
 

 

 

LEARNING TO PROGRAM WITH  

VISUAL BASIC AND  

.NET GADGETEER 

 

A guide to accompany the Fez Cerberus Tinker Kit 

 

 

Sue Sentance 

Steven Johnston 

Steve Hodges 

Jan Kučera 

James Scott 

Scarlet Schwiderski-Grosche 

 

 

 

LEGAL NOTICE: The source code available in this book is subject to the Apache License, version 

2.0. To view a copy of this license, visit http://www.apache.org/licenses/LICENSE-2.0.html.   

 

All other content is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported 

License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ 

or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, 

California, 94041, USA. 

 

Edition 1.0, 22 October 2013  

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html


2   Learning to Program with Visual Basic and .NET Gadgeteer  
 

FOREWORD 

Computer programming can be fun!  This book on Visual Basic and .NET Gadgeteer shows how.  Aimed at high 

school students and first-time programmers, the authors use a combination of hardware and software to make 

programming come alive - audibly, visually, and tangibly.  Using small hardware components - a standalone 

processor, simple sensors and actuators - students build their own little computers in hardware and then program 

them to do fun things, such as play music (Chapter 3), blink lights (Chapter 6), or draw pictures (Chapter 10).  By 

the end of the book, students have learned all the basics of programming: variables, basic data types, arrays, 

conditionals, iteration, procedures, and functions.  More importantly, they learn a fundamental “computational 

thinking” concept - modularity.  From the very first exercise, students become engaged through the tactile 

experience of assembling hardware components together to build real devices which they program through 

standard interfaces, protocols, and built-in libraries.  Without a lot of fuss, the authors teach these concepts using 

the widely-adopted Visual Studio software development tool, exposing students to a modern programming 

environment that supports the engineering cycle of design, build, test, and debug. At the same time, students 

naturally assimilate a better understanding of how electronic devices work and how they are made, valuable 

skills in our increasingly digital lives.  

 

Jeannette M. Wing 

Corporate Vice President, Microsoft Research 

15 October 2013  
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CHAPTER 1. INTRODUCTION 
 

Microsoft .NET Gadgeteer is a really easy-to-use platform for creating new electronic devices using a wide 

variety of hardware modules and a powerful programming environment. Students with little or no electronics 

background can design and build devices that sense and react to their environments using components such as 

switches, displays, buzzers, motor controllers and more. Using cables these various modules are plugged into a 

mainboard which is programmed to make everything work together. 

 

Figure 1: FEZ Cerberus Tinker Kit, showing mainboard and modules. 

.NET Gadgeteer originated at Microsoft Research in Cambridge, U.K. It was initially designed as a tool for 

researchers to invent new kinds of devices more quickly and easily. It very quickly proved to be of interest to 

hobbyists and for secondary and higher education. In particular, several pilots in schools in the UK and the US 

with students ranging from 11 to 18 years of age demonstrated that .NET Gadgeteer is a motivating 

environment for teaching computer programming both within the curriculum and as an extra-curricular club. 

Gadgeteer is programmed in a modern event-based and object-oriented style using Visual C# or Visual Basic. In 

addition to teaching programming, Gadgeteer offers exciting possibilities for teaching electronics and computer-

aided design. 

Microsoft Research launched .NET Gadgeteer as an open platform in 2011. As a result .NET Gadgeteer 

components are now available from several hardware vendors, whilst the software required to program the 

devices is available for free from Microsoft. The Fez Cerberus Tinker Kit from GHI Electronics consists of a 

mainboard and various modules which have been selected to allow someone new to Gadgeteer to build a wide 

variety of exciting devices. Other Gadgeteer kits are available and there are also a wide variety of individual 

modules which are available separately. 

With .NET Gadgeteer we hope that we can give students a better understanding of how the devices and 

technology all around us work, as well as the skills to create their own. We hope to inspire a future generation of 

producers of electronic devices, not just consumers! 
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OBJECTIVES OF THIS BOOK 

This book is intended for school students and others learning to program in Visual Basic. It assumes no prior 

knowledge of programming, electronics, Visual Basic or the Visual Studio environment. Programming concepts are 

introduced and explained throughout the book. Each chapter is structured in a similar way: firstly a new concept 

to be learned is introduced, secondly there is a step-by-step tutorial on how to develop a simple example in 

Gadgeteer which uses that concept, and finally a set of exercises is given which enable the reader to practise the 

main points. This last step is the most important: when learning to program, practising new programing skills is 

crucial! Answers to all the exercises are available at http://gadgeteering.net. 

This book is based on the Fez Cerberus Tinker Kit made by GHI Electronics, which is a good value-for-money .NET 

Gadgeteer kit produced specifically for education. Although images of this kit are used throughout this book, 

different mainboards and modules from other manufacturers or kits can be substituted with little or no changes to 

the associated code. 

MODULES USED IN THIS BOOK 

This book uses the following modules, which are all included in the FEZ Cerberus Tinker Kit apart from the 

‘Extender’ module in Chapter 12. Note that in many cases other kits and modules can be substituted. 

Module name Image Used in chapters 

Fez Cerberus mainboard 

This is at the heart of every 
project. It has a processor, 
memory and a series of 
sockets. You can connect 
modules into these sockets. 

 

All 

 

USBClientSP power module 

The mainboard and modules 
require power. This module 
not only provides power to 
your device it also lets you 
program and debug over 
USB.  

 

All 

 

Display N18 module 

This LCD module lets you 
display images and text in 
colour. It is backlit and is 
visible in the dark. The display 
is 128 pixels wide and 160 
pixels high. 

 

Chapter 4 
Chapter 5 
Chapter 10 
Chapter 11 

http://gadgeteering.net/
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Joystick 

The joystick moves up-down 
and left-right. You can then 
read values corresponding to 
how far the joystick has been 
moved in each direction. You 
can also press the joystick and 
it acts like a normal button. 

 

Chapter 11 
Chapter 12 

LED Strip 

There are 7 LED lights in a 
row: 2 red, 3 amber and 2 
green. You can turn each LED 
on/off individually. 

 

Chapter 6 
Chapter 7 
Chapter 8 

Light sensor 

This module returns a value 
that corresponds to the 
amount of light to which the 
sensor is exposed. 

 

Chapter 8 

Button 

The module detects when the 
button is pressed and 
released and also has an LED 
which can be turned on/off.  

Chapter 4 
Chapter 5 
Chapter 6 
Chapter 7 

SD card module 

This modules accepts a full 
sized SD card and lets you 
read from and write to files.  

You will need an SD card to 
use it; not all SD cards work 
so use the one provided with 
the Tinker Kit. 

 

Chapter 8 
Chapter 9 

Tunes 

This module lets you play 
individual notes and construct 
basic melodies.  

Chapter 3 
Chapter 9 

Extender  

This is an advanced module 
that lets you connect existing 
electronic components or 
custom devices to your project. 
You can use any extender or 
breakout module instead.  

 

Chapter 12 

 

  

http://www.ghielectronics.com/images/catalog/273-0_large.jpg
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HOW TO USE THIS BOOK  

This book consists of a series of projects built using a Fez Cerberus Tinker Kit. There are 9 projects using the kit, 

with an additional project in chapter 12 which needs a Gadgeteer Extender module and a buzzer which you can 

purchase separately. 

Chapters 1 and 2 introduce you to how to use .NET Gadgeteer and Visual Studio so you will need to read these 

first and make sure that you have installed Gadgeteer successfully and are familiar with the Visual Studio 

interface. 

Chapters 3 to 12 each contain a project and are divided up as follows: 

 Key Terms – these are the new concepts to be covered in this chapter; 

 Modules you will need – which Gadgeteer modules you will need for this project; 

 Overview – what you will build in this chapter; 

 New Concepts – an explanation of the new programming concepts. Programming concepts are 

introduced in this order: variables, data types, if statements, loops, functions, arrays and file-handling;  

 Tutorial – a step-by-step tutorial on how to develop the core project. Follow the instructions carefully, 

referring to the appendices if you have problems getting anything to work; 

 Exercises – the most important part of each chapter! This is where you try to build some projects on your 

own, building on what you have learned in that chapter. Solutions to the exercises can be found at 

http://www.gadgteteering.net/learn;  

 Summary – this gives some key points that we think you will have learned in the chapter. 

The appendices cover a range of topics from where to buy Gadgeteer to what to do if your project will not work 

as expected. We recommend you read through the appendices to see the range of topics covered, and then 

refer to them when you have any difficulties or need additional information. Note that the technical details are 

correct at the time of writing but can change as new software releases or updates become available. In this case, 

updated information will be available at http://www.gadgeteering.net.  

 

 

  

http://www.gadgteteering.net/learn
http://www.gadgeteering.net/
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CHAPTER 2. GETTING STARTED WITH .NET GADGETEER 

 

ASSEMBLING THE HARDWARE 

Each project needs a mainboard. This contains the microprocessor which will be programmed to make it behave 

in the desired way. But a microprocessor only really becomes useful when it is connected to other components to 

let it display output, react to inputs, process files and so on. To do this with Gadgeteer, different modules are 

connected to the mainboard using small grey cables.  

You will begin each project in this book by plugging together the modules needed for that particular project. 

There is a list of modules at the start of each chapter. It is important to plug the modules into the right sockets on 

the mainboard – each module has a letter on it which indicates which socket type it can be attached for. When 

you have found the socket letter on the module, look for the same letter next to a mainboard socket – there will 

probably be more than one option – and attach the other end of the cable there. 

 

Figure 2: Assembling the hardware 

The most important rules for plugging together Gadgeteer are: 

 When connecting modules, always make sure that the mainboard is not connected to the PC or powered 

on using a different power supply. 

 Red modules supply power to the mainboard. Only one red module should ever be connected to the 

mainboard at any time. 

 Match the socket type letters between the modules and the mainboard as described above. 

If a module is connected to the wrong socket type it won’t work but it shouldn’t damage anything either. 

STARTING A PROJECT IN .NET GADGETEER  

You need a desktop or laptop computer in order to program a Gadgeteer mainboard. Before starting to work 

with Gadgeteer, ensure that you have downloaded and installed all the software on to your machine. You need 

three different pieces of software:  

 The Microsoft Visual Studio programming application for developing code; 

 The Microsoft .NET Micro Framework system which allows your code to run on a Gadgeteer mainboard; 

 A software development kit (SDK) from the manufacturer of the particular Gadgeteer components you 

are using.  

All modern software is updated frequently by the companies who develop it, in order to fix any problems and 

add new features. The same is true of the Gadgeteer software components listed above and it’s important that 

you use the right versions! There are currently two popular versions of Microsoft Visual Studio and you can use 

either one as long as you install the associated version of the .NET Micro Framework. The installers are pretty 

Match socket type letters when 

connecting modules to the mainboard.  

 

This socket supports type F and Y 

modules which is OK for a button 

because it is also type Y. 
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easy to use. You must install the software in the order given below. Some of the installations involve downloading 

a zipped file. In this case you must extract all the contents before running the Setup program. For detailed 

installation instructions go to http://www.gadgeteering.net/content/installation-instructions and check Appendix 

B.  

If you want to use Visual Studio 2012 edition, this is exactly what you need to get your Fez Cerberus Tinker Kit 

up-and-running: 

 Visual Studio Express 2012 for Desktop; 

 Microsoft .NET Micro Framework 4.3 SDK; 

 GHI NETMF and Gadgeteer Package 2013 R2. 

Alternatively you can use the following: 

 Visual Basic 2010 Express; 

 Microsoft .NET Micro Framework 4.2 SDK; 

 GHI NETMF and Gadgeteer Package 2013 R2. 

The Express Editions of both Visual Basic 2010 and Visual Studio 2012 are free, but if you already have another 

version of Visual Studio 2010 or 2012 which supports Visual Basic it is fine to use this instead. The rest of the 

software is also free.  

To start using .NET Gadgeteer, first launch Visual Studio 2012 or Visual Basic 2010. On launching the software, 

you will see a screen enabling you to choose a .NET Gadgeteer Application (see Figure 3).  If you do not see this, 

select NEW and then Project… from the FILE menu. You will need to make sure you select Visual Basic and then 

Gadgeteer on the left-hand side before you are offered the chance to select a new .NET Gadgeteer application 

as shown in Figure 3. The screenshots in this book all use Visual Studio 2012; if you are using Visual Basic 2010 

things will look slightly different but all the principles are the same.  

 

Figure 3: Starting to use .NET Gadgeteer 

 

You are then prompted to choose the mainboard you want. There are many different mainboards available from 

different manufacturers but the Fez Cerberus mainboard comes with the Fez Cerberus Tinker Kit and this is what 

Click here to 

indicate you 

want to create a 

new Gadgeteer 

application. 

 

Give your project 

a meaningful 

name here. 

 Click 

‘OK’ to 

proceed. 

 

http://www.gadgeteering.net/content/installation-instructions


     Learning to Program with Visual Basic and .NET Gadgeteer    13 
 

we will be using in this book. So choose the Fez Cerberus mainboard as shown in Figure 4 and then click on 

‘Create’. 

This will create a new project in Visual Studio and you are ready to start! 

 

Figure 4: Choosing the Cerberus mainboard 

 

THE GADGETEER DESIGNER IN V ISUAL STUDIO 

Before you start to write any code to run on your Gadgeteer mainboard, you need to specify which modules you 

are going to use in your new project and which sockets you are going to connect them to. This is done in Visual 

Studio using a feature called the Gadgeteer Designer. This Designer is a special picture-based view of your 

project – the idea is to drag photos of each of the modules you are using into the Designer window and then click 

on the module sockets to draw lines on the screen which connect up to sockets on the mainboard you are using. 

When you created a new Visual Studio ‘.NET Gadgeteer Application’ in the previous section you probably ended 

up with something like the screenshot in Figure 5. This is the Designer view, and to start with it only includes the 

mainboard you selected when creating your new project. If you ever want to return to the Designer view, look for 

the tab labelled ‘Program.gadgeteer’ and click on this.  

The next stage is to add the modules you want to use for your project. This is done by selecting them from the 

Toolbox. The Toolbox is a window which runs down the left hand side of the screen in Visual Studio and lists all 

the modules that were included in the SDK you installed previously. If the Toolbox is not showing, click as shown in 

Figure 5 to reveal it.  Bring the modules you need into the Designer window by dragging or double-clicking the 

relevant module names in the Toolbox. Then connect them to the mainboard. 

The steps shown in the pictures in Figure 5, Figure 6, Figure 7 and Figure 8 will guide you through this process. 
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Figure 5: Using the Toolbox 

 

 

Figure 6: Adding modules in the Designer 

 

 

Figure 7: Modules in the Designer 

 

Double-click 

on each of 

the modules 

needed for 

your project 

or drag them 

to the right. 

 

Click on the 

connector on a 
module and 
drag to the 
mainboard to 
connect it. 

 

Select Toolbox 

to see a list of 

modules. 

 



     Learning to Program with Visual Basic and .NET Gadgeteer    15 
 

 

Figure 8: Connecting modules in the Designer 

You will probably notice that when you ‘wire up’ a module in the Designer it is only possible to connect to a 

compatible socket on the mainboard – one with the same socket type letter.  

When you have finished connecting the modules to the mainboard and your configuration matches your 

hardware, select Save All under the FILE menu to save the whole project. Connect the hardware to your computer 

using the USB cable. You are then ready to start programming your project. If you ever go back and make 

changes in the Designer be sure to save the file, there is an indicator on each tab showing if it has been saved as 

shown in Figure 8.   

To start writing code for your project, click on the Program.vb tab at the top of the project (see Figure 9). This 

takes you away from the Designer and replaces it with a code window as shown in Figure 10. As you will see, 

Visual Studio automatically creates the framework for your code using a template which was installed with the 

Gadgeteer software. The template contains several lines of comments – text that can be included in a program in 

order to help programmers understand how a piece of code works but which the computer will ignore.  These 

comments can be deleted of course, but they are often useful to help you get started with programming. 

 

 

Figure 9: Locating the Program.vb tab 

 

Make sure your complete 

configuration matches the 

way you have connected 

the real hardware. 

 

Click on 

Program.vb to 

see the program. 

.code. 

 

This star indicates 

that the file has not 

been saved.  
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Figure 10: The ProgramStarted() method 

 

The next step is to write the code for your project. The remaining chapters in the book explain how to write the 

code for several different projects. While you are doing this you will be learning how to write computer 

programs. The skills you learn when programming in one language are very transferable to other languages you 

learn in the future. Also you will be learning a lot about how electronic devices and computer applications are 

made. 

  

The Visual Basic 

Gadgeteer template has 

one method called 

ProgramStarted() and 

some hints on where to 

write your code. 
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CHAPTER 3. PLAYING TUNES 

 

KEY TERMS  MODULES YOU WILL NEED 

Program 
Sub 
Procedure 
Comment 

 
Cerberus mainboard 
USBClientSP power module 
Tunes module 

 

OVERVIEW 

In this first project you will learn to use the tunes module to play a tune using .NET Gadgeteer. Before starting, 

the next section will give you a short introduction to what a program in Visual Basic looks like. 

PROGRAMMING IN V ISUAL STUDIO 

Visual Studio can look very complicated when you start using it but you will quickly learn which parts are 

important. When you are programming you need to focus on the main window. 

 

Figure 11: The main code window in Visual Studio 

A program begins with Import statements and these specify what modules will be used in the Gadgeteer 

program. The next section of Program.vb declares the program itself. The program begins where the code says 

Partial Public Class Program and ends with End Class at the bottom of the page. This will always be 

written for you by the Gadgeteer Visual Basic template so you will not need to worry too much about it.  

Inside a Program Class are procedures. A procedure in Visual Basic is known as a Sub.  

This Sub (or procedure) is 
run when the program 

starts. 

Import statements tell the 
program which modules to use. 

Debug.Print(“Program Started”)  outputs  the 
text “Program Started” to the Output window. 
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Each Sub (procedure) begins with Public Sub and ends with End Sub. In a Gadgeteer program the beginning 

and end of procedures will nearly always be written for you, either in the template or added automatically when 

you need them. In this case the Sub is called ProgramStarted() and not surprisingly, runs when your Visual Basic 

program starts. 

Later on you will create other Subs (procedures). But in this project we will put all the code we write inside the 

ProgramStarted() Sub so that it is run as soon as the program starts. 

Inside ProgramStarted() there is some code already written but most lines start with an apostrophe and are in 

green. These lines are comments which are ignored by the computer when the program runs. They are there for 

the humans! These help you to understand what is going on and you should add comments to your own programs 

as you write them so that you can remember how they work too. 

The only line that is not in green inside ProgramStarted() is Debug.Print(“Program started”). This is an 

instruction to the computer to write the words “Program started” to the Output window (see Appendix C). This will 

be useful it provides a signal to you that the program is running correctly. See Figure 11 for details of what this 

looks like on-screen. 

In this project we will add some code to the ProgramStarted() Sub and this will tell the computer to play a 

tune using the tunes module. 

TUTORIAL : PLAYING A TUNE 

Step 1: Assemble these modules  

Referring back to Chapter 1, the first step when building a Gadgeteer project is to connect up the hardware 

modules you will need. For this project, you will need a mainboard, a tunes module and a power module as 

shown in Figure 12. 

 
 

 

 

Cerberus Mainboard USB Client SP power module Tunes module 

Figure 12: Modules needed for Tunes project 

   

Connect these modules together using the cables to the correct sockets on the mainboard. The letter on the module 

tells you which sockets are allowed (see page 11 for more information). 

Step 2: Use the Gadgeteer Designer to link the modules together  

The next step is to open Visual Basic and to start a new .NET Gadgeteer application (as shown on page 11). 

Following the instructions there, drag a tunes module, mainboard and power module on to the Gadgeteer 

Designer screen and connect them up in exactly the same way as you have connected your hardware. The 

diagram in Figure 13 shows an example.  
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Figure 13: Modules in the Designer for the Tunes project 

When you have finished connecting the modules to the mainboard and your configuration matches your 

hardware, select Save All under the FILE menu to save the whole project. Ensure the hardware is connected to 

your computer using the USB cable. You are then ready to start programming your project. If you ever go back 

and make changes to the Designer be sure to save the file. 

Step 3: Write your program 

Now click the Program.vb tab at the top of your program and your Gadgeteer Designer window should 

disappear and the code window should appear. 

 

Figure 14: Code window for Tunes project 

Visual Studio has various features that assist with editing your code, many are intuitive but it is worth looking at 

the IntelliSense appendix on page 96 for a quick introduction to these features that can save time and make 

coding these examples easier.   

Underneath the line Debug.Print(“Program Started”) add the line highlighted in yellow below: 

Click the Program.vb 

tab to see the code. 
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        Public Sub ProgramStarted() 
            ' Use Debug.Print to show messages in  

     ' Visual Studio's "Output" window during debugging. 
            Debug.Print("Program Started") 
            tunes.Play(261) 
             
             

tunes.Play(number) plays a sound at a certain pitch or frequency. The frequency is specified by the number in 

brackets and is measured in a unit called Hertz, abbreviated to Hz. A frequency of 261 Hertz is the frequency of 

middle C, if you play the piano!  Now add the lines highlighted in yellow in the code below. 

        Public Sub ProgramStarted() 
            ' Use Debug.Print to show messages in  

     ' Visual Studio's "Output" window during debugging. 
            Debug.Print("Program Started") 
            tunes.Play(261) 
            Thread.Sleep(1000) 
            tunes.Stop() 

Thread.Sleep(1000) causes the program to pause for 1000 milliseconds, which is one second. After this 

tunes.Stop() will stop the note playing. 

This program should print Program Started in the Output window (if you cannot find this, see Appendix C) and 

then play a middle C for one second. So now it is time to get this first program running. 

Now is a good time to save your program. To do this, click on the Save All icon . It is very important to save 

‘all’ as there are lots of different files in a Gadgeteer application and they all need to be saved together. If you 

are working in Visual Studio 2010, you may need to name your project for the first time – call it “Playing Tunes”.  

If you are using Visual Studio 2012 Express you will already have named your project as this is done when you 

create a new project.   

Now press the green play button  at the top of the screen to run the program. Allow around half a minute for 

the program to load onto the Gadgeteer mainboard and then it should play automatically. 

Does your program work? If it does not, check the following: 

- Is the USB cable plugged in and attached to the red power module (USB Client SP)? 

- Are the connections to the sockets on the mainboard the same as those that you have used in the 

Designer? 

- Did you install the Gadgeteer software that comes with the FEZ Cerberus Tinker Kit? 

- Did you type in the code exactly as written above? 

If you have checked all these and you still have errors, go to page 98 (the troubleshooting section of the 

appendices) to look up some strategies that will help you check that your code is written correctly and get it 

working. 

When you press the green play button  your program is deployed to the hardware that you have plugged in 

via USB. The play button starts a process called debugging and is covered in more detail on page 107. Since 

your program has been deployed to the hardware, every time you reset the Gadgeteer device from now on (or 

power it up) your program will execute. In the case of the Tunes example, it will beep every time you connect it 

over USB. Remember that you are programming the hardware to create a standalone gadget.  

You cannot edit your code or alter the modules of the Designer if your program is running. You will first need to 

press the stop button  or Stop Debugging on the Debug menu at the top (Shift + F5).  
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When your program successfully plays one note, it is possible to create a longer tune. You could do this with a 

sequence of tunes.play(<number>) commands. Alternatively you can save a series of individual notes into a 

melody. Firstly, here is how to create a longer tune with more tunes.play() commands. 

The scale of C Major uses frequencies shown in Table 1. 

Table 1 : Scale of C Major and corresponding frequencies 

Note 
Frequency 

(in Hz) 
 Note 

Frequency 
(in Hz) 

Middle C 261  G 392 

D 293  A 440 

E 329  B 493 

F 349  C 523 

To play the scale of C Major using Gadgeteer, add these frequencies to your program. Simply add some more 

lines with tunes.play(<frequency>) using the numbers in the table. Using Thread.Sleep() between notes makes 

the computer wait for a certain number of milliseconds before playing the next note. If you are not sure how to 

do this, refer to the code below to help you. 

   Partial Public Class Program 
 
        ' This is run when the mainboard is powered up or reset.  
        Public Sub ProgramStarted() 
            Debug.Print("Program Started") 
 
            tunes.Play(261) ' Middle C 
      Thread.Sleep(1000) 
            tunes.Play(293) ' D 
            Thread.Sleep(1000) 
            tunes.Play(329) ' E 
            Thread.Sleep(1000) 
            tunes.Play(349) ' F 
            Thread.Sleep(1000) 
            tunes.Play(392) ' G 
            Thread.Sleep(1000) 
            tunes.Play(440) ' A 
            Thread.Sleep(1000) 
            tunes.Play(493) ' B 
            Thread.Sleep(1000) 
            tunes.Play(523) ' C 
            Thread.Sleep(1000) 
             
            tunes.Stop() 
        End Sub 
 
    End Class 

Another way of playing a tune is to add some notes to a “melody” and then play the melody.  

To do this you will need to declare a variable melody.  A variable is a container that holds a value. Each 

variable has a particular data type associated with it – this refers to the type of information (or data) that the 

variable will be used to store. For example whole numbers are stored using a data type called an Integer. In this 

case we are creating a variable called melody which is an instance of a data type called Melody (capital M).  

Variables will be described in detail in the next chapter. 

You can declare a melody using this line of code (we have also added a comment): 
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            ' declare a new melody 
            Dim melody As Tunes.Melody = New Tunes.Melody() 
 

Once you have declared the melody, you can add notes to the melody – for each note you add you need to 

specify the frequency (pitch) and the duration (length). The frequency is in Hertz as before and the duration is in 

milliseconds (thousandths of seconds). 

So for example, to play middle C for 2 seconds use the line of code: 

melody.add(261,2000)  

 

            Dim melody As Tunes.Melody = New Tunes.Melody() 
            ' declare a new melody 
 
            melody.Add(261, 600) ' Middle C 
            melody.Add(293, 600) ' D 
            melody.Add(329, 600) ' E 
            melody.Add(349, 600) ' F 
            melody.Add(392, 600) ' G 
            melody.Add(440, 600) ' A 
            melody.Add(493, 600) ' B 
            melody.Add(523, 600) ' C 
 
      ' Now play the melody 
            tunes.Play(melody) 
 

Edit your program by changing the lines of code starting with tunes.play() and instead use 

melody.add(<frequency>, <time>) as shown in the code. 

Run your program and check that it works as you would expect. Then try the following exercises.  

EXERCISES  

1. Edit your Visual Basic program to see if you can play the scale of middle C going down as well as up. 

2. Edit your program so that it adds the notes for the tune “Happy Birthday” to a new melody and then plays 

that melody. You will need to research some more notes and frequencies. 

3. (Advanced). Edit your program so that it uses a loop to repeat two notes five times, using the code given 

below. This uses a For … Next loop which you will learn properly in Chapter 7. 

          For counter As Integer = 1 To 5 

              tunes.Play(261) ' Middle C             
              tunes.Play(293) ' D 
          Next 

4. Once this works see if you can use For … Next loops to play the popular tune “Frère Jacques”. 

 

SUMMARY 

In this chapter, you have learned how to: 

 write and run your first Visual Basic program using .NET Gadgeteer; 

 use the tunes module and the Play() method to create a tune; 

 create a new melody and add notes and time intervals to it.  
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CHAPTER 4. CLICKER 

 

KEY TERMS  MODULES YOU WILL NEED  

Variable 
Integer 
Event 
Event-handler 
Comment 

 
Cerberus mainboard 
USBClientSP power module 
2 Button modules 
Display N18 module 

 

OVERVIEW 

This program introduces output to a display screen. It is a simple clicker that somebody might use at an event to 

count how many people have gone into a room. Imagine a very popular event taking place where it is important 

it does not get too crowded. We need to click when somebody goes in and display how many people have gone 

into the room. We also need to be able to reset the counter. 

NEW CONCEPTS : WHAT IS A VARIABLE? 

A key concept in programming is understanding what a variable is. A variable is like a box which holds a value. 

This value can change when the program is running. 

 

Figure 15: Assigning values to variables 

myName = “Bob” 

myName = “Carla” 

In these examples, “Bob” is a value, myName is a variable. The variable myName is assigned the value “Bob”. Then 

it is assigned the value “Carla” which overwrites the previous value. 

Each variable has a specific ‘data type’. This refers to the type of information that the variable is able to store. 

The myName variable above had text data in it and so that’s its data type. We can also have variables that 

have numbers in them. One type of number is called integer. This is a whole number with no fraction or decimal 

place.  

myNumber = 46 

myAge = 15 

Before using a variable in Visual Basic, it needs to be declared and this is done with the Dim statement. Dim 

actually stands for Dimension, but you could think of it as standing for “Declare in Memory” which is what it is 

used for. When a variable is declared, a space in memory is set aside for it.  
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The Dim statement needs to specify the name of the new variable and its data type. An example of declaring a 

variable in Visual Basic and then assigning a value to it is given below: 

            Dim number As Integer 

            number = 356 

 

You can also declare the variable and assign the value all in one go: 

            Dim number As Integer = 356 

There are many data types that can be used with variables but you will use just a few to start with. The 

commonly used ones are shown in Table 2. 

Table 2: Different data types and their uses 

Data type What it is used for? Example 

Integer Whole number 1, 5, 35, -5 

Double Decimal (or fractional) number 1.56, 4.78 

String Piece of text “Happy Birthday” 

Boolean True or False only True, False 

 

TUTORIAL : BUILDING A CLICKER  

Start by putting together the hardware you need as you have done previously (see page 11). Use the socket 

letters to see how the modules attach to the mainboard.  

Step 1: Assemble these modules   

 

 
 

 

 

Cerberus mainboard 
USB Client SP power 

module 
Button Display N18 module 

Figure 16: Modules needed for Clicker project 

Step 2: Use the Gadgeteer Designer to link the modules together  

Open Visual Studio, save your program as “Clicker” and then use the Designer to drag on the modules you are 

using and link them together. The diagram in Figure 17 shows an example, but you can wire things differently if 

you want. Just make sure you connect the modules together in the Designer using the same sockets as you have 

used when assembling your real hardware. 
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When you initially drag the modules on to the Designer screen the display module will be called “display_N18”. 

This can be seen as text which appears under the photo of the module. You should rename the display by clicking 

on the text “display_N18” underneath the picture and then changing it to read “display”. This will make your 

code easier to read and is done for all exercises in this book.  

When you have finished connecting the modules to the mainboard and your configuration matches your 

hardware, select Save All under the FILE menu to save the whole project. Ensure the hardware is connected to 

your computer using the USB cable. You are then ready to start programming your project. If you ever go back 

and make changes to the Designer be sure to save the file. 

 

Figure 17: Modules in the Designer for the Clicker project 

Step 3: Write your program 

A very fundamental concept when programming in Visual Basic is the event. An event is when something happens 

and the computer reacts to it by running a piece of code. This code is something you program yourself and it is 

called an event-handler.  

Our first program in this chapter is going to do the following: 

 Display “0” on the screen when the program starts. 

 Repeatedly 

o Do nothing until the user presses the button – that will be the “event”. 

o Add one to a variable called ‘count’ in the button event-handler. 

o Display the new value of the count variable on the screen whenever it changes. 

This list of steps tells you that we will need to have a variable to hold the most up-to-date value of the number of 

people in the room. A variable is a container with a name that holds a value. This value can change while the 

program is running. Our variable is going to be called “count”. 

In this example we will also need a second variable. This is needed to hold the value of the font (or typeface) 

that we use to display the number on the screen. There are only two fonts built into Gadgeteer by default but 

later in the book we will add more. 

So the code can be written in three stages. Firstly, when the program starts, we need to display a “0” on the 

screen. We start by declaring the font variable which we will use later. This code goes at the top of the program 

just after the line Partial Public Class Program. The green lines beginning with an apostrophe are comments 

which won’t be executed by the computer. However they are important when you look back at the code because 

they help you understand what you wrote and why. They are also very important when someone else tries to 

understand your code. 

  

Change the name of 

the display N18 to 

“display”. This will 

make your program 

easier to read. 
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Namespace Clicker 
    Partial Public Class Program 
        ' font is the variable used to hold the font name.  
        ' Gadgeteer comes with two fonts: ninaB and small 
        Dim font As Font 
        ' This is run when the mainboard is powered up or reset.   

 

After the class definition, there is a procedure called ProgramStarted(). As described previously, the 

ProgramStarted() procedure contains the code that runs once the program starts. By default there are a lot of 

comments in this section to help you get started with your first program.  

Having declared the font as Font, we need to give it a value. We’re going to use the NinaB font. Enter the yellow 

highlighted line below to do this.    

Namespace Clicker 
    Partial Public Class Program 
        ' font is the variable used to hold the font name.  
        ' Gadgeteer comes with two fonts: NinaB and small 
        Dim font As Font 
        ' This is run when the mainboard is powered up or reset.  
        Public Sub ProgramStarted() 
            '*************************************************************************************** 
            ' Hardware modules added in the Program.gadgeteer designer view are used by typing  
            ' their name followed by a period, e.g.  button.  or  camera. 
            ' 
            ' Many hardware modules generate useful events. To set up actions for those events, use  
            ' left dropdown box at the top of this code editing window to choose a hardware module,  
            ' use the right dropdown box to choose the event - an event handler will be auto- 
            '***************************************************************************************/ 
 
            ' Use Debug.Print to show messages in Visual Studio's "Output" window during debugging. 
            font = Resources.GetFont(Resources.FontResources.NinaB) 
            Debug.Print("Program Started") 
            display.SimpleGraphics.DisplayText(count.ToString(), font, GT.Color.Red, 50, 50) 
        End Sub 

             

Secondly, you will need to set up the variable count and initialise it to 0. The variable will be declared at the top 

of the program directly under the line where the font variable was declared. 

Namespace Clicker 
    Partial Public Class Program 
        ' font is the variable used to hold the font name.  
        ' Gadgeteer comes with two fonts: ninaB and small 
        Dim font As Font 
        ' count is a variable used to hold the value which will be displayed on the screen. 
        Dim count As Integer 

Using the data type Integer means a whole number will be stored in the variable.  

You can set the count to be 0 at the same time as declaring it. This is doing two things at once but it will save 
remembering to set the count to 0 later on. Alter your code like this:   
                     

 

Namespace Clicker 
    Partial Public Class Program 
        ' font is the variable used to hold the font name.  
        ' Gadgeteer comes with two fonts: ninaB and small 
        Dim font As Font 
        ' count is a variable used to hold the value which will be displayed on the screen. 
        Dim count As Integer = 0 

        ' This is run when the mainboard is powered up or reset.  
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The next step is to write the code to add one to the count and display the updated value on the screen. To do this 

we have to find the event handler which corresponds to the action of “pressing the button”. In Visual Basic you just 

need to select the appropriate action from a list of all possible events and the outline of the associated event-

handling procedure will be displayed.  

A procedure is a section of code that has a particular purpose. We will need to write the code that we want to 

be executed when the button is pressed. 

To find the event handler which corresponds to pressing the button, go to the top of the screen under the toolbar 

in Visual Studio and select button in the grey pull-down box marked “General”. This selects all the events 

associated with the Button module. Then select ButtonPressed in the grey area to the right which is labelled 

“Declarations”.  

 

Figure 18: Finding an event handler 

An empty procedure will appear at the bottom of your code listing: 

Private Sub button_ButtonPressed(sender As Button, buttonState As Button.ButtonState)    
                                                      Handles button.ButtonPressed 

End Sub 

This is the empty shell of your event handler. The next stage is to write the code to add one to the variable 

count, then to clear the screen (otherwise the next number you write will sit on top of the previous one), and then 

display the new value of count. This can be done by entering the following code. Once again add the highlighted 

lines then add a comment that makes sense to you on the line before each line of code  

 
Private Sub button_ButtonPressed(sender As Button, buttonState As Button.ButtonState) 
Handles button.ButtonPressed 
        count = count + 1 
        display.SimpleGraphics.Clear() 
        display.SimpleGraphics.DisplayText(count.ToString(), font, GT.Color.Red, 50, 50) 

End Sub 

Enter the code above, save your program and test that the basic clicker works! To run your program click on the 

 button.  

 

Figure 19: Use the green 'play' icon in Visual Studio to start your program running 

First, select button in the 

pull-down menu. 

Next, select 

ButtonPressed. 

The green ‘play’ icon will 

start your program running. 
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Wait for the program to load. You should see an Output window and after a few seconds some lines of text will 

start to scroll by. If you cannot find the Output window, see Appendix C. After a few more seconds the words 

“Program Started” should be displayed. This is printed because the Visual Basic template includes a 

Debug.Print("Program Started") statement. It tells you that the program is running correctly.  

 

Figure 20: The Output window 

Once your program runs successfully, work through the exercises below to extend the clicker.  

EXERCISES  

1. Add a second button which resets the clicker to 0. This button will have a different name (for example 

button1) and so you will need a separate event handler. You could change the event handler so that 

the second button decrements the count whenever anyone leaves the room. 

2. Set a limit to your clicker so that it stops when it reaches 20 people entering the room and gives a 

message to say the room is full. 

 

SUMMARY 

In this chapter, you have learned to: 

 write code that responds to an event; 

 use variables in Visual Basic; 

 change the value of a variable, for example, by adding a number; 

 display the contents of a variable on the display.  
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CHAPTER 5. STOP WATCH  

 

KEY TERMS  MODULES YOU WILL NEED  

Boolean statement 
If … Then … Else statement 
Timer events 

 Cerberus mainboard 
USBClientSP power module 
2 Button modules 
Display N18 module 

 

OVERVIEW 

This program builds on the previous chapter and enables you to build a stop watch. This will have two buttons – 

one to stop and start, and one to reset. To do this you will be working with timers – once you have understood 

how to use these you will be able to do many more projects that work in the same way. 

NEW CONCEPTS : IF … THEN … ELSE… STATEMENT  

The structure of a simple If statement in Visual Basic is shown below. 

If <condition> Then 
<statements> 

Else 
<statements> 

End If 

 

It is important to remember when writing an If statement that the <condition> must be something that has a 

“yes” or “no” answer. In other words, when you work out what the condition is, it can only be True or False. A 

statement which can only be True or False is called a Boolean statement. 

These would be acceptable conditions to put into an If statement: 

 number = 5 

 name = “Carlos” 

 age >= 17 

 timer.IsRunning = True (this can also be written as just timer.IsRunning) 

In this chapter you will use an If statement to test whether the timer is running. If it is running you will stop it, but if 

it is not running you will start it. This will enable you to create a Stop/Start button on your stop watch. 

 

TUTORIAL : BUILDING A STOP WATCH  

The modules and the Designer view are exactly the same as the Clicker, assuming that you completed the 

exercises and added a second button, so the code below should look familiar.  
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Step 1: Assemble these modules 

These are the modules that you will need for this project. Use the letters on the module to connect them together 

using the cables. 

 
 

  

Cerberus mainboard 
USBClientSP power 

module 
2 Button modules Display N18 module 

Figure 21: Modules needed for Stop watch project 

Step 2: Use the Gadgeteer Designer to link the modules together  

Open Visual Basic and use the Gadgeteer Designer to recreate the hardware you have just put together. Drag 

the modules on to the Designer screen as you have done previously and then link them together. The diagram in 

Figure 22 gives an example, but you should connect the modules in the Designer to exactly the same sockets as 

you used when putting the hardware together. 

When you initially drag the modules on to the Designer screen the display module will be called “display_N18”. 

This can be seen as text which appears under the photo of the module. You should rename the display by clicking 

on the text “display_N18” underneath the picture and then changing it to read “display”. This will make your 

code easier to read and is renamed for all exercises in this book.  

 

 

Figure 22: Modules in the Designer for the Stop watch project 

 

Step 3: Write your program 

The stop watch program is going to do the following: 

1. Display 0 on the screen when the program starts, but also print some text with instructions. 

2. Add one to the counter every second.  

Change the name of 

the display N18 to 

“display”. This will 

make your program 

easier to read. 
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3. Display the new value of the counter on the screen every second. 

4. Respond to the other (reset) button being pressed by setting the counter back to 0. 

You should start by declaring the variables needed, see Table 3. 

Table 3: The stop watch variables and their use 

Variable Data Type Description 

seconds Integer Used as the second counter 

font Font Small font for instructions 

font2 Font NinaB font for the time display 

Note that only two fonts, called Small and NinaB, are included with Gadgeteer by default. However, it is 

possible to import other fonts into .NET Gadgeteer using a utility called Tiny Font Tool. 

The code you need to type in is highlighted below: 

    Partial Public Class Program 
         
        Dim seconds As Integer = 0 
        Dim font As Font = Resources.GetFont(Resources.FontResources.small) 
        Dim font2 As Font = Resources.GetFont(Resources.FontResources.NinaB) 
 
        ' This is run when the mainboard is powered up or reset.  
        Public Sub ProgramStarted() 

Having declared and assigned the variables the next step is to set up the display on the screen.  

This can be done in the ProgramStarted() sub (Visual Basic’s name for a procedure)). Depending on the size of 

the screen the coordinates may be different to the example below. Here we are using a GHI Electronics Display 

N18 which has 128x160 pixels. Add the lines of code that are highlighted in yellow to the ProgramStarted() 

sub. 

Public Sub ProgramStarted() 
         
    Debug.Print("Program Started") 
 
    display.SimpleGraphics.DisplayRectangle(GT.Color.Cyan, 1, GT.Color.Black, 40, 40, 40, 40) 
    display.SimpleGraphics.DisplayText("Stop Watch", font2, GT.Color.Cyan, 20, 20) 
    display.SimpleGraphics.DisplayText("00", font2, GT.Color.White, 50, 50)  
    display.SimpleGraphics.DisplayText("LEFT button to Stop/Start", font, GT.Color.Cyan, 0, 90) 
    display.SimpleGraphics.DisplayText("RIGHT button to Reset", font, GT.Color.Cyan, 0, 105) 
 
End Sub 

Test this to see that this works and that the screen looks as you would expect, see Figure 23.  

Heading 
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Figure 23: The stop watch in operation 

The next stage is to add code to create a timer. A timer is a special type of variable which creates (or raises) an 

event periodically. It is useful if you want to run some specific code every so often – for example every second or 

every minute. The code which needs to be run periodically is put inside the timer event handler.  

It is possible to have many different timers in a single program, and to start and stop them (or enable and 

disable them) as your program runs if you want to. Here we only need a single timer. Start by adding the 

following line of code which creates a new Timer variable called timer: 

    Dim WithEvents timer As GT.Timer = New GT.Timer(1000)  ' every second 
    

This line of code should already be in your project because it is included in the template in green as a comment. 

So all you need to do is to remove the apostrophe that is in front of the timer definition. Changing a comment into 

working code is something programmers often do and is called ‘uncommenting your code’. Similarly, sometimes 

you want to temporarily stop certain lines of code from working and to do this you can turn them into comments 

by putting an apostrophe at the front. This is called ‘commenting out’ lines of code.  

Select the timer from the pull down menu as shown in Figure 24 and then select the Tick event from the top of 

the program window. This will generate a timer_Tick procedure ready to program with your code. 

 

Figure 24: Selecting the timer_Tick() event handler 

 

 

 

 

Select “timer”. 

Then select 

“Tick”. 

Time display  

(inside rectangle) 

 

Instructions 
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Then add the timer code as follows: 

Private Sub timer_Tick(timer As Gadgeteer.Timer) Handles timer.Tick 
    seconds = seconds + 1 
    display.SimpleGraphics.DisplayRectangle(GT.Color.Cyan, 1, GT.Color.Black, 40, 40, 40, 40) 
    display.SimpleGraphics.DisplayText(seconds.ToString(), font2, GT.Color.White, 50, 50) 
End Sub 
 

 

Then program the button to start and stop the timer. Use the pull-down menus to create the 

button_ButtonPressed() procedure from the top of the program window as before. 

Private Sub button_ButtonPressed(sender As Button, state As Button.ButtonState) 
Handles button.ButtonPressed 
         
End Sub 

The first step is to start the timer when the button is pressed. To do this just add the timer.Start() line of code 

inside the button_ButtonPressed() procedure: 

 
Private Sub button_ButtonPressed(sender As Button, state As Button.ButtonState) 
Handles button.ButtonPressed 
    timer.Start() 
 
End Sub 

Save the program and test that it works so far. At the moment the button just starts the timer but we want to use it 

as a toggle to turn the timer on and off. To do this we need to use a property of the timer. Properties are values 

that are associated with certain variables. One of the properties that timers have is called IsRunning.  

IsRunning is True if the timer has been started and False otherwise. 

We can test the current value of the IsRunning property using an If Statement. The Visual Basic code we need 

to use in the button_ButtonPressed() procedure is shown highlighted below: 

    Private Sub button_ButtonPressed(sender As Button, state As Button.ButtonState) 
Handles button.ButtonPressed 
        If timer.IsRunning Then      
            timer.Stop() 
        Else 
            timer.Start() 
        End If 
 
    End Sub 

Enter this code to check if the timer is already running, then test that your button will stop and start the timer! Then 

try the exercises below which will make your stop watch more sophisticated, with a reset button and minutes and 

seconds. 

EXERCISES  

1. Add the second button which will reset the timer to 0. 

2. Improve your stop watch so that it counts to 60 seconds and then resets to 0 and continues counting. 

3. Edit your stop watch so that it displays minutes and seconds. When the seconds reset to 0 (as in 2 

above) the minutes should increment by 1. 

  

Add one to the 

seconds counter. 

Display the time again. 
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SUMMARY 

In this chapter, you have learned to: 

 use a timer to control events; 

 use a simple If statement. 

  



     Learning to Program with Visual Basic and .NET Gadgeteer    35 
 

CHAPTER 6. TRAFFIC LIGHTS 

 

KEY TERMS  MODULES YOU WILL NEED  

Select … Case  
If … Then … Else 

 Cerberus mainboard 
USBClientSP power module 
Button module 
LED Strip 

 

OVERVIEW 

In this project you will use the LED Strip module. This has seven lights in a row: two red, three amber and two 

green. You will program them to light up in a particular sequence and create a set of traffic lights. 

NEW CONCEPTS : MORE ON IF STATEMENTS AND THE SELECT…CASE STATEMENT  

As a reminder, the structure of the If statement in Visual Basic is as follows: 

If <condition> Then 
<statements> 

Else 
<statements> 

End If 

 

A more complex version of the If statement in Visual Basic chains together several test conditions. The ElseIf 

keyword is used for this as shown here:  

If <condition1> Then 
<statements> 

ElseIf <condition2> 
<statements> 

Else 
 <statements> 
End If 

If you have lots of different conditions you can use the Select ... Case statement instead of lots of ElseIf 

statements. You can use Select ... Case when you have an integer or char (single character) variable and you 

want to control what your program will do depending on the value of these variables. For example, with an 

Integer variable called count, a Select statement could be used to control what would happen if count was 1 

or count was 2 etc. The syntax of this statement in Visual Basic is shown below: 

          Select Case count 
                Case 1 
                    led_Strip(5) = True 
                    led_Strip(6) = True 
                Case 2 
                    led_Strip(2) = True 
                    led_Strip(3) = True 
                    led_Strip(4) = True 
                Case 3 
                    led_Strip(0) = True 
                    led_Strip(1) = True 
                    count = 1 
            End Select 
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TUTORIAL : TRAFFIC LIGHTS  

Step 1: Assemble these modules  

 
 

 
 

Cerberus Mainboard USBClientSP power module LED Strip 

Figure 25: Modules needed for Traffic lights project 

Step 2: Use the Gadgeteer Designer to link the modules together  

 

 

Figure 26: Modules in the Designer for the Traffic lights project 

Step 3: Write your program 

The basic traffic lights program is going to do the following: 

 Display a red light when the program starts. 

 Use a timer to display an amber light and then a green light. 

You will then be able to extend this simple sequence to make it more realistic! 

The LED Strip module has 7 individual lights which are numbered from zero to six. The colour of each light is as 

follows: 
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Colour Red Red Amber Amber Amber Green Green 

Index 6 5 4 3 2 1 0 

Figure 27: The LED Strip module 

An array is a special type of variable that can be used to store a sequence of values, similar to a list. Each 

member of the sequence is also known as an array element and is identified by its position in the list, known as 

the index. The first element is at position 0 as the array index always starts at 0, not 1.  

The LED Strip has an array which corresponds to the seven LED lights on the module. The hardware module also 

has a number from 0 to 6 printed under each LED so you can easily identify the correct LED (see Figure 27). 

Setting one of the array elements to either True (on) or False (off) will turn the appropriated LED either on or 

off. For example if you wanted to turn the green (first) LED in the strip on, look to see which number is printed 

underneath.  In this case it is 0, so you must set the value of the array at position 0 to True (on) as shown below:  

led_Strip(0) = True 

The first step in our program is to display red which means setting light 5 and light 6 to True so try the code 

shown below inside the ProgramStarted() procedure. 

    Partial Public Class Program 
 
        Public Sub ProgramStarted() 
            Debug.Print("Program Started") 
            led_Strip(5) = True 
            led_Strip(6) = True 
 
        End Sub 

Enter the code above and test that the red lights come on! 

The next step is to have a sequence of lights and for this you will need to set up a timer. In the Gadgeteer 

template, underneath the ProgramStarted() procedure, there are some comments containing instructions on how 

to set up a timer, and an example which you can copy and use is given.  

 

     ' If you want to do something periodically, declare a GT.Timer by uncommenting the below line 
     '   and then use the dropdown boxes at the top of this window to generate a Tick event handler. 
     ' Dim WithEvents timer As GT.Timer = new GT.Timer(1000)  ' every second (1000ms) 
 
    End Class 

 

This line of code sets up a Gadgeteer timer which will cause an event-handler to execute every 1000 

milliseconds, which is once every second. Change the interval to 3000 so that the timer event is called every three 

seconds – this will help us run the traffic lights program at an appropriate speed. 

 Dim WithEvents timer As GT.Timer = New GT.Timer(3000)  ' every three seconds 

The next step is to write the code that needs to be executed every three seconds, which is every time the timer 

tick event is raised. 

Add the highlighted 

code and write your 

own comments above. 

Remove the comment 

from this line of code. 
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Select the timer from the pull down menu as shown in Figure 28 and then select the Tick event from the top of 

the program window. This will generate a timer_Tick procedure ready to program with your code. 

  

Figure 28: Creating a timer tick sub-routine 

For this example we are going to run a traffic light sequence of 9 seconds in total, spending 3 seconds on red, 3 

seconds on amber and 3 seconds on green. The exercises below will extend this simple example.  

You will need a counter variable so declare this at the top of the program: 

    Dim count As Integer  

Since the counter should be set to 0 at the beginning of the code add “= 0” to the variable declaration: 

    Dim count As Integer = 0 

Every time the timer Tick procedure is called the counter should be incremented, so inside the Tick procedure 

add one to the counter as follows: 

     Private Sub timer_Tick(timer As Gadgeteer.Timer) Handles timer.Tick 
            count = count + 1 
     End Sub 

Then the lights need to be set according to the value of the counter, as shown in the following table. The counter 

starts at 0 but the first instruction in the timer event handler adds one to it, so the first value of the counter that 

the timer will see is 1. 

Table 4: Traffic light sequence 

Value of 
count 

Light wanted What else? 

1 Red  

2 Amber  

3 Green Set counter back to 0 

The following algorithm is used. An algorithm is a sequence of instructions that define the logic used within a 

program. 

If counter is equal to 1 then  

 change colour to red 

Else if counter is equal to 2 then  

 change colour to amber 

Else if counter is equal to 3 then  

 change colour to green and set counter back to 0 

First, select timer in the 

pull-down menu. Next, select Tick. 

The Tick procedure 

will be created. 
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This algorithm includes an If … Else statement. This allows you to control the flow of your program depending 

on the value of a variable.  

To program the traffic lights in Visual Basic using an If statement use the following code inside the Timer_Tick 

procedure: 

        Private Sub timer_Tick(timer As Gadgeteer.Timer) Handles timer.Tick 
            count = count + 1 
            If count = 1 Then 
                led_Strip(5) = True 
                led_Strip(6) = True 
            ElseIf count = 2 Then 
                led_Strip(2) = True 
                led_Strip(3) = True 
                led_Strip(4) = True 
            ElseIf count = 3 Then 
                led_Strip(0) = True 
                led_Strip(1) = True 
                count = 0 
            End If 
        End Sub 

     

Nothing will happen until the timer is started. So to get this to work, add the line to start the timer in 

ProgramStarted(): 

            Public Sub ProgramStarted() 
            Debug.Print("Program Started") 
            led_Strip(5) = True 
            led_Strip(6) = True 
            timer.Start() 
      End Sub 

Now test your program. What happens? The sequence is not quite as expected because none of the lights are 

ever switched off. To fix this problem insert the line led_Strip.TurnAllLedsOff() after adding one to the 

count, as shown in the yellow highlighted line below. 

Private Sub timer_Tick(timer As Gadgeteer.Timer) Handles timer.Tick 
            count = count + 1 
            led_Strip.TurnAllLedsOff() 

Test your program again and it should work as expected!  

Another way of writing the same program would be to use the Select … Case statement. This looks slightly 

neater than lots of ElseIf statements. To see the difference, edit your code as shown below, changing the If 

statement lines to the lines highlighted in yellow. 

          Select Case count 
                Case 1 
                    led_Strip(5) = True 
                    led_Strip(6) = True 
                Case 2 
                    led_Strip(2) = True 
                    led_Strip(3) = True 
                    led_Strip(4) = True 
                Case 3 
                    led_Strip(0) = True 
                    led_Strip(1) = True 
                    count = 0       
            End Select 
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Now work through the exercises below to extend the traffic lights. 

EXERCISES  

 

Figure 29: UK traffic light sequence 

1. Change the traffic lights so that they go in the correct sequence for the UK. They should start at red, 

then go to red and amber together, then green, followed by just amber and finally back to red again. 

2. Program the button so that it represents a pedestrian pressing a button at the pedestrian crossing. This 

should stop the lights at red after a small delay.  When the pedestrian has crossed, the regular 

sequence resumes. 

3. Using two kits, make a more complex system with two sets of traffic lights, and program them so that 

one is on red whilst the other one is on green. You may need to research some real traffic lights to see 

when amber is used. This is a safety critical exercise! 

4. Extend the previous exercise to use the pedestrian button to override both sets of lights and set them to 

red. 

SUMMARY 

In this chapter, you have learned to: 

 use an If Statement in Visual Basic, with ElseIf for different conditions; 

 use a Select … Case statement; 

 create and use a timer to control your program. 
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CHAPTER 7. COUNTING IN BINARY 

 

KEY TERMS  MODULES YOU WILL NEED  

For loop 
Binary number system 
Bits and bytes 

 Cerberus mainboard 
USBClientSP power module 
LED Strip 

 

OVERVIEW 

 

In this chapter you will create a binary counter which lights up a number of lights on the Led_Strip corresponding 

to binary numbers. In the process you will learn about binary numbers and how to use a For loop to repeat a 

process a number of times. 

NEW CONCEPTS : B INARY NUMBERS 

 

The number system people usually use for counting is called denary or base ten.  There are ten symbols to 

represent numbers (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9) and when those are not enough, we use more of these ten 

symbols in different positions to represent bigger numbers. Each time we use an extra symbol we are adding 

another digit to the number. 

It is also useful to understand binary which is a different way of counting that computers use. Binary is sometimes 

known as base two. In the binary number system there are only two symbols to represent numbers (0 and 1) and 

when these are not enough we use more of the same symbols in different positions to make bigger numbers. Each 

symbol that makes up a binary number is called a bit, which is an abbreviation of binary digit. 

The positions at which the symbols appear in a number are called place values. In the denary number system the 

place values are all powers of 10. The right-hand symbol (or digit) represents a place value of 1, next to that 

the place value is 10, then 100, 1000, etc. So as an example, the denary number 357 is 3 X 100s, added to 5 X 

10s, added to 7 X 1s. This is shown in the Table 5 below. 

Table 5: The number 357 in denary (base 10) is calculated as (3x100) plus (5x10) plus (7x1) 

100 10 1 

3 5 7 

In binary, the place values are powers of 2, starting with 1 at the right-hand side. The next position represents a 

place value of 2, then 4, 8, 16 and so on. You might have noticed that rather than multiplying by 10 to calculate 

the place value of the next position (like we do in denary), with binary we have to multiply by 2. So the binary 

number 1010 is 1X 8s added to 0 X 4s added to 1 X 2s added to 0 X 1s, see Table 6. This gives an equivalent 

denary value of 10. 

Table 6: The number 1010 in binary (base 2) is calculated as (1x8) plus (1x2) 

8 4 2 1 

1 0 1 0 
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To convert a binary number to denary, write the bits of the binary number under the appropriate place values. 

For example, the 8 bit number 10010100 would correspond to the binary place values as shown in Figure 30. 

When converted to denary this binary number equates to 148. 

128   64   32   16   8   4   2   1   

1   0   0   1   0   1   0   0   
                 

128 + 0 + 0 + 16 + 0 + 4 + 0 + 0 = 148 

Figure 30: Binary place values 

 
Computers often need to use 8 bit numbers because of the way that computer processors are designed. An 8 bit 
number can have 256 different values, ranging from 0 to 255. An 8 bit number is often called a byte. 
 

To convert a denary number to its binary equivalent, follow these steps: 
 

 Write down the column headings for the binary number (where you start will depend on how big 
your number is: 
64    32 16 8 4 2 1 

 Process each column from left to right. 

 If the denary number to be translated is greater than or equal to the column heading, place a 1 in 
the column and subtract the value of the column from the denary value. 

 If the denary value is smaller than the column heading, place a 0 in the column. 
  

In this program you will write a program which will follow these steps and convert a denary number to a binary 

number. Firstly, you will also be able to display a binary number as a series of lights on the LED Strip. 

NEW CONCEPTS : THE FOR LOOP IN V ISUAL BASIC 

An important part of learning to program is learning how to repeat statements. To do this we can use a 

programming concept called a loop. There are two types of loop that all programming languages use – a loop 

that repeats a certain number of times (a For loop) and a loop that repeats until something happens that tells it 

to stop (a While loop). 

In this program we will use the first kind of loop which is called a For loop. In Visual Basic the syntax of a simple 

For loop is as follows: 

For <stepperVariable> = 1 to <number of times to loop> 
<statements> 

Next 

 

Using “For…” uses a counter to iterate through each index in the array.  

Here are some Visual Basic examples using Debug.Print() to write to the Output window (see Appendix CE). 

            For count As Integer = 1 To 8 
                Debug.Print("Hello World!") 
            Next 

This example would write “Hello World!” 8 times. Here is another example showing what is happening to the 

stepper variable, in this case count. 

            For count As Integer = 1 To 8 
                Debug.Print(count) 
            Next 
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This will produce the numbers 1 to 8, printed out in the Output window (see Appendix C) as shown in Figure 31. 

It is important to understand that the stepper variable automatically takes on the value of the next number in the 

sequence from 1 to 8. Note that the counter is automatically incremented every time it goes around the loop. 

  

Figure 31: Output window showing debug messages 

In this chapter we want to display a new binary number each time we loop. 

TUTORIAL : COUNTING IN B INARY 

In this example you will build a counter that outputs numbers in binary using the LED Strip module. When you 

have created the program, you will be able to press the button to show the next binary number as a series of 

lights. For example, 0 will be no lights showing and 127 will be all the lights lit up. The number 13 in binary is 

shown in Figure 32. 

 

Figure 32: Binary number using the coloured lights on the LED strip (number 13 as LEDs 0, 2 and 3 are on) 

For this program you will need a mainboard, power, button (input) and LED Strip (output).  

Step 1: Assemble these modules  

 
  

 

  

Cererbus Mainboard 
USBClientSP power 

module 
Button module LED Strip 

    

Figure 33: Modules needed for Counting in binary project 
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Step 2: Use the Gadgeteer designer to link the modules together  

Assemble the modules in the Gadgeteer Designer as shown in Figure 34. 

 

 

Figure 34: Modules in the Designer for the Counting in binary project 

 

Step 3: Write your program 

 

To work out how to write this program we need an algorithm. An algorithm is a sequence of steps for solving a 

particular problem. Always think carefully about your algorithm before you start to code. 

The algorithm for this process can be shown in the flowchart in Figure 35. 

To write the program, start by declaring the variables you will need as shown in Table 7. 

Table 7: The variables needed for the binary counter 

Variable Data type What is this for? 

whole Integer The result of dividing the number by another, 
as a whole number. 

remainder Integer The remainder when one number is divided 
by another and stored as an integer. 
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Figure 35: Flowchart for binary number counting 

You will be using the LED Strip so here is a reminder of the procedures that can be used with this module: 

TurnAllLedsOff() ' turns all the lights off 
led_Strip(X) = True  ' turns light in position X on 
led_Strip(Y) = False ' turns light in position Y off 

To write the program the first step is to create an event handling procedure that is called when the button is 

pressed. To find the event handler which corresponds to pressing the button, go to the top of the screen under the 

toolbar in Visual Studio and select button in the grey pull-down box marked “General”. This selects all the events 

associated with the button module. Then select ButtonPressed in the grey area to the right which is labelled 

“Declarations”. 

Start 

Turn light 6 

on 

End 

Number goes 

into 64 at 

least once 

Yes 

Remainder 

goes into 32 

at least once 

Calculate remainder after dividing 

by 64 and store in remainder  

Turn light 5 

on 

Calculate remainder after dividing 

by 32 and store in remainder  

  

Continue in the same way dividing by 

16 then 8 then 4 then 2 then 1, 

lighting up a light each time if 

appropriate 
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Private Sub button_ButtonPressed(sender As Button, buttonState As Button.ButtonState) 
Handles button.ButtonPressed 
 
End Sub 

Within this procedure, declare the variables given above, as highlighted below in yellow: 

Private Sub button_ButtonPressed(sender As Button, buttonState As Button.ButtonState) 
Handles button.ButtonPressed 
 
    Dim whole As Integer 
    Dim remainder As Integer 
 
End Sub 

You are going to use a loop to slowly cycle through each number from 1 to 127. However before writing the 

code for the loop you should use the algorithm to code how just one number will be converted into binary and 

displayed.  

We will use the following lights for each binary position as shown in Table 8. In the table, the number is 0 and all 

the lights would be off. 

Table 8: Binary numbers shown on the LED Strip 

Place value 64 32 16 8 4 2 1 

Binary  0 0 0 0 0 0 0 

LED Strip 
index 

6 5 4 3 2 1 0 

LED Strip 
index value 

False False False False False False False 

If the denary number is 21, the lights which will be on will be as shown in Table 9: The number 21 shown on the 

LED Strip. 

Table 9: The number 21 shown on the LED Strip 

Place value 64 32 16 8 4 2 1 

Binary  0 0 1 0 1 0 1 

LED Strip 
index 

6 5 4 3 2 1 0 

LED Strip 
index value 

False False True False True False True 

The Visual Basic code to convert a single number to binary and display the appropriate lights is as follows, 

assuming that the variable you are working with is called number. This follows the logic in the flowchart in Figure 

35 above.  

Enter the following code inside the buttonPressed() event handler, after declaration of the two variables.  

              led_Strip.TurnAllLedsOff() 
                ' display number 
                remainder = number 
                ' store value of number in for loop 
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                ' integer division tells you if 64 goes into the number (remainder) 
                whole = remainder \ 64 
 
                If whole = 1 Then 
                    ' light up the appropriate light 
                    led_Strip(6) = True 
                    ' work out the remainder after the 64 is accounted for 
                    ' if whole is 0 we don't need to reassign remainder 
                    remainder = remainder Mod 64  ' the remainder 
                End If 
 
                whole = remainder \ 32 
                If whole = 1 Then 
                    ' light up the appropriate light 
                    led_Strip(5) = True 
                    ' work out the remainder after the 64 is accounted for 
                    ' if whole is 0 we don't need to reassign remainder 
                    remainder = remainder Mod 32  ' the remainder 
                End If 
 
                whole = remainder \ 16 
                If whole = 1 Then 
                    ' light up the appropriate light 
                    led_Strip(4) = True 
                    ' work out the remainder after the 64 is accounted for 
                    ' if whole is 0 we don't need to reassign remainder 
                    remainder = remainder Mod 16  ' the remainder 
                End If 
 
                whole = remainder \ 8 
                If whole = 1 Then 
                    ' light up the appropriate light 
                    led_Strip(3) = True 
                    ' work out the remainder after the 64 is accounted for 
                    ' if whole is 0 we don't need to reassign remainder 
                    remainder = remainder Mod 8 ' the remainder 
                End If 
 
                whole = remainder \ 4 
                If whole = 1 Then 
                    ' light up the appropriate light 
                    led_Strip(2) = True 
                    ' work out the remainder after the 64 is accounted for 
                    ' if whole is 0 we don't need to reassign remainder 
                    remainder = remainder Mod 4  ' the remainder 
                End If 
 
                whole = remainder \ 2 
                If whole = 1 Then 
                    ' light up the appropriate light 
                    led_Strip(1) = True 
                    ' work out the remainder after the 64 is accounted for 
                    ' if whole is 0 we don't need to reassign remainder 
                    remainder = remainder Mod 2  ' the remainder 
                End If 
 
                whole = remainder \ 1 
                If whole = 1 Then 
                    ' light up the appropriate light 
                    led_Strip(0) = True 
                    ' work out the remainder after the 64 is accounted for 
                    ' if whole is 0 we don't need to reassign remainder 
                    remainder = remainder Mod 1  ' the remainder 
                End If 
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The final stage is to add a loop so that this code will be executed for every number from 1 to 127. Use the For 

loop as described earlier on in this chapter.  

   
            For number As Integer = 1 To 127 
                led_Strip.TurnAllLedsOff() 
                ' display number 
                remainder = number 
 
             
 
 
 
            Next 
 

 

Run your code and see what happens. Does it work correctly? The problem is that the numbers increment too 

quickly, so we need some code to make the program wait one second (or half a second) between each number. 

Try adding this line just before the Next part of the For loop. 

            For number As Integer = 1 To 127 
                led_Strip.TurnAllLedsOff() 
                ' display number 
                 
 
 
 
 
               remainder = number 
              Thread.sleep(500) ' wait for half a second 
 
            Next 

Now test your program again. It should work as expected, lighting up the lights corresponding to all the numbers 

in the array. 

EXERCISES  

1. Edit your program so that it shows the number in denary on the display. You will need to add and 

attach the display in the Designer. Remember to save you project once you have added items to the 

Designer" 

2. Edit your program so that it uses a timer rather than a For loop. What are the advantages? 

3. Make a binary convertor. Use a timer to count on the screen from 1 to 127 slowly. Then when the user 

clicks a button, stop the timer and convert the number to binary (show this in lights on the LED Strip and 

on the screen.  

 

SUMMARY 

In this chapter, you have learned to: 

 convert binary to denary and vice versa; 

 use a For loop to repeat some code a set number of times; 

 use an algorithm represented as a flowchart to develop a program in Visual Basic; 

 set different light combinations on the LED Strip. 

  

...REST OF CODE ENDING IN THE FINAL END IF... 

...REST OF CODE ENDING IN THE FINAL END IF... 
Don’t forget to add Next at the end 

of the For loop which sends it round 

the loop again. 
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CHAPTER 8. BURGLAR ALARM 

 

KEY TERMS  MODULES YOU WILL NEED  

Illuminance 
Write to file 
Storage device 
Caching 
Data types: Boolean and Double 

 Cerberus mainboard 
USBClientSP power module 
Tunes module 
Light sensor 

 

OVERVIEW 

In this chapter, you will build a burglar alarm that uses the light sensor module in Visual Basic to detect when light 

levels change and give an alarm using the Tunes module. 

The tutorial will demonstrate how to make a simple burglar alarm which sounds when light comes into the area 

where the precious items are stored, and then a more complex one which plays two sounds over and over using a 

while loop to control what happens. 

TUTORIAL 1: CREATING A BURGLAR ALARM 

Step 1: Assemble these modules  

Firstly, assemble these modules, connecting them using the letters on the modules to help you. 

 
 

  

Cerberus mainboard USBClientSP power module Light Sensor 
Tunes module 

 

Figure 36: Modules needed for Burglar alarm 

Step 2: Use the Gadgeteer designer to link the modules together  

 

Use the Gadgeteer Designer to put together the modules as shown in Figure 37. 
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Figure 37: Modules in the Designer for the Burglar alarm project 

Step 3: Write your program 

The light sensor within your .NET Gadgeteer kit provides a procedure to return the amount of light recorded in a 

measurement known as Lux. This procedure (or Sub) is called GetIlluminance(). Lux values vary from household 

lighting at around 50 or 60 lux to a bright summer’s day which can be 10,000 lux. You will be able to 

experiment with lux values once you have built your burglar alarm. See 0 for a list of lux values. 

When the program runs, a timer will be used to detect a light reading every few seconds. If the light reading is 

greater than 50 lux it could be assumed that the sensor has detected indoor lighting. If you hide your Gadgeteer 

burglar alarm in a dark place with all your valuables, the presence of light would indicate that the dark place 

had been disturbed. 

To start writing the code, add a timer by uncommenting the timer line. 

Dim WithEvents timer As GT.Timer = New GT.Timer(1000)  ' every second (1000ms) 

Then use the pull-down menus to create the Timer Tick event handler as shown in the previous chapter, Figure 28.   

      Private Sub timer_Tick(timer As Gadgeteer.Timer) Handles timer.Tick 
             
      End Sub 

The simplest burglar alarm will use the following algorithm: 

Every few seconds: 

Take a light level reading  

If the reading from the light sensor is greater than 50 then 

 Play a sound at frequency 800 Hertz 

Write the code inside the timerTick() procedure as follows: 

    Private Sub timer_Tick(timer As Gadgeteer.Timer) Handles timer.Tick 
            Dim amountLight As Double 
            amountLight = lightSensor.GetIlluminance() 
            If amountLight > 50 Then 
                tunes.Play(800) 
            End If 
    End Sub 
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Don’t forget to start the timer! To do this put the following code into the ProgramStarted() procedure. 

Partial Public Class Program 
 
        ' This is run when the mainboard is powered up or reset.  
        Public Sub ProgramStarted() 
             
            Debug.Print("Program Started") 
            timer.Start() 
 
        End Sub 

Test your code works and that the alarm goes off. 

The final stage in this program is to record the fact that the burglar alarm went off by writing this information to 

a file. This will use the SD card module. But before moving on to that section, try the exercises below. 

EXERCISES  

 

1. Add a button to the burglar alarm so that the button stops the alarm from going off, and resets it. 

2. Add an LED status indicator to the burglar alarm using the LED Strip module, for example going from 

green to red when an intruder is detected. 

 

NEW CONCEPTS : SAVING TO THE SD  CARD 

Once you start to write more complex programs, you will probably need to store data somewhere permanently. 

This means that your program can access the data again, or you might want to transfer the data to your 

computer for further processing. The Fez Cerberus Tinker Kit includes an SD card module and an SD card that 

allows you to do this. If you place the SD card into the slot on the SD card module and attach the module to the 

correct socket on your mainboard then you can access the data on the SD card from your Gadgeteer program.  

From Visual Basic you can read data that is already stored on the SD card and you can also write new data onto 

the card. In this chapter we will do the latter. You will also need an SD card slot in your computer so that you can 

see what data has been stored on the actual SD card.  

Some of the procedures and properties associated with the SD card module are given in the Table 10 below. 

Table 10: Procedures and properties associated with the SD card module 

Name Function What it is for? 

sdCard.IsCardInserted 
Property Returns True or False. To test 

whether an sdCard is 
inserted or not 

sdCard.GetStorageDevice().WriteFile(<file>,<contents>) 
Procedure Used to write to file 

sdCard.GetStorageDevice().ReadFile(<contents>) 
Procedure Reads the file into an array 

of bytes 

sdCard.GetStorageDevice().ListFiles(<filepath>) 
Procedure Lists the files in the folder 

specified by the path 

In this tutorial you will use WriteFile() and IsCardInserted.  
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When working with files you need to know the name of your file if you are reading from a file, or to tell Visual 

Basic the name of a new file if you are writing to a file. The file will be created if it does not exist already and 

overwritten if it already exists. 

You also need to convert the information you want to write to the file into a list of bytes so that the writeFile() 

method can write it into your file. This can be done using the following command: 

System.Text.Encoding.UTF8.GetBytes("Hello") 

This will convert the string “Hello” into a list of bytes using a text coding system called Unicode (that is what UTF8 

means).  

This all sounds very complicated but it is just a matter of being very careful typing in the specific commands 

needed to work with files.  The idea behind it is quite straightforward once you know how to convert the text into 

bytes and then use WriteFile() to write it to your SD card. 

 

TUTORIAL 2: KEEPING A RECORD OF AN INTRUSION 

Step 1: Add the SD card Module 

Firstly, add the SD card module to the existing modules you have been using. 

 
 

  

 

Cerberus mainboard 
USBClientSP power 

module 
Light sensor Tunes module SD card module 

Figure 38: Modules needed for Burglar alarm saving to file project 

Step 2: Use the Gadgeteer designer to link the modules together  

Use the Gadgeteer Designer to put together the modules as shown in Figure 39, or using the sockets that you 

have chosen when putting the hardware together. 
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Figure 39: Modules in the Designer for the Burglar alarm saving to file project 

 

Step 3: Write your program 

To save to file you will now write a separate procedure that records when an intruder is detected for the first 

time. You will also need a new variable intruderAlert. This variable will be a Boolean variable which can take 

only two values: True or False. The intruderAlert variable will start off with the value False and then the first time 

the alarm sounds the program will change the value of the intruderAlert to True. When the intruderAlert variable 

becomes True the fact that this has happened will be saved to a file. 

The variable intruderAlert will be used in several procedures so can be declared globally at the top of the 

program. Add it to the top of your program as shown below where the line is highlighted yellow. 

Namespace GadgeteerApp1 
    Partial Public Class Program 
 
        Dim intruderAlert As Boolean = False 
        ' This is run when the mainboard is powered up or reset.  
        Public Sub ProgramStarted() 
             
            Debug.Print("Program Started") 
            timer.Start() 
 
        End Sub 

Now create a new procedure in your program as shown below. 

Private Sub saveIntruderAlert() 
 
End Sub 

You will need to create two variables to work with files. One is just a shorthand for repeatedly writing 

sdCard.GetStorageDevice() which we will call sdStorage. The other is the actual report which will be written 

to file, in the form of a set of bytes. You cannot write a string of text directly to file.  
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So within the new procedure you have created add the two Dim statements as follows: 

Private Sub saveIntruderAlert() 
            Dim sdStorage As GT.StorageDevice = sdCard.GetStorageDevice() 
            ' declare the intruderReport variable and encode the string “Alert!” 
            ' into bytes to save it into your text file. 
            Dim intruderReport As Byte() = System.Text.Encoding.UTF8.GetBytes("Alert!") 
End Sub 

The next part of the new procedure is to do the following: 

 set the intruderAlert variable to True (because an intruder has been detected); 

 check that the SD card is inserted, if you do not do this you could get an error; 

 if it is, write the intruderReport to file; 

 if it is not, send a message to Debug.Print() so that you know this has happened. 

To write this code, enter the lines highlighted in yellow below.  

Note that writing data to external storage devices can be slow and can use additional power, so computer 

systems often try to minimise how often they write data to files. They do this by keeping a note of what data 

needs to be written but not actually writing anything until there is enough data to make it worthwhile. This is 

called caching the data, and it is usually done automatically by the operating system – so even if a program 

includes commands to write data to storage, the data may not be written straight away in practice. With 

Gadgeteer we can ensure that any cached data is actually written to the SD card by issuing a command to 

unmount the card. This gets the card ready to be removed by a user and so the operating system makes sure that 

any cached data is written onto the card.   

    Private Sub saveIntruderAlert() 
            Dim sdStorage As GT.StorageDevice = sdCard.GetStorageDevice() 
            ' declare the intruderReport variable and encode the string “Alert!” 
            ' into bytes to save it into your text file. 
            Dim intruderReport As Byte() = System.Text.Encoding.UTF8.GetBytes("Alert!") 
            ' set the boolean variable intruderAlert to True 
            intruderAlert = True 
            ' save the incident to the SD card 
            If sdCard.IsCardInserted() Then 
                sdCard.MountSDCard() 
                ' which is needed for the WriteFile command 
                sdStorage.WriteFile("alerts.txt", intruderReport) 
                sdCard.UnmountSDCard() 
            Else 
                Debug.Print("Intruder detected but cannot save this record to file!") 
                Debug.Print("Insert the SD card into the SD Module") 
            End If 
    End Sub 

Finally, you will need to call this procedure from the timerTick() procedure when an intruder is detected. This 

will be when the light sensor’s reading is more than 50 and an intruder has not been detected before (if 

intruderAlert is still set to False). 

Edit the timerTick() procedure adding the lines highlighted in yellow below. 

 Private Sub timer_Tick(timer As Gadgeteer.Timer) Handles timer.Tick 
            Dim amountLight As Double 
            amountLight = lightSensor.GetIlluminance() 
            Debug.Print(amountLight.ToString()) 
            While amountLight > 50 
                If intruderAlert = False Then 
                    ' first time an intruder has been detected 
                    saveIntruderAlert() 
                End If 
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                Debug.Print("Intruder detected") 
                tunes.Play(800) 
                tunes.Play(300) 
                 
                amountLight = lightSensor.GetIlluminance() 
            End While 
            tunes.Stop() 

        End Sub  

To test that this works, run the program. When the alarm goes off, stop the program running. Take the SD card 

out and put it into your computer. There should be a file on in called “alerts.txt”. Open this file and check that it 

contains the word “Alert!” 

Now try the exercises below. 

EXERCISES (CONTINUED) 

 

3. Build on exercise 1 above and add a second button which will also trigger the alarm. Edit the program so 

that it saves the cause of each alarm – light level or button – as well as the word ‘alert’.  

4. Edit your program to keep a track of how much time has passed since the alarm went off. If the alarm goes 

off for more than a certain time interval, write ‘the police have been called!’ to the log file. If the alarm is 

cancelled then record this to the log file, along with how long it took, for example “alarm cancelled after 12 

seconds”. 

 

 

SUMMARY 

In this chapter, you have learned to: 

 save text to a file on the SD card; 

 understand what caching is and why it’s a useful technique; 

 use the SD card module as a storage device. 
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CHAPTER 9. MORSE CODE 

 

KEY TERMS  MODULES YOU WILL NEED  

Reading from file 
Select … Case 
User-defined functions 
Returning a value from a function 
Constant values 

 Cerberus mainboard 
USBClientSP power module 
Tunes module 
SD card module 

 

OVERVIEW 

In this program you will firstly develop a program to play a word as the dots and dashes of Morse code, using 

the Tunes module. You will then be able to read in a word from a file and play this in Morse code. 

NEW CONCEPTS : READING FROM A FILE IN V ISUAL BASIC 

In the previous program we wrote to a file using the .txt extension.  We were able to open the file on the SD 

card and see the contents. In this chapter we look at how to read from a text file containing words. 

A file is stored on a storage device as a sequence of bytes. In these examples, the file is stored on the SD card 

and the methods to write to file and read from file are accessed using sdCard.getStorageDevice(). The 

previous chapter described some of the procedures and properties that can be used with an SD card module 

when working with files. In this chapter you will use ReadFile() and the IsCardInserted property, see Table 

11 for a reminder about these. 

Table 11 : Some properties and procedures associated with the SD card module 

Name Function What it is for? 

sdCard.IsCardInserted 
Property Returns True or False. To test whether 

an sdCard is inserted or not 

sdCard.GetStorageDevice().ReadFile(<contents>) 
Procedure Reads the file into an array of bytes 

To read from a file you need to specify the filename and this must be stored on the SD card. Once you use the 

command to read in from a file, the contents will be stored as a series of bytes (a byte is binary data).  

<result of reading in> = sdStorage.ReadFile(<name of file>) 

The next step is to convert this into text, which is done using the following command: 

<contents as text> = System.Text.Encoding.UTF8.GetChars(<result of reading in>) 

In these two lines of code, the <contents as text> is a variable defined as a string, and the <result of reading 

in> is a variable defined as Byte() (an array of bytes). 

In the following tutorial initially just one word will be read in from file and converted. 

NEW CONCEPTS : CREATING A FUNCTION IN V ISUAL BASIC 

So far, you have been able to create your own procedure which you have called from another place in your 

program. As you have seen, procedures in Visual Basic are called Sub and will be written as: 
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Private Sub <procedure name>() 

<statements> 

End Sub 

Sub is short for “sub-routine”. You can define your Sub as “Public Sub” if you want it to be accessed by another 

program but this is not the case with the ones we are writing here. 

Sometimes you will need something to be sent back from the sub-routine and for this you would use a function 

instead of a sub. 

Private Function <function name>() As <data type> 

<statements> 

End Function 

The function looks a bit more complex because it has As <data type> at the end of the first line. This is because 

the function will send back (return) a value when it has finished running and Visual Basic needs to know what kind 

of variable this will be, for example String, Integer or Boolean.  

At the end of the function the value is actually returned and this is done by writing the line: 

<function name> = <whatever you want to return> 

In this case, we will define a function called ReadFromFile() which will return a string. The function declaration 

will be as follows: 

Private Function ReadFromFile() As String 
 
End Function 

At the end of the function, the return statement will be as follows: 

ReadFromFile = newWord 

where newWord is a string variable that has been created and set to a particular value inside the function. 

TUTORIAL : MORSE CODE  

Step 1: Assemble these modules  

 

 
 

 

 

Cerberus mainboard usbClientSP power 
module 

SD card module Tunes module 
 

Figure 40: Modules needed for Morse code project 
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Step 2: Use the Gadgeteer Designer to link the modules together  

 

Figure 41: Modules in the Designer for the Morse code project 

 

Step 3: Write your program 

Firstly we need to be able to translate a word into Morse code. We will do this first before starting to look at 

file handling. The code for translating each letter to Morse code is shown in Table 12. In addition the following 

rules apply: 

 the length of a dot is one unit; 

 a dash is three units; 

 the space between parts of the same letter is one unit; 

 the space between letters is three units; 

 the space between words is seven units. 

Table 12: Morse code conversion 

Character Code  Character Code 

A .-  B -... 
C -.-.  D -.. 
E .  F ..-. 
G --.  H .... 
I ..  J .--- 
K -.-  L .-.. 
M --  N -. 
O ---  P .--. 
Q --.-  R .-. 
S ...  T - 
U ..-  V ...- 
W .--  X -..- 
Y -.--  Z --.. 

We want to output each letter as a sequence of dots and dashes followed by a rest.  The rest will be 900 

milliseconds long. Each dot will be 300 ms and each dash will be 900 ms. Also we will need a 300 ms between 
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each sound so that it doesn’t come out as a continuous noise.  As you can see in the chart above a dash should be 

three times as long as a dot. 

We can define these as constants to make the program easier to read. A constant is a type of variable that will 

not change its value. 

     Public Sub ProgramStarted() 
            Const dot = 300   ' dot 
            Const dash = 900  ' dash is three times as long as a dot 
            Const rest = 900  ' rest between letters is three times as long as a dot 
            Const gap = 300   ' gap between sounds is as long as one dot 
            Const frequency = 300 ' chosen frequency in Hertz 
 

 

Using the table above you can see that if you want to send the word “Hello” by Morse code, you will need to 

know the sequence of dots and dashes for the letters H, E, L and O.   

For example: 

 H – dot dot dot dot  

 E – dot 

 L – dot dash dot dot 

 L – dot dash dot dot 

 O – dash dash dash 

 

Writing this out in Visual Basic code for H and E would give the following: 

        Dim melody As Tunes.Melody = New Tunes.Melody() 
            Debug.Print("Program Started") 
            Debug.Print("H") 
            ' play H dot dot dot dot  
            melody.Add(frequency, dot) 
            melody.Add(0, gap) 
            melody.Add(frequency, dot) 
            melody.Add(0, gap) 
            melody.Add(frequency, dot) 
            melody.Add(0, gap) 
            melody.Add(frequency, dot) 
            melody.Add(0, rest) 
            ' play E dot 
            Debug.Print("E") 
            melody.Add(frequency, dot) 
            melody.Add(0, gap) 
            melody.Add(0, rest) 
 
      tunes.Play(melody) 

 

Finish off the code to play the word “Hello” in Morse Code. Then move on to the following tutorial, which shows 

you how to input a word from a file in Morse Code. 

TUTORIAL : READING A WORD FROM A F ILE AND TRANSLATING TO MORSE CODE  

Obviously the program needs to become a little more efficient and we need to code in the whole alphabet. In 

Chapter 6 you learned about using Select … Case and we will use this to program each letter of the alphabet.  

To show how to do this we set up a variable called newWord which will hold the word that is being entered. Then 

the algorithm, written in English, will be: 
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Create a new variable of data type Melody 

Create another new variable of type String and give it the value of the word to be converted 

For each letter in the word repeat the following steps: 

If the letter is “A”  

 add “dot dash” to melody 

Else if the letter is “B”  

 add “dash dot dot dot” to melody 

... (with corresponding logic for each letter) 

Add a rest to melody  

Play the whole tune 

Check that you understand the logic behind this algorithm before continuing. The code for the first few letters of 

the alphabet is shown below. Type this in and add the remaining letters 

            Dim melody As Tunes.Melody = New Tunes.Melody() 
            Debug.Print("Program Started") 
            Dim newWord As String = "ABC" 
            For count As Integer = 0 To newWord.Length() - 1 
                Debug.Print(newWord(count)) 
 
                Select Case newWord(count) 
                    Case "A"  ' dot dash 
                        melody.Add(frequency, dot) 
                        melody.Add(0, gap) 
                        melody.Add(frequency, dash) 
                        melody.Add(0, gap) 
 
                    Case "B"  ' dash dot dot dot 
                        melody.Add(frequency, dash) 
                        melody.Add(0, gap) 
                        melody.Add(frequency, dot) 
                        melody.Add(0, gap) 
                        melody.Add(frequency, dot) 
                        melody.Add(0, gap) 
                        melody.Add(frequency, dot) 
                        melody.Add(0, gap) 
 
                    Case "C"  ' dash dot dash dot 
                        melody.Add(frequency, dash) 
                        melody.Add(0, gap) 
                        melody.Add(frequency, dot) 
                        melody.Add(0, gap)  
                        melody.Add(frequency, dash) 
                        melody.Add(0, gap) 
                        melody.Add(frequency, dot) 
                        melody.Add(0, gap) 
                         
                End Select 
                melody.Add(0, rest) 
 
            Next 
            tunes.Play(melody) 

Now test the program works with your name. Insert your name into the code instead of “ABC” in your program 

and check that the output is what you would expect. 

Testing is very important when creating software of any kind. It is important to have a range of tests that cover 

all the possible inputs – known as test data. Normally, we would draw up a test plan that covers all the various 

tests to the system and what we might expect. An example of a test plan is given in Table 13. Once you have 
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carried out the tests you go back to your program and make changes to the code where tests do not work as 

planned, and then run your tests again. 

Table 13: Example of a test plan 

Test data for Morse Code program Why chosen? Expected outcome Actual outcome 

SALLY Typical data Outputs morse code 
for Sally 

...  .-   .-..  .-.. -.-- 
 

Works as expected 

Tom Lower case letters Outputs morse code 
for TOM 
 

Only outputs “T” 

ABCDEFGHIJKLMNOPQRSTUVWXYZ Test all letters .-   -.-.  .   --.    .. 
-.-   --   ---   --.- 
...    ..-  .--  
etc. 

Produces correct 
sounds as expected 

99 Numbers Won’t output 
anything 

Works as expected 

Once you have got this working correctly, the next step is to create a text file in Notepad and write a word in 

that file, then read the file into your program and then play it in Morse code.   

Firstly, create a file in any text editor such as Notepad and write one word in it. Save your text file as “word.txt” 

and make sure it is saved on to your SD card. Then put the SD card into the SD card Module. 

The next step is to write the code to read from the file. To do this you should create a separate function which 

has the job of reading from the file and passing back the word to the ProgramStarted procedure. We will call 

this function ReadFromFile(). 

      Private Function ReadFromFile() As String 
 
      End Function 

We can build up this function a little at a time. First declare the variables you need by entering the highlighted 

lines below. sdStorage is being used as  a shorthand for sdCard.GetStorageDevice() to save typing.  

dataFromFile is the variable to hold the contents of the file which will be returned as a series of Bytes (binary 

data), and newWord is a string variable that will be used to hold the converted bytes once they have been 

converted into a string. 

      Private Function ReadFromFile() As String 
            Dim sdStorage As GT.StorageDevice = sdCard.GetStorageDevice() 
            Dim dataFromFile As Byte() 
            Dim newWord As String 
 
      End Function 

Next you need to check if the SD card is correctly inserted to make sure there are not any runtime errors. This is 

the same code we used in the previous chapter. An If statement is used as sdCard.IsCardInserted will return 

a True or False value. 

      Private Function ReadFromFile() As String 
            Dim sdStorage As GT.StorageDevice = sdCard.GetStorageDevice() 
            Dim dataFromFile As Byte() 
            Dim newWord As String 
 
            If sdCard.IsCardInserted Then 
                ' we are OK to proceed 
            Else 
                ' we cannot proceed without an SD card inserted 
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                Debug.Print("There is a problem with your SD card") 
                Debug.Print("Make sure it is inserted correctly into the SD card module") 
            End If 
 
        End Function 

The next step is to read in the file and then convert it from a list of bytes into an actual string. These are the two 

lines of code that were described above in the section on reading from file. The first line looks in the file 

“word.txt”, reads from the file and puts the contents into a variable called dataFromFile. The second line 

converts dataFromFile into a string variable and puts it into the variable newWord. 

      Private Function ReadFromFile() As String 
            Dim sdStorage As GT.StorageDevice = sdCard.GetStorageDevice() 
            Dim dataFromFile As Byte() 
            Dim newWord As String 
 
            If sdCard.IsCardInserted Then 
                ' we are OK to proceed 
                dataFromFile = sdStorage.ReadFile("word.txt") 
                newWord = System.Text.Encoding.UTF8.GetChars(dataFromFile) 
            Else 
                ' we cannot proceed without an SD card inserted 
                Debug.Print("There is a problem with your SD card") 
                Debug.Print("Make sure it is inserted correctly into the SD card module") 
            End If 
 
        End Function 

The final step is to return the word from the file out of the function back to the procedure that called it.  

      Private Function ReadFromFile() As String 
            Dim sdStorage As GT.StorageDevice = sdCard.GetStorageDevice() 
            Dim dataFromFile As Byte() 
            Dim newWord As String 
 
            If sdCard.IsCardInserted Then 
                ' we are OK to proceed 
                dataFromFile = sdStorage.ReadFile("word.txt") 
                newWord = System.Text.Encoding.UTF8.GetChars(dataFromFile) 
            Else 
                ' we cannot proceed without an SD card inserted 
                Debug.Print("There is a problem with your SD card") 
                Debug.Print("Make sure it is inserted correctly into the SD card module") 
            End If 
            ReadFromFile = newWord 
 
        End Function 

All functions must include a line to return the value that is sent back from the function. 

The function is now complete and ready to be called from your program.  In ProgramStarted() call this function 

and store the returned text into a variable. For example, earlier we used the variable  newWord = “ABC” to 

store the string. Now change the line to newWord = readFromFile() and it will call the function you have just 

written and store the returned string into the variable newWord. 
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       Public Sub ProgramStarted() 
            Const dot = 300  ' dot 
            Const dash = 900  ' dash is three times as long as a dot 
            Const rest = 900 ' rest between letters is three times as long as a dot 
            Const gap = 300 ' gap between sounds is as long as one dot 
            Const frequency = 300 ' chosen frequency 
 
            Dim melody As Melody = New Melody() 
            Debug.Print("Program Started") 
            Dim newWord As String 
            newWord = readFromFile() 
 
… 

Now run your program and test that the Morse Code produced by your program does really correspond to the 

word you entered. When this works correctly, try the exercises below. 

 

EXERCISES  

1. Extend your program by adding a display, and displaying the converted word on the display, using dots 

and dashes. 

2. Now enhance your program so that it can convert more than one word in the newWord string to morse code. 

3. Extend your program by coding the newWord string in a different way. Rather than outputting in morse code, 

first encrypt the word using a shifting algorithm and then output it on to the display in code. A shifting 

algorithm takes each letter in the alphabet and shifts it along the ASCII table a certain number of times, 

which we call n. In this case, shift each letter along 2 places, so that a = c, b = d, etc.  

4. Extend the previous exercise so that you can shift up or down the ASCII table. Display both the encoded and 

decoded strings on the display. 

 

SUMMARY 

In this chapter, you have learned to: 

 read a file in from the SD card and use it in your program; 

 write a user-defined function that returns a value; 

 use a Select…Case statement inside a For loop. 

Amazing! Well done! 
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CHAPTER 10. DRAWING 

 

KEY TERMS  MODULES YOU WILL NEED  

Array 
Vector graphics 
Procedure 
Parameter 
By Val and By Ref 

 
Cerberus mainboard 
usbClientSP power module  
Display N18 module 
Joystick 

 

OVERVIEW 

In this chapter, you will learn about drawing on the display. There are several functions for this enabling you to 

draw lines, rectangles, and ellipses.  The tutorial will explain how to draw lines and rectangles on the screen. You 

will also learn about how to use an array in Visual Basic. This is an efficient way to store data in your programs.  

TUTORIAL 1: HOUSE DRAW  

This first short tutorial will show you how to draw pictures on the screen using DisplayLine() and 

DisplayRectangle(). These pictures are known as vector graphics because the coordinates, thickness, etc. of the 

lines are all defined in the code and then draw as sequences of lines (or vectors) as the program runs. 

Step 1: Assemble these modules  

 
  

Cerberus mainboard usbClientSP power module Display N18 module 

Figure 42: Modules needed for Drawing project 

Step 2: Use the Gadgeteer Designer to link the modules together  

 

Drag the modules on to the Designer screen as you have done previously and then link them together.  

When you initially drag the modules on to the Designer screen the display module will be called “display_N18”. 

This can be seen as text which appears under the photo of the module. You should rename the display by clicking 

on the text “display_N18” underneath the picture and then changing it to read “display”. This will make your 

code easier to read and is renamed for all exercises in this book which use the display.  
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Figure 43: Modules in the Designer for the Drawing project 

Step 3: Write your program 

In this first program you will write the commands to draw a house. A house to us means a blue unfilled square on 

the screen with a triangular roof. This essentially needs SimpleGraphics.displayRectangle() and 

SimpleGraphics.DisplayLine() to draw these lines and shapes. 

Enter the following code underneath ProgramStarted(): 

 
Public Sub ProgramStarted() 
             
     Debug.Print("Program Started") 
     'white background 
     display.SimpleGraphics.BackgroundColor = GT.Color.White 
     'draw house, blue outline 
     display.SimpleGraphics.DisplayRectangle(GT.Color.Blue, 4, GT.Color.White, 30, 30, 80, 80) 
     ' draw roof - diagonal lines, blue colour 
     display.SimpleGraphics.DisplayLine(GT.Color.Blue, 2, 30, 30, 70, 10) ' diagonal 
     display.SimpleGraphics.DisplayLine(GT.Color.Blue, 2, 70, 10, 110, 30) ' diagonal 

When you run it you should see a blue outline which is intended to be a picture of a house! See if you can add 

the code to draw a window and a door (and even a stick person) to your house. It should look something like 

Figure 44. 

 

Figure 44: Does your house look like this? 

 
 
 

Change the name of 

the display N18 to 

“display”. This will 

make your program 

easier to read. 
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NEW CONCEPTS : ARRAYS IN V ISUAL BASIC 

So far you have been using variables to store single items of data that you needed to know later on. However, 

sometimes you have lots of related variables that you need to store together and to store these we use an array. 

For example, you may want to record several scores, or remember a list of names or places. An array is a 

complex data structure in which several values can be stored and these can be referred to individually using an 

index.  An array is declared in Visual Basic using the Dim statement. Arrays can be fixed-length or dynamic. We 

will be looking at fixed-length arrays only in this chapter. 

The benefits of using an array can be seen in Figure 45 . When storing lots of similar data you may need to 

create lots of variables and then write lots of code for each variable. Instead you could store all the values that 

are related in one data structure called an array.  

 

Figure 45: The difference between variables and arrays 

To declare an array, use the following syntax: 

Dim scoreValues(8) As Integer 

 

This is the same as: 

 

Dim scoreValues(0 To 8) As Integer 

 

We could also declare an array of strings such as: 

 

Dim nameArray(8) As String 

 

This would be used to hold items of text. 

This will define an array with 9 items of data, all of them variables, as shown in Table 14.  At this point none of 

the data items in the array have any values. 

Different values can all be 

stored together in an array. 
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Table 14: An empty array in Visual Basic 

Referred to Content 

scoreValues(0)  

scoreValues(1)  

scoreValues(2)  

scoreValues(3)  

scoreValues(4)  

scoreValues(5)  

scoreValues(6)  
scoreValues(7)  

scoreValues(8)  

You could then put some data into the array, for example: 

scoreValues(0) = 35 
scoreValues(1) = 56 

The values in the array would then look like Table 15. 

Table 15: Assigned values in an array 

Referred to Content 

scoreValues(0) 35 

scoreValues(1) 56 

scoreValues(2)  

scoreValues(3)  

scoreValues(4)  

scoreValues(5)  

scoreValues(6)  
scoreValues(7)  

scoreValues(8)  

Notice that there are in fact 9 variables declared because Visual Basic starts counting at 0 but finishes at 8. 

A good way of looking at what is inside an array is using a For … loop. There are two versions of the For loop 

suitable for working with arrays. The first version is the one we have already used, where a counter variable is 

incremented each time the code in the loop is run. This counter case be used as an index into the array which will 

access each array element in turn: 

For <stepperVariable> = 1 To 8 
<statements> 

Next 

The second version of a For loop is actually called a For Each loop. This can be used to iterate through each 

actual value in the array: 

For Each <element> In <array> 
<statements> 

Next 
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NEW CONCEPTS : PASSING PARAMETERS INTO PROCEDURES AND FUNCTIONS –  BY VAL AND BY REF 

In the next tutorial we will create a procedure with an input parameter that we write from scratch. Up until now, 

the only procedures we have used with input parameters have been event handlers where the code was in part 

automatically generated when we selected the event in Visual Studio.  

When we call a procedure with input parameters we pass some data into it for it to work with. We can do this in 

the two different ways shown in Table 16, ByVal and ByRef. 

Table 16: The two ways of passing input parameters into a procedure, by value and by reference 

ByVal 
The value is passed into the procedure but any changes to the variable will not 
have an effect once the procedure has finished running. 

ByRef 

The value is passed into the procedure as before, but if the procedure makes 
any changes to that value in the variable then these changes will remain even 
after the procedure has finished running. If you need to change the value of 

the variable and use it again later in your code, use By Ref.  

 

TUTORIAL 2: GRAPH DRAW 

The second tutorial uses exactly the same modules as the first, but uses an array of values to draw a graph on 

the screen. 

Step 1: Assemble these modules  

 
 

 
Cerberus mainboard usbClientSP power module Display N18 module 

Figure 46: Modules needed for the Graph draw project 

Step 2: Use the Gadgeteer Designer to link the modules together  

 

Figure 47: Modules in the Designer for the Graph draw project 
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Step 3: Write your program 

The first step is to declare a new array in Visual Basic. This will be an array of scores gained by somebody 

playing a game.  For the sake of this example you will decide what the scores are and write them into your 

program. 

Table 17: The array values you should use in this tutorial 

Referred to Value 

scoreValues(0) 4 

scoreValues(1) 8 

scoreValues(2) 1 

scoreValues(3) 3 

scoreValues(4) 6 

scoreValues(5) 11 

scoreValues(6) 5 

scoreValues(7) 9 

This is declared in Visual Basic using the following code: 

Namespace GraphDraw 
    Partial Public Class Program 
  Const maxScore = 15 
        ' This is run when the mainboard is powered up or reset.  
        Public Sub ProgramStarted() 
      ' Array of 8 values generated 
            Dim scoreValues() As Integer = {4, 8, 1, 3, 6, 11, 5, 9} 
 
            ' Use Debug.Print to show messages in Visual Studio's  
            ' "Output" window during debugging. 
            Debug.Print("Program Started") 

In this example we are going to assume that the maximum score is 15 and we can declare that as a constant. 

 You then need to create a procedure to draw the array which is going to be called displayValues and take 

the array as a parameter. 

We will add the following line to ProgramStarted() to call the new procedure: 

Namespace GraphDraw 
    Partial Public Class Program 
  Const maxScore = 15 
        ' This is run when the mainboard is powered up or reset.  
        Public Sub ProgramStarted() 
            Dim scoreValues() As Integer = {4, 8, 1, 3, 6, 11, 5, 9} 
 
            ' Use Debug.Print to show messages in Visual Studio's  
            ' "Output" window during debugging. 
            Debug.Print("Program Started") 
            displayValues(scoreValues) 
        End Sub 

We will then add the actual procedure using the code below which should be after the end of the 

ProgramStarted() procedure. Note that the End Sub instruction is automatically created for you. 

    Private Sub displayValues(ByVal numberArray() As Integer) 
 
 
 
 
    End Sub 

Use ByVal as the array values will not be changed by this procedure. 
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The advantage of doing this is that we can use this procedure again and again every time we want to draw a 

graph like this. We want to make our displayValues() procedure as general as possible so that it will work for 

any numbers, and any width and height of display.  

In this code you are stating that you will have an array of integers to be known as numberArray() passed into 

the program. It does not need to be called this when you call it from ProgramStarted(). When it is passed in, it 

takes on the name numberArray().  

As described above, you can use ByVal or ByRef when you declare a parameter in your own procedure. Here 

we do not want to change the array of numbers, just use them to draw a graph. So we can use By Val. 

 

Figure 48: DisplayRectangle parameters 

The next step is to declare the values we will need to draw the graph. Looking at what the SimpleGraphics 

method called displayRectangle() (see Figure 48) takes as its parameters gives us a clue as to what variables 

we need, and these are given values in Table 18. 

Table 18: Setting parameter values of DisplayRectangle 

DisplayRectangle parameter Comment Variable name 

outlineColor Set this to GT.Color.White  

thicknessOutline Set this to 1  

fillColor Set this to GT.Color.White  

X Declare a variable for this as it will be different 
for each rectangle (i.e. each bar of the chart) 

startX 

Y As above – but this will be 0 startY 

width As above columnWidth 

height As above columnHeight 

We can declare the new variables we need using the code below: 

Private Sub displayValues(ByVal numberArray() As Integer) 
    ' number of numbers is the length of the array 
    Dim arrayLength As Integer = numberArray.Length() 
    ' width of each bar is the column width - divide display width by array length 
    Dim columnWidth As Integer = CInt(display.Width / arrayLength) 
    ' height of each column will depend on the number in the array 
    Dim columnHeight As Integer 
    ' the starting x coordinate for the rectangle (top left) 
    Dim startX As Integer 
    ' the starting y coordinate for the rectangle (top left) 
    Dim startY As Integer 
End Sub 

To draw one bar on the display we will need to follow these steps: 

1) calculate the height of the bar; 

2) calculate the starting x coordinate. 
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The code to do this is as follows: 

 
    columnHeight = CInt(display.Height / maxScore * numberArray(count)) 
 
    startX = columnWidth * count 
 
 

Notice that to work out the height of the column we have divided the height of the display by the maximum score 

to see what high a score of 1 would be then multiplied it by the actual score value. Doing calculations like this is 

one of the reasons you need to be comfortable with numbers when you learn programming! 

Because we are dividing we could easily end up with a fractional number as the result (e.g. 4.67) and we need 

an integer to be stored in the columnHeight variable. We have used the function CInt() which is a very useful 

function and converts the answer from our calculation into an Integer before storing it in the variable 

columnHeight. 

The next step is to create a loop to draw as many columns as we need. You should use a For loop here rather 

than a While loop because we can find out how many columns we need by looking at the length of the array. 

The code we end up with is highlighted in yellow below. When you enter the For line the corresponding Next 

instruction is automatically added for you. 

        
Private Sub displayValues(ByVal numberArray() As Integer) 
    ' number of numbers is the length of the array 
    Dim arrayLength As Integer = numberArray.Length() 
    ' width of each bar is the column width - divide display width by array length 
    Dim columnWidth As Integer = CInt(display.Width / arrayLength) 
    ' height of each column will depend on the number in the array 
    Dim columnHeight As Integer 
    ' the starting x coordinate for the rectangle (top left) 
    Dim startX As Integer 
    ' the starting x coordinate for the rectangle (top left) 
    Dim startY As Integer 
 
    For count As Integer = 0 To arrayLength - 1 
        columnHeight = CInt(display.Height / maxScore * numberArray(count)) 
        startX = columnWidth * count 
        startY = 0 
 
        display.SimpleGraphics.DisplayRectangle(GT.Color.White, 1, GT.Color.White, startX, 
startY, columnWidth, columnHeight) 
 
    Next 
End Sub 

Type in the code above. When you run your program you should have a graph of 8 columns on the display. 

Make sure that you understand how it works before going on to try out the exercises below.  

EXERCISES  

1. Our current graph is actually upside down! It starts from y coordinate 0 which is at the top of the display. 

Edit the program so that the bars on your graph go up from the bottom of the display.  

2. Edit the previous program to add the number values inside the bars on the graph. 

3. Create a graph of light values. Attach a light sensor and adapt your program to take a light reading every 

5 seconds (or whatever time interval you prefer).  Store these readings in an array and display them in a 

graph.   

4. Random shape drawer – create modern art! Use the random functionality in Visual Basic to create an array 

of 10 integers filled with random values. These will represent the radius of 10 circles. Create another array 

of circle x coordinate and another one of circle y coordinates.  Run the program to see a variety of circles 

CInt converts a fractional number into an Integer. 
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drawn on the display. Your image should be different each time. To find out how to create a random number 

look ahead to the next chapter on page 75. 

 

SUMMARY 

In this chapter, you have learned to: 

 declare an array with pre-defined values; 

 use a For loop to iterate (cycle through) an array; 

 pass a parameter into a function; 

 use SimpleGraphics functions to draw lines and shapes on the display. 
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CHAPTER 11. REACTION GAME 

 

KEY TERMS  MODULES YOU WILL NEED  

Random values 
Using two timers 
Using a function to return a Boolean value 
Logical operators: AND, OR  and NOT 

 Cerberus mainboard 
usbClientSP power module 
Display N18 module 
Joystick 

 

OVERVIEW 

In this chapter you will create a game using the joystick and the display. In the game you need to move the 

joystick in the direction of a shape that appears on the screen. If you do this quickly you get a point, if you are 

too slow you are out! In developing this game you will work with two timers: one to repeatedly read the joystick 

position at very short intervals; the other one to time out if the user is too slow or to provide the next shape. You 

will also learn to work with random values, as we do not want the player to know where the next shape will 

appear. The next section explains how to do all this in Visual Basic. 

NEW CONCEPTS : WORKING WITH RANDOM VALUES 

Sometimes programs need a value that is chosen randomly. All programing languages have a function which 

enables the creation of an integer which is different each time the program is run – this is done using a random 

number generator provided by the programming language. In your program you can specify the bounds of your 

random number – this means the range of possible values which you want it to have.  

Producing a random number in Visual Basic requires four different lines of code: 

1. At the top of the program, you will need to add an Import statement to tell the program to import the 

library with the random functions in. 

 

Imports System.Random 

2. Secondly, again towards the top of your program (before ProgramStarted()), declare a variable 

random as below which will allow you to create random numbers.  

Dim random As New Random 

3. Thirdly, you will need to also declare a variable to hold the random value you create so that you can 

use it in your program. I have called it randValue in this example, but you could use any sensible name. 

Dim randValue As Integer 

4. Finally, in order to create a random number you use the function next() as in the example below (this 

will create a random number between 0 and 3). 

    randValue = random.Next(4)        

Sometimes you want to generate random number between 1 and something (e.g. 1 to 6 to generate a random 

dice throw). In this case you need to generate a number between 0 and 5 and then add 1 to it: 

    randValue = random.Next(6) + 1        

Many games involve some sort of random element so this is a good function to be able to incorporate into your 

programs. 
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NEW CONCEPTS : LOGICAL OPERATORS  

So far we have used a number of arithmetic operators, for example, + (plus) and – (minus) and used operators 

to compare numbers such as > (greater than) and = (equals).  A full list of operators is given in Error! Reference 

source not found.. 

We use conditions a lot in programming to determine whether or not something should happen, and this is 

programmed using an if statement. When using a condition it must always be evaluated as TRUE or FALSE. For 

example, “It is raining” is always going to be either TRUE or FALSE.  We might instead want to ask if a counter is 

greater than 10 – again this will either be TRUE or FALSE. Conditions are also used in some kinds of loops. 

On many occasions, conditions are more complex. For example, we might want to ask if it is NOT raining. We 

might want to combine conditions to ask, for example, whether “It is raining” and “today is Sunday” are both 

true. We then need to use the logical operators AND, OR and NOT. These are described in Table 19. In the 

program in this chapter you will use the NOT operator when testing to see if somebody has scored (or not 

scored!) in the game. 

Table 19: Logical operators in Visual Basic 

Operator Visual Basic example using if Meaning 

NOT If Not timer.IsRunning then … The condition is TRUE If the timer is not running 

AND If counter > 5 And username = “Bob” The condition is true if the counter is greater than 5 
and also the user is called “Bob” 

OR If counter > 5 Or username = “Bob” The condition is TRUE if either the counter is greater 
than 5 or the user is called “Bob” or if both are the 
case. 

More information on logical operators can be found in Error! Reference source not found.. 

TUTORIAL : BUILDING THE REACTION TIMER GAME 

Step 1: Assemble these modules  

Firstly, assemble these modules, connecting them using the letters on the modules to help you. 

 

  
  

Cerberus mainboard 
usbClientSP power 

module 
Display N18 module 

Joystick 
 

Figure 49: Modules needed for Reaction game project 

Step 2: Use the Gadgeteer Designer to link the modules together  

Now use the Gadgeteer Designer to link the modules together – ensuring that your version matches the sockets 

you have used when linking the hardware together. 

When you initially drag the modules on to the Designer screen the display module will be called “display_N18”. 

This can be seen as text which appears under the photo of the module. You should rename the display by clicking 
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on the text “display_N18” underneath the picture and then changing it to read “display”. This will make your 

code easier to read and is renamed for all exercises in this book.  

 

 

Figure 50: Modules in the Designer for the Reaction game project 

Step 3: Write your program 

To write your program the first stage is to understand how it will work, in terms of the sequence of events in the 

game. 

There will be two timers. One “ticks” every second – i.e. every 1000 milliseconds – and at each tick produces a 

new shape. The second reads the joystick position very often, for example 50 times per second. 50 times per 

second is once every 1/50th of a second which equals once per 2/100th or once per 20/1000th of a second. 

The way the program will work is shown below. This is the underlying algorithm for this game. 

Every second: 

Check if the player scored by moving to the last shape 

If not, say “Game Over” and stop the game 

 If they did then proceed to the following: 

  Choose a random value between 1 and 4 

  Draw the rectangle representing that number (e.g. 1 is yellow, 2 is red, etc.) 

  Start the fast timer (the joystick’s timer) 

  Set correct to False 

 

Once the fast timer (joystick’s timer) is enabled it will repeatedly: 

 Check if the joystick has been moved towards the shape 

 If it has then set correct to True 

 Once correct has been set to True, it will add one to the score 

The fast timer will then stop 

 

If you feel confident that you can write the code for the above algorithm written in English, then go ahead and 

do so. If not follow these instructions to make the game. 

 

Change the name of the display N18 to “display”. This will make 

your program easier to read. 
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First you will need to declare the variables that you will use throughout the game. You will need a score variable 

which will be an Integer, a correct variable that will be True or False, a Random object as described above and 

a Font so that you can write the score on the display. Since these variables will be accessed by the different 

procedures in our program they must be declared outside of any Sub, after the Partial Public Class 

Program line. Write the variable definitions as shown below:  

        Dim font As Font = Resources.GetFont(Resources.FontResources.NinaB) 
        Dim score As Integer = 0 
        Dim correct As Boolean = True 
        Dim random As New Random 
        Dim randValue As Integer 

 

The next stage is to declare the two timers: 

      Dim WithEvents timer As GT.Timer = New GT.Timer(1000)  ' once every 1000 milliseconds 
      Dim WithEvents joyTimer As GT.Timer = New GT.Timer(20) ' once every 20 milliseconds 

Create two procedures for the Tick() events of these two timers – you will fill the code in for these two later. 

Create these as you normally would using the drop-down in Visual Studio. 

Private Sub timer_Tick(timer As Gadgeteer.Timer) Handles timer.Tick 
 
End Sub 
 
Private Sub joyTimer_Tick(timer As Gadgeteer.Timer) Handles joyTimer.Tick 
 
End Sub 

 

 

Figure 51: Four coloured rectangles act as targets in the Reaction game 

Next, set up the display to look like the image in Figure 51. On the display there are four rectangles and some 

text written inside a rectangle shape. On a 128 x 160 pixel display, the code needed for this would be as 

below: 

Public Sub ProgramStarted() 
    font = Resources.GetFont(Resources.FontResources.NinaB) 
     ' Display four blocks on each side of the screen and a message in  
     ' the middle 
    display.SimpleGraphics.DisplayRectangle(GT.Color.Blue, 1, GT.Color.Blue, 0, 50, 20, 60) 
    display.SimpleGraphics.DisplayRectangle(GT.Color.Red, 1, GT.Color.Red, 40, 0, 60, 20) 
    display.SimpleGraphics.DisplayRectangle(GT.Color.Green, 1, GT.Color.Green, 40, 140, 60, 20) 
    display.SimpleGraphics.DisplayRectangle(GT.Color.Yellow, 1, GT.Color.Yellow, 110, 50, 20, 60) 
 
    display.SimpleGraphics.DisplayTextInRectangle("Ready...", 40, 50, 60, 40, GT.Color.White, font) 
     
End Sub 

Enter this code and check that it works so far. 



     Learning to Program with Visual Basic and .NET Gadgeteer    79 
 

The next stage is to write a short procedure that draws just one of these rectangles on the screen, based on a 

number that is passed into the procedure as a parameter. This procedure will be used with the random number to 

randomly choose which rectangle to draw on the display. It uses a Select ... Case statement.  

Private Sub showRectangle(number As Integer) 
   Select Case number 
      Case 1 
         display.SimpleGraphics.DisplayRectangle(GT.Color.Blue, 1, GT.Color.Blue, 0, 50, 20, 60) 
      Case 2 
         display.SimpleGraphics.DisplayRectangle(GT.Color.Red, 1, GT.Color.Red, 40, 0, 60, 20) 
      Case 3 
         display.SimpleGraphics.DisplayRectangle(GT.Color.Green, 1, GT.Color.Green, 40, 140, 60, 20) 
      Case 4 
         display.SimpleGraphics.DisplayRectangle(GT.Color.Yellow, 1, GT.Color.Yellow, 110, 50, 20, 60) 
    End Select 
End Sub 

This procedure will be called every second, according to the algorithm shown above.  

We need a corresponding function to check that the joystick has moved to the correct rectangle. This function will 

return a Boolean value. The function will return True if the joystick movement has gone towards the correct 

rectangle, which it calculates by looking at the x and y coordinates of the position of the joystick. It will return 

False otherwise. 

A joystick in Gadgeteer supports several events and properties, including the following: 

Name Function What it is for? 

GetPosition.X Property 
Returns the X coordinate of the joystick as a real number (Double 
data type). It ranges between -1 and 1, returning a 0 when the 
joystick is in the middle of is range of movement. 

GetPosition.Y Property 
Returns the Y coordinate of the joystick as a real number (Double 
data type). It ranges between -1 and 1, returning a 0 when the 
joystick is in the middle of is range of movement. 

JoystickPressed Event 
You can write what you want to happen when the joystick is 
pressed. In this case we want to start the game by starting the 
timer. 

JoystickReleased  Event 
As above, you can use this to write what you want to happen 
when the joystick is released 

 

We need this logic to detect which shape the joystick is moving towards: 

 If 1is chosen (blue rectangle) return correct as True if the joystick.GetPosition.X < - 0.5 (blue 

is to the left of the display) 

 If 2 is chosen (red rectangle) return correct as True if the joystick.GetPostion.Y >  0.5 (red is to 

the top of the display) 

 If 3 is chosen (green rectangle) return correct as True if joystick.GetPosition.Y < -0.5 (green is 

to the bottom of the display. 

 If 4 is chosen (yellow rectangle) return correct as True if joystick.GetPosition.X > 0.5 (yellow is 

at the right of the display). 

For each of these it is assumed that the joystick is used with the words “Joystick 1.2” at the bottom as shown in 

Figure 52. 
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Figure 52: Orientation of joystick 

This logic can be put into a function called detectJoystickMovement() which returns a Boolean value.   

Private Function detectJoystickMovement(number As Integer) As Boolean 
            ' function to return true or false depending on position of joystick. 
            Dim x As Double = joystick.GetPosition.X 
            Dim y As Double = joystick.GetPosition.Y 
            Select Case number ' random colour chosen by number 
                Case 1 ' blue chosen - low x value 
                    If x < -0.5 Then 
                        Return True 
                    Else 
                        Return False 
                    End If 
 
                Case 2 ' red chosen - high y value 
                    If y > 0.5 Then 
                        Return True 
                    Else 
                        Return False 
 
                    End If 
                Case 3  ' green chosen - low y value 
                    If y < -0.5 Then 
                        Return True 
                    Else 
                        Return False 
                    End If 
                Case 4 ' yellow chosen - high x value 
                    If x > 0.5 Then 
                        Return True 
                    Else 
                        Return False 
                    End If 
            End Select 
 
            Return False 
        End Function 

 

The two helper sub-routines have now been written so the next stage is to write the code for the two timers which 

will call these sub-routines. Looking back to the flow of control described at the beginning of this section you can 

see that every second when the timer event is called the program needs to do the following: 

  

Keep the words 

“Joystick” facing 

you 

The data type 

of the return 

value of the 

function must 

be included. 

‘number’ is passed 

into the function as a 

parameter – this will 

be the random 

value for the current 

round. 

http://www.ghielectronics.com/images/catalog/299-0_large.jpg
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 Check if the player scored by correctly moving to the last shape 

 If not, say “Game Over” and stop the game 

 If the player did score then proceed to do the following: 

o Display the score 

o Choose a new random value between 1 and 4 

o Draw the rectangle representing that number (e.g. 1 is yellow, 2 is red, etc.) 

o Start the fast timer (the joystick’s timer) 

o Set correct to False to indicate that the new shape has not been completed yet 

The code for each of these steps is given in Table 20 below, including some initialisation. 

Table 20: The steps necessary for the reaction timer 

Declare variable message 
Stop the fast timer 

Clear the display 

Dim message As String 
             
joyTimer.Stop() ' stop the other timer 
display.SimpleGraphics.Clear() 

Check if the player scored by moving to the 
last shape 

If Not correct Then 

If not, say “Game Over” and stop the game 
message = "GAME OVER!" 
 
display.SimpleGraphics.DisplayText(message, font, 
GT.Color.White, 25, 40) 
 
message = "Score " & score.ToString() 
                
display.SimpleGraphics.DisplayText(message, font, 
GT.Color.White, 40, 60) 
 
timer.Stop() 
 

Otherwise (if they did score) then proceed to 
the following… 

Else 
 

Display the score 
display.SimpleGraphics.DisplayText("Score " + 
score.ToString(), font, GT.Color.White, 40, 60)  

Choose a random value between 1 and 4 randValue = random.Next(4) + 1 

Draw the rectangle representing that 
number (e.g. 1 is blue, 2 is red, etc.) 

showRectangle(randValue) 

Set correct to False correct = False 

Start the fast timer (the joystick’s timer) joyTimer.Start() 
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Putting this all together gives the following code: 

Private Sub timer_Tick(timer As Gadgeteer.Timer) Handles timer.Tick 
 
    Dim message As String 
    ' should be true first time and then indicate whether last block was successful 
    joyTimer.Stop() ' stop the other timer 
    display.SimpleGraphics.Clear()      
    If Not correct Then ' didn't get last one 
        Debug.Print("Timed out") 
        message = "GAME OVER!" 
        display.SimpleGraphics.DisplayText(message, font, GT.Color.White, 25, 40) 
        message = "Score " & score.ToString() 
        display.SimpleGraphics.DisplayText(message, font, GT.Color.White, 40, 60) 
        timer.Stop() 
    Else 
        ' select the next random block to show 
        display.SimpleGraphics.DisplayText("Score " + score.ToString(), font, GT.Color.White, 40, 60) 
        randValue = random.Next(4) + 1 
        showRectangle(randValue) 
        correct = False 
        joyTimer.Start() 
    End If         
End Sub 

The final step is to run the code for the fast timer. The logic behind what happens each 20 milliseconds (checking 

if the joystick has moved) is as follows: 

 check if the joystick has been moved towards the shape; 

 if it has then set correct to True; 

 once correct has been set to True, add one to the score; 

 otherwise continue checking. 

This can be written in Visual Basic using the code shown against each statement in the table below. 

Table 21: Further steps in the Reaction game 

Stop the timer (keeping sthe timer 
going while checking the joystick 
movement creates a backlog of 
timer events) 

joyTimer.Stop() 

Check if the joystick has been moved 
towards the shape 

If it has then correct is set to True 

correct = detectJoystickMovement(randValue) 
             
(randValue is the number of the shape passed into the function) 

Once correct has been set to True 
… 

If correct Then  
(has moved joystick in right direction) 

… add one to the score score += 1 

Otherwise the fast timer should start 
again. 

Else 
    joyTimer.Start() 
End If 

Putting this all together gives the following code inside the joyTimer_Tick() function: 

Private Sub joyTimer_Tick(timer As Gadgeteer.Timer) Handles joyTimer.Tick 
    joyTimer.Stop() 
    ' keep checking to see if they have moved the joystick 
    correct = detectJoystickMovement(randValue) 
    If correct Then ' has moved joystick in right direction 
        score += 1 
    Else 
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        joyTimer.Start() 
    End If 
End Sub 

Finally, start the timer! This can be done in programStarted() if you want the game to start straight away. 

Alternatively you could use the joystickPressed() event to start the timer. The yellow highlighted line in the 

code below shows you where to add the code to start the timer in programStarted(). 

Public Sub ProgramStarted() 
 
    font = Resources.GetFont(Resources.FontResources.NinaB) 
    ' display four blocks on each side of the screen and a message saying click to start 
 
    display.SimpleGraphics.DisplayRectangle(GT.Color.Blue, 1, GT.Color.Blue, 0, 50, 20, 60) 
    display.SimpleGraphics.DisplayRectangle(GT.Color.Red, 1, GT.Color.Red, 40, 0, 60, 20) 
    display.SimpleGraphics.DisplayRectangle(GT.Color.Green, 1, GT.Color.Green, 40, 140, 60, 20) 
    display.SimpleGraphics.DisplayRectangle(GT.Color.Yellow, 1, GT.Color.Yellow, 110, 50, 20, 60) 
    display.SimpleGraphics.AutoRedraw = True 
    display.SimpleGraphics.DisplayTextInRectangle("Ready...", 40, 50, 60, 40, GT.Color.White, font) 
 
    Thread.Sleep(2000) 
    timer.Start() 
 
End Sub 

Test that the program works correctly! Then try out the exercises below. 

EXERCISES  

1. Extend your program to include a button and program the button to reset the game when it is over. 

2. Extend your program so that it speeds up when you reach a score of 10, 20, 30 etc. 

3. Add sound effects to your game by adding a Tunes module. 

4. Extend your game to save high scores to the SD card. 

5. Devise a new game using random values and moving the joystick. 

SUMMARY 

In this chapter, you have learned to: 

 produce a random number using the random.Next() function; 

 write a function that returns a Boolean value; 

 use the not keyword 

 use two timers for different purposes. 

  



84   Learning to Program with Visual Basic and .NET Gadgeteer  
 

  



     Learning to Program with Visual Basic and .NET Gadgeteer    85 
 

CHAPTER 12. BUILD YOUR OWN MODULE 

 

KEY TERMS  MODULES YOU WILL NEED   COMPONENTS YOU WILL 

NEED 

Extending Gadgeteer  
Audio 

 Cerberus mainboard 
USBClientSP power module 
Button module 
Extender module 

 

Piezo sounder 

 

OVERVIEW 

This chapter shows you how to build your own module! Using an Extender module (or a Breakout module) as a 

starting point you can easily connect electronic components to a Gadgeteer mainboard. Here we create a simple 

buzzer module which is like the GHI Electronics Tunes module. There are many extension exercises that lead from 

this project. 

 

TUTORIAL 1: MAKE A NOISE ! 

Step1: Assemble these modules  

 

 
   

 

Cerberus mainboard 
usbClientSP power 

module 
Joystick Extender module 

Figure 53: Modules needed for Build your own module project 

Step2: Examine your piezo sounder 

In addition to Gadgeteer modules, for this project you also need an electronic component called a “piezo 

sounder” or sometimes referred to as a “piezo transducer”. From the outside this looks like a round piece of 

plastic, usually black or white. It has a small hole on one side (where the sound emanates from!). The other side 

will either have two metal legs or two flexible wire leads. In this project it will be easier to use a piezo which has 

the flexible wire leads. These components are fairly cheap – perhaps £1-£2 – and can be found in electronics 

shops and online. Be careful to use a sounder which is designed to be driven at 3-5V and at a range of 

frequencies. Suitable parts are shown in Figure 54: 

http://www.ghielectronics.com/images/catalog/273-0_large.jpg
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Maplin FM59P Farnell 1827943 RS 498-2596 

Figure 54: Some example piezo sounders which will work with this project with the supplier and order 
number for each. All are available online and Maplin also have high street retail park stores in the UK. 

 

Step 3: Use the Gadgeteer Designer to link the modules together  

 

Figure 55: Modules in the Designer for the Build your own module project 

Step 4: Connect the piezo sounder to the extender module  

For this project once the Gadgeteer modules are connected to the mainboard you will also need to connect the 

flying leads on your piezo sounder to two of the electrical connection points on your Extender module. One lead 

needs to connect to the connection point marked ‘GND’ and the other lead connects to the point marked ‘P9’. The 

sounder will work whichever way around you connect the leads, but it’s good practice to connect the black lead 

to the ‘GND’ because this carries the more negative voltage. Similarly, connect the red lead to the ‘P9’ connection 

point.  

Your piezo sounder is probably supplied with just 3-4mm of bare wire protruding at the end of each flying lead. 

This is perfect for soldering the end of each wire to the Extender module connection points, but if you don’t have 

access to a soldering iron you can instead simply thread each bare wire end through the appropriate hole in the 

connection point, bend it around and twist it tightly. It’s important that the bare wire makes good contact with the 

metal of the connection point and that the two wire leads do not touch each other. You may want to start by 

removing around 10-15mm of the plastic insulation on each wire because there will probably not be enough 

bare wire otherwise. You can do this with wire strippers, a knife or scissors if you are careful not to cut the wire, 

only the plastic insulation.  

http://uk.farnell.com/pro-signal/abt-431-rc/transducer-piezo/dp/1827943
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Soldering the piezo sounder to the Extender module is the most robust way of attaching it. Push the bare ends of 

the flying leads through the holes on the extender module, heat with a soldering iron and apply solder to leave a 

shiny joint. See for photos of what this should look like. 

 

 

Figure 56: Soldering the piezo to the extender module 

However, rather than soldering it may be easier to simply pass the bare ends of the flying leads through the 

holes in the Extender module connection points, bend them around and twist them tight, ensuring a good metal-to-

metal contact and making sure the two leads do not touch each other. 

Twisting the flying leads together is a good way to keep things neat. 

 

 

 

Figure 57: If you don’t want to solder you can simply twist the wires in place if you are careful 

Step 5: Write your program 

As you may have noticed when using the designer in Step 3, the socket on the top of the extender module is 

compatible with every socket on the mainboard! This is why it doesn’t have any letters written on it to indicate 

compatibility – it works with any socket. It is a general-purpose “building block” module with a large variety of 

potential uses.  

For this project we are extending the functionality of Gadgeteer by creating a new type of module. Depending 

on where we plug the Extender into the mainboard we will be able to interface to (i.e. connect up) different 

types of electronic components. In this case we have chosen socket 4 on the Cerberus mainboard, and the letters 

‘A’, ‘O’, ‘P’ and ‘Y’ indicate three basic ways of interfacing that we can choose between. We are going to use this 

socket in its ‘P’ mode of operation – ‘P’ stands for ‘Pulse Width Modulation output’ or more simply ‘PWM output’. 

This lets us create a ‘PWM’ signal which is continually changing between two different voltages in a repetitive (or 

periodic) way.  
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When we generate a PWM signal on socket 4 and connect the piezo sounder it will turn into a sound we can 

hear. The frequency of the PWM signal is the same as the pitch of the note which the buzzer plays. As a reminder 

we used frequencies with the Tunes module in Chapter 3. To get an idea of a suitable value for this frequency, 

it’s useful to know that the human hearing range goes from around 20 Hz to around 15,000 Hz, though the 

buzzer probably can’t play frequencies as low as 20Hz.   

The first thing we will do is generate a fixed tone: 

 we need to create a buzzer object and specify that it is going to use Gadgeteer’s PWM Output 

interface; 

 the buzzer object is then set up so that it works with the Extender module we have plugged in, and we 

have to specify which pin of the Extender we will connect our piezo sounder to; 

 finally we can set a pulse waveform going.  

First, declare the buzzer: 

Namespace GadgeteerApp1 
    Partial Public Class Program 
        ' Specify that the buzzer will use the Gadgeteer PWM Output interface  

 Dim buzzer As GT.Interfaces.PWMOutput 
 

Then add the two additional lines outlined below along with appropriate comments: 

      Public Sub ProgramStarted() 
            Debug.Print("Program Started") 
 
            ' set up the PWM Output to use pin 9 of the Extender module 
            buzzer = extender.SetupPWMOutput(GT.Socket.Pin.Nine) 
 
            ' set a repetitive pulse going 
            buzzer.Set(2000, 0.5) 
       End Sub 

Now test that the program works so far. 

When you run it you should hear a constant pitch sound coming from the sounder. If it doesn’t work check that the 

ends of the two flying leads are connected to the metal part of the Extender module connection points. Once you 

have it working, the buzzer won’t stop until you do one of the following:  

- disconnect the piezo or Extender module; 

- remove power from the Gadgeteer mainboard; or 

- program the mainboard to switch off the PWM Output with buzzer.Active = False 

TUTORIAL 2: USE THE JOYSTICK TO CONTROL THE PITCH AND DURATION 

Step 1: Extend your program. 

The next stage is to start and stop the buzzer programmatically.  We’ll use the button functionality that is built 

into the joystick module to turn on and off the buzzer. This is done using the JoystickPressed event handler to 

toggle a state variable buzzerOn. 

We also want to control the pitch of the sound. This is done by altering the first parameter (the frequency) of the 

buzzer.Set() method.  We can use a timer every 200 milliseconds (0.2 seconds) to read the joystick and set the 

frequency appropriately, as long as buzzerOn is True. The joystick is read using joystick.GetPosition().X 

to get a value between -1 and 1 depending on the X position of the joystick.  

The code to do this is below, and goes after ProgramStarted: 
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  Dim WithEvents timer As GT.Timer = New GT.Timer(200) 
  Dim buzzerOn As Boolean = False 
  
  Private Sub joystick_JoystickPressed(sender As Joystick, state As Joystick.JoystickState) Handles jo
ystick.JoystickPressed 
      If (buzzerOn) Then 
          buzzerOn = False 
          Debug.Print("Buzzer off") 
          buzzer.Active = False 
      Else 
          buzzerOn = True 
          Debug.Print("Buzzer on") 
          timer.Start() 
          ' buzzer will actually be turned on by timer_Tick 
      End If 
  End Sub 
  
  Private Sub timer_Tick(timer As Gadgeteer.Timer) Handles timer.Tick 
      If (buzzerOn = False) Then 
          timer.Stop() 
          Exit Sub 
      End If 
  
      ' define useful constants for calculating the PWM frequency settings 
      ' 
      ' the maximum frequency we want to play 
      Const maxFrequency = 15000 
  
      ' the minimum frequency we want to play 
      Const minFrequency = 100 
  
      ' the middle of the range of frequencies  
      Const middleFrequency = (maxFrequency + minFrequency) / 2 
  
      ' half of the frequency range, i.e. how much we should  deviate from the middle frequency  
      Const halfRangeOfFrequency = (maxFrequency - minFrequency) / 2 
 
      ' calculate the new frequency to use based on the joystick X position 
      ' 
      ' X position is between -1.0 (fully left) and 1.0 (fully right) 
      ' so we convert this to a number between minFrequency and maxFrequency 
      Dim newFrequency As Double = middleFrequency + (joystick.GetPosition().X * halfRangeOfFrequency) 
  
      ' set the PWM pulse output to the new frequency 
      buzzer.Set(CInt(newFrequency), 0.5) 
  
      ' and print out newFrequency  
      Debug.Print(CStr(newFrequency)) 
  End Sub  

In addition to adding the code above, don’t forget to remove the buzzer.Set(2000, 0.5) line you used in the 

first exercise since this is no longer needed. In this project the buzzer will start to make a noise the first time that 

the joystick is pressed. Note that the volume of the buzzing will change depending on the frequency – the buzzer 

is particularly efficient at some frequencies and so it will be much louder. 

EXERCISES 

1. You will notice a stuttering sound to the buzzer due to the PWM being changed every 200ms (fifth of a 

second).  Edit your program so that if the new frequency is only a tiny bit different from the old one 

(which you’ll have to store in a variable), then the call to buzzer.Set() is omitted, to eliminate the 

stutter. 

2. Edit your program so that it only plays notes from one octave on a piano keyboard. Wikipedia has a 

“Piano key frequencies” page. Store the frequencies in a constant array and select which to use based 

on the position of the joystick. 

3. You may notice that the values returned by a joystick can be quite noisy – this means they vary a bit 

each time even if the joystick isn’t being moved. Extend your program to keep a running average of the 

last 10 joystick values using an array and use this to control the pitch.  
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SUMMARY 

In this chapter, you have learned to: 

 use the Extender module to create a new type of module, a piezo sounder; 

 generate a pulse-width modulation (PWM) signal which causes the sounder to emit a constant tone; 

 control the pitch of the tone using a Joystick module. 
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APPENDIX A. WHERE TO BUY .NET GADGETEER 

The following list is intended as a guide and is valid at the time of writing. It is not a complete listing of all 

manufactures and suppliers. This is because the platform is open-source and anyone can build and distribute .NET 

Gadgeteer hardware. Note that some suppliers only ship to certain geographical areas and so may not be 

applicable in your location. 

NAME MAINBOARD 
MANUFACTURER 

MODULE 
MANUFACTURER 

SUPPLIER 

Amazon 
http://www.amazon.com    • 
Antratek Electronics 
http://www.antratek.com    • 
Australian Robotics 

http://www.australianrobotics.com.au    • 
Cool components 
http://www.coolcomponents.co.uk    • 
DFRobot 
http://www.dfrobot.com   • • 
Génération Robots 
http://www.generationrobots.com    • 
GHI  
http://www.ghielectronics.com  • • • 
Ingenuity Micro 
http://ingenuitymicro.com  • • • 
Let Elektronik 
http://www.let-elektronik.dk    • 
Lextronic 
http://www.lextronic.fr    • 
Love Electronics 
http://www.loveelectronics.co.uk  • • • 
Micro mint  
http://micromint.com  •  • 
Mountaineer Boards 
http://www.mountaineer-boards.com  •  • 
Mouser 
http://mouser.com    • 
Proto pic  
http://proto-pic.co.uk    • 
Robot Shop  
http://www.robotshop.com    • 
SaveComm mfDevices 

http://savecomm.net    • 
Seeed Studio 
http://www.seeedstudio.com   • • 
Solder Monkey 
http://www.soldermonkey.net    • • 
Sparkfun Electronics 
http://sparkfun.com    • 
Sytech  
http://sytechdesigns.com  • • • 
UAM Czech Republic 
http://shop.microframework.eu    • 
Watterott Electronic 
http://www.watterott.com    • 

http://www.amazon.com/
http://www.antratek.com/
http://www.australianrobotics.com.au/
http://www.coolcomponents.co.uk/
http://www.dfrobot.com/
http://www.generationrobots.com/
http://www.ghielectronics.com/
http://ingenuitymicro.com/
http://www.let-elektronik.dk/
http://www.lextronic.fr/
http://www.loveelectronics.co.uk/
http://micromint.com/
http://www.mountaineer-boards.com/
http://mouser.com/
http://proto-pic.co.uk/
http://www.robotshop.com/
http://savecomm.net/
http://www.seeedstudio.com/
http://www.soldermonkey.net/
http://sparkfun.com/
http://sytechdesigns.com/
http://shop.microframework.eu/
http://www.watterott.com/
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APPENDIX B. INSTALLING THE “FEZ CERBERUS TINKER KIT”  

Before you get started with your Fez Cerberus Tinker Kit, you need to install some software on your computer. 

The easiest way to achieve this is to visit the GHI website (http://www.ghielectronics.com ) and follow the latest 

installation instructions. Below is an overview of the process. Note that the order of installation is important.  

There are three pieces of software required: 

1) In order to edit code and deploy applications to hardware you need an Interactive Development 

Environment (IDE), in this case Visual Studio. Different versions of Visual studio are supported, the most 

common is the latest free version called Visual Studio Express 2012 for Windows Desktop. 

(http://www.microsoft.com/visualstudio/eng/downloads). Once installed you should be able to select 

“VS Express for Desktop” from the start menu and the IDE will load as shown in Figure 58. 

 

Figure 58: Visual Studio Express 2012 for Windows Desktop 

2) The .NET Micro Framework (NETMF) is the core set of libraries upon which .NET Gadgeteer is based. It 

can be downloaded from https://www.ghielectronics.com/support/.net-micro-framework , but it can 

also be found on http://www.netmf.com. Once installed (or if you wish to check that it is installed) you 

can see NETMF in “Add or remove programs” as shown in Figure 59. At the time of writing the version 

you will have installed will depend on which version of Visual Studio you wish to use.     

http://www.ghielectronics.com/
http://www.microsoft.com/visualstudio/eng/downloads
https://www.ghielectronics.com/support/.net-micro-framework
http://www.netmf.com/
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Figure 59: Check to see the NETMF is installed by selecting “Add or remove programs” 

3) The final installation step is for the Software Development Kit (SDK) for the hardware you are using as 

well as for the .NET Gadgeteer platform. Fortunately GHI wrap both these installs into a single 

package (available at https://www.ghielectronics.com/support/.net-micro-framework). The GHI installer 

is downloaded as a zip file. Please right-click this file and select Extract All to a temporary folder 

somewhere on your computer and then run setup.exe. If you try to run setup.exe directly from the zip 

file it can cause problems.  

Later you can make sure that the software installed correctly by checking “Add or remove programs”.  

You should see the GHI .NET Gadgeteer SDK (Figure 60) and the Microsoft .NET Gadgeteer Core 

(Figure 61). 

 

 

Figure 60: “Add or remove programs” shows that the GHI .NET Gadgeteer SDK is installed 

 

Figure 61: “Add or remove programs” shows that the Microsoft .NET Gadgeteer Core is installed 

https://www.ghielectronics.com/support/.net-micro-framework
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APPENDIX C. GETTING TO KNOW VISUAL STUDIO 

THE SOLUTION EXPLORER W INDOW 

The Solution Explorer window is on the right hand side of the Visual Studio window by default. It provides a list 

of all the files and resources in your solution (a collection of one or more projects). In this book, a solution is 

always made up of a single project, for example the Clicker project shown in Figure 62. If this window is not 

visible it can be enabled by selecting “Solution Explorer” from the View menu.  

 

Figure 62: Solution Explorer window for the Clicker project 

 

THE TOOLBOX WINDOW  

The Toolbox window appears on the left hand side of the screen by default. When you have the Designer open, 

the Toolbox will display all the hardware modules that you can potentially connect to your project. The Toolbox 

can take a few seconds to populate but if it is empty be sure that you have the Designer open as it will be empty 

when the source code is visible. If you cannot find the Toolbox or it has been closed, it can be reopened by 

selecting Toolbox from the View menu.  

 

Figure 63: Opening the Toolbox from the View menu in Visual Studio 
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THE DESIGNER WINDOW  

When you first create a .NET Gadgeteer project in Visual Studio the Designer is opened and visible. The 

Designer window is where you drag and drop modules to and connect your hardware. If you close this window 

and need to reopen it, have a look in the Solution Explorer window on the right hand side of the screen as shown 

in Figure 64. Clicking on “Program.gadgeteer” will re-open the Designer.  

 

Figure 64: Solution Explorer window for the Clicker project 

 

THE OUTPUT WINDOW  

It is always handy to have the Output window displayed in Visual Studio. Whilst this may appear obvious it is not 

on by default in some versions of Visual Studio. Select Output from the window on the Debug menu as shown in 

Figure 65. This window provides information about building and deploying your application to the hardware as 

well as displaying any debug messages you have inserted into your code.  

 

 

Figure 65 : Output window showing a .NET Gadgeteer project, successful build and deploy 
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INTELLISENSE IN V ISUAL STUDIO 

IntelliSense is a collection of useful features that Visual Studio supports to assist you with coding. There are a few 

features that are essential to learn as they help you type faster and more accurate code as well as indicating 

where potential problems may arise. Below is a summary of relevant features.   

Word completion 

Word complete is used to automatically finish off words for you. For example, if you work on a Gadgeteer 

project with just a button module displayed in the Designer, then when you start typing code Visual Studio will 

produce a drop down menu showing a number of relevant options. In Figure 66, typing the first few letters of 

button will produce a menu with the correct option at the top. You can use the mouse to select the correct option 

from this menu, but it is quicker to press the Tab key on the keyboard. Tab will autocomplete the word with the 

top item of the displayed option list. If you ever need to see the option list again (perhaps you pressed space or 

clicked on the wrong option) you can press the keys ‘Ctrl’ and ‘Space’ on your keyboard.  

  

Figure 66: Word completion in Visual Studio 

Listing members  

There are properties and methods associated with objects, for example, a button object. By adding a dot (‘.’) 

after the object name, Visual Studio will display a drop down menu of all those properties and methods. The icon 

next to a member of the menu lets you know what type it is (properties are  and methods  in Visual Studio 

2012). When a member has been selected, either by typing or by using the mouse or arrow keys, Visual Studio 

will show a QuickInfo description next to the dropdown. This tells you a little about the selected item and is a 

great way to explore the capability of hardware modules. For example, you can discover that the button module 

also has an LED on it which you can turn on and off and check the current status (see Figure 67).   

 

Figure 67: On the left, a list of button members, showing properties, methods and events. To the right more 
details of the selected member are shown. 

Parameter Info 

Some methods require parameters that provide some extra information needed to execute the method. For 

example, the Debug.Print method requires the text that you wish to print. If you are unsure about which 

parameter(s) Print requires, then when you type the opening bracket, Visual Studio will show more information. 

In Figure 68, the Print method takes a single parameter which is a string. 
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Figure 68: Parameter Info box showing that the Print method expects a single string parameter. 

Let us look at a more complicated example, using the Tunes module. Some methods have more than one 

signature, meaning that you can supply different sets of parameters depending on which signature you choose. 

For example, to make a noise on the Tunes module you call the Play method. The parameter info box looks 

slightly different as there are 4 different ways to call this method.  Figure 69 shows that you can call the Play 

method without any parameters, but that you must first add notes using the AddNote method.   

 

Figure 69: Parameter info for a method with multiple signatures 

You can look at the different signatures by using the up/down arrows . For example, if you wanted to 

play a note based on a frequency you can simply supply a single integer (number).  

 

Figure 70: Playing a note based on a frequency 

 However if you created a melody as shown in Chapter 3 then you can supply the melody to the Play method. 

 

Figure 71: Playing a melody using the Play method on the tunes module 
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APPENDIX D. UPDATING THE FIRMWARE 

The software that you install from the hardware manufacturer (SDK) must match the software that is running on 

the mainboard (the so-called firmware). There should not be many updates and it is best to stick to the same 

version of the SDK and firmware across all your devices and computers, unless there is a particular problem to 

solve. If the software on the computer and the firmware get out of sync you will see a Firmware version does not 

match managed code version error in the Output window. You may need to scroll to the top of the output window 

to see the error. 

If you do not have the output window showing then this problem is harder to identify as the deploy will look as it 

is doing nothing, but really it has failed and put the error on the Output window and halted the deployment.  

 

 

Figure 72 : Example of a firmware version mismatch error in the Output window 

If you need to update the firmware to solve an issue or due to a mismatch you will need to follow the 

manufacturer’s updating instructions. In the case of the FEZ Cerberus Tinker Kit, there is a tool called the “FEZ 

Config” that will let you update your hardware to the latest firmware version. This is the recommended option 

and should be used to perform any software updates to your FEZ Cerberus mainboard. A summary is shown on 

page 100.  

For those that wish to know more or are having issues updating the firmware there are a few manual steps that 

can confirm firmware versioning and perform an update. The firmware comes in two parts, the TinyBooter (page 

100) and the TinyCLR (Page 103). Both have to be updated separately, although the TinyBooter does not need 

updating as often. Before you do any update, check the version number to be sure you need to update.    

CHECKING THE FIRMWARE VERSION  

Depending which version of NETMF you have installed look inside the Tools folder for a tool called 

MFDeploy.exe, for example, C:\Program Files (x86)\Microsoft .NET Micro Framework\v4.2\Tools or 

C:\Program Files (x86)\Microsoft .NET Micro Framework\v4.3\Tools 

Connect your mainboard to your computer via USB and load MFDeploy. Select USB and you should see your 

device listed. To test that everything is connected properly press the ping button and you should see the response 

“TinyCLR” as shown in Figure 73. 

 

http://stevenjohnston.files.wordpress.com/2012/11/image13.png
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Figure 73: MFDeploy showing the FEZ Cerberus mainboard connected via USB. 

Next select “Device Capabilities” from the Target menu. This will query your device to see which version of the 

firmware is currently running on your hardware as shown in Figure 74. If your firmware is out of date, you may 

want to consider updating it.  
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Figure 74: Fez Cerberus showing that the firmware dates from 23 August 2013 and is version 4.2.6.0 

UPDATING THE FEZ CERBERUS F IRMWARE USING THE FEZ CONFIG TOOL (RECOMMENDED) 

At the time of writing the FEZ Config firmware updater is NOT distributed with the GHI SDK and needs to be 

downloaded separately from GHI (https://www.ghielectronics.com). Once downloaded, run the config tool and 

you will see a screen similar to that shown in Figure 75. 

https://www.ghielectronics.com/
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Figure 75: The FEZ Config tool without any devices attached (you need to connect your mainboard using the 

USB cable) 

1) Connect your mainboard using the USB cable and select the device. 

 

 

Figure 76: The FEZ Config tool with Cerberus connected as indicated in the bottom right corner 

 

2) Next click on the “Firmware Updater” button on the left, to display a list of firmware updates for 

different devices. Select “FEZ Cerberus”. Ticking the Ethernet option selects different firmware 

depending on if you want to use a network module. Default to un-ticked unless you really need 

networking.  
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Figure 77: The FEZ Config tool can update different mainboards. Be careful to select the correct mainboard 

3) The next screen confirms which files will be loaded. Leave as the default and select Next. Agree to any 

warnings about loss of data (it will erase the device) and follow the menus.  

 

Figure 78: The FEZ Config tool showing the location of the firmware to be flashed 

4) Wait while the device is being updated, you will get a progress indicator. 
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Figure 79: Firmware update progress indicator 

5) Finally you should see a successful update message. Your device is now ready. If you had any issues 

during this process check the USB connection and common troubleshooting issues. Alternatively GHI have 

a forum with up-to-date information about known issues 

(https://www.ghielectronics.com/community/forum).  

 

Figure 80: Successful firmware update 

 

UPDATING THE FEZ CERBERUS T INYBOOTER MANUALLY  

If you need to update the firmware either to solve an issue or due to a mismatch you will need to follow the 

manufacturer’s updating instructions. In the case of the FEZ Cerberus Tinker Kit, use the FEZ Config tool as 

https://www.ghielectronics.com/community/forum
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described on page 100. This is the recommended option and should be used to perform any software updates to 

your FEZ Cerberus mainboard.  

To manually update the TinyBooter, you will need the latest TinyBooter (usually a DFU file) and the STDFU Tester 

application installed.  

GHI distribute the STDFU Tester application with the firmware for example C:\Program Files (x86)\GHI 

Electronics\GHI OSHW NETMF v4.2 SDK\FEZ Cerb Family\Firmware\STM_DFU.zip. And if not already 

installed, you will need to run the installer and load the STDFU Tester application as shown in Figure 81. 

 

Figure 81: STDFU Tester application showing the Cerberus mainboard in boot mode 

The FEZ Cerberus mainboard needs to be started in boot mode. This is achieved by starting the device (powering 

up) with the BOOT button on the mainboard pressed.  Do not hold the BOOT button down for longer than a few 

seconds. If the device has restarted in boot mode it will appear in the STDFU Tester application devices menu as 

shown in Figure 81.  Updating the TinyBooter has two steps, erase and updating. Be sure you are familiar with 

the process below as it can break your hardware. GHI have more complete instructions online.  

Erase 

1) Ensure you can see the device in the devices menu at the top of the SDTFU Tester application.  

2) Select the protocol tab (top of screen). 

3) Press the “Create from Map” button on the Protocol menu. 

4) Tick the “Erase” radial. 

5) Press Go.  
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Updating  

1) Press the “Load DFU file” button from the protocols tab.  

2) Tick the “Download” radial 

3) Press Go 

 

UPDATING THE FEZ CERBERUS T INYCLR MANUALLY 

If you need to update the firmware either to solve an issue or due to a mismatch you will need to follow the 

manufacturer’s updating instructions. In the case of the FEZ Cerberus Tinker Kit, use the FEZ Config tool as 

described on page 100. This is the recommended option and should be used to perform any software updates to 

your FEZ Cerberus mainboard.  

To manually update the TinyCLR, open MFDEploy and ping your device (see page 98) to check that all is working 

and ensure that an update is required. Next you will need to find the latest firmware files to install, typically visit 

the GHI website, or check your SDK install directory, for example C:\Program Files (x86)\GHI 

Electronics\GHI OSHW NETMF v4.2 SDK\FEZ Cerb Family\Firmware. In this case there are two firmwares 

depending if you require Ethernet support.  

The firmware comprises of two files a config and a firmware file (there could be 2 further signature files, but 

ignore these). You need to select these image files by selecting the browse button for the “Image file” selector, 

navigating to the directory with your new firmware and selecting both the Config.hex and the Firmware.hex files. 

With both files selected press the deploy button. 
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Figure 82: Selecting both the config and firmware files, pressing deploy will update the TinyCLR 
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APPENDIX E. HOW TO DEBUG VISUAL BASIC IN VISUAL STUDIO 

The debugger is a very useful feature in Visual Studio. It lets you inspect your program while it is running and is 

an invaluable tool to help solve those annoying bugs where you don’t understand the behaviour of your program. 

The debugger has a series of different capabilities. In this section we cover only the basic capabilities but as your 

programs become more complicated the topic is worth further investigation.  

All the debugger examples in this section are based on the code for the Clicker project shown on page 23. When 

the example code is opened in Visual Studio make sure to check that it compiles and deploys, and every time 

you press the hardware button the number on the screen increments on the display. 

When you run your code by pressing the play button  or by pressing F5 or by selecting Start Debugging from 

the Debug menu (they are all the same thing), your code is deployed to the hardware with debugging enabled, 

and then your code is executed.  

PRINTING DEBUG MESSAGES 

.NET Gadgeteer projects have a line that prints Program Started to the debug window. This shows that your 

program has deployed and successfully started. You can add your own debug print statements to show the 

progress of your code, for example to see if a button has been pressed. In the Clicker project example we can 

write the count value to the debug window every time the button is pressed by simply adding a single print line 

as shown in Figure 83. 

 

Figure 83 : Writing text and variables to the Debug window 

SETTING A BREAKPOINT  

A breakpoint is a way of pausing the code running on the hardware when a particular line of code is about to be 

executed. Once the execution has been paused you can inspect the variables to check their values. For example 

we can set breakpoint on the line of code that increments the counter. This can be done by placing the cursor on 

the line of code where you want to pause execution and selecting Toggle Breakpoint from the Debug menu (Or 

pressing F9). 
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Figure 84 : Use Toggle Breakpoint to enable or disable breakpoints. Alternatively press the F9 key 

You will see that a red dot appears in the left hand side margin next to the line that will pause execution, as 

shown in Figure 85. Note that it is not always sensible to have a breakpoint, for example on a blank line or on a 

line between sub-routines. If you attempt to set a breakpoint where it is not feasible, none will appear and the 

status bar at the bottom of the screen in Visual Studio will display the message “This is not a valid location for a 

breakpoint”. You can also enable and disable breakpoints by simply clicking in the margin where the red dot has 

appeared. 

 

Figure 85 : Setting a breakpoint on the counter increment line 

The line of code that will cause execution to pause will also turn red. Since you can have any number of 

breakpoints you may also want to show a list of breakpoints. This will help with enabling or disabling breakpoints 

in bulk. To show the breakpoint list, select DEBUG  Windows  Breakpoints or press <Alt>+<F9>. You can 

even add or change breakpoints once your code is being executed. Figure 86 shows the single breakpoint that 

has been set in the code shown above.  
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Figure 86 : Breakpoint window listing all breakpoints. You can multi-select breakpoints and enable/disable 

them in bulk if required.  This is useful if you want to simply run your code wihtout pausing. 

Once you have set the breakpoint press the play button  as normal, execution will only pause when a 

breakpoint gets hit. In our example case we need to press the hardware button in order for the routine to be 

executed, thus triggering the breakpoint. You will know when a breakpoint has been reached because Visual 

Studio will automatically highlight the breakpoint in yellow and bring the code into view. The code has now 

paused on the mainboard, so the screen will not update with the latest value.  

If you hold your mouse over any variable that is in scope (for example variables in the current sub-routine, and 

global variables) a little window will pop up showing the actual value that is stored in memory. If the variable 

was more complicated such as an array, you would be able to see all the values stored in the array. 

 

Figure 87 : Visual Studio highlights the current active breakpoint in yellow. You can then inspect variables 

by holding the mouse over to see their contents. 

It is important to note that the execution is paused before the line with the break point is executed. It is for this 

reason that the count variable is still set to 0.  Once you have hit a breakpoint see page 110 to see how you 

can step through your code one line at a time. Alternatively select Continue from the Debug menu (<F5>) to carry 

on running your program.  

THE CONDITIONAL BREAKPOINT 

When you set a breakpoint, execution will pause every time execution reaches that line of code. This can be 

inconvenient, for example, if you have a long loop that iterates say 100 times, and you know something fails on 

the last iteration of the loop. You could set a breakpoint at the beginning of the loop and press continue 99 times 

until you get to the last iteration. There is an easier way: the conditional breakpoint. This will only pause at a 

particular line of code if a condition is met or if the value has changed, for example when the variable counter is 

equal to 99.  

In the Clicker example we can set the condition on the counter breakpoint by right-clicking and setting the 

condition to only pause when the counter is equal to 5, as show in Figure 88 and Figure 89. 
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Figure 88 : To create a conditional breakpoint, right click a breakpoint and select condition 

 

 

Figure 89 : Set the condition that when true will pause execution. Keep expressions simple here to avoid 

errors. 

There are a few other conditional break capabilities that are handy (see Figure 88). 

Another useful feature that could be used in this example is the hit count option shown in Figure 88. Every time a 

breakpoint is hit this counter is incremented. You can set it to only pause when it has been hit a certain number of 

times, a multiple of a certain number, or greater than a certain number. In this example we could use it to pause 

when the hit count is equal to 5.  

WALKING THROUGH YOUR CODE 

Once you have paused on a breakpoint you will notice that there are now a few more options on the debug 

menu (see Figure 90). These options let you choose how to resume execution of your program, for example by 

letting you step line by line through your code. Remember you can hold your mouse over any in-scope variables 

to see their contents. It can be helpful to remember the shortcut keys for these different step options, particularly 

the Step Over (F10) option, but the options are also shown as the following icons on the toolbar at the top of 

Visual Studio.   

Figure 90 shows a brief description of the various options: 
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Figure 90 : The Debug menu showing the options once a breakpoint has been hit. There are various step 
options to step through your code. 

Continue (F5)  

Once you have paused on a breakpoint and have finished inspecting the variables, you can simply press 

Continue or <F5> and your program will continue running. It will only pause again if it hits another breakpoint. 

In the example shown in Figure 87, inserting a second breakpoint on the last line of the sub-routine and 

deploying your project will cause it to pause on the first breakpoint. Pressing Continue or <F5> will then advance 

execution to the second breakpoint as shown in Figure 91. The counter will be incremented and the screen 

cleared but the new text will not yet be displayed as the current line has not been executed.  

 

Figure 91: Pressing Continue will advance to the next breakpoint 

Step Over (F10)  

This is probably the most useful option and will let you step to the next line of code executing the line that was 

shown in yellow. You can then hold your mouse over any variable to see how it has changed. In the example 

shown in Figure 87  when you step over the current line, it is executed and the next line of code is displayed in 

yellow. You can then hold the mouse over the counter variable to see that it has been incremented from 0 to 1, as 

shown in Figure 92. 

Note that execution has paused on the clear display line of code. The display will not yet have cleared as the 

current line (shown in yellow) has not been executed. Stepping over this line will execute this line and you will see 
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the display clear and stepping over yet again will then put the text on the display. You will then probably want 

to press Continue or <F5> to resume your program as normal.  

If you press the hardware button again, it will halt on the breakpoint again and you can step through the next 

increment of the counter.   

 

Figure 92 : Using the Step Over option will advance execution to the next line of code. In this case we can 

see that the counter has been incremented. 

Step Into (<F11>) and Step Out (<SHIFT>+<F11>) 

These two options are used for getting into and out of sub-routines. If execution has been paused on a line of 

code that calls a sub-routine (for example other code that you have written) then you can use the Step Into option 

to view the sub-routine and then step line by line. If you had used the Step Over option then the sub-routine 

would be executed in a single step and you would not be able to step through each line of code in the sub-

routine. 

DEBUGGING TIPS 

 Remember that your code is paused when it hits a breakpoint. You may reach one, not realise and then 

wonder why nothing is working. An easy way to tell is to look at the Visual Studio title bar at the top of the 

screen. It will tell you if it is running or debugging, for example see Figure 93.  

 

Figure 93 : The title of the Visual Studio window shows the solution name as well as the current status, 

Running or Debugging if a breakpoint has been reached. 

 You may find that you end up with many breakpoints as you debug issues. It can be useful to disable a 

breakpoint rather than delete it, as you may want to use it later on, for example in a loop. Use the debug 

view window to list all breakpoints and then enable/disable them in bulk.  

 Always keep an eye on the status bar at the bottom of the screen, while you may be waiting for the 

deployment and the first breakpoint to be hit, Visual Studio may be telling you something important. For 

example, it may indicate a failed deployment (Figure 94). 
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Figure 94 : Visual Studio status bar showing that the deployment failed 
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APPENDIX F. COPING WITH OUT-OF-MEMORY EXCEPTIONS 

The Cerberus mainboard (used in this book) is a low-cost, low-power processor making it great for a wide range 

of applications. However it has limitations. It cannot do everything at the same time and certainly will not 

compete with your latest laptop. For example, reading files from an SD card and displaying graphic at the same 

time can stretch the limits of the hardware. You notice this when you deploy (F5) your code and it just hangs (try it 

a few times to be sure there is no other issue) displaying Failed allocation for xxx  blocks, xxxx bytes 

in the Output window, more than once. 

If this is the case, try reducing the amount of tasks you have asked the hardware to perform. It is also easier to 

start with a simple project, check it works and then extend it slowly, testing that each stage works. 

You may also get a memory exception window as shown in Figure 95. If your program ran once and then you 

get a memory error, it is likely that it is very close to the maximum limit. Try cleaning the project (Build -> Clean 

Solution) then redeploy your program (F5). 

 

Figure 95: Visual Studio Out Of Memory exception 
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APPENDIX G. TROUBLESHOOTING: VISUAL STUDIO WILL NOT 

DEPLOY  

 

When Visual Studio complains that there are deployment issues yet everything is plugged in, there are a few 

things you need to check.  

 

Figure 96 : Visual Studio deployment error 

 

Figure 97 : To view the Output window in Visual Studio Express 2012 select Debug  Windows  Output 

The Output window will show you errors and is usually located at the bottom of the main Visual Studio window 

(you may need to select the tab). Below is the output of a blank project once it has been successfully rebuilt. 

http://stevenjohnston.files.wordpress.com/2012/11/image5.png


116   Learning to Program with Visual Basic and .NET Gadgeteer  
 

 

Figure 98 : Blank .NET Gadgeteer project, successful build and deploy 

Before you go any further it is worth doing a few sanity checks: 

 Did the project build without errors? Have a look at the output window to see if there are errors. You 

can always open a new project in Visual Studio and quickly try a blank Gadgeteer project. The default 

template for a new project will build and deploy without errors.  

 Check that the hardware is plugged in properly, try another USB port on the computer or swap the USB 

cable to check it is not faulty.  

 Don’t plug into any USB3.0 ports on your computer if possible. There can be compatibility issues with 

these. They tend to have blue plastic showing and/or be labelled with the text ‘USB 3.0’. 

 Does hitting the reset switch on the mainboard help? Wait about 20 seconds before trying to deploy 

from Visual Studio. 

If you are satisfied that everything should work or it was just working but is not anymore, the first step is to check 

that your computer has found the mainboard. Plug the mainboard into a USB port, go to Device manager and 

see if the device has been found. To load Device Manager click Start, then in the Run box type the following 

command mmc compmgmt.msc or select Device Manager from the hardware and sound section of the control panel 

as shown in Figure 99.  

 

Figure 99 : Locating the Device Manager in the Control Panel 

  

http://stevenjohnston.files.wordpress.com/2012/11/image16.png
http://stevenjohnston.files.wordpress.com/2012/11/image6.png
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Have a look in the Device Manager for the .NET Gadgeteer mainboard. Not all mainboards appear in the same 

section in the Device Manager. The FEZ Cerberus is located under “Universal Serial Bus controllers” and is called 

“GHI NETMF Debugging Interface” as shown in  Figure 100. Note that future firmware updates may rename or 

move this in the Device Manager. You can easily check if you have the correct device on the list by unplugging 

the USB cable. It should disappear when you remove it and reappear when you reconnect the USB cable. 

 

Figure 100: The FEZ Cerberus mainboard shown in Device Manager 

If you can see your hardware listed in the Device Manager and there are no warnings then you can move on and 

assume that you hardware has been recognised correctly by your computer. If you get a yellow exclamation 

mark on the mainboard in Device Manager then the driver did not load and the hardware will not work until you 

get the driver fixed. Simply try a different USB port on the computer, particularly if it worked before. Failing 

that it is best to reinstall the SDK provided by the manufacturer for the kit you are using.  

If you got a deployment issue and your hardware is displayed in the Device Manager, the next step is to check 

that Visual Studio can see the hardware and is attempting to deploy to the correct device. In the Solution 

Explorer right click on the project (not solution) and select Properties. To open the Solution Explorer if it is not on 

the left of the screen, select it from the Visual Studio menu, VIEW  Other Windows  Solution Explorer. 
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Figure 101 : Selecting the project Properties in Visual Studio 

 

 

Figure 102: FEZ Cerberus mainboard recognised in Visual Studio 

The properties window has a .NET Micro Framework tab which will show you which device Visual Studio is 

attempting to deploy. The transport should be set to USB (if you are using a USB cable to connect the mainboard 

to the computer) and you should see the device listed. If your device is not listed here then it was not recognised 

by your computer. Check to be sure it is listed in the Device Manager. If you change this setting you need to save 

for the change to take effect.  
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If your hardware is recognised and Visual Studio can see the device, you should not get a deployment error. Be 

sure your project compiles (test with a blank new Gadgeteer project). Check the Output window for errors and 

check to see if it is a firmware version issue.  
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APPENDIX H. LIST OF CURRENT SOCKET TYPES 

 

A 

Three analogue inputs, with pins number 3 and 4 doubling as general-purpose input/output. In 

addition, pin number 6 is a general-purpose input/output, and pin number 3 supports interrupt 

capabilities. 

B 
Display (LCD) interface, carrying the blue component on pins 3 to 7, as well as the LCD enable 

line on pin 8 and the clock signal on pin 9. 

C 

Controller-area network (CAN, or CAN-Bus). Pins number 4 and 5 serve as the CAN transmit 

(TD) and receive (RD) pins, and double as general-purpose input/outputs.  In addition, pins 

number 3 and 6 are general-purpose input/outputs, and pin number 3 supports interrupt 

capabilities. 

D 

A USB device interface for the mainboard to connect to a PC, usually for programming. Pins 4 

and 5 are used as the dedicated USB data pins (D- and D+). In addition, pins 3, 6 and 7 are 

general-purpose input/outputs, with pin 3 supporting interrupt capabilities. 

E 

Ethernet PHY connection. Pins 6 to 9 are the dedicated transmit/receive lines to an Ethernet 

connector with integrated magnetics. Pins 4 and 5 are optional connections to the LEDs on the 

Ethernet connector. 

F 

Secure Digital Card (SD) or MMC (Multi Media Card) interface. Pins 4 to 9 are the dedicated 

data and control lines for this interface. In addition, pin 3 is a general-purpose digital 

input/output with interrupt capabilities. 

G 
Display (LCD) interface, carrying the green component on pins 3 to 8, as well as the backlight 

control line on pin 9. 

H 

USB host interface to connect USB peripherals to the mainboard. Pins 4 and 5 are used as the 

dedicated USB data pins (D- and D+). In addition, pin 3 is a general-purpose input/output with 

interrupt capabilities. 

I 

I2C interface. Pins 8 and 9 are the dedicated I2C data (SDA) and clock (SCL) lines. Note that a 

mainboard should include pull-up resistors for these pins, in the region of 2.2K Ohms. Modules 

must not include their own pull-ups on these lines. In addition, pins 3 and 6 are general-purpose 

input/outputs, with pin 3 supporting interrupt capabilities. 

K 

UART (serial line) interface operating at TTL levels, with hardware flow control capabilities. 

Pin 4 (TX) is data from the mainboard to the module, and pin 5 (RX) is data from the module to 

the mainboard. These lines are idle high (3.3V), and can double as general-purpose 

input/outputs. Pin 6 (RTS) is an output from the mainboard to the module, indicating that the 

module may send data. Pin 7 (CTS) is an output from the module to the mainboard indicating 

that the mainboard may send data. The RTS/CTS are 'not ready' if high (3.3V) and 'ready' if 

low (0V).  In addition, pin 3 is a general-purpose input/output, supporting interrupt capabilities. 

O 
Analog output on pin 5. In addition, pins 3 and 4 are general-purpose input/outputs, and pin 3 

includes interrupt capabilities. 

P 
Three pulse-with modulated (PWM) outputs on pins 7, 8 and 9. Pins 7 and 9 double as GPIOs. 

In addition, pin 3 is an interrupt-capable GPIO, and pin 6 is a GPIO. 
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R 
Display (LCD) interface, carrying the red component on pins 3 to 7, as well as the VSYNC line 

on pin 8 and the HSYNC line on pin 9. 

S 

Serial peripheral interface (SPI). Pin 7 is the master-out/slave-in (MOSI) line, pin 8 is the 

master-in/slave-out (MISO) line, and pin 9 is the clock (SCK) line. In addition, pins 3, 4 and 5 

are general-purpose input/outputs, with pin 3 supporting interrupt capabilities. 

T Four-wire touch screen interface. 

U 

UART (serial line) interface operating at TTL levels. Pin 4 (TX) is data from the mainboard to the 

module, and pin 5 (RX) is data from the module to the mainboard. These lines are idle high 

(3.3V), and can double as general-purpose input/outputs. In addition, pins 3 and 6 are 

general-purpose input/outputs, with pin 3 supporting interrupt capabilities. 

X 
Three general-purpose input/output (GPIO) pins, with pin number 3 supporting interrupt 

capabilities. 

Y 
Seven general-purpose input/output (GPIO) pins, with pin number 3 supporting interrupt 

capabilities. 

Z 
Manufacturer specific. The pinout for this socket will vary between mainboards. Please refer to 

the individual mainboard's documentation for details. 

*(DaisyLink) 

DaisyLink downstream interface. Pin 3 is used for the DaisyLink neighbour bus, pin 4 is used for 

I2C SDA, pin 5 is used for I2C SCL. Note that this socket type should not appear on a 

mainboard, only on DaisyLink modules. The [MS] pins on this socket type can optionally support 

reflashing the firmware on the module.  
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APPENDIX I. OPERATORS IN VISUAL BASIC 

Operator Description 

= Is equal to 

<= Is less than or equal to  

>= Is greater than or equal to 

<> Is not equal to 

> Is greater than 

< Is less than 

And Performs a logical conjunction on two 
Boolean expressions 

Not Performs logical negation on a Boolean 
expression 

Or Performs a logical disjunction on two 
Boolean expressions 

Xor Performs a logical exclusion on two 
Boolean expressions 

AndAlso Performs short-circuiting logical conjunction 
on two expressions 

OrElse Performs short-circuiting inclusive logical 
disjunction on two expressions 
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APPENDIX J. TYPICAL LUX VALUES 

Lux (lx) is an international standard unit for ambient light and is often used in light sensors. It represents the 

amount of light incident per unit area – it’s actually calculated as lumens per square metre. Below is a table of 

typical Lux ranges for different scenarios.  

Table 22: Typical Lux values 

Lighting condition Typical Lux (lx) values 

Pitch black 0 – 10 lx 

Very dark 11 – 50 lx 

Dark indoors 51 – 200 lx 

Dim indoors 201 – 400 lx 

Normal indoors 401 – 1000 lx 

Bright indoors 1001 – 5000 lx 

Dim outdoors 5001 – 10,000 lx 

Cloudy outdoors 10,001 – 30,000 lx 

Direct sunlight 30,001 – 100,000 lx 
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APPENDIX K. RESOURCES AVAILABLE ONLINE 

 Main Microsoft site for .NET Gadgeteer: http://www.netmf.com/gadgeteer 

 Resources to learn about .NET Gadgeteer: http://gadgeteering.net  

 Source code: http://gadgeteer.codeplex.com  

 Consider searching http://www.codeplex.com for either ’Gadgeteer’ or ‘NETMF’ to 

discover alternative drivers for modules or helpful libraries. For example,  

StringBuilder: http://netmfcommonext.codeplex.com  

 Books using other languages 

o Microsoft .NET Gadgeteer : Electronics Projects for Hobbyists and 

Inventors 

o Getting Started with .NET Gadgeteer 

 

 

 

http://www.netmf.com/gadgeteer
http://gadgeteering.net/
http://gadgeteer.codeplex.com/
http://www.codeplex.com/
http://netmfcommonext.codeplex.com/

