
fulfill these checks, it is declared degenerate, and the 
corresponding hypothesis can be rejected. 

The number of inlier points ni,H for a specific homography H can 
be used to prune out image candidates at an early stage in the 
process, if they do not exceed some minimum inlier count (e.g. 
20). 
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4.3 Geometrically Constrained Matching 
Once the homography H for an image pair is known from the first 
matching iteration or other prior knowledge, and if the inlier count 
is larger than a threshold, further processing steps can be 
performed to confirm whether the matching hypothesis is 
plausible. The matching process is repeated, taking into account 
the projected point location for each feature point [ xi

Q’,  yi
Q’ ]T in 

the coordinate system of the search image, as an additional pair of 
features for the feature matching. This means, that each query 
descriptor *DQ  is appended with the transformed point location [ 
xi

Q’,  yi
Q’ ]T to form an extended query descriptor *DQ, and each 

search descriptor DS is appended with its corresponding feature 
point location [ xj

P
 , yj

P ]T, resulting in an extended search 
descriptor *DP. 

Hence, a new K-D-tree is generated, containing the new 
descriptor vectors *DP, which allows an efficient search for the 
nearest neighbor in the modified feature space, containing both 
the original feature descriptors, as well as the geometric location 
of the interest points. 
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Figure 7.     a) Sets { DQ } and {DP } of Feature Descriptors in 
Query and Search Image. b) Modified Sets {*DQ} and {*DP} of 

Feature Descriptors in Query and Search Image. 

For two different sample images, Figure 8 shows only those 
feature matches that are inliers to the RANSAC procedure for 
three cases: a) If only the feature descriptors are used for 
matching; b) With the orientation constraint in place; and c) After 
the second iteration, taking into account the homography to 
predict the geometric location of the query features in the search 
image. 

Table 1 contains more quantitative results for the matching 
process, for the two images shown in Figure 6, as well as eight 
more images. 

a) 

b) 

c) 

 

Figure 8.   Inliers of Feature Based Matching for Two Sample 
Images 1) and 2). 

Row a) shows results for matching purely based on feature 
descriptors.     
Row b) shows results for matching of features with similar 
feature orientation.   
Row c) shows results for matching after second iteration, 
using initial homography as additional input for descriptor 
matching. 

In Figure 8 b) it can be seen that the number of matches increases 
slightly if orientation constrained matching is performed. In some 
cases this influences whether or not an image can be matched at 
all. This is especially true that if the scene contains a number of 
rotationally symmetrical objects that could be mismatched to a 
rotated instance of a similar object.  

A much larger number of correct matches can be achieved if the 
geometric location is considered during the matching process 
(Figure 8 c). Hence features that are closer to the expected 
location produce a better ratio test result, than similar but farther 
away features. This especially helps for cases, in which the scene 
contains a lot of repetitive structure, such as windows, doors, 
façade stucco work etc., which are frequently present in urban 
streetside scenes. 

While the inlier count to the RANSAC operation is a strong 
indicator for whether or not an image should be accepted or 
rejected by the algorithm, there are a few more criteria to be 
considered for this purpose. 

In addition to the Inlier Count, we collect more information 
about the matching process, including the distribution of the 
matched points in both the query and search image (represented 
by the Standard Deviations σQ and σP of the point coordinates), 
the mean Reprojection-Error 𝜹�, the mean Euclidean Feature 



Distance 𝝆�	between all feature pairs, as well as a Correlation 
Coefficient c between the two images. 

Table 1. Overview of Matching Metrics for Sample Images 
from Figure 8 as well as 8 Further Sample Images:  

Column 1 – Image Number 
Column 2 – Number of Features in Query Image  
Column 3 – Number of Features in Search Image  
Column 4 – Number of Matches for Purely Feature – Based 
Matching  
Column 5 – Number of Matches for Orientation - Constrained 
Matching 
Column 6 – Number of Matches for Homography Constrained 
Matching  
Column 7 – Number of RANSAC-Inliers for Purely Feature – 
Based Matching  
Column 8 – Number of RANSAC-Inliers for Orientation - 
Constrained Matching  
Column 9 – Number of RANSAC-Inliers for Homography 
Constrained Matching 

 Img Feat 
Query 

Feat 
Search 

M 𝑴𝝋 𝑴𝒉 I 𝑰𝝋 𝑰𝒉 

1 1835 3592 103 131 317 60 73 219 

2 1200 1429 63 104 204 17 26 100 

3 1860 1955 166 192 316 120 139 222 

4 3061 5511 50 76 191 18 24 71 

5 1533 2015 82 121 303 48 60 150 

6 1601 2129 37 69 272 10 13 42 

7 1706 2002 204 246 454 116 126 354 

8 1002 1880 33 56 77 9 12 26 

9 1644 2164 133 160 319 43 50 204 

10 2263 4234 58 110 172 8 13 49 

 

To compute the correlation coefficient, the query image needs to 
be warped into the coordinate system of the search image by using 
the known homography H, as shown in Figure 9 a), and hence the 
area surrounding the matched feature points needs to be selected 
in a binary mask b). All pixel grey-values within the masked area 
of the two images are concatenated in a pair of vectors, which are 
then used to compute a correlation coefficient cg. This coefficient 
is expected to be close to 1.0, if the image pair matches well, and 
typically less than 0.6, if the image pair doesn’t match. 

a)        b) 

 

Figure 9.    a) Query Image Warped onto Search Image Using 
Homography; b) Correlation Mask around Matching Feature 

Points. Correlation Coefficient for Example = 0.8609 

Unfortunately, the correlation coefficient computed as above is 
only reliable if there are no significant illumination differences 
between the two images. 

In case such differences in the illumination do exist, a second 
correlation coefficient ce can be computed from a blurred version 
of a pair of edge-images computed from the two grey-level 
images. Figure 10 a) shows such a case, where two images have 
significant illumination differences, which cause the correlation 
coefficient to be relatively low (0.6072). The edge image (b), 
computed by using a Canny-edge detector [11], together with a 
blurred version of it, created by convolution with a Gaussian filter 
kernel (c), as well as the new selection of the values for 
correlation (d), are shown in Figure 10. As a result, the new 
correlation coefficient ce in this example is 0.9272, indicating a 
more reliable match than the value computed from the grey-level 
image. 

a)   b)  

c)   d)  

Figure 10.   a) Image Pair with Significant Illumination 
Differences – Correlation Coefficient = 0.6072 . b) Edge Image 
Computed from Input Images Using Canny Edge Detector. c) 
Edge Image Convolved with Gaussian Blur-Kernel. d) 
Blurred Edge Image with Correlation Mask – Correlation 
Coefficient = 0.9272 

Eventually, a matching score C is computed for each image pair, 
according to formula {4.4} that can be used to decide whether a 
certain panorama can be accepted as a match to a query image. In 
addition, this score can help to determine which out of a set of 
panoramas matches best to the query image, if multiple candidates 
exist. 

𝐶 =
��,�∗������,���∗���	(�������)

���	(��)∗��
    {4.4} 

5. RESULTS 
To evaluate the quality performance of our matching algorithm, 
we used a set of roughly 300,000 precisely geocoded panorama 
images in Seattle as the base model for location matching.  

As query images, we used a test set of 11,000 images downloaded 
from Flickr that were geocoded within a radius of 10m to at least 
one of the streetside-panorama images we used. Out of those 
query images, 3,132 had been hand-labeled as outdoor-images, 
and thus potential match candidates. 

For each image, the algorithm determined, whether one or more 
panorama images should be considered as matches, and in which 
order to rank the resulting matches to decide for a single best 
match. 

Figure 11 shows three examples of query images that were 
matched to a series of consecutive panorama images. The graph 
below the images shows the matching score (normalized) that was 
achieved for the corresponding panorama. The graphs show a 



clear peak at the correct image that maximally overlaps the query 
image. It is further possible to determine an even more precise 
location for the query image by computing the center-of-gravity 
from the score curve (red bars). 

To evaluate the quality performance of the algorithm, we matched 
the test set of 11,000 images to the panoramas that were within a 
100m around the initial geocoded position for each image. 

 

 

 

Figure 11.   Matching Result for Four Sample Query Images 
(Top) with Corresponding Set of Streetside Search Images in 
Range (Centre) and Normalized Matching Score (Bottom) 

The method described above matched 1,556 images correctly to a 
panorama image showing the same scene as in the user 
photograph. This corresponds to a true positive ratio of 49.7%. 
The true positive ratio does not take into account the fact that not 
all 3,132 images were actually viewing an object that was also 
visible from within a panorama, or not all were geocoded 
accurately enough so that the correct panorama image was within 
the search radius.  

For a smaller subset of 1,463 images, for which these two 
assumptions were manually verified, the true positive ratio was 
59.7%, corresponding to 970 correct matches. Some samples of 
correctly matched images are shown in Figure 12, in the context 
of the matched panorama image. More matches can be seen in the 
Bing Maps Application “Streetside Photos” [56]. 

Some of the query images could be matched successfully, even 
though they differed substantially from the panorama images, 
either in resolution, sharpness, illumination, viewing perspective, 
camera geometry or due to noise or occlusions. 

 

 

Figure 12.   Examples of Images Shown in the Context of the 
Matched Streetside Panorama Images, in the Bing Maps 
Silverlight Client. Top Right is a Historic Image from 1919 

The remaining 40.3% of images that could not be matched with 
this method partially had a very narrow field of view, not covering 
enough unique image features that could be reliably matched with 
a reference image. In other cases, the images contained a large 
amount of repetitive structures, such as building facades with 
many windows, or they were taken from a perspective that 
differed too much from the view in the panorama image. In 
addition, due to the use of the homographic geometry model for 
match-verification, scenes with a larger amount of 3D structure 
also were more difficult to match. A few samples of false 
negatives are shown in Figure 13. 

 

Figure 13. Samples of false negatives (Images not successfully 
matched) 

Altogether 59 false matches were counted, corresponding to a 
false positive ratio of 0.5%. Typically, images containing 
repetitive structures, such as window shutters, building fronts with 
repetitive window-patterns or similar textures were more likely to 
be mismatched (See Figure 14 for samples of false positive match 
pairs), even though their matching scores were usually relatively 
low. 

 

Figure 14.   Samples of false matches. Query Image (Top) and 
Corresponding Mismatched Search Image (Bottom). Red 
Lines Show Projected Outline of Query Image, if Within 
View, Blue Dots Show Projected Image Centre. 



6. CONCLUSION OUTLOOK 
In this paper we show that image based location matching using 
local features can be done reliably even in the presence of large 
variation in image radiometry and camera pose, due to a few key 
elements: 

• Constraining the freedom of descriptor matching, namely by 
removing the rotation-invariance, as well as using only 
homography-based geometry verification 

• Repeating the matching process after an initial homography is 
known to achieve a larger number of matches  

• Verifying the matching hypothesis by correlating the actual 
images 

• Computing and evaluating a matching confidence score based on 
the matching statistics 

While our algorithm could successfully match ~60% of the 
verified test dataset used, the false positive ratio was only 0.5%. 
This performance could be achieved even though the test data 
included a subset of very challenging images, including images 
taken at night, images that were very blurry, or had only a small 
overlap with the panorama images. Problems occurred mostly 
when query images had a large number of features due to regular 
structures, or if the field of view of the query image was too 
limited and didn’t contain enough unique features to allow 
reliable matching. 

A current weakness of the described method is that the feature 
matching happens for every candidate image individually, which 
imposes a high computational cost and makes real-time 
applications unfeasible. This weakness could be diminished by 
using a fast ranking mechanism for the candidate images, such as 
a global K-D-tree, which would only require a detailed 
verification of a subset of the images. 
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