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ABSTRACT
We describe a method for interpolation of class-based n-gram lan-
guage models. Our algorithm is an extension of the traditional EM-
based approach that optimizes perplexity of the training set with re-
spect to a collection of n-gram language models linearly combined in
the probability space. However, unlike prior work, it naturally sup-
ports context-dependent interpolation for class-based LMs. In addi-
tion, the method works naturally with the recently introduced word-
phrase-entity (WPE) language models that unify words, phrases and
entities into a single statistical framework. Applied to the Calen-
dar scenario of the Personal Assistant domain, our method achieved
significant perplexity reduction and improved word error rates.

Index Terms— language model interpolation, class-based lan-
guage models, context-dependent interpolation

1. INTRODUCTION

Language model interpolation is an essential part of state-of-the-
art ASR. By building separate language models for different lan-
guage domains, we acknowledge these domains’ inherent diversity
and postpone generating the final merged language model out of a
number of pre-built components until more information is available
about the target domain. For the currently prevalent linearly inter-
polated language models, the maximum-likelihood estimate of an
n-gram probability is constructed as a linear combination of this n-
gram’s probabilities in all of the components, and the main inter-
polation challenge consists in finding such weights that optimize an
agreed upon objective function. While there have been several suc-
cessful attempts to relate objective functions directly to the word
error rate metrics (especially, for second pass rescoring, e.g. [1, 2]),
the de-facto standard remains perplexity-based optimization, largely
due to its simplicity and scalability. For this selection of an ob-
jective function, the traditional solution is to use an expectation-
maximization (EM) algorithm [3]. During the expectation stage, EM
counts contributions of the individual components for the n-grams
in the corpus, and in the maximization stage, it sets the re-estimated
weight of a component to be its averaged contributions over the en-
tire corpus.

While robust and easy to implement, the standard realization of
the algorithm suffers from low resolution, forcing the components
to retain the same interpolation weights in all circumstances. Sev-
eral attempts to mitigate this shortcoming have been made in the
past including count merging [4], Generalized Linear Interpolation
[5] and history-dependent language model adaptation [6, 7]. The
latter approach is particularly appealing since it requires very min-
imal change to the interpolation schema: instead of accumulating
and averaging corpus-wide component contributions, the counting
is performed on a per-n-gram-context basis. What is more, context-
dependent interpolation weights can be easily utilized to build a stan-
dalone interpolated language model (as opposed to interpolation on-
the-fly where no resultant merged LM needs to be stored at the end)

because interpolation contexts correspond directly to the contexts of
the n-gram probabilities.

In this paper, we focus on class-based language models that
are known to improve generalization abilities of word LMs by sup-
plementing training data with additional knowledge, and offer easy
opportunities for adaptation and personalization. Specifically, we
would like to extend EM to minimize perplexity of a joint language
model with components containing classes. What makes interpo-
lation of class-based LMs difficult is that there is no single shared
linear word sequence to count over. In fact, each class-based com-
ponent induces its own lattice of valid token-level parses1, and the
component-specific lattices often do not even share the same vo-
cabulary (of tokens). One solution to bring the components to a
common denominator is to project all parses back to the word level
and use word prefixes to compute conditional word n-gram proba-
bilities [8]. This approach is currently implemented in the SRILM
toolkit [9]. While working well in many situations, this solution has
two major drawbacks. First, it does not support context-dependent
merging of the interpolated models into a single new model, because
the word context is not explicitly encoded in the resulting merged
class-based LM. Second, usability of per-word-context interpola-
tion weights will be of little help if class definitions are dynamic or
personalized because words from class definition in test/production
might not even be present in the data used for training. Besides,
just like the interpolation contexts are consistent with the proba-
bility contexts in the word-only case, we would like them to stay
consistent for the class-based LMs. For instance, if sentence “vir-
ginia smith lives in long island new york” is parsed as “NAME lives
in CITY STATE”, optimizing interpolation weights via word 5-gram
“virginia | smith lives in long” is less intuitive, than optimizing them
for token 5-gram “PERSON | lives in CITY STATE”.

The observations above suggest operating at the token level
while interpolating class-based LMs. As we will show in the next
sections, the issue of distinct parsing spaces is not a real obstacle and
can be circumvented by exploring their (implicitly defined) union.

2. TOKEN-LEVEL LANGUAGE MODEL
INTERPOLATION

In the course of the next sections, we will lean on notations previ-
ously introduced in [10] for corpusWWW of sentences www with normal-
ized weights L′(www) and alternative parses ccck in terms of tokens cki
that induce segmentations πππk = (πk

1 . . . π
k
I ) ofwww (see Figure 1). In

addition, for the purpose of LM interpolation, we need to introduce
token-level history hk

i that precedes cki and a vector λλλ(h) of interpo-
lation coefficients λm(h) (one for each LM component) associated
with this history.

Our first goal is to derive a formula for the log-likelihood of a
data corpus in the interpolated LM. Given language model param-

1We will use the term ”token” to subsume words, classes (and, potentially,
word phrases).



Fig. 1. Parsing sentences in terms of words, class and (possibly)
common phrases.

eters ΘΘΘ and a plurality ΛΛΛ of interpolation weight vectors, this log-
likelihood can be written as:

logP (WWW |ΛΛΛ,ΘΘΘ) =
∑
www

L′(www) logP (www |ΛΛΛ,ΘΘΘ) (1)

For the sake of readability, from now on we will skip the explicit
dependency on ΛΛΛ and ΘΘΘ. Next, suppose that we have already suc-
ceeded in building an interpolated language model. By construction,
this model’s token-level vocabulary will be defined as a union of the
individual component vocabularies, and the class definitions will be
shared as well. Applied to the individual sentences www, this model
will produce K ≥ 0 alternative parses (token level representations)
ccck with k = 1,K. For instance, the example sentence from Sec-
tion 1 can be parsed as just the sequence of words it consists of, or
as ”PERSON lives in CITY STATE”, but also in many other ways
(e.g. ”STATE smith lives in long island CITY”). With this, our cor-
pus likelihood can be written as:

logP (WWW ) =
∑
www

L′(www) log

(∑
k

P (www |ccck)P (ccck)

)
(2)

where the two terms in the decomposition of P (www) are:

1. probability of word-level realizationwww of the parse ccck

2. language model probability of the parse according to the in-
terpolated token-level LM.

With the help of the chain rule for LM probabilities and assuming
statistical independence among word realization of individual tokens
cki , the likelihood turns into:

∑
www

L′(www) log

(∑
k

∏
i

(
P (πk

i |cki )P (cki |hk
i )
))

(3)

The terms P (πk
i |cki ) represent probabilities of various surface forms

of a token. For instance, if the token is a simple one-of class, the
term is the probability of the respective alternative.

Finally, let’s recall that our LM is a product of linear interpola-
tion of m LM components and substitute the corresponding expres-
sion into (3) obtaining the final formula for the corpus likelihood2:

∑
www

L′(www) log

(∑
k

∏
i

P (πk
i |cki )

∑
m

(
λm(hk

i )Pm(cki |hk
i )
))

(4)
Mind that the interpolation weights λm(hk

i ) are already assumed
context-dependent.

2For the sake of simplicity, we will use the same notation h for n-gram
context and interpolation context; however, any practical implementation will
need to functionally separate the two.

Our next goal is to optimize these weights so as to maximize the
corpus (log)likelihood. Since this optimization is subject to stochas-
tic conditions

∀h :
∑
m

λm(h) = 1, (5)

optimal values for λm(h) can be obtained by solving the following
optimization problem:

logP (WWW ) +
∑
h

γ(h)

(∑
m

λm(h)− 1

)
−→ max (6)

where γ(h) are Lagrangian coefficients (one for each context).
Next, we need to compute derivatives of the likelihood (4) over

individual interpolation weights. After some simplifications that in-
volve the general product derivative and Bayes rule formulae, we
will arrive at:

∂ logP (WWW )

∂λm(h)
=

∑
www

L′(www)
∑

k:h∈ccck

P (ccck|www)
∑

i:hk
i =h

Pm(cki |h)∑
m

Pm(cki |h)λm(h)

 (7)

Substituting this expression in (6) and solving w.r.t. λm(h), we
obtain:

λm(h) =

− 1

γ(h)

∑
www

L′(www)
∑

k:h∈ccck

P (ccck|www)
∑

i:hk
i =h

Sk
i,m(www, h)

 (8)

where

Sk
i,m(www, h) :=

Pm(cki |h)λm(h)∑
m′ Pm′(cki |h)λm′(h)

(9)

is the contribution that a particular LM component has for a token in
a given fixed history on a specific parse of a training sentence, and
normalization coefficient

γ(h) = −
∑
www

L′(www)
∑

k:h∈ccck

(
P (ccck|www) #h|ccck

)
(10)

is the expected number of times history h has been observed in the
corpus3. Not surprisingly, the formula (8) receives a plausible inter-
pretation as the average contribution of the mth component for the
tokens that occur following context h.

To make (8) actionable, we still need to offer a way to compute
posterior probability of a parse P (ccck|www). This can be accomplished
with Bayes rule:

P (ccck|www) =
P (www,ccck)∑
ccc P (www,ccc)

(11)

where joint probabilities P (www,ccc) are computed as

P (www,ccc) =
∏
ci∈ccc

P (ci|hi)P (πi|ci). (12)

While P (πi|ci) are within-class probabilities that are fixed (within
each iteration), the language model probability for the interpolation

3We use notation #·|ccc to signify counting along parse ccc.



scenario can be further re-expressed in terms of per-component prob-
abilities, leading to:

P (www,ccc) =
∏
ci∈ccc

(
P (πi|ci)

∑
m

λm(hi)Pm(ci|hi)

)
. (13)

Formulae (8-10) offer themselves nicely for optimization via EM.
During the expectation step, for each context h we accumulate
weighted contributions along every parse ccck that has this context,
and in the maximization step, the ML-estimates for weights λm(h)
are obtained via normalization.

3. EXAMPLE

To illustrate differences between word-based and token-based inter-
polation approaches, consider the example of two language models.
The first one is word-based (no classes), while the other one has a
single class of city names C which is defined as a set of weighted
alternatives, including “new york” with weight µ. Let the probabil-
ity of unseen words in each LM be 0. Next, suppose that we have
a training sentence “<s>new york </s>” to contribute sufficient
statistics like (9) for context “<s>new”.

For the word-based approach, conditional probabilities
Pm(york|<s>new) for m = 1, 2 need to be estimated via word
prefix probabilities [8]:

Pm(york|<s>new) =
P

pref
m (<s>new york)

P
pref
m (<s>new)

.

To compute a prefix probability, we consider all possible derivations
starting with this prefix and sum up their forward probabilities [8].
Each of these forward probabilities can be decomposed into a num-
ber of conditionals. For the sake of brevity, let us focus on the numer-
ator (denominator is computed similarly). In the first LM, a single
derivation is possible with all conditionals coming directly from the
LM n-grams:

P
pref
1 (<s>new york) =

P LM
1 (<s>)P LM

1 (new|<s>)P LM
1 (york|<s>new).

In the second model, two derivations exist: one is word-only, the
other goes through the class C:

P
pref
2 (<s>new york) =

P LM
2 (<s>)P LM

2 (new|<s>)P LM
2 (york|<s>new) +

P LM
2 (<s>)P LM

2 (C|<s>)×
P class
2 (new . york|C)P class

2 (york|new . york, C)

with the “.”-notation denoting a partially expanded nonterminal,
as used in the Earley parsing framework [8]. Due to our simple
class definition, the second summand in this formula turns into
µP LM

2 (<s>)P LM
2 (C|<s>).

The token-based approach is principally different in that it does
not include alternative implicit derivations of a sentence prefix in the
probability computation, but rather considers a number of explicit
parses of the sentence obtained with the previous LM combina-
tion, and their corresponding posteriors. Suppose these parses are:
ccc(1) =“<s>new york </s>” and ccc(2) =“<s>C </s>” with re-
spective posteriors ν(1) and ν(2). The conditional probabilities
Pm(york|<s>new) needed for sufficient statistics for context

“<s>new” will now be borrowed directly from the language mod-
els (with the appropriate smoothing); however, the contributions
will be weighted by ν(1) since this context only occurs in the first
parse ccc(1). This approach allows for interpolation weights to be
estimated also for contexts containing classes (such as “<s>C”).
The produced weights do not depend on the specific class instances,
which means that several LMs can be merged into a single LM
in a context-dependent manner with maximum likelihood merged
probability estimates computed as

P (·|<s>C) =

λ1(<s>C)P1(·|<s>C) + λ2(<s>C)P2(·|<s>C)

4. DISCUSSION

A few words need to be said to justify the validity of the approach.
Initially, we postulated that the interpolated language model is al-
ready available to us. In reality, of course, it is not, and the inter-
polation (13) might force some components to provide probabilities
for a parse that contains tokens outside of their respective vocabu-
laries. However, such tokens can always be mapped to dedicated
“unknown” symbols, and most language models already contain es-
timated probabilities of unknowns in them. If not, these probabili-
ties can be considered zero and easily absorbed in the computation.
Therefore, our algorithm does not violate probabilistic constraints.

On a separate note, as the above formulae explicitly refer to indi-
vidual parses, a simple extension of the algorithm can deal with com-
pact representations of the entire parsing space (lattices), in which
case instead of conditioning on probabilities of entire end-to-end
parses, we condition on individual arcs in the graph, using forward
and backward probabilities. For the sake of the present study, how-
ever, we are focusing on 10 highest scoring parses.

As for context-dependent interpolation, the straightforward
look-up table implementation is prone to over-training, since it pro-
duces separate vectors of interpolation weights for each history, no
matter how often this history appeared in training. To produce robust
estimates, a number of techniques can be employed such as hierar-
chies of contexts and MAP estimation [11]. For our experiments, we
found a simple combination of hierarchical contexts with absolute
thresholds on the minimum number (typically between 3 and 5) of
context observations to work the best.

Finally, it should be noted that the approach presented is not
limited to traditional class-based LMs, but can as well be applied to
modifications such as word-phrase-entity (WPE) LMs [10] that build
language models from corpora expressed in terms of words, classes
and phrases in a way that optimizes their likelihood.

5. EXPERIMENTS AND RESULTS

We selected the Personal Assistant, Calendar scenario for our ex-
periments. The target domain is a class of utterances that have been
automatically classified to pertain to the Calendar scenario for which
we have two sets: TD1 (to train interpolation weights) and TD2 (to
test). Note that the prediction accuracy is relatively low and there
are a significant number of irrelevant samples in TD1 and TD2 alike.
There are two LM components to interpolate. The first one (LM1)
is a general purpose language model. The second one (LM2) is a
3-gram LM to be built from a separate collection of sentences VD1
that were selected by human labelers as coming from the Calendar
scenario. Table 1 summarizes the characteristics of these datasets.



Corpus LM Properties
TD1 (test) - 3K sent., 20K words
TD2
(weight training)

- 10K sent., 67K words

VD1 (close to
target domain)

LM2
word/class

20K sent. 176K words;
3-gram, 5K lexicon

generic LM1 5-gram LM, 50K lexicon

Table 1. Corpora and data LM at a glance.

The second component LM2 can be trained as a regular word-
level n-gram language model (LM2-word) or as a class-based lan-
guage model (LM2-class). In the experiments below a special case
of class-based models, the WPE LM [10], is employed for this pur-
pose. The definition of the six classes (Time, Date, Weekdays, First-
Name, State, City) is also borrowed from [10] with some of the
classes being defined as word tries, and others encoded as finite state
automata. Table 2 shows perplexity and word error rates achieved on
the test set TD1 by various training configurations. For the purpose
of parsing, we postulated Pm(OOV) = 0, ∀m, and in the context-
dependent case, required a context to have expected number of ob-
servations of at least 3.0 to generate its own vector of interpolation
weights.

LangMod ppx word-oov WER
LM1 104.7 0.72% 12.22%
LM2-word 77.8 7.28% 22.34%
LM2-word + LM1 72.2 0.68% 11.31%
LM2-word + LM1 (CD) 66.8 0.68% 11.14%
LM2-class 72.9 6.80% 21.20%
LM2-class + LM1 69.6 0.68% 10.93%
LM2-class + LM1 (CD) 63.0 0.68% 10.78%

Table 2. Evaluation results with language models constructed in
various ways.

First of all, we see that the WPE LM (LM2-class) achieves bet-
ter perplexity and WER relative to the word-level LM (LM-word)
trained on the same data. In combination with the generic model
LM1 that offers better overall WER (perplexities are not directly
comparable due to significant differences in the OOV rates), all met-
rics are improved. The advantage of the WPE LMs carry over to
the interpolated models as well. Finally, interpolating with context-
dependent weights (CD) helps both combinations equally, resulting
in significant perplexity drops of about 10% for LM combinations
with LM2-word as well as LM2-class, but also reducing WER. Over-
all, the difference between context-independent interpolation with
word-level LM and context-dependent interpolation with WPE LM
amounts to almost 13% perplexity reduction and statistically signif-
icant 4.7% WERR.

In a slightly different setup, we removed phrases from WPE def-
initions and only kept classes that can be represented as weighted
lists of items. This configuration enabled us to run a side-by-side
comparison between token-based interpolation with the word-based
interpolation (as implemented in the SRILM [9]) for class-based lan-
guage models. The token-level context-independent interpolation re-
sulted in perplexity 71.3, slightly better than 72.1 of the word-level
interpolation. We did not perform the comparison for a context-
dependent version because for this case it is not possible to create a
single merged model (which is one of the advantages of token-level
interpolation).

A possible objection to context-dependent interpolation is that

it requires more in-domain data than context-independent interpola-
tion, as more parameters need to be trained [11]. Instead of using
10K examples of the TD2 corpus, maybe it would be more benefi-
cial to add them to the training material for LM2. To investigate how
to best use available data, we started chipping off chunks of differ-
ent sizes from TD2, adding them to VD1 instead. The rest was still
used to train interpolation weights. While WPE LM training algo-
rithm allows for entity adaptation (within-class weight optimization)
in parallel to n-gram probability estimation [10], for our next exper-
iment we did not do it and focused solely on LM training. The plot
in Figure 2 demonstrates how different data splits affect overall per-
plexity of the resultant interpolation language model for word- and
WPE LMs. The x-axis shows the split of the data in TD2 between
additional LM2 training and weight-training material. For instance,
“9000-1219” means that out of the total of 10219 TD2 sentences,
9000 were added to LM2 to train in-domain class-based LM and the
remaining 1219 were used for context-dependent weight optimiza-
tion.

Fig. 2. Effect of moving training samples from weight training to LM
training set on test set perplexity.

While direct use of in-domain data as LM training material ap-
pears to have higher impact on final LM quality, the improvements
due to class-based WPE LM and context-dependent interpolation
remain consistent. Even with slightly more than 200 training ex-
amples, context-dependent weights yield 5% perplexity reduction,
most likely due to the separate weights for the very common begin-
of-sentence context. In a separate experiment, we used the entire
corpus TD2 LM and weight training, achieving small additional im-
provements relative to the “10000-219” combination. Practical con-
siderations might still dictate the use of additional training data for
interpolation weights, i.e., when it is not convenient to modify pre-
existing component LMs.

6. CONCLUSIONS AND FUTURE WORK
We have presented a novel method for token-level interpolation of
class-based language models. Our algorithm modifies the traditional
interpolation weight estimation approach by letting it count statis-
tics from alternative parses produced for each training sentence by
a linear combination of component language models. While the re-
sults of context-independent interpolation exhibit similar qualities as
standard word-level probability interpolation, our method allows for
a straightforward extension to handle context-dependent interpola-
tion weights, and in this way, achieves better perplexity and recog-
nition results. We applied the method to Calendar scenario in the
Personal Assistant domain and observed significant perplexity and
WER reductions w.r.t. the single-LM baselines, but also relative to
context-independent interpolation.
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