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ABSTRACT

We present a method for efficient and reliable geo-positioning of
images. It relies on image-based matching of the query images
onto a trellis of existing images that provides accurate 5-DOF
calibration (camera position and orientation without scale). As
such it can handle any image input, including old historical
images, matched against a whole city. On such a scale, care needs
to be taken with the size of the database. We deviate from
previous work by using 360° panoramas to simultaneously reduce
the database size and increase the coverage. To reduce the
likelihood of false matches, we restrict the range of angles for
matched features. Furthermore, we enhance the RANSAC
procedure to include two phases. The second phase includes
guided feature matching to increase the likelihood of positive
matches. Hence, we devise a matching confidence score that
separates between true and false matches. We demonstrate the
algorithm on a large scale database covering a whole city in order
to show its usefulness for a vision-based augmented reality
system.

Categories and Subject Descriptors

H.2.8 [Spatial databases and GIS, Image databases], 1.4.1
[Imaging geometryl, F.2.2 [Pattern matching], 1.3.7 [Virtual
reality]
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Keywords
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1. INTRODUCTION

The availability of digital cameras and online sharing in the past
decade has created an abundance of collective ‘digital memories’.
Pocket point-and-shoot cameras, digital SLRs, camcorders,
surveillance cameras and cell phones can quickly and easily
document events.
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The circumstances as well as motivations for taking photographs
can be numerous, either for personal or for commercial
applications.

Some examples of personal uses of a camera are: documenting
important moments in life, documenting places visited while
traveling, or simply to capture the aesthetics of a scene. People do
this either to enhance their own memory, share their experiences
with other people, create art, or simply because it is virtually free
these days to take photos even without an obvious reason [1].

New methods of sharing digital photographs have emerged and
taken leadership during the last years. From Photo CDs and DVDs
through high resolution mobile phones to digital photo frames.
The web has also provided plenty of online photo sharing and
social interaction websites such as Flickr [2], Facebook [3],
Panoramio [4] or Photobucket [5]. These host a quickly growing
collection which is larger than 10 billion photos at the time of
writing.

Lately there has been a growing demand for photos which are
associated with geographic locations in a process called “Geo-
Tagging”. It is a useful way of organizing the information, either
for personal use (“find all the photos from the vacation to
Hawaii”) and commercial use (“What does that neighborhood
look like?”). One common approach is to use a GPS device
which captures the location (latitude and longitude) continuously
using satellites or an A-GPS which also uses the cellular network.
This information can be stored along with the image data (such as
in the EXIF headers of the digital file) and can then be inserted
into a spatial index for fast search.

The advantage of geo-tagged imagery is that it can be displayed
and browsed in a more natural way. Using a map-interface with
push-pins or thumbnails representing each image (or image
cluster) has become the de-facto standard, rather than just
displaying a linear sequence of photographs.

The use of GPS has two major drawbacks: availability and
accuracy. The need to carry an extra device just for storing the
location is obviously an inconvenience. Furthermore, older
photographs, such as historical remains do not have such data
anyways. In fact, most of the available shared photos mentioned
above, are not geo-tagged. Accuracy is also a major issue. A
typical consumer system can achieve up to about 5 meters of
accuracy in optimal conditions. When tagging a mountain this is
plenty, but in an urban setting that measurement error is too large.
Moreover, GPS accuracy quickly deteriorates in urban settings
due to various interference effects such as reflection (GPS
“shadows”), multipath and atmospheric effects, and clock offsets.



These effects result in errors of up to hundreds of meters which
translate into a completely different city block or landmark. While
these errors can be reduced by using differential GPS or by
modeling the error behavior of GPS systems in order to reduce the
uncertainty [40], remaining errors may still be too large for some
applications. Other infrastructure-based geo-tagging methods use
triangulation between locations of known cell phone tower
positions, or local area network hotspots, which achieve even less
accurate geo-positioning. Professional uses of digital cameras
include news reporters, forensic evidence, surveillance cameras
installed for public safety purposes, traffic and weather cameras.
Online mapping websites such as Bing Maps [6] and Google
Maps [7] also put an enormous effort into capturing aerial or
terrestrial (“streetside”) photographs to augment their map
information with photo realistic visual data.

The integration of images with maps continued with the release of
Photosynth [8], which was based on the work by Snavely et al.
[33] that automatically creates a 3D reconstruction of a scene by
using structure from motion algorithms. It uses a collection of
photographs taken from different perspectives. Functionality to
geo-reference such “Synths” by aligning the point cloud derived
from the 3D reconstruction, to natural features observed in an
aerial view, as well as the option of exploring the Photosynth™
collection through a map interface were added later on.

While a rough geo-location of user photographs already enhances
the task of exploring images by their location from a top-down
view, it may not be as pleasant an experience when viewed from a
“human-scale” perspective, such as within a streetside- or indoor-
scene. In this case it would be desirable to have a more accurate
alignment of the photograph with the underlying model - ideally
pixel-accurate.

Not only could the image be observed from a perspective similar
to the one from where it was taken (putting the observed scene in
the context of its surrounding), but it would also be possible to
augment the image by relating to it known information about the
world (such as the names of streets, buildings, shops, etc.).
Knowledge of a photo’s position and orientation may also enable
the organization of photos into groups based on scene semantics,
offering a better browsing experience of the photos [42]. This
could be done either in an offline process, to more accurately geo-
position a set of images, and augment them with the desired meta-
information. If the process of aligning the image is fast enough,
and computationally cheap, this could also be done in close to
real-time, ideally on a mobile device, and be the basis for certain
augmented reality (AR) scenarios.

This document describes an image based matching method, to
perform the alignment of still photographs to a set of accurately
positioned panorama images, representing the base-layer of the
geographic world model. While the method described herein is
not designed to be real-time enabled, as required for real-time AR
applications, suggestions will be provided for possible ways of
reducing the computational effort, and thus making the real-time
goal more achievable.

One of the goals for this work was to achieve a very high
matching rate, even with photographs that are substantially
different from the panorama images in their appearance, due to
differences in resolution, illumination, perspective, scene content,
occlusions, etc., while keeping the rate of false matches as low as
possible.

The paper is organized as follows. We first describe the image
matching problem, followed by an overview of previous work in
the areas of image based location matching and geo-localization
and pose initialization for AR systems. Next we describe our
algorithm in detail, and discuss the results. Finally, we will
summarize our work and discuss possible future extensions and
improvements.

2. PROBLEM DESCRIPTION

The matching of an arbitrary query image to an existing set of
images.

For offline-batch processing, as well as for real-time applications,
the input data consists of a set of images as shown in Figure 1.
Each is associated with a geo-location (latitude, longitude and
altitude), as well as some estimate of the error radius r of the used
geo-tagging method. Not all images in the set necessarily have to
be outdoor images, or taken in an area where panorama images
are available. Therefore a matching algorithm needs to be able to
efficiently decide whether a match is correct, or if it doesn’t fulfill
some set quality criteria.
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Sample Set of Geo-Tagged Outdoor User
Photographs from Flickr

Figure 1.

One assumption that was made, is that the images are always
oriented nearly horizontally, which is true for most of the pictures
available on photo sharing sites, since users presumably rotate the
images before they upload them. In addition, newer point and
shoot digital cameras as well as some cell phone cameras, contain
accelerometric sensors, which allow an estimate of the gravity
vector with respect to the image. Hence the images can be
automatically rotated to the horizontal direction if necessary.

The accuracy radius r can be estimated automatically based on the
geo-tags associated with a given input image. Moreover, a search
area can be defined in which corresponding panorama images
need to be considered for matching (See Figure 2). As one can
see, the search area corresponding to a radius r of 100m can span
multiple city blocks and streets. Therefore, in some cases a large
number of panorama images (300 to 1000) need to be taken into
account during the matching process.

An example of a panorama image captured by a panoramic
camera head is shown together with a matching user photograph
in Figure 3. The 360° view has been warped into a continuous
two-dimensional image. The x-axis corresponds to some angle
around the vertical panorama axis (“Panorama-Longitude”), and
the y-axis corresponds to the angle from a horizontal plane in the
panorama (‘“Panorama-Latitude”).



Figure 2. Overview of Streetside Panoramas within Search
Range

It is reasonable to assume that the panorama images are oriented
nearly horizontally thus restricting the possible transformations
between user-photographs and panorama images to a certain
extent.

Figure 3. a) Input Image to be Matched. b) Sample of Bing
Maps Streetside Panorama Image

It is important to note, that while the examples given in this paper
contain only outdoor user-images, as well as panorama images
captured on the street, the applicability of the method described is
not limited to this scenario. If the panorama images were replaced
by indoor-panoramas captured within a building, the same method
could potentially be applied. Evidently, the chances of matching
also depend on the contents of the captured images.

3. RELATED WORK

The task of matching multiple images according to a set of
features has already been elaborated for several decades, using
different kinds of features and algorithmic approaches. This task
becomes especially challenging if the image contents differ
significantly in their radiometry, geometry, resolution, perspective
or other parameters. The task also becomes more computationally
expensive if a large number of search images need to be
considered for a single query image. Typically, either global or
local image features or combinations of the two classes are used
for image matching.

Let us consider some examples of using image matching to
determine the location of the contents present in a query image
within a series of search images, or an estimate of the camera pose
relative to some world coordinate system. A specific application

for the second case is the initialization problem for an Augmented
Reality system. In order to be able to display augmentation about
the observed scene, the pose of the camera needs to be detected
accurately, such that subsequent tracking algorithms can be
initialized sufficiently well.

Like in our work, the majority of research on location matching,
such as [15], [17], [25], [30], [31], [35], [38], [47] and [48], makes
use of local image features, which, in contrast to global features,
describe properties of smaller regions within the image. The
advantage of this approach is that when correct correspondences
between regions of an image pair can be made, they can be used
to compute a more precise geometric relation between the images.
On the other hand, local image features usually require more
processing steps and so are more expensive computationally.
Matching local features usually requires four steps. First, salient
image regions need to be found by an interest point detector,
followed by the extraction of feature descriptors from these image
regions. Then the feature descriptors of multiple images are
compared and matched. The matches are verified geometrically.

Alternatively, the features of multiple search images can first be
matched against each other, and matches can be used to
reconstruct the 3D geometry of the scene by Structure from
Motion, such as in [33], [8], [47] and [48]. In this case, matching
of query features is done against the features associated with 3D
point locations rather than the 2D image points.

Typically, interest point detectors are designed to find salient local
image regions such as corners or blobs in scale-space, by using a
mathematical definition (e.g. Harris corners [12], Laplacian corner
detector, Difference of Gaussian detector etc.). A series of
research has been performed to develop interest point detectors
that are possibly invariant to changes in offset, scale [16], [30],
view point, and illumination [19], and ideally detect the same
interest point at the same scene location repeatedly. Since 3D
viewpoint changes usually cause more or less large local
deformations of image regions, invariance to affine [18], [27] or
perspective [45] distortions can contribute significantly to the
matching performance. Other research aims at computing interest
points very rapidly for applications running on mobile hardware
(e.g. FAST interest points [36]). More research has been done on
evaluating and comparing the performance of different interest
point detectors [26], [29], [52].

After the interest point detection, image patches are extracted
around each point, often considering scale and orientation
parameters determined by the interest point detector, from which
feature descriptors can be computed. A primary goal of the feature
descriptors is to make them significantly smaller in memory
footprint than the image patch from which they are computed,
such that features from multiple images can be compared more
efficiently than by a simple correlation. In addition, features
should ideally be invariant to some extent for realistic changes in
scale, position and orientation. This can be achieved by taking
into account statistical information about the distribution of
gradients in an image region. The most frequently used feature
descriptor is SIFT [23], which sub-divides the square image patch
into 4*4 equally sized regions, and computes for each region a
histogram of image gradients, which is quantized into 8 bins each.
This leads to a 128-dimensional descriptor for the image region.
Alternatives to or derivatives of SIFT are SURF features ([27]),
Viewpoint Invariant Patches (VIP) - [45] as well as DAISY
features [39], [51], [53]. Additionally, several comparisons have



been done to evaluate the quality of the different feature
descriptors [21], [28], [52].

Once the interest points are found, they need to be matched to the
database 1images. The simplest matching method is by
exhaustively comparing each image descriptor from the query
image to each descriptor in all search images. This can be
computationally very expensive, since 0(qXsXixXd)
operations are required, where ¢ is the number of query features, s
is the mean number of search features per search image, i is the
number of search images, and d is the number of dimensions per
feature descriptor. For ¢=2000, s=5000, i=300, d=128, this means
that 384 billion byte comparisons need to happen. To speed up the
matching process, a common method is to organize the descriptors
of single or multiple images in a K-D-tree structure [9], which
allows efficient nearest-neighbor search for a given query feature.
This has been used by the authors of [30], [31], [33] and [48].

Even much faster feature matching can be achieved by using
quantized image features, also referred to as visual words. A large
number of possible image feature descriptors are clustered into a
set of visual words (See [20], [34] and [38].), each of which is
basically represented by a single integer number. For each search
image, a list of the included words is saved, and an inverted file
index can be generated which contains for each visual word a list
of images in which it appears. Matching of a query image
basically consists of a step that associates each feature descriptor
to a corresponding visual word, and then uses the inverted file
table to find possible image matches. Search images can be
quickly ranked by the number of words overlapping with the
query image, which is usually weighted by some a-priory
likelihood for each word. Using this method, millions of images
can be searched within a very short time, which makes it very
attractive to large scale image search problems, such as location
matching. Examples of location matching based on visual words
are [38] and [49].

The last step is typically a geometric verification of the point
matches, to filter out mismatches, which usually occur frequently.
This is often done by using the RANSAC algorithm developed by
Fischler and Bolles [10], for robust model estimation even in the
case of many outliers. A variety of models, such as Fundamental
Matrix, Homography, 6-DOF Pose Estimation etc. can be used to
verify the geometry.

While the above order of steps is frequently used, other methods
are also worth mentioning, such as a seed and spawn algorithm
developed by Lilja [46], that tries to grow the matches starting
from some strong seeds, by using geometric reasoning through the
image space and scale space.

An alternative to local features are global image features, which
contain a global description of the essence of an image (gist),
derived typically by simple statistical analysis or by image
understanding methods, such as color histogram information,
image texture statistics or statistical descriptions of the image
content.

An example of using the time-modulation of image intensity in
videos recorded by stationary web-cams, by correlating it to the
pattern of cloud-motion derived from satellite images, has been
presented by Jacobs et al. in [41]. The major advantage of global
features is the relatively high speed of matching, even in the
presence of a very large number of search images (>>1M).
Nevertheless, this is often outweighed by the disadvantage that

positioning can usually only be done roughly, and with a large
remaining uncertainty, which renders this method inappropriate
for applications such as AR.

As another alternative to using local feature descriptors for
matching, edge information (edgels) can be used either to support
the location matching effort, or for later pose tracking within the
world model, such as shown by Reitmayr et al. [37].

Furthermore, while this paper deals with matching by using
natural image features, frequently used tools for camera
localization are artificial markers such as those provided by
ARToolkit [55]. Artificial markers are designed to be easily
detectable, even on mobile devices [22], [44], but they impose the
disadvantage that localization and tracking can only work in very
limited areas where markers are located.

4. OUR METHOD

4.1 Panorama Window Selection

As it is the case with the majority of related work in the area of
image matching, our method is based on local image features,
extracted around salient image regions found by an interest point
detector in different levels of an image scale space. Specifically,
we are using a Laplacian interest point detector, detecting a
similarity reference frame around each location (Offset, Scale and
Orientation) in combination with a version of a Daisy feature
descriptor with 32 dimensions developed by Winder et al. [39],
[51], [53], [46].
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Figure 4. a) Input Image with Feature Frames. b) Panorama
Image with Frames and Histogram of Matches per Image
Column

After the initial pre-processing of the query images (which are
resampled to be < 640 Pixel in dimension, and converted into
grey-scale), interest-points are detected and corresponding feature
descriptors are extracted from both the query image as well as the
search images. The interest point frames FZ and F' for both
images are visualized in Figure 4. Then, feature matching based



purely on the feature descriptors is performed to find matching
couples of descriptor vectors D2 and D” between the query image
and the panorama image (See Figure 7 a for definition). This is
done pairwise, by creating a K-D-tree structure from all
descriptors in a given panorama image, and searching for each
query feature matching features from the panorama.

To distinguish reliable matches from unreliable ones, a ratio test is
performed, comparing the feature distance (in feature space)
between the query descriptor and the closest and second closest
descriptor from the panorama image. According to formula {4.1},
a feature pair is rejected if the ratio is above some threshold $
(e.g. 0.8, see [23] for reference), and accepted if the ratio is above
the threshold.

Figure 5 shows the selected sub-window from the panorama
image (a) as well as version of the same image warped into a
virtual camera view (b). All following explanations of the
algorithm are based on the assumption, that this sub-window of
the panorama has already been selected, and that only the features
from within this sub-window are used for further matching.

(b)

Figure 5. a) Automatically Selected Sub-Window of
Panorama Image; b) Unwarped Sub-Window

4.2 Orientation Constrained Matching

For many applications it can be assumed, that the user photograph
as well as the panorama image are not rotated around the camera
axis by more than a certain angle tolerance 7. Therefore it is
reasonable to assume that for the pairwise feature matching only
features with reasonably similar feature orientation should be
matched. Especially for streetside scenes, where repetitive
structures as well as rotationally symmetrical objects can occur,
this can lead to a better “signal to noise ratio” in terms of the
correct matches versus incorrect matches. Figure 6 a) contains
another sample pair of a query image and a panorama, for which
the interest points and vectors indicating the orientation angle are
shown in Figure 6 b).

Our method subdivides the features into various orientation-bins,
e.g. 72 bins of 5° width each. The features within one angle bin in
the query image are only matched to features within a tolerance 7
from the limits of that bin. The features for the first bin, starting at
0° and ending at 5°, are shown in Figure 6 c) (Left) together with
those features in the search image that are within the tolerance
(Right). The same thing can be seen for a different angle bin in
Figure 6 d).

Hence, the algorithm sweeps through all orientation bins, and
matches only features within the right bins. Eventually, the
matches for each step in the sweep are concatenated into one
resulting set of point correspondences M = {{ fQi , fpj .

a) b)

Figure 6. Sample pair of query image (Left) and Part of
Search Panorama Image (Right).

a) Original images

b) Location and orientation of detected interest points

¢) Subset of Interest Points for a Given Orientation Window
in Query Image (e.g. 0° .. 5 °) and Larger Orientation
Window in Search Image (e.g. 2.5°+ 10 °)

d) Subset of Interest Points for a Given Orientation Window
in Query Image (e.g. 200° .. 205 °) and Larger Orientation
Window in Search Image (e.g. 202.5° £ 10 °)

Since the pairwise feature-based matching with a ratio test is still
likely to create a large number of mismatches, a geometric
verification of the matched feature pairs is required. Matching in a
3D-scene usually entails a model describing the epipolar geometry
between an image pair. This may be the Fundamental-Matrix
described in [24] defining the relation of each point in one image
to a line in the other and vice versa. We found that for urban
scenes the fundamental matrix provides too much freedom and
hence allows an unacceptable amount of false positives.

We decided that for stability reasons it would be better in urban
cityscapes to use a more restrictive, homography based model,
which basically assumes that the object points must lie on one or
more approximately flat surfaces in the 3D-scene. A homography
can transform each point in one image into exactly one point in
the other image, and hence is more restrictive when filtering out
outliers. The advantage of using homography for image matching
in urban scenes was also noted by Lourakis et al. ([14]). To
estimate the homography, we use the RANSAC algorithm.

x? xf?
= Q .
yiQ H Vi (42}
1 1

The results of RANSAC are the Homography matrix H,
transforming each set of homogeneous point coordinates [ x2 yiQ
, 1 J" from the query image into a corresponding set of coordinates
[ x2°, y2, 1" in the search image {4.2}. In addition, the
algorithm determines as a set of inlier point correspondences M;
containing only those point correspondences, for which the
reprojection error d; between the projected point [ 2, y2
and the corresponding point from the search image [ ij , yjP JMis
less than a threshold & {4.3}.



To avoid homographies that would distort the query image in a
non-desirable way, such as upside-down, mirrored, with
intersecting image outlines or singularities, several checks are
performed during the RANSAC process. If homography doesn’t
fulfill these checks, it is declared degenerate, and the
corresponding hypothesis can be rejected.

The number of inlier points n; g for a specific homography H can
be used to prune out image candidates at an early stage in the
process, if they do not exceed some minimum inlier count (e.g.

20).

bv)-C
4.3 Geometrically Constrained Matching
Once the homography H for an image pair is known from the first
matching iteration or other prior knowledge, and if the inlier count
is larger than a threshold, further processing steps can be
performed to confirm whether the matching hypothesis is
plausible. The matching process is repeated, taking into account
the projected point location for each feature point [ x2°, y2’ /" in
the coordinate system of the search image, as an additional pair of
features for the feature matching. This means, that each query
descriptor “D? is appended with the transformed point location [
x2, y2’ J" to form an extended query descriptor “D?, and each
search descriptor D% is appended with its corresponding feature
point 1oca£i0n [ ij , yjP J', resulting in an extended search
descriptor

M= XOX5} .V 8;<e ;6= (43}

Hence, a new K-D-tree is generated, containing the new
descriptor vectors pf , which allows an efficient search for the
nearest neighbor in the modified feature space, containing both
the original feature descriptors, as well as the geometric location
of the interest points.

a) b)
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Figure 7. a) Sets { D? } and {D" } of Feature Descriptors in
Query and Search Image. b) Modified Sets {"D?} and {"D"} of
Feature Descriptors in Query and Search Image.

For two different sample images, Figure 8 shows only those
feature matches that are inliers to the RANSAC procedure for
three cases: a) If only the feature descriptors are used for
matching; b) With the orientation constraint in place; and c) After
the second iteration, taking into account the homography to
predict the geometric location of the query features in the search
image.

Table 1 contains more quantitative results for the matching
process, for the two images shown in Figure 6, as well as eight
more images.

Figure 8. Inliers of Feature Based Matching for Two Sample
Images 1) and 2).

Row a) shows results for matching purely based on feature
descriptors.

Row b) shows results for matching of features with similar
feature orientation.

Row c) shows results for matching after second iteration,
using initial homography as additional input for descriptor
matching.

In Figure 8 b) it can be seen that the number of matches increases
slightly if orientation constrained matching is performed. In some
cases this influences whether or not an image can be matched at
all. This is especially true that if the scene contains a number of
rotationally symmetrical objects that could be mismatched to a
rotated instance of a similar object.

A much larger number of correct matches can be achieved if the
geometric location is considered during the matching process
(Figure 8 c). Hence features that are closer to the expected
location produce a better ratio test result, than similar but farther
away features. This especially helps for cases, in which the scene
contains a lot of repetitive structure, such as windows, doors,
facade stucco work etc., which are frequently present in urban
streetside scenes.

While the inlier count to the RANSAC operation is a strong
indicator for whether or not an image should be accepted or
rejected by the algorithm, there are a few more criteria to be
considered for this purpose.

In addition to the Inlier Count, we collect more information
about the matching process, including the distribution of the
matched points in both the query and search image (represented
by the Standard Deviations 6, and 6p of the point coordinates),
the mean Reprojection-Error 8, the mean Euclidean Feature



Distance p between all feature pairs, as well as a Correlation
Coefficient ¢ between the two images.

Table 1. Overview of Matching Metrics for Sample Images
from Figure 8 as well as 8 Further Sample Images:

Column 1 — Image Number

Column 2 — Number of Features in Query Image

Column 3 — Number of Features in Search Image

Column 4 — Number of Matches for Purely Feature — Based

Matching

Column 5 — Number of Matches for Orientation - Constrained
Matching

Column 6 — Number of Matches for Homography Constrained
Matching

Column 7 — Number of RANSA C-Inliers for Purely Feature —
Based Matching

Column 8 — Number of RANSA C-Inliers for Orientation -
Constrained Matching

Column 9 — Number of RANSA C-Inliers for Homography
Constrained Matching

Img  Feat Feat M M, M, 1 I, I,
Query Search

1 1835 3592 103 131 317 60 73 219
2 1200 1429 63 104 204 17 26 100
3 1860 1955 166 192 316 120 139 222
4 3061 5511 50 76 191 18 24 71
5 1533 2015 82 121 303 48 60 150
6 1601 2129 37 69 272 10 13 42
7 1706 2002 204 246 454 116 126 354
8 1002 1880 33 56 71 9 12 26
9 1644 2164 133 160 319 43 50 204
10 2263 4234 58 110 172 8 13 49

To compute the correlation coefficient, the query image needs to
be warped into the coordinate system of the search image by using
the known homography H, as shown in Figure 9 a), and hence the
area surrounding the matched feature points needs to be selected
in a binary mask b). All pixel grey-values within the masked area
of the two images are concatenated in a pair of vectors, which are
then used to compute a correlation coefficient ¢,. This coefficient
is expected to be close to 1.0, if the image pair matches well, and
typically less than 0.6, if the image pair doesn’t match.

a) b)

Figure 9. a) Query Image Warped onto Search Image Using
Homography; b) Correlation Mask around Matching Feature
Points. Correlation Coefficient for Example = 0.8609

Unfortunately, the correlation coefficient computed as above is
only reliable if there are no significant illumination differences
between the two images.

In case such differences in the illumination do exist, a second
correlation coefficient ¢, can be computed from a blurred version
of a pair of edge-images computed from the two grey-level
images. Figure 10 a) shows such a case, where two images have
significant illumination differences, which cause the correlation
coefficient to be relatively low (0.6072). The edge image (b),
computed by using a Canny-edge detector [11], together with a
blurred version of it, created by convolution with a Gaussian filter
kernel (c), as well as the new selection of the values for
correlation (d), are shown in Figure 10. As a result, the new
correlation coefficient ¢, in this example is 0.9272, indicating a
more reliable match than the value computed from the grey-level
image.

Figure 10. a) Image Pair with Significant Illumination
Differences — Correlation Coefficient = 0.6072 . b) Edge Image
Computed from Input Images Using Canny Edge Detector. c)
Edge Image Convolved with Gaussian Blur-Kernel. d)
Blurred Edge Image with Correlation Mask — Correlation
Coefficient = 0.9272

Eventually, a matching score C is computed for each image pair,
according to formula {4.4} that can be used to decide whether a
certain panorama can be accepted as a match to a query image. In
addition, this score can help to determine which out of a set of
panoramas matches best to the query image, if multiple candidates
exist.

_ nygrmax(cg.co)xlog(ag+ap+1)
C= o5) 7 {4.4}

S. RESULTS

To evaluate the quality performance of our matching algorithm,
we used a set of roughly 300,000 precisely geocoded panorama
images in Seattle as the base model for location matching.

As query images, we used a test set of 11,000 images downloaded
from Flickr that were geocoded within a radius of 10m to at least
one of the streetside-panorama images we used. Out of those
query images, 3,132 had been hand-labeled as outdoor-images,
and thus potential match candidates.

For each image, the algorithm determined, whether one or more
panorama images should be considered as matches, and in which
order to rank the resulting matches to decide for a single best
match.

Figure 11 shows three examples of query images that were
matched to a series of consecutive panorama images. The graph
below the images shows the matching score (normalized) that was
achieved for the corresponding panorama. The graphs show a



clear peak at the correct image that maximally overlaps the query
image. It is further possible to determine an even more precise
location for the query image by computing the center-of-gravity
from the score curve (red bars).

To evaluate the quality performance of the algorithm, we matched
the test set of 11,000 images to the panoramas that were within a
100m around the initial geocoded position for each image.

Figure 11. Matching Result for Four Sample Query Images
(Top) with Corresponding Set of Streetside Search Images in
Range (Centre) and Normalized Matching Score (Bottom)

The method described above matched 1,556 images correctly to a
panorama image showing the same scene as in the user
photograph. This corresponds to a true positive ratio of 49.7%.
The true positive ratio does not take into account the fact that not
all 3,132 images were actually viewing an object that was also
visible from within a panorama, or not all were geocoded
accurately enough so that the correct panorama image was within
the search radius.

For a smaller subset of 1,463 images, for which these two
assumptions were manually verified, the true positive ratio was
59.7%, corresponding to 970 correct matches. Some samples of
correctly matched images are shown in Figure 12, in the context
of the matched panorama image. More matches can be seen in the
Bing Maps Application “Streetside Photos” [56].

Some of the query images could be matched successfully, even
though they differed substantially from the panorama images,
either in resolution, sharpness, illumination, viewing perspective,
camera geometry or due to noise or occlusions.

Figure 12. Examples of Images Shown in the Context of the
Matched Streetside Panorama Images, in the Bing Maps
Silverlight Client. Top Right is a Historic Image from 1919

The remaining 40.3% of images that could not be matched with
this method partially had a very narrow field of view, not covering
enough unique image features that could be reliably matched with
a reference image. In other cases, the images contained a large
amount of repetitive structures, such as building facades with
many windows, or they were taken from a perspective that
differed too much from the view in the panorama image. In
addition, due to the use of the homographic geometry model for
match-verification, scenes with a larger amount of 3D structure
also were more difficult to match. A few samples of false
negatives are shown in Figure 13.

.

Figure 13. Samples of false negatives (Images not successfully
matched)

Altogether 59 false matches were counted, corresponding to a
false positive ratio of 0.5%. Typically, images containing
repetitive structures, such as window shutters, building fronts with
repetitive window-patterns or similar textures were more likely to
be mismatched (See Figure 14 for samples of false positive match
pairs), even though their matching scores were usually relatively
low.

Figure 14. Samples of false matches. Query Image (Top) and
Corresponding Mismatched Search Image (Bottom). Red
Lines Show Projected Outline of Query Image, if Within
View, Blue Dots Show Projected Image Centre.



6. CONCLUSION OUTLOOK

In this paper we show that image based location matching using
local features can be done reliably even in the presence of large
variation in image radiometry and camera pose, due to a few key
elements:

* Constraining the freedom of descriptor matching, namely by
removing the rotation-invariance, as well as using only
homography-based geometry verification

» Repeating the matching process after an initial homography is
known to achieve a larger number of matches

» Verifying the matching hypothesis by correlating the actual
images

« Computing and evaluating a matching confidence score based on
the matching statistics

While our algorithm could successfully match ~60% of the
verified test dataset used, the false positive ratio was only 0.5%.
This performance could be achieved even though the test data
included a subset of very challenging images, including images
taken at night, images that were very blurry, or had only a small
overlap with the panorama images. Problems occurred mostly
when query images had a large number of features due to regular
structures, or if the field of view of the query image was too
limited and didn’t contain enough unique features to allow
reliable matching.

A current weakness of the described method is that the feature
matching happens for every candidate image individually, which
imposes a high computational cost and makes real-time
applications unfeasible. This weakness could be diminished by
using a fast ranking mechanism for the candidate images, such as
a global K-D-tree, which would only require a detailed
verification of a subset of the images.
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