
31

C H A P T E R  3

Discriminative Learning: 
A Unifi ed Objective Function

31MC_He_Ch03_v1.indd                                                            Achorn International                                                            06/25/2008  11:06AM

In this chapter, a unifi ed account is provided for three classes of objective functions developed in 
discriminative training of hidden Markov models (HMMs). These are: maximum mutual informa-
tion (MMI), minimum classifi cation error (MCE), and minimum phone error/minimum word 
error (MPE/MWE). We also compare our unifi ed form of these objective functions with another 
popular unifi ed form in the literature.

3.1 INTRODUCTION
Popular discriminative parameter learning techniques are (1) MMI [6, 14, 17, 34, 49, 52]; (2) 
MCE [8, 20, 24, 25, 31–33, 42, 44, 46], and (3) MPE and closely related MWE [12, 38–41]. In 
addition to a general overview on the above classes of techniques, this book has a special focus 
on three key areas in discriminative learning: objective function, optimization method, and algo-
rithmic properties. This chapter is devoted to the fi rst area, where we provide a unifi ed view of 
the three discriminative learning objective functions, MMI, MCE, and MPE/MWE, for classi-
fi er parameter optimization, from which structural insight and the relationships among them are 
derived. In this chapter, we concentrate on a unifi ed objective function that gives rise to various 
special cases associated with different levels of performance optimization for pattern recognition 
tasks — including the performance optimization levels of superstring unit, string unit, and sub-
string unit.

After giving an introduction to the discriminative learning criteria of MMI, MCE, and 
MPE/MWE, we show that under certain assumptions, the objective functions of MMI, MCE, and 
MPE/MWE criteria (with multiple training tokens) can be formulated and unifi ed into a rational-
function form. From that, relations among MMI, MCE, and MPE/MWE criteria are studied. In 
discussing these topics, some familiarities of HMMs are assumed, such as those described in stan-
dard textbooks (e.g., [43, 47]).
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3.2 A UNIFIED DISCRIMINATIVE TRAINING CRITERION
The main purpose of this chapter is to provide a general and concise introduction to three types of 
optimization criteria, MMI, MCE, and MPE/MWE, for discriminative parameter learning, and 
then to formulate a unifi ed criterion that subsumes the three criteria as special cases. The process of 
this formulation offers insight into the fundamental relationship among MMI, MCE, and MPE. 
Another insight gained is on how these special cases correspond to distinct levels of pattern recog-
nition performance optimization. MMI gives performance optimization for superstring sequences. 
MCE gives performance optimization for string sequences. And MPE/MWE gives performance 
optimization for substring sequences.

3.2.1 Notations
As the notations throughout this book, we denote by L the parameter set of the generative model 
(e.g., HMM or a Gaussian distribution) expressed in terms of a joint statistical distribution:

 p(X,S |L) = p(X |S,L)P (S)  (3.1)

on the observation training data sequence X and on the corresponding label sequence S, where we 
assume the parameters in the “language model” P(S) are not subject to optimization. We denote by 
R the number of training tokens and use r = 1, …, R as the index for “token” or “string” (e.g., a single 
sentence or utterance) in the training data, and each token consists of a “string” of an observation 
data sequence: Xr = xr,1, …, xr,Tr of length Tr with the corresponding label (e.g., word) sequence: Sr = 
wr,1,…, wr,Nr of length Nr . That is, Sr denotes the correct label sequence for token r; in effect, wr,i is 
the ith word in the word sequence of Sr. Furthermore, we use sr to denote all possible label sequences 
for the rth token, including the correct label sequence Sr and all other incorrect label sequences. For 
the iterative learning approach discussed in this book, we denote by L¢ the model parameters com-
puted from the immediately previous iteration.

3.2.2 The Central Result
The central result presented in this chapter is that all three discriminative learning criteria, MMI, 
MCE, and MPE/MWE, can be formulated as the following unifi ed form of a rational function 
as the objective function (which can be readily subject to a special way of optimization discussed 
later):

 
O(L) =

å
s1, ..., sR

p(X1, . . . ,XR, s1, . . . , sR|L) · CDT (s1, . . . , sR)

å
s1, ..., sR

p(X1, . . . ,XR, s1, . . . , sR|L)

 (3.2)
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where the summation over s = s1,…, sR in (3.2) denotes the coverage of all possible label sequences 
(both correct and incorrect ones) in all R training tokens. (This huge number of terms will be dras-
tically simplifi ed during the optimization step, which we shall discuss in detail later.) In (3.2), X = 
X1,…, XR denotes the collection of all observation data sequences (strings) in all R training tokens, 
which we also call “superstring.” pL(X1,…XR, s1…, sR) is the joint distribution for the superstring of 
data X1,…, XR and an arbitrary possible super label sequence assignments s1,…, sR. The discrimina-
tive training (DT) function CDT(s1…, sR) in (3.2) differentiates MMI, MCE, and MPE/MWE, 
each with a specifi c form of CMMI(s1…, sR), CMCE(s1…, sR), and CMPE(s1…, sR), respectively. We will 
derive these specifi c forms in the subsequent sections of this chapter. Note that CDT(s1…, sR ) in (3.2) 
is a quantity that depends only on the label sequence s1, …, sR, and are independent of the parameter 
set L to be optimized.

We now introduce the criteria of MMI, MCE, and MPE/MWE separately as in the stan-
dard literature, and then provide detailed derivations to reformulate each of them into the unifi ed 
rational function form of (3.2). This then will enable the use of powerful and unifi ed optimization 
techniques based on GT applied specifi cally to rational functions.

3.3 MMI AND ITS UNIFIED FORM
3.3.1 Introduction to MMI Criterion
In information theory, mutual information I(X,S) between data X and their corresponding labels/
symbols S measures the amount of information obtained, or the amount of reduction in uncertainty, 
through a noisy information-transfer channel after observing output labels/symbols. In designing 
the noisy channel, it is obvious that one desires to increase the information attainment by maximiz-
ing I(X,S). Quantitatively, mutual information is defi ned as

 I(X,S) = å
X,S

p(X,S) log
p(X,S)

p(X )p(S)
= å

X,S
p(X, S) log

p(S |X)
p(S)

= H(S) − H(S |X )  (3.3)

where H(S) = -SS p (S) log p (S) is the entropy of S, and H(S|X ) is the conditional entropy:

 H(S |X) = −å
X,S

p(X,S) log P (S |X )  (3.4)

Assume that P(S) (“language model”) and hence H(S) is given (i.e., with no parameters to opti-
mize). Then maximizing mutual information of (3.3) becomes equivalent to minimizing condi-
tional entropy of (3.4) with respect to its parameters. Because P(S|X) in (3.4) is unknown, H(S|X ) 
can only be estimated using the sample average:

H (S |X ) ∼= ĤL(S |X ) = − 1
R

R

å
r=1

log p(Sr |Xr ) = − 1
R

R

å
r=1

log
p(Xr |Sr ,L)P(Sr)

p(Xr)
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Hence, maximizing mutual information (MMI) is equivalent to maximizing

 
OMMI(L) =

R

å
r=1

log
p(Xr|Sr,L)P (Sr)

P (Xr)
=

R

å
r=1

log
p(Xr|Sr,L)P (Sr)

å
sr

p(Xr|sr,L)P (sr)

 (3.5)

where P(sr ) is the “language model” probability for an arbitrary sentence token sr . The MMI crite-
rion equals the logarithm of the posterior probability of the correct sentence Sr , or “good model,” 
given their observation sequences. This posterior probability takes into account all models, good 
(Sr ) or bad (sr excluding Sr ), as shown in the denominator of (3.5). (In practice, a scale κ has been 
applied empirically to all the probability terms in (3.5) for generalization purposes in implementing 
MMI [40]. This issue will not be addressed in this paper).

3.3.2 Reformulation of the MMI Criterion into Its Unifi ed Form
It is straightforward to reformulate the problem of optimizing (3.5) into that of optimizing the uni-
fi ed form of (3.2), because (3.5) is essentially a rational function due to the logarithm. To continue 
the reformulation, we construct the monotonically increasing function of exponentiation for (3.5). 
This gives

 ÕMMI(L) = exp[OMMI(L)] =
R

Õ
r=1

p(Xr,Sr|L)

å
sr

p(Xr, sr|L)
=

p(X1, . . . ,XR,S1, . . . ,SR|L)

å
s1, ..., sR

p(X1, . . . , XR, s1, . . . , sR|L)
 (3.6)

The latter step uses the assumption that different training tokens are independent of each other. It 
is noteworthy that each multiplier in (3.6) can be viewed as a model-based expected gain, that is,

 p(Xr,Sr|L)

å
sr

p(Xr,sr|L)
= 1 − å

sr �=Sr

P (sr|Xr,L) = 1 −
L based expected loss︷ ︸︸ ︷

å
sr

(1 − d (sr,Sr))︸ ︷︷ ︸
0−1 loss

P(sr|Xr,L)  

We now rewrite (3.6) in the form of a rational function

 

ÕMMI(L) =
å

s1, ..., sR

p(X1, . . . ,XR, s1, . . . , sR|L)CMMI(s1, . . . , sR)

å
s1, ..., sR

p(X1, . . . ,XR, s1, . . . , sR|L)

 

(3.7)

where

 
CMMI(s1, . . . , sR) =

R

Õ
r=1

d (sr,Sr)
 

(3.8)
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is a quantity that depends only on the sentence sequence s1,…,sR. In (3.8), d (sr , Sr ) is the Kronecker 

delta function, that is, d(sr, Sr ) = {1 if sr = Sr        0 otherwise.

We note that MMI is a discriminative performance measure at the “superstring” level in that 
it aims to improve the conditional likelihood on the entire training data set instead of on each indi-
vidual string (token). This is refl ected by the product form of the function in (3.8). CMMI(s1, …, sR) 
in (3.8) can be interpreted as the binary function (as “accuracy count”) of the “superstring” s1, …, sR, 
which takes a value of 1 if the superstring s1, …, sR is correct and zero otherwise. Correspondingly, 
OMMI(L) can be interpreted as the average superstring accuracy count of the full training data set, 
which takes a continuous value between 0 and 1.

3.4 MCE AND ITS UNIFIED FORM
The key result of this section is to reformulate another popular discriminative criterion, that is, 
MCE, into the same form of the rational function as in (3.7), except that the accuracy-count func-
tion C(×) takes a summation form instead of a product form. This correspondingly gives the string-
level discriminative performance measure for MCE, contrasting with the superstring level for the 
MMI criterion just described. We now fi rst provide a concise introduction to the basic concept and 
conventional formulation of MCE.

3.4.1 Introduction to the MCE Criterion
MCE learning was originally introduced for multiple-category classifi cation problems where the 
smoothed error rate is minimized for isolated “tokens” [2, 24]. It was later generalized to minimize 
the smoothed “sentence token” or string-level error rate [8, 25], which is known as “embedded 
MCE.” The MCE objective function is defi ned fi rst based on a set of discriminant functions and 
a special type of loss function. Then model parameters are estimated to minimize the expected loss 
that is closely related to the recognition error rate of the classifi er.

In embedded MCE training, for the rth training token, a set of discriminant functions is 
defi ned as the log likelihood of data based on the correct as well as competing strings:

 gsr
(Xr;L) = log p(Xr, sr|L)  (3.9)

Then the decision rule of the classifi er/recognizer can be expressed as

 C(Xr) = s*
r iff s*

r = arg max
sr

gsr(Xr ;L)  (3.10)

For sequential pattern recognition tasks such as continuous speech recognition, usually only 
the N most confusable competing strings, sr,1, …, sr,N , are considered in MCE. Note these N 
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confusable competing strings change dynamically after each training iteration. In practice, they are 
regenerated after each iteration through N-best decoding based on the parameters L¢ obtained at 
the immediately previous iteration. The N-best strings can be defi ned inductively by

sr, 1 = arg max
sr :sr �=Sr

log p(Xr, sr|L) ≈ arg max
sr:sr �=Sr

log p(Xr, sr|L′)

sr, i = arg max
sr :sr �=Sr , sr �=sr, 1, ..., sr, i−1

log p(Xr,sr|L) ≈ arg max
sr:sr �=Sr, sr �=sr, 1, ..., sr, i−1

log p(Xr,sr|L′) i = 2, . . . ,N.

 

(3.11)

Next, a misclassifi cation measure dr(Xr , L) is defi ned to emulate the decision rule for utter-
ance r, that is, dr(Xr , L) ³ 0 implies misclassifi cation and dr(Xr , L) <0 implies correct classifi cation,

 dr(Xr,L) = −gSr
(Xr;L) + GSr(Xr;L)  (3.12)

where GSr
(Xr ; L) is a function that represents the score of incorrect strings competing with the cor-

rect string Sr.
For 1-best MCE training (N = 1), only the best-incorrect-string sr,1 is considered as the com-

petitor. In this special case, GSr
(Xr ; L) clearly becomes

 GSr(Xr;L) = gsr, 1
(Xr;L)  (3.13)

However, for the general case where N > 1, different defi nitions of GSr
(Xr ; L) can be used. 

One popular defi nition takes the following form [25]:

 
GSr(Xr;L) = log

{
1
N

N

å
i=1

ph(Xr, sr,i|L)

}1
h  

(3.14)

Another popular form of gSr
(Xr ; L) and GSr

(Xr ; L) (the latter has similar effects to (3.14) and was 
used in [46]) is

                                                      { 
(3.15)

where h is a scaling factor for joint probability p(Xr , sr | L). In this paper, we adopt GSr
(Xr ; L) with 

the form of (3.15) and set h = 1 for simplicity and mathematic tractability. (We will discuss the h ¹ 
1 case in Chapter 6.)

Now we defi ne the MCE loss function, which, for a single utterance r, is typically a sigmoid 
function as originally proposed in [24, 25]:

gSr
(Xr;L) = log ph(Xr,Sr|L)

GSr(Xr;L) = log
N

å
i=1

ph(Xr, sr,i|L)
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 lr (dr(Xr,L)) =
1

1 + e−adr(Xr,L)
 (3.16)

where a is the slope of the sigmoid function, often determined empirically. As presented in [21] 
(p. 156), we also use a = 1 for simplicity in exposition. In practice, however, a is usually set to be a 
value less than 1; we will discuss this more general case in Chapter 6. Note that the loss function of 
(3.16) emulates the desirable zero–one classifi cation error count.

Using the misclassifi cation measure in the form of (3.12) and (3.15) (with h = 1), we can 
rewrite the loss function for one training string token as

 
lr (dr(Xr,L)) =

å
sr,sr �=Sr

p(Xr, sr|L)

å
sr, sr �=Sr

p(Xr, sr|L) + p(Xr,Sr|L)
=

å
sr,sr �=Sr

p(Xr, sr|L)

å
sr

p(Xr, sr|L)
 (3.17)

which can be viewed as an model-based expected loss of classifying Xr to Sr, after putting it in the 
following form:

lr (dr(Xr,L)) = å
sr �=Sr

P (sr|Xr,L) =å
sr

(1 − d (sr,Sr))︸ ︷︷ ︸
0−1 loss

P (sr|Xr,L)

Then, because the error count sums over training tokens, the loss function for all R training tokens 
is naturally defi ned to be:

 
LMCE(L) =

R

å
r=1

lr (dr(Xr,L))
 (3.18)

Here, we emphasize the summation in (3.18) for combining all string tokens for MCE. Because 
each loss function approximates the string error count, the total empirical error count rightfully be-
comes the sum of all independent individual string error counts. This forms a sharp contrast to the 
MMI case as in (3.6), where a product of probabilities is constructed in pooling all string tokens.

Now, minimizing the overall loss function of LMCE(L) in (3.18) is equivalent to maximizing 
the following MCE objective function:

 
OMCE(L) = R − LMCE(L) =

R

å
r=1

⎡
⎢⎣1 −

å
sr , sr �=Sr

p(Xr, sr|L)

å
sr

p(Xr, sr|L)

⎤
⎥⎦ =

R

å
r=1

p(Xr,Sr|L)

å
sr

p(Xr, sr|L)

 
(3.19)
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3.4.2 Reformulation of the MCE Criterion Into its Unifi ed Form
Unlike the MMI case, the MCE objective function as expressed in (3.19) is a sum of rational func-
tions rather than a rational function in itself, and hence it would not be amenable to the special 
form of GT-based optimization. The state-of-the-art techniques for optimizing the MCE objec-
tive function have been based on gradient descent, which is called generalized probabilistic descent 
(GPD) [8, 24, 25]. As one original contribution of this paper, we reformulate the MCE objective 
function as a true rational function in a nontrivial fashion. This not only unifi es the earlier disparate 
types of objective functions and offers insights into their differences and similarities, but, more im-
portantly, it enables the use of GT as an alternative technique to GPD for faster and more effective 
optimization.

The reformulation proceeds as follows:

 

OMCE(L) =
R

å
r=1

å
sr

p(Xr, sr|L)d (sr,Sr)

å
s

p(Xr, sr|L)

 
(3.20)

=
å
s1

p(X1, s1|L)d (s1,S1)

å
s1

p(X1, s1|L)︸ ︷︷ ︸
:=O1

+
å
s2

p(X2, s2|L)d (s2,S2)

å
s2

p(X2, s2|L)︸ ︷︷ ︸
:=O2

+
å
s3

p(X3, s3|L)d (s3, S3)

å
s3

p(X3, s3|L)︸ ︷︷ ︸
:=O3

+ · · · +
å
sR

p(XR, sR|L)d (sR,SR)

å
sR

p(XR, sR|L)︸ ︷︷ ︸
:=OR

=
å
s1
å
s2

p(X1,s1|L)p(X2, s2|L)[d (s1,S1) + d (s2,S2)]

å
s1
å
s2

p(X1, s1|L)p(X2, s2|L)
+ O3 + · · · + OR

=
å

s1s2s3

p(X1,X2,X3, s1, s2, s3|L) [CMCE(s1s2s3)]

å
s1s2s3

p(X1,X2,X3, s1, s2, s3|L)
+ · · · + OR

 

(3.21)

=
å
s1s2

p(X1,X2, s1, s2|L)[CMCE(s1s2)]

å
s1 s2

p(X1,X2, s1, s2|L)
+ O3 + · · · + OR
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=
å

s1, ..., sR

p(X1, . . . ,XR, s1, . . . , sR|L)CMCE(s1, . . . , sR)

å
s1, ..., sR

p(X1, . . . ,XR, s1, . . . , sR|L)
 

 (3.21)

where CMCE(s1, …, sR) = SR
    r = 1 d (s1, SR ). The fi nal result of (3.21) gives the rational function fi tting 

exactly to the unifi ed form of (3.2). The correctness of (3.21) can also be proved directly by induc-
tion, which we leave to readers as an exercise. CMCE(s1, …, sR) in (3.21) can be interpreted as the 
string accuracy count for s1, …, sR, which takes an integer value between 0 and R as the number of 
correct strings in s1, …, sR. Correspondingly, OMCE(L) can be interpreted as the average string ac-
curacy count of the full training data set.

3.5 MINIMUM PHONE/WORD ERROR AND ITS 
UNIFIED FORM

3.5.1 Introduction to the MPE/MWE Criterion
In this section, we introduce yet another commonly used discriminative training objective function, 
MPE or MWE, in speech recognition, developed originally in [38, 40]. In contrast to MMI and 
MCE described earlier, which are aimed at the superstring level and at the string level of recognition 
performance optimization, respectively, MPE/MWE is aimed for performance optimization at the 
substring level. In speech recognition, a string corresponds to a sentence, and a substring as a constit-
uent of the sentence can be words or phones. Because performance measures of speech recognition 
are often the word or phone error rates rather than the sentence error rate, it has been argued that 
MPE/MWE is a more appropriate criterion to optimize than the MMI and MCE criteria [40].

The MPE objective function that needs to be maximized is defi ned as

 
OMPE(L) =

R

å
r=1

å
sr

p(Xr, sr|L)åsr
A(sr,Sr)

å
sr

p(Xr, sr|L)

 
(3.22)

where A(sr, Sr) is the raw phone (substring) accuracy count in the sentence string sr (proposed origi-
nally in [38, 40]). Specifi cally, A(sr, Sr) is the total phone (substring) count in the reference string Sr 
minus the sum of insertion, deletion, and substitution errors of sr computed based on Sr.

The MPE criterion (3.22) equals the model-based expectation of the raw phone accuracy 
count over the entire training set. This becomes clear by rewriting (3.22) as 

OMPE(L) =
R

å
r=1
å
sr

P(sr |Xr ,L)A(sr, Sr)
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where

p(sr|Xr,L) =
p(Xr, sr|L)

p(Xr|L)
=

p(Xr, sr|L)

å
sr

p(Xr, sr|L)

is the model-based posterior probability over which the expectation is taken in defi ning the MPE 
objective function of (3.22). It can be shown that MPE criterion provides an upper bound of true 
Bayes risk on the substring (e.g., phone) level. 

When A(sr, Sr) in (3.22) is changed from the raw phone accuracy count to another raw 
substring accuracy for words Al(sr, Sr), we have the virtually equivalent defi nition of the MWE 
criterion:

 
OMWE(L) =

R

å
r=1

å
sr

p(Xr|sr,L) P(sr)Al(sr,Sr)

å
sr

p(Xr|sr,L) P(sr)

 
(3.23)

and hence, throughout this book, we merge these two into the same MPE/MWE category.

3.5.2 Reformulation of the MPE/MWE Criterion Into Its Unifi ed Form
The MPE/MWE objective function is also a sum of multiple rational functions instead of a single 
rational function, and hence it is diffi cult to derive GT formulas, as pointed out in [40] (Section 
7.2, p. 92). The state-of-the-art techniques for optimizing the MPE/MWE objective functions 
have been based on a weak-sense auxiliary function (WSAF) proposed in [40], where the diffi culty 
of formulating a rational function and the desire of moving away from traditional gradient descent 
have been eloquently discussed. In this paper, we propose to reformulate the MPE/MWE objective 
functions as a unifi ed rational function in the form of (3.2). This enables an alternative technique 
to WSAF for optimization but with guaranteed convergence in the algorithm’s iteration. The re-
formulation of the MPE/MWE criteria (3.22)–(3.23) in the unifi ed form of rational function fol-
lows the same steps as in the preceding MCE case. Note that (3.22)–(3.23) are in the same form as 
(3.20), except for the replacement of d(sr , Sr ) by A(sr , Sr ) or A1(sr , Sr ). Then, the same steps starting 
from (3.20) to (3.21) lead to the reformulated results for MPE/MWE:

 
OMPE(L) =

å
s1, ..., sR

p(X1, . . . ,XR, s1, . . . , sR|L)CMPE(s1, . . . , sR)

å
s1, ..., sR

p(X1, . . . ,XR, s1, . . . , sR|L)

 
(3.24)
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where

CMPE(s1, . . . , sR) =
R

å
r=1

A(sr,Sr)

and

 
OMWE(L) =

å
s1,..., sR

p(X1, . . . ,XR, s1, . . . , sR|L)CMWE(s1, . . . , sR)

å
s1,..., sR

p(X1, . . . ,XR, s1, . . . , sR|L)

 
(3.25)

where

CMWE(s1, . . . , sR) =
R

å
r=1

Al(sr,Sr)

Note that CMPE(s1, …, sR) in (3.24) or CMWE(s1, …, sR) in (3.25) can be interpreted as 
the raw phone or word (substring unit) accuracy count within the “superstring” s1, …, sR. Its 
upper-limit value is the total number of phones or words in the full training data (i.e., the cor-
rect superstring S1, …, SR). The actual value may be negative if many insertion errors occur. 
Correspondingly, OMPE(L) and OMWE(L) can be interpreted as the average raw phone or word 
accuracy count of the full training data set.

3.6 DISCUSSIONS AND COMPARISONS
3.6.1 Discussion and Elaboration on the Unifi ed Form
We fi rst provide a summary of the previous sections in this chapter, where a rational-function form 
of the discriminative training (DT) objective function or criterion is established as in (3.2) that uni-
fi es MMI, MCE, and MPE/MWE. In this unifi ed form, the choice of the set of label sequences 
and the form of the generic function CDT(s1, ¼, sR) determine the particular DT criterion, as sum-
marized in Table 3.1. As an example shown in Table 3.1, for MMI, we have the specifi c function 

CDT (s1, ¼, sR) = ÕR
    r = 1 d (sr, SR). For MPE, the function becomes CDT (s1, ¼, sR) = SR

    r = 1 A (sr, Sr ). 

For MCE with general N-best competitors where N > 1, CDT (s1, ¼, sR) = SR
    r = 1 d (sr, Sr ). For 1-best 

MCE (N = 1), sr belongs to only the subset {Sr, sr,1}. Equation (3.2) allows direct comparisons of the 
MMI, MCE, and MPE/MWE criteria. The most important insight offered by the unifi ed frame-
work of (3.2) is that the difference of these three types of criteria is embedded only in the weighting 
of alternative strings, where the weights (i.e., CDT(s1, ¼, sR)) are independent of the model param-
eters L to be learned.
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As pointed out in [40], MPE/MWE has an important difference from MCE and MMI in 
that the weighting given by the MPE/MWE criteria to an incorrect string (sentence token) depends 
on the number of wrong substrings (wrong phones or words) within the string. MCE and MMI 
make a binary distinction based on whether the entire sentence string is correct or not, which is not 
desirable when reduction of substring errors (e.g., word errors in speech recognition) is the main 
goal of the sequential pattern recognition tasks. This distinction is most clearly seen by the sum of 

the binary function CDT (s1, ¼, sR) = SR
    r = 1 d (sr, Sr ) for MCE and the sum of nonbinary functions  

CDT (s1, ¼, sR) = SR
    r = 1 A (sr, Sr )for MPE/MWE, both within the same unifi ed framework. This key 

difference gives rise to the distinction of the substring level versus the string level of recognition 
performance optimization associated with MPE/MWE and MCE, respectively. As it performs 
the sentence or string-level optimization, MCE tends to push and pack errors into a few sentence 

TABLE 3.1: A unifi ed rational-function form of the DT objective function (3.2), where differences 
in CDT(s1, …, sR) distinguish MMI, MCE, and MPE/MWE and the number of “competing token 

candidates” distinguishes N-best and 1-best versions of the MCE

OBJECTIVE 
FUNCTIONS

CDT(SR) CDT(S1, ¼, SR) LABEL SEQUENCE 
SET USED IN DT

MCE (N-best) d (sr,Sr)
R

å
r=1

CDT(sr)
{Sr, sr,1, …, sr,N }

MCE (1-best) d (sr,Sr)
R

å
r=1

CDT(sr)
{Sr , sr,1}

MPE
A(sr,Sr)

R

å
r=1

CDT(sr)
all possible label 

sequences

MWE
Al(sr,Sr)

R

å
r=1

CDT(sr)
all possible label 

sequences

MMI d (sr,Sr) R

Õ
r=1

CDT(sr)
all possible label 

sequences

Note that the overall CDT(s1, ¼, sR) is constructed from its constituents CDT(sr)’s in individual string tokens by either summation 
(for MCE, MPE/MWE) or product (for MMI).
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tokens so as to create as many error-free token “strings” as possible. It sacrifi ces word/phone (sub-
string) errors in order to reduce string errors, which may not be desirable when high word or phone 
accuracy is the goal of continuous speech or phonetic recognition.

Furthermore, the product instead of the summation form of the binary function associated 
with MMI, that is, CDT (s1, ¼, sR) = ÕR

    r = 1 d (sr, SR), makes it clear that MMI achieves performance 
optimization at the superstring level. That is, as long as any one single sentence token has an error, 
the product of the Kronecker delta functions becomes zero. Therefore, all the summation terms in 
the numerator of (3.2) are zero except for the one corresponding to the correct label/transcription 
sequence. This “superstring” level performance measure is apparently less desirable than MCE or 
MPE/MWE, as has been shown extensively in experiments [31, 38–40].

Another insight gleaned from the unifi ed form of the objective function (3.2) is that in the 
case of having only one sentence token (i.e., R = 1) in the training data and when the sentence 
contains only one phone, then all three MMI, MCE, and MPE/MWE criteria become identical. 
This is because in this case CDT(s1, ¼, sR) becomes identical for all these criteria. The difference 
surfaces only when the training set consists of multiple sentence tokens. In this realistic case, the 
difference lies only in CDT(s1, ¼, sR) as the L-independent weighing factor (as well as in the set 
of competitor strings), whereas the general rational-function form for the three criteria remains 
unchanged.

The major benefi t of unifying the discriminative training criteria into a single rational 
function as in (3.2) is that we can then extend the same, well-established framework of GT to 
optimize all these major discriminative training criteria. Moreover, it also provides a new pos-
sibility of applying other, more advanced rational function optimization methods to the various 
discriminative training criteria. As an example, Jebara [22, 23] proposed a novel optimization 
method for rational functions as an alternative to the traditional GT method. In [22], the reverse 
Jensen’s inequality method was developed and described, based on which an elegant solution for 
rational function optimization for HMMs with exponential-family densities was constructed. We 
will review this method in Appendix V, showing that our unifi ed framework of (3.2) is directly 
subject to the application of this method and that this is not the case for another framework that 
we review below.

3.6.2 Comparisons With Another Unifying Framework
In recent papers [31, 46], an approach was proposed to unify a number of discriminative learning 
methods including MMI, MPE, and MPE/MWE (the earlier paper [46] did not include MPE/
MWE). Functional similarities and differences among MMI, MCE, and MPE/MWE criteria 
were noted and discussed in [31, 46]. The framework proposed in this paper takes an additional 
step of unifying these criteria in a common rational-function form, and GT-based discriminative 
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learning is applied to this generic rational-function, which includes MMI, MCE, and MPE/MWE 
criteria as special cases. This is signifi cant from two perspectives. First, it provides a more precise 
and direct insight into the fundamental relations among MMI, MCE, and MPE/MWE criteria at 
the objective function level based on the common rational-function form. Second, it enables a uni-
fi ed GT-based parameter optimization framework that applies to MMI, MCE, MPE/MWE, and 
other discriminative criteria.

In [31], it was based on the objective function of the following form (rewritten using the 
mathematical notations of this paper for easy comparison):

 
O(L) =

1
R

R

å
r=1

f

⎛
⎜⎝ 1
h

log
å
sr

ph(Xr, sr|L)CDT(sr,Sr)

å
sr∈Mr

ph(Xr, sr|L)

⎞
⎟⎠  

(3.26)

where CDT(sr) takes the same value as in our Table 3.1. The choices of the smoothing function f(z), 
the competing word sequences Mr, and the weight value h in (3.26) are provided in Table 3.2 for the 
different types of DT criteria. In Table 3.2, q is the slope of a sigmoid smoothing function.

Equation (3.26) is a generic description of the objective functions from MMI, MCE, and 
MPE/MWE. However, it is not at the defi nitive level of a unifi ed form of a rational function. It 
indicates that different discriminative criteria can have a similar form of kernel and differ by the 
criterion dependent smoothing function f  (z) that modulates the kernel. The objection function of 
(3.26) is a sum of the smoothing functions. In the approach presented in this chapter, we show that 

TABLE 3.2: Choices of the smoothing function f  (z), alternative word sequences Mr, and exponent 
weight h in (3.26) for various types of DT criteria

CRITERIA SMOOTHING 
FUNCTION f (z)

ALTERNATIVE WORD 
SEQUENCES Mr

H

MCE (N-best) −1/[1 + exp(2qz)] {sr } excluding Sr ³1

MCE (1-best) −1/[1 + exp(2qz)] {sr,1} N/A

MPE/MWE exp(z) all possible label sequence {sr } 1

MMI z all possible label sequence {sr } 1

This is modifi ed from the original table in [46].
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objective functions from MMI, MCE, and MPE/MWE criteria can have a defi nitive common 
rational-function form (3.2), and for each discriminative criterion, the objective function differs 
only by a model-independent quantity CDT(s1, ¼, sR).

On the other hand, as shown in Table 3.2, f (z) is a nonlinear function for MPE/MWE and 
MCE criteria. Therefore, the original GT solution [14], while directly applicable to MMI with f (z) 
being an identity function and z being a logarithm of rational function, is not directly applicable 
to the objective functions of MPE/MWE and MCE criteria. To circumvent this diffi culty, the 
limiting procedures of [26, 27] are needed, in which the original objective function is approximated 
by a sequence of polynomials through Taylor series expansion (in a neighbor of the current model 
parameters). Based on that, the GT-based parameter optimization of [14] can be applied to each of 
the partial sum, a polynomial with fi nite number of terms. But for a nonpolynomial analytic func-
tion, the Taylor series expansion consists of infi nite number of terms. It needs to justify the limiting 
process that the GT for polynomials with fi nite number of terms can be extended to the limit case 
as the number of terms goes to infi nity, for example, the existence of a uniform bounded constant D 
for all partial sums of the Taylor series expansion in GT-based parameter optimization. The unifi ed 
rational-function approach described in this paper departs from the work of Macherey et al. [31] 
and Schlüter et al. [46], because it is free from the Taylor series expansion and it maps the objec-
tive functions from MMI, MCE, and MPE/MWE criteria into a defi nitive rational-functional 
form (3.2). Therefore, the GT-based parameter optimization framework of [14] can be directly ap-
plied. Moreover, this approach allows new rational function optimization methods (e.g., the method 
based on reverse Jensen’s inequality [22]) to be applied, upon which algorithmic properties of the 
parameter optimization procedure can be constructively established and justifi ed. 

•  •  •  •
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