
Preventing PCM Banks from Seizing Too Much Power

Andrew Hay� Karin Strauss†� Timothy Sherwood‡ Gabriel H. Loh†∗ Doug Burger†�
�

Dept. of Comp. Science
†

Microsoft Research
�

Dept. of Comp. Science and Engineering
‡

Dept. of Computer Science
University of Auckland Microsoft, Inc. University of Washington University of California, Santa Barbara

Auckland, NZ Redmond, WA, USA Seattle, WA, USA Santa Barbara, CA, USA
andrewh@cs.auckland.ac.nz kstrauss@microsoft.com sherwood@cs.ucsb.edu gabe.loh@amd.com dburger@microsoft.com

ABSTRACT
Widespread adoption of Phase Change Memory (PCM) requires
solutions to several problems recently addressed in the literature,
including limited endurance, increased write latencies, and system-
level changes required to exploit non-volatility. One important dif-
ference between PCM and DRAM that has received less attention
is the increased need for write power management. Writing to a
PCM cell requires high current density over hundreds of nanosec-
onds, and hard limits on the number of simultaneous writes must
be enforced to ensure correct operation, limiting write throughput
and therefore overall performance. Because several wear reduction
schemes only write those bits that need to be written, the amount of
power required to write a cache line back to memory under such a
system is now variable, which creates opportunity to reduce write
power. This paper proposes policies that monitor the bits that have
actually been changed over time, as opposed to simply those lines
that are dirty. These polices can more effectively allocate power
across the system to improve write concurrency. This method for
allocating power across the memory subsystem is built on the idea
of “power tokens,” a transferable, but time-specific, allocation of
power. The results show that with a storage overhead of 4.3% in
the last-level cache, a power-aware memory system can improve
the performance of multiprogrammed workloads by up to 84%.

Categories and Subject Descriptors
B.3.1 [Hardware]: Memory Structures-Semiconductor Memories

General Terms
Performance

Keywords
Memory, Power, Performance, Resistive Memories, Phase-Change
Memory, Write Throughput, Tokens

∗Gabriel Loh conducted this work while at Microsoft Research as
a visiting researcher. He is now with AMD Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’11, December 3-7, 2011, Porto Alegre, Brazil
Copyright 2011 ACM 978-1-4503-1053-6/11/12 ...$10.00.

1. INTRODUCTION
With the continued effective scaling of DRAM technology in

doubt [4, 7], resistive memories such as Phase Change Memory
(PCM) offer a scalable memory alternative. Rather than represent
the value of a bit with an electrical charge, PCM cells store the bit
values with the physical state of a chalcogenide material. Under
different current patterns, the material can be melted and solidi-
fied into either an amorphous or crystalline state, and these differ-
ent states can be measured by the differences in their resistivity.
The last few years have seen a flurry of work attempting to evalu-
ate the potential of Phase Change Memory (PCM) as a alternative
to DRAM for main memory. The densities potentially achievable
from PCM may make it an attractive target to replace DRAM en-
tirely, and its non-volatility opens many interesting new doors for
system optimization [2, 3].

While PCM has read power and delay in the same realm as
DRAM [8], writes are very different. Compared to DRAM, PCM
writes consume significantly more power, and take significantly
more time to complete. The durability of PCM cells, while bet-
ter than NAND flash cells, is still multiple orders of magnitude
lower than in DRAM. While recent work has shown how PCM’s
unique failure modes can be effectively managed with error cor-
recting schemes [6, 15, 17, 18, 19, 22, 23, 24], and how slow write
times can be mitigated in many instances [1, 8, 12, 14, 23], the dy-
namic power management issues unique to PCM writes have been
left largely unaddressed.

The problem is that a write to a PCM cell is an inherently power-
intensive operation. As the chalcogenide glass is forced to undergo
a state change through heating and then controlled cooling, a bank
can draw large amounts of power [20]. Delivering this power is
a serious challenge, so much so that PCM systems limit the to-
tal number of concurrent writes allowed. This concurrency limita-
tion, when coupled with the long times required to complete a PCM
write, creates a tremendous performance bottleneck. However, all
is not lost. Unlike DRAM, where activating a row destroys all of
the data in its cells, PCM can selectively target individual bits for
writing. This ability is already used to minimize the total wear in
the system by only overwriting those bits that actually change [24].

Rather than to build a system where the number of memory
writes is limited by worst-case update patterns, the main idea be-
hind this paper is to take advantage of the fact that typically only a
small portion of the bits (13% on average in our experiments) are
written to, and thus consume power. By managing power alloca-
tion at a finer granularity, we can intelligently limit consumption to
allow a greater number of simultaneous writes, increasing overall
system performance. The difficulty in such a scheme is two-fold.
First, we need to guarantee that the system will never exceed the
allocated power budget, as doing so may introduce errors in the

186

system as circuits fail to receive adequate voltage and as excessive
currents cause premature aging via electro-migration. Second, the
allocation scheme must happen with a minimum of coordination
between the banks of memory (which know the old values of the
bits and thus how many must change) and the memory controller
(which must allocate power across all chips in the memory system).
Round trips on the bus to coordinate power allocation add latency
and reduce the effective memory bandwidth – both very bad things
from a performance standpoint. We propose a method of allocat-
ing memory write power that attempts to balance these concerns
with the need for increased write concurrency. This prevents mem-
ory controller queues from becoming full, which would otherwise
result in read stalls and therefore degraded performance.

In particular, we explore a new class of power-aware memory
controllers based on the idea of tokens. Here, tokens are used to
represent the capability of drawing a particular amount of power
over a predefined epoch of time. We discuss power tokens, the ar-
chitecture of a PCM system using them, and finally how to calculate
tokens so that the memory controller can only issue writes when
there is sufficient power to support them. We evaluate our proposal
and analyze the effectiveness of power tokens in increasing write
bandwidth, and ultimately, performance. However, before we get
into the details of our architecture, we first discuss PCM in general
and describe why memory controllers will need to be increasingly
power-aware.

2. BACKGROUND AND RELATED WORK
If PCM is to become a viable main memory technology, it needs

to overcome at least the following three challenges: the inferior
performance seen by both reads and writes, limited cell lifetime
due to wear, and the higher power required per access (especially
with respect to writes).

Access Time: Reads and writes are both slower on PCM than on
DRAM, writes especially so [8]. This asymmetry is unlike DRAM,
for which read and write times are equivalent. Most techniques pro-
posed to address the write latency issue, and its negative impact on
read latency due to bank conflicts, leverage write locality to coa-
lesce as many changes to the data as possible in alternative buffers
before they are finally written to PCM [8, 14, 23]. While these opti-
mizations help shield the processor from the impact of slow writes,
eventually writes must make their way out to memory.

Cell Lifetime: Limited cell lifetime can be dealt with by us-
ing combinations of three strategies: (1) reducing the total num-
ber of PCM cell writes [1, 8, 13, 14, 20, 22, 23, 24], (2) spread-
ing cell wear [15, 18, 23, 24], and (3) tolerating cell failures [6,
17, 19, 21]. Most important to this discussion are strategies in the
first category because, in addition to reducing wear, they reduce the
power required for write operations. We do not propose any new
schemes that would make write power allocation easier at the cost
of increased wear. All of the above wear management and error
correction schemes are fully applicable when our power allocation
strategies are used. In fact, our work builds on the idea of differen-
tial writes [24], as it can potentially both reduce wear and reduce
energy.

With differential writes, before a PCM block is written, the old
value is read out of the array, compared with the new data to be
stored, and only bits that need to change are then written. These
read-before-write checks already happen in many proposed PCM
devices. This presents a power management opportunity: rather
than assume the worst case number of bits to be flipped for each
write, as done with DRAM, writes can be coordinated such that the
total number of bits being written at any time in the system does not

exceed a bound. In doing so, we can improve on more conserva-
tive power-naive allocation strategies by allowing more concurrent
write operations under the same power bound. In fact, our experi-
ments have shown that, on average, only 13% of a cache line’s bits
are flipped on a write to the PCM memory.

Write Power Management: While there is little prior work
directly addressing the power management needs faced by PCM,
several of the schemes proposed to improve cell lifetimes have the
added benefit of reducing write power. For example, the “Flip-n-
Write” strategy [1] tracks when more than half the bits need to be
flipped during a single write, at which time the logical sense of the
bits is inverted (rather than the bits themselves) with an “invert”
bit. For more careful tuning, a block may be partitioned into multi-
ple sub-blocks and each sub-block is associated to a bit indicating
whether the bits should be read out as they are or inverted before
being returned to the requester. This has the advantage that at most
half the bits will ever have to be written on any particular write
and is similar to techniques often used to reduce power on high
capacitance buses. Because the bound is hard, it is easy to sched-
ule the power accordingly, but at the disadvantage of leaving some
performance on the table. We use Flip-n-Write as our baseline and
quantify these differences in the results section.

When it comes to this finer grain power management, the chal-
lenge is that in current systems the information needed to make
good power allocation decisions (namely the number of bits to be
flipped) is stranded in the PCM cells and not directly available to
the memory controller. To maintain correct functional behavior of
the overall PCM circuitry, a memory controller must still guar-
antee that the power consumption of a PCM chip or a collection
of PCM chips never exceeds the limits of the delivery capabili-
ties. Seemingly simple approaches, such as simply adding more
pins, are stymied by the fact that PCM, as DRAM and other mem-
ory technologies before it, service a very low-margin, highly cost-
sensitive market. However, violating power limits can lead to volt-
age drops in the power supply or excessive currents flowing through
the system. Voltage drops may lead to logical errors, flops entering
meta-stable states, incomplete PCM phase transitions, PCM read
errors, etc., and excessive currents may accelerate chip aging due
to electro-migration. In the next section we describe how power
tokens allow us to engineer a system that will never violate these
limits, yet will allow much more aggressive write concurrency.

3. POWER TOKENS
To manage the power delivery across and within the chips of

the memory system, we introduce the concept of a PCM power
token (or simply token). Consider a PCM chip that can supply a
maximum of Plimit Watts of power through its power pins, and
that writing a single PCM cell requires Pbit Watts. Therefore, the
PCM’s power delivery system can support wmax = �Plimit/Pbit�
concurrent bit writes. For each bit write, we associate a single
power token that represents the power required to write that bit.
The memory controller maintains a pool wpool of power tokens for
each PCM chip that starts with wmax tokens when no writes are in
progress. As writes issue, the number of available tokens decreases,
and when writes complete the associated tokens are returned to the
pool. Logically, before each write operation, the memory system
reads the existing PCM array contents, compares those bits to the
new values to be written (as discussed, this is done anyway to sup-
port differential reads for write-endurance reasons), and determines
the total number of bits wΔ that need to be written. We show how
to estimate this number without needing to wait for the read. If
wΔ ≤ wpool, then the write may proceed and consume wΔ tokens

187

12 16 7 20 8 13 4 18

12
16
7

20
8

13
4

18

R
D

Q

W
R

Q

R
es

pQ

Scheduler

wpool

wpool
(copy)

From cores

1 logical bank
(interleaved across

8 physical chips)

To cores
Memory Controller

PCM
Chips
(one rank)

Figure 1: Block diagram of single rank of a general power-
aware PCM memory architecture. The logical memory bank
is composed of eight physical banks across eight separate PCM
chips. As power is constrained on a per-chip basis, a pool of
active counters per chip is maintained by the scheduler.

for the duration of the write. Since a bit write may not proceed
without first allocating a corresponding token, and since the total
number of tokens ever handed out at any instant is limited to wmax,
then the PCM chip is guaranteed to never exceed the chip’s power
delivery capabilities of Plimit.1

3.1 Architecture
While the high-level concept of power-tokens is simple and intu-

itive, the implementation of a practical PCM memory architecture
employing such a scheme requires addressing several issues. Fig-
ure 1 shows a block diagram of a power-aware PCM architecture.
The read/write data-path between the memory controller and the
PCM is interleaved across multiple chips, i.e., a logical memory
bank is physically composed of eight (in this example) physical
banks across the eight separate PCM chips. There is a maximum
power draw for each individual PCM chip due to the amount of
current its pins can support, and therefore every chip has its own
pool of power tokens, tracked by a counter wpool. The memory
controller maintains a copy of the counters that tracks the number
of power tokens wpool,i available for each chip i, thereby avoiding
constant back-and-forth communication with the individual chips
to query about the number of available tokens. The memory con-
troller scheduler/arbiter monitors the requests in the read queue
(RDQ) and write queue (WRQ), and depending on bus availabil-
ity, bank availability, circuit timing constraints, and per-chip power
token availability, issues commands to the PCM chips. Completed
requests wait in the response queue (RespQ) for availability of the
interconnect from the memory controller back to the core(s).

The memory controller is responsible for issuing low-level com-
mands (e.g., row activate, column read) directly to the PCM chips.
The memory controller scheduler typically takes advantage of bank-
level parallelism by overlapping commands to independent banks,
but must carefully schedule resources to avoid conflicts. For ex-
ample, multiple read commands must be timed such that the data-
transfer portions do not overlap in time because (in this example)
there is a single shared data-bus. With power tokens, the memory

1
This is a slightly simplified power budgeting example. In a real system, additional

power would be provisioned for leakage current, peripheral circuits, read operations,
etc., but the budget for writes would simply be reduced by a corresponding amount.

controller must also ensure that all chips have enough tokens left
in their respective token pools before issuing write commands. If
there are not enough tokens for the write to proceed, then the mem-
ory controller may choose to work on another memory request that
either is not a write, or requires sufficiently few tokens to proceed.

Figure 2 shows an example of the memory controller operation
with PCM power tokens. Each chip has four 4-bit wide banks and
a power supply (and pins) that can handle writing up to four bits at
once, hence each chip starts with four tokens. Note that without the
token scheme (and without “Flip-n-Write”), each chip would have
to conservatively assume that any write modifies all four bits, and
therefore only one write operation could be in progress at any time.
(a) Prior to issuing a write X, the memory controller first checks to
see if the number of tokens required (i.e., the number of bit modifi-
cations) is less than the number of tokens currently available in the
token pool. In this example, 13 bits are different (spread across the
different chips), but since each chip has enough tokens to support
the write, the memory controller may issue this write X.
(b) The memory controller issues X and decrements the per-chip
token-pool counters by the number of bits written per chip (the
memory controller would actually modify its local mirrored copy
of the counters). The memory controller has other candidate writes
Y and Z to issue to other banks. Write Y only modifies five bits,
three of these bit modifications are for chip 2, which only has two
tokens left due to the ongoing write X in bank B. In this case, Y
cannot issue and stalls until a future time when the necessary to-
kens are available. Write Z modifies nine bits, so it actually needs
more total tokens than Y, but it turns out that the chips being modi-
fied happen to each have enough tokens to support this write.
(c) The memory controller issues write Z and decrements the cor-
responding token counts. Note that there are now two simultaneous
writes in progress to different banks.
(d) The latency of the write operation in the PCM array is a fixed
constant, so after this amount of time has elapsed, write X will have
completed and the power tokens can be returned to their respective
pools; the memory controller re-increments its copies of the token-
pool counters to reflect this.

It is important to note that the “write” memory command is dif-
ferent from the actual modification of the PCM cells. The first
causes the data bits to be sent from the memory controller to the
PCM chips where they are latched in the row buffers. The latter is
the operation that demands high currents and is addressed by the
power token approach.

3.2 Computing Token Requirements
A central assumption for a token-based PCM power management

scheme is that the memory controller knows how many bits are
modified by a write (and thus how many tokens need to be allo-
cated). It may be difficult for the memory controller to know if
enough tokens exist, however, because it does not have a copy of
the original unmodified data with which to compare the dirty ver-
sion that needs to be written back, as the original data resides on
the other side of the memory bus in the PCM arrays.

Naive Approaches
There are two straightforward approaches for determining the num-
ber of modified bits: either transferring the old value of each line to
be written back to the memory controller for comparison, or doing
the comparison at the PCM row buffers. The first option requires
two full data transfers for every write, one first to read the old data
back to the memory controller, and then the new write out to the
PCM with the updated values. The extra data transfers increase
bus contention and overall write latency, while consuming addi-

188

1011
1101
0101
0010

1101
0001
1001
1010

0101
1010
1111
0010

1000
1100
0000
1001

0101
0010
0110
1101

0100
1100
1001
0011

1101
0101
1011
1000

0000
0001
1010
1110

A:
B:
C:
D:

1101 1111 0000 1101 0010 1010 1011 0010B:

4 4 4 4 4 4 4 4
Chip0 Chip1 Chip2 Chip3 Chip4 Chip5 Chip6 Chip7

Tokens
Needed: 0 3 2 1 0 2 3 2

(a)

1011
1101
0101
0010

1101
***1
1001
1010

0101
*0*0
1111
0010

1000
110*
0000
1001

0101
0010
0110
1101

0100
1**0
1001
0011

1101
***1
1011
1000

0000
00**
1010
1110

A:
B:
C:
D:

4 1 2 3 4 2 1 2
Chip0 Chip1 Chip2 Chip3 Chip4 Chip5 Chip6 Chip7

0 0 1 0 1 0 0

(b)

1011 1101 1000 0000 0101 0000 1101 0000

1110 1000 0000 0101 1111 0010 1000 1010
2 1 2 1 1 0 11

1011
1101
0101
**10

1101
***1
1001
10*0

0101
*0*0
1111
00*0

1000
110*
0000
**01

0101
0010
0110
11*1

0100
1**0
1001
001*

1101
***1
1011
1000

0000
00**
1010
1*10

A:
B:
C:
D:

2 0 1 1 3 1 1 1
Chip0 Chip1 Chip2 Chip3 Chip4 Chip5 Chip6 Chip7

(c)

1011
1101
0101
**10

1101
1111
1001
10*0

0101
0000
1111
00*0

1000
1101
0000
**01

0101
0010
0110
11*1

0100
1010
1001
001*

1101
1011
1011
1000

0000
0010
1010
1*10

A:
B:
C:
D:

2 3 3 2 3 3 4 3
Chip0 Chip1 Chip2 Chip3 Chip4 Chip5 Chip6 Chip7

(d)

X

A:Y

D:Z

Figure 2: A token-based PCM power management example.
There are logical banks (A-D) spread across the eight chips.
Each chip can support at most four concurrent bit writes.
Banks currently being written to are shaded, and bits actively
being modified are indicated with asterisks. (a) A write opera-
tion that modifies 13 bits. (b) The write issues and decrements
the token counters. There are two more writes waiting to issue,
of which only one has enough tokens in all banks. (c) The sec-
ond write issues and decrements the token counters. (d) The
first write completes and returns the tokens it was using.

tional power. The latter approach requires the addition of some
minor population-count logic in the PCM, but more importantly it
requires modifications to the memory protocol/interface to support
the token-count response; this in turn leads to a more complicated
memory scheduler which now needs to reserve two data bus slots
(one to send the data, one for the token-count response).

Both of these approaches are functionally viable, but neither are
very attractive due to the additional required back-and-forth com-
munications between the memory controller and the PCM chips.
The fundamental problem is that the original and modified data re-
side in two physically separate locations and so data must be trans-
ferred one way or the other.

Conservative Token Cost Estimation
To bypass the problem of having original and modified data exist-
ing in separate locations, we take advantage of two observations.
First, another copy of the unmodified data does actually exist, but
instead of being physically distant, it is located elsewhere in time.
Second, instead of allocating a number of tokens exactly matching
the number of modified bits, over-estimating the number of tokens
needed still guarantees that the power consumed by the PCM chips
never exceeds Plimit.

Modern processors contain multi-level cache hierarchies, usually
with write-back policies. In this organization, writes to the cache
block accumulate in upper caches (closer to the processor) until the

copy is finally evicted and written back to the Last Level Cache
(LLC), as shown in Figure 3. Prior to the write back of a line from
upper level caches, the LLC still contains a copy of the unmodified
value consistent with main memory. Therefore, caches can perform
the comparison and population-count during the write back from
an upper cache to the LLC, and record the number of modified bits
in the LLC along with the cache block, as shown in Figure 3(c).
When the LLC evicts the block for write-back to main memory, it
also sends along the recorded count of modified bits. The memory
controller then uses this count when ensuring that the PCM has
enough tokens for the write operation. This requires that the LLC
maintain the inclusion property with upper caches, otherwise we
are forced to assume the worst case (all bits have changed).

A complication arises when a cache block is written back to the
LLC more than once. On the first write-back, the LLC’s copy of the
block matches that of the PCM main memory. If the block is sub-
sequently re-fetched into upper level caches and further modified,
when it is written back a second time, the LLC’s copy no longer
matches that of the PCM main memory. Rather than try to keep a
copy of the original data so that an accurate comparison can always
be made (with the large storage overhead it would entail), we in-
stead take advantage of the observation that a conservative estimate
of the number of modified bits still prevents any violations of the
PCM chips’ power limits. When a dirty block is written back to the
LLC, we compare the two blocks and count the number of modi-
fied bits. We store this count with this cache block in its tag array
entry. On the first write-back, this count is accurate. On any sub-
sequent write-backs, we again compare the incoming block to this
now dirty LLC block, count how many bits were modified, and add
this new count to the existing count. This approach can over-count
when a bit is first modified from, say, a zero to a one, and then on a
later write-back modified from a one back to a zero, but it is guar-
anteed to always yield a conservative bit-modification count (i.e.,
equal to or greater than the actual number of bits that are different).

Conservative Per-Chip Token Limits
Unfortunately, knowing the total number of modified bits (or a con-
servative estimate) is not sufficient. The memory controller must
know the number of bits modified per PCM chip. For example,
back in Figure 2(c), there were enough total tokens to support writ-
ing Y, but chip 2 did not have enough tokens. If a 64-byte cache
block is interleaved across eight chips, then each chip covers 64
bits. To track the number of bit modifications, each of those 8 in-
terleaving sub-blocks now needs its own counter. Considering that
each cache block has a baseline cost of about 558 bits (512 for the
data, 46 for tag, replacement, coherency state, sharers), and we now
need 48 more bits of storage, this translates to an overhead of 8.6%.
We will later call this policy simply Conservative.

There are a variety of ways to reduce this overhead. Based on the
bit-modification analysis mentioned in Section 2, only 13% of the
bits are modified in a 64-bit block on average. Instead of using a
full c = �log2 n�-bit counter for n bits, we can use a k-bit counter
where k < c. This k-bit counter accurately tracks the number of
bit modifications up to 2k − 2. If the counter reaches its maximum
value of 2k − 1, then it is conservatively interpreted as a value of
n (i.e., all bits modified). Occasionally this may cause the memory
controller to allocate more tokens than needed, but in the common
case the counter will provide enough precision. After exploring dif-
ferent sized counters, we found that 3 bits (per 64-bit interleaving)
gave a good balance between storage overhead (3-bit counters have
an overhead of 4.3%) and performance. In the evaluation section
we will refer to this as Conservative 3-bits.

189

0001010111011 10 L2

L1

Initial fill from memory

… 0 0 0 …

0001010111011 10 …

(a) (b)

0001010111011 10 L2

L1

… 0 0 0 …

0001100100110 10 …

Multiple writes

0001100100110 10 L2

L1

… 2 4 0 …

0001100100110 10

Eviction / Writeback

Eviction / Writeback (c)

…

Figure 3: Token cost estimation and flow of a cache line through the memory subsystem. When the line is originally loaded from
memory, (a) the counters are reset to zero. (b) The L1 cache modifies the line, but does not write it back immediately, so the values
in the L1 and L2 caches differ. (c) The line is eventually written back to the L2 cache and the counters are updated based on
differences in the data. When the last level cache (L2 in this case) writes back the line, it sends the memory controller the value of
the accumulated counters for the line, as an estimate of the number of modified bits.

Policy Overhead
Conservative across all chips 1.6%
Conservative 6-bits per chip 8.6%
Conservative 3-bits per chip 4.3%

Conservative with token release 4.3%

Table 1: Storage overheads for token policies.

While the counter policies above should adequately capture most
of the potential benefits of dynamic PCM power management, it is
theoretically possible for these policies to be overly conservative
due to multiple write-backs to the LLC (discussed above). To ex-
amine the potential of reallocating this power after it is discovered
it is not needed, we consider a final policy Conservative with to-
ken release. After the write data have been transferred from the
memory controller to the PCM chips, the PCM chips count the ac-
tual number of bits that need writing, and then report this value
back to the memory controller. The memory controller then returns
any excess power tokens back to the pool. In practice, this policy
is harder to implement than the other conservative policies because
it requires an extra communication between the PCM chips and the
memory controller, but it provides a useful point of comparison to
elucidate just how conservative the other policies are. One may
imagine even more dynamic schemes that attempt to optimistically
release power tokens as writes converge to desired values early,
e.g., when using multi-level bit storage schemes. While our con-
servative schemes may leave some performance on the table here,
taking advantage of these opportunities requires more significant
two-way communication. Communication of this nature is diffi-
cult to support under centrally scheduled traditional memory bus
architectures and is thus beyond the scope of this work.

Figure 3 shows each counter associated with a contiguous seg-
ment of bits (e.g., the first counter tracks the number of writes to
the most significant eight bits, the second counter tracks the next
eight bits, etc.). This mapping assumes that the data are interleaved
across memory chips in the same fashion (i.e., all eight most sig-
nificant bits map to the same PCM chip), and the counter provides
the bound on the number of tokens required to write this data to
that chip. If PCM chips interleave data in a different order, then
each counter would track a different set of bits in the cache line
corresponding to the interleaving order.

Table 1 summarizes the storage overheads of different policies.

4. EVALUATION

4.1 Evaluation Setup

4.1.1 Simulator
The simulator used in this study is built around performance

characteristics and memory system of a standard multicore proces-
sor. Because we are considering the effects primarily at the mem-
ory system level, past all levels of cache, we have chosen to drive
our simulation with long traces gathered with Pin [9], rather than
shorter but more detailed pipeline simulations. Our Pin tool sim-
ulates each benchmark on a private 64KB 4-way associative L1
cache, and outputs evicted lines and cache misses.

We use an in-house trace-driven simulator to model a shared L2
cache, the memory controller, and the PCM memory chips; the L2
cache is our last level cache. It consumes several traces simulta-
neously to achieve an effect similar to a multiprogrammed work-
load. The timing model considers the effect of cache-to-cache and
cache-to-memory bus contention, bank conflicts, and memory bus
scheduling constraints. Additionally, for policies that keep track of
counters, the L2 cache write latency is double the default to account
for the extra latency of reading and updating those counters.

The memory controller for the simulator uses standard bus and
chip scheduling strategies, but with the added constraint that a write
must have sufficient power tokens to proceed. By default, the mem-
ory controller gives preference to scheduling reads (i.e., at each
cycle schedules a read request) or, if no read requests remain to
be scheduled, it schedules a write request. Like some commercial
memory controllers, if the write queue becomes completely full,
the memory controller issues a write burst, issuing only writes and
delaying reads until all the writes in the queue have been issued.
Table 2 shows the default parameters used for our simulations.

4.1.2 Methodology
To understand how the use of power tokens affects application

performance, we simulate a multicore system running multipro-
grammed workloads based on SPEC2006 [5]. We use a number
of mixes to cover a variety of write and read operation intensities,
from medium to very high, and demonstrate the range of behaviors
that one might expect under different write and read densities.

Table 3 lists all workloads, the benchmarks that comprise them,
and the number of write and read requests to the memory controller

190

Caches

L1 size 64 KB
L2 size 8MB

Line size 64 bytes
Latency L1: 1, L2:10 (20)

Associativity L1: 4, L2: 16
Replacement L1: LRU, L2: LRU

Memory

Banks per chip 8
Chips per Rank 8

Ranks 1
Rank width 64 bytes

CPU Clock freq 2 GHz

Memory Controller Queue sizes 24 R/W

PCM Chips
Write 250ns
Read 60ns

Full-bit writes 1

Memory Latencies
CPU to L2 25 CPU cycles
L2 to MC 25 CPU cycles

MC to Bank 30 CPU cycles

Table 2: Set of parameters used for simulations.

Workload Benchmark Reads Writes
Mix Names (per K-insts.)

High(4) mcf, gemsFDTD, astar, sphinx3 6.45 3.11
Mid(4) mcf, gromacs, gemsFDTD, h264ref 2.68 1.56
Low(4) gromacs, h264ref, astar, sphinx3 2.31 1.08
Astar(8) astar(8) 8.05 5.65
Gems(8) gemsFDTD(8) 4.15 2.6
ACGS(8) cactus(2), soplex(2), gemsFDTD(2), astar(2) 5.09 2.09
AGSZ(8) zeusmp(2), soplex(2), gemsFDTD(2), astar(2) 3.99 1.74
ACLS(8) cactus(2), leslie(2), soplex(2), astar(2) 5.03 1.64
ACSZ(8) zeusmp(2), cactus(2), soplex(2), astar(2) 3.42 1.25
Leslie(8) leslie(8) 3.62 0.96
CGSZ(8) zeusmp(2), cactus(2), soplex(2), gemsFDTD(2) 2.83 0.75
CLSZ(8) zeusmp(2), cactus(2), leslie(2), 450(2) 2.87 0.46
Cactus(8) cactus(8) 1.62 0.46

Zeusmp(8) zeusmp(8) 0.79 0.39

Table 3: Workload mixes. The number of copies of each bench-
mark are in parentheses.

per thousand instructions executed – the higher these numbers, the
greater the intensity of requests hitting the memory controller.

All benchmarks were compiled with full optimization, and all
workloads executed for 1.2 billion instructions with the ref inputs
after being fast-forwarded to the most significant SimPoint [11],
resulting in trace files of L1 cache fills and evictions. Using the
mixes of benchmarks described above, each workload was run on
the simulated multicore system for a combined one billion instruc-
tions, after a 200 million cache warm-up phase.

The actual power required for a write may vary due to paramet-
ric variations between PCM cells, and also due to whether a cell is
being set or reset. We conservatively assume the worst-case power
for writing a single bit, and so our results underestimate the full po-
tential of power tokens. We did consider using different token costs
for writing zeros and ones, but this required that the LLC maintain
two sets of counters for the number of zeros written and the num-
ber of ones written. This optimization did not provide sufficient
performance increase compared to our other schemes to justify the
overhead of doubling the number of counters in the LLC.

4.1.3 Policies
Each workload is run with a number of token policies. Each

policy represents a different memory controller power allocation
strategy. Table 4 lists the names of policies we evaluate, along
with how many tokens are used and more details on how the policy
allocates write power. The next question is how many PCM bits
can be written to concurrently (i.e., the baseline power available
for write operations).

Modern DDR3 DRAMs use about 100 mA of current for an
activate-precharge command sequence; for a representative DDR3-
1066 x16 memory [10], the command sequence requires 95 mA af-
ter subtracting out background/leakage currents. Out of this 95 mA
current, about one fourth (21 mA) goes to the precharge command
that performs the actual write operation from the row buffer back to
the DRAM array. DDR3 supports eight banks that can each process
commands independently; in an ideal case, all eight banks could
write to their arrays at the same time, thereby drawing 168 mA
of current. For a realistic DRAM where eight precharges cannot
be simultaneously launched, the current draw would be lower. For
PCM, a write operation requires significantly higher currents, (e.g.,
300 μA per bit for a reset operation [8]). Assuming the same write
current limitation of 168 mA for the DRAM, a PCM would only
be able to write 560 bits (168 mA/0.3 mA-per-bit), or just slightly
more than a single 64-byte cache line. Enabling the writing of an
entire row buffer (1KB-2KB) or multiple concurrent writes would
require a much more power/current than that supplied to current
DRAM chips, which would in turn make the PCM much more dif-
ficult to use as a “drop-in” DRAM replacement.

Limiting writes to a single operation at a time affects perfor-
mance negatively. To optimize the baseline against which we com-
pare, we implement “Flip-n-Write” [1], which flips at most half of
the bits being written. While there is enough power for only one full
write, “Flip-n-Write” enables a power-naive memory controller to
perform two writes concurrently, a significant improvement to our
baseline. Our power-aware policies use “Flip-n-Write” only when
a write would flip more than half the bits being written.

The first policy, limited-2, is our baseline PCM configuration.
Using “Flip-n-Write”, it can write up to two banks concurrently.
The other extreme is unlimited, a policy that ignores power limita-
tions on writes — the best case scenario in terms of write concur-
rency. The oracle policy uses power tokens, but has perfect knowl-
edge of the number of tokens required to write. Finally, we have
three different conservative counting policies (see Section 3.2 for
token counting details). First, the conservative policy counts tokens
in the L2 cache without limiting the number of bits for the coun-
ters. The conservative 3-bits policy uses just three bits per counter
(24 bits for the 8 counters). Finally, the conservative token-release
policy has no bit limitation on counters, and returns to the mem-
ory controller unnecessary tokens assigned to the PCM chips; this
policy releases unused tokens earlier to the memory controller in
the hope of enabling a new write operation to start earlier, but it
also consumes an extra cycle in the memory bus due to the token
return. We simulate these six polices with each workload. This
allows us to explore the maximum speedups possible with power
management for PCM, and compare them to the behavior of other
realistic power management schemes. We also include how many
traces the experiments used, either 4 or 8, in the workload label.

4.2 Overall Effectiveness
Figure 4 shows the overall speedup normalized to limited-2 for

all the workloads. As expected, the most write-intensive mixes
show the greatest benefits with power management. The unlimited
policy shows a wide range of speedups versus the limited-2 policy,
with the average speedup being 20% (geometric mean) and a max-
imum speedup in Astar(8) of 85%. This is expected as limited-2
is limited to 2 concurrent writes, whereas unlimited has no such
power limitations.

The oracle policy behaves very similarly to unlimited, differ-
ing by 2% on average. This is due to the average number of bits
changed being about 13% of a cache line on average (see Figure 8
for more details) and writes rarely causing the memory controller to

191

Policy Tokens Requested Policy Description
limited-2 maximum power ignorant memory controller
unlimited 0 ignores power limitations

oracle exact # of modified bits best possible token counting in L2
conservative bit flips in L2 limit for counting bit flips

conservative 3-bits conservative with bounded counters realistic counting scheme
conservative token-release bit flips in L2 releases unnecessary tokens early

Table 4: Experiment policies.

Low(4)

Mid(4)

High(4)

ACGS(8)

AGSZ(8)

ACLS(8)

ACSZ(8)

CGSZ(8)

CLSZ(8)

Asta
r(8

)

Gems(8
)

Lesli
e(8)

Cactus(8
)

Zesump(8)

Experiment

0.0

0.5

1.0

1.5

2.0

S
p
ee

d
u
p

Limited-2

Unlimited

Oracle

Conservative

Conservative token release

Conservative - 3 bits

Figure 4: Speedup over limited-2 for all experiments.

run out of tokens. We omit oracle from remaining plots that show
unlimited due to their similarity.

Much like the oracle policy, the conservative policy behaves
similarly to unlimited, differing again by 2%. This shows that the
overestimation approach works quite well, most of the time per-
forming as well as oracle (i.e., as if it could perfectly predict how
many tokens are needed for each write).

The conservative token-release policy, an extension of conserva-
tive that returns unused tokens to the memory controller, performs
slightly worse than unlimited, on average 3% slower. The reason
is that conservative only slightly overestimates its token count, so
there is not much benefit in returning tokens earlier. Unfortunately,
conservative token-release occupies an extra memory data bus cy-
cle per write, which increases conflicts on the bus, lowering write
and read bandwidths and degrading performance. For this reason,
we do not further evaluate conservative token-release.

The conservative 3-bits policy, a more realistic implementation,
is slightly worse than unlimited, differing by 2%. Compared to
the limited-2 policy, conservative 3-bits has an average speedup of
17% and a maximum speedup of 84% for Astar(8). Finally, the
small performance difference between unlimited and conservative
3-bits indicates that differentiating the number of tokens the set and
reset operations use would not improve performance much further.

4.3 Characterization
Write bursts: These performance results can be characterized
by the percentage of time the workload spends in write bursts, i.e.,
postponing read requests while draining the write queue when it is
full. Table 5 shows the average time a workload spends in write
bursts and the speedup of unlimited over limited-2. The greater
the time limited-2 spends in write bursts, the greater the speedup
because reads are delayed more often. This holds true both over the
entire experiment and during parts of the experiment where write
bursts occur more frequently than average (not shown).

Write bursts occur when the write queue in the memory con-
troller fills up completely. This can only occur at sufficient write

Experiment % of time in write burst Speedup of
for limited-2 unlimited

Astar(8) 77.1% 85.2%
Gems(8) 61.1% 50.3%
ACGS(8) 47.4% 42.4%
AGSZ(8) 46.3% 42.4%
ACLS(8) 34.9% 27.9%
ACSZ(8) 29.3% 21.4%
Leslie(8) 11.5% 10.8%
High(4) 10.8% 9.6%

CGSZ(8) 10.1% 6.8%
Cactus(8) 5.8% 3.2%

Zeusmp(8) 5.1% 3.9%
Mid(4) 3.3% 1.3%

CLSZ(8) 0.5% 0.5%
Low(4) 0.1% -0.1%

Table 5: Percentage of time spent in write bursts for limited-2
and average speedup of unlimited versus limited-2, sorted from
highest write burst percentage to lowest.

0 20 40 60 80 100
Memory controller write queue (% full)

0

5

10

15

20

25

P
er

ce
n
ta

g
e

o
f

th
e

ex
p
er

im
en

t

0 20 40 60 80 100
Concurrently issued writes (% max)

0

10

20

30

40

50

60

70

80

P
er

ce
n
ta

g
e

o
f

th
e

ex
p
er

im
en

t

ACGS(8)-Unlimited

ACGS(8)-Limited-2

High(4)-Limited-2

High(4)-Unlimited

(a) Write queue (% full) (b) Concurrent writes (% max)

Figure 5: Write queue occupancy and write concurrency dis-
tributions.

densities, i.e., when the rate of write completion at PCM chips is
lower than the rate of write request arrivals to the memory con-
troller. The policies that have no power limitations (oracle) or that
use power management (all others, except limited-2) can support
much greater densities of writes, resulting in fewer write bursts and
better performance.

When workloads exhibit high write densities, power-aware poli-
cies can smoothly schedule extra writes, while limited-2 has a limit
of just 2 concurrent writes. Figure 5 provides more insight by
comparing two workloads (ACGS(8) and High(4)) and two poli-
cies (unlimited and limited-2). Figure 5(a) shows the distribution
of how full the memory controller write queue is over time. Fig-
ure 5(b) shows the distribution of how many writes are simultane-
ously in flight, as a fraction of the maximum (we assume 8 banks,
so the maximum would be 8 concurrent writes, provided that there
is sufficient write power). These two figures show that unlimited
spends most of the time with its queues at low occupancy, which is
a direct result from being able to issue a higher number of concur-

192

Low(4)

Mid(4)

High(4)

ACGS(8)

AGSZ(8)

ACLS(8)

ACSZ(8)

CGSZ(8)

CLSZ(8)

Asta
r(8

)

Gems(8
)

Lesli
e(8)

Cactus(8
)

Zesump(8)

Experiment

0

1

2

3

4

5
A

g
g
re

g
at

e
IP

C
Limited-2

Unlimited

Conservative

Conservative - 3 bits

Figure 6: Aggregate IPC for all experiments.

Low(4)

Mid(4)

High(4)

ACGS(8)

AGSZ(8)

ACLS(8)

ACSZ(8)

CGSZ(8)

CLSZ(8)

Asta
r(8

)

Gems(8
)

Lesli
e(8)

Cactus(8
)

Zesump(8)

Experiment

0

200

400

600

800

1000

1200

1400

C
y
cl

es
fo

r
re

ad
in

m
ai

n
m

em
o
ry

Limited-2

Unlimited

Conservative

Conservative - 3 bits

Figure 7: Read latency for read requests to main memory.

rent writes. The limited-2 policy is limited to 25% of the maximum
write concurrency, so its queues are full for longer.

Aggregate IPC: Figure 6 shows the aggregate IPC for all work-
loads, i.e., the number of instructions run (1 billion past the 200
million cache warm-up) divided by the total number of cycles to ex-
ecute them. We include error bars in Figure 6 calculated by taking
the maximum and minimum IPC for a set of 80 measurements col-
lected regularly as experiments run (past the cache warm-up phase).

The limited-2 policy experiences much lower ranges of IPC and
rarely has a maximum IPC higher than other policies, showing that
limited-2 experiences periods of higher slowdown. This again is
explained by the higher latency of read requests experienced due to
write bursts. Even worse than the average slowdown are stalls that
users may experience during a period of high write activity.

Read Latency: Figure 7 shows the average read latency for each
workload. This latency is the time between a read request enters
the memory controller to the time the requested line reaches the
memory controller’s output queue. Policies with larger speedups
over the limited-2 policy show larger differences between their read
latencies, as only reads can result in direct delays to an experiment.

Taking into account the various delays and the read latency in the
PCM chip, a read request, if issued immediately, takes 105 (pro-
cessor) cycles, or 52.5ns. On average, unlimited reads require 282
cycles to complete, nearly half the time as a limited-2 read, which
takes 491 cycles on average. Reads in the realistic conservative
3-bits at 304 cycles are only 22 cycles slower than unlimited.

Tokens: Finally, Figure 8 characterizes the number of tokens re-
quested by each of the power token policies, broken down by work-

Low(4)

Mid(4)

High(4)

ACGS(8)

AGSZ(8)

ACLS(8)

ACSZ(8)

CGSZ(8)

CLSZ(8)

Asta
r(8

)

Gems(8
)

Lesli
e(8)

Cactus(8
)

Zesump(8)

Experiment

0

50

100

150

200

A
v
er

ag
e

to
k
en

s
re

q
u
es

te
d

Oracle Conservative Conservative - 3 bits

Figure 8: Average tokens requested for each experiment.

25%
50%

100%
200%

25%
50%

100%
200%

25%
50%

100%
200%

25%
50%

100%
200%

25%
50%

100%
200%

25%
50%

100%
200%

Experiment

0.0

0.5

1.0

1.5

S
p
ee

d
u
p

ACGS(8) AGSZ(8) Astar(8) Gems(8) High(4) Mean

Conservative - 3 bits

Figure 9: Sensitivity to L2 cache size.

load and policy. The conservative token-release policy requests the
same number of tokens as the conservative policy, and is not dis-
played. These experiments do not consider write cancellation or
write pausing [16].

In general, experiments with a high speedup request small num-
bers of tokens. On average, oracle requests 69 tokens — equivalent
to the number of bits flipped on average. This means that on aver-
age 13% of the bits in a cache line are flipped on a write, with
the highest and lowest percent of bit flips being 27% and 1%, re-
spectively. The conservative policy does only slightly worse at 74
tokens, and conservative 3-bits requests 96 tokens on average.

4.4 Sensitivity Analysis
Some questions remain about how the effectiveness of power

tokens depend on specific parameters. We show a representative
subset of workloads, ACGS(8), AGSZ(8), Astar(8), Gems(8), and
High(4), with the conservative 3-bits and limited-2 policies, and
vary one parameter at a time. We display the speedup of conserva-
tive 3-bits over limited-2. We omit results for unlimited and con-
servative because their behavior is similar to conservative 3-bits.

L2 cache size: We simulated L2 caches that are as large as
25%, 50%, and 200% as the default cache size (8MB). Figure 9
shows that the effect of larger caches depends on the number of
write bursts experienced by limited-2 compared to conservative 3-
bits. For low numbers (e.g., High(4)), limited-2 significantly ben-
efits from higher hit rates because they eliminate many memory
requests that cause those few original write bursts. For high num-
bers (e.g., Astar(8)), the larger caches reduce the L2 write-back

193

50%
100%

200%
50%

100%
200%

50%
100%

200%
50%

100%
200%

50%
100%

200%
50%

100%
200%

Experiment

0.0

0.5

1.0

1.5

2.0
S

p
ee

d
u
p

ACGS(8) AGSZ(8) Astar(8) Gems(8) High(4) Mean

Conservative - 3 bits

Figure 10: Sensitivity to read latency of PCM chips.

25%
50%

100%
200%

25%
50%

100%
200%

25%
50%

100%
200%

25%
50%

100%
200%

25%
50%

100%
200%

25%
50%

100%
200%

Experiment

0.0

0.5

1.0

1.5

2.0

S
p
ee

d
u
p

ACGS(8) AGSZ(8) Astar(8) Gems(8) High(4) Mean

Conservative - 3 bits

Figure 11: Sensitivity to write latency of PCM chips.

rate, but are insufficient to eliminate most write bursts experienced
by limited-2, while they are sufficient for conservative 3-bits.

PCM read and write latencies: For the next sensitivity ex-
periments, we varied the latencies of reads and writes in PCM. We
simulated read latencies 50% and 200% as long as the default la-
tency (30 cycles, or 60ns) and write latencies as long as 25%, 50%,
and 200% of the default latency (500 cycles, or 250ns).

Figure 10 shows that as read latency grows the difference be-
tween conservative 3-bits and limited-2 slowly decreases. As reads
get faster, they are serviced more rapidly by the memory controller,
reducing contention and avoiding write bursts in some cases.

Faster writes have a much more significant effect on performance,
as Figure 11 shows. At low write latencies, the performance of con-
servative 3-bits and limited-2 is roughly the same. As write laten-
cies increase, so does the performance difference between conser-
vative 3-bits and limited-2. In fact, conservative 3-bits sometimes
increases its performance advantage over limited-2 superlinearly.
This is due to the higher number of write bursts caused by slower
writes. For example, at 200%, ACGS experiences write bursts
70.7% of the time, compared to 46.6% of the time with the default
write latency and 10% of the time at 50% of the write latency.

Memory controller queue size: We next show the performance
differences in varying the memory controller queue size. We simu-
lated queues with 8, 16 and 32 entries, in addition to the default 24

8 16 24 32 8 16 24 32 8 16 24 32 8 16 24 32 8 16 24 32 8 16 24 32

Experiment

0.0

0.5

1.0

1.5

2.0

S
p
ee

d
u
p

ACGS(8) AGSZ(8) Astar(8) Gems(8) High(4) Mean

Conservative - 3 bits

Figure 12: Sensitivity to memory controller input queue size.

W
B NR

NR/W
Q W

B NR

NR/W
Q W

B NR

NR/W
Q W

B NR

NR/W
Q W

B NR

NR/W
Q W

B NR

NR/W
Q

Experiment

0.0

0.5

1.0

1.5

2.0

S
p
ee

d
u
p

ACGS(8) AGSZ(8) Astar(8) Gems(8) High(4) Mean

Conservative - 3 bits

Figure 13: Sensitivity to memory controller issue policy.

entries. Figure 12 shows that, as the number of entries increases,
so does the speedup of conservative 3-bits compared to limited-2.

With only 8 entries, all policies experience significant amounts
of stalls due to write bursts, although conservative 3-bits already
shows better performance. As the queue size increases to 16 and
24, the performance of conservative 3-bits grows more quickly
than limited-2 because conservative 3-bits experiences fewer write
bursts due to its higher write concurrency capacity. The difference
in performance between these two policies further increases when
the number of entries grows from 24 to 32, although more slowly.

Memory controller queue handling: The final sensitivity ex-
periments explore different issue policies for reads and writes in
the memory controller. The default policy (WB) is to issue one read
per cycle if there are reads in the queue, unless the write queue is
full, in which case the write queue is completely drained before any
read can proceed (write bursts). The first policy against which we
compare (NR) also issues one read per cycle if there are any in the
queue, but does not drain the write queue when it gets full (no write
bursts). The second policy (NR/WQ) is similar to NR, but issues the
write at the head position if the write queue is full, even if the read
queue is not empty.

At first glance, Figure 13 shows no clear trend on the effects of
disabling write bursts. However, a more careful look reveals that
conservative 3-bits benefits the most from disabling write bursts
for workloads with periods of high write intensity (e.g., Astar(8)),

194

while limited-2 benefits the most when these periods are not present
(e.g., AGSZ(8)). Under high intensity, write bursts completely
drain the write queue, so the queue does not fill up again for a long
time. Without write bursts, the probability of the write queue to fill
up and cause LLC stalls is higher, more so for limited-2 than for
conservative 3-bits. Under low intensity, limited-2 does not benefit
from write bursts as much because after the write queue is drained
there are not many more writes to service. Speedups of conserva-
tive 3-bits over limited-2 are high with any of the memory controller
issue policies, showing the value of power tokens.

5. CONCLUSION
The use of Phase Change Memory as a replacement for DRAM

in main memory opens up many new challenges with respect to
wear, performance, and power. Writes are the shared culprit among
these problems as the very nature of a memory cell that is heated
and cooled on every bit flip opens up a host of problems. While the
problems of wear and performance have been studied extensively,
we believe this paper is the first to treat the problem of variable
power allocation that is inevitable under such conditions. The heart
of this problem is the lack of a single point in the system that knows
everything that is needed to make optimal power scheduling deci-
sions. The memory controller has a global view of the entire system
and, as the shepherd of all memory accesses, is in the perfect posi-
tion to optimize the allocation of resources across the entire system.
This is especially true for power constraints that affect many banks
across a rank. Unfortunately, the memory controller has a very
poor view of how much power is actually needed at each bank in
the system. That information is kept within an individual die, as it
is not known until the memory is read, and then compared to the
incoming bits.

The central idea behind our approach is to build a good yet con-
servative estimator by which the memory controller can make safe
yet optimized decisions regarding write concurrency. There is a
spectrum of design points in this space, with decisions being made
anywhere between the memory controller and the end banks them-
selves. As one moves decisions away from the memory controller,
however, the problem of coordination and communication becomes
even harder. If the memory system of the future continues to look
like the traditional DIMM topology, the cost of that communication
can be quite high. Standard memory protocols such as SDRAM and
RDRAM assume that the controller has a perfect understanding of
the state of the entire memory. If this assumption changes, it would
mean a radical change to those architectures. In fact, such a change
may already be overdue. That being said, even with the fairly con-
servative power estimation scheme we have proposed, large im-
provements are possible. Our experiments show that a power-aware
memory controller unleashes speedups of up to 84%.

6. REFERENCES
[1] S. Cho and H. Lee. Flip-N-Write: A simple deterministic technique

to improve PRAM write performance, energy and endurance. In
International Symposium on Microarchitecture, December 2009.

[2] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson. NV-Heaps: making persistent objects fast
and safe with next-generation, non-volatile memories. In
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

[3] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee. Better I/O through byte-addressable, persistent memory.
In Symposium on Operating Systems Principles, 2009.

[4] I. T. W. Group. ITRS 2009 edition. Technical report, International
Technology Roadmap for Semiconductors, 2009.

[5] J. L. Henning et al. SPEC CPU2006 benchmark descriptions.
Computer Architecture News, 34(4), September 2006.

[6] E. Ipek, J. Condit, E. Nightingale, D. Burger, and T. Moscibroda.
Dynamically replicated memory: Building resilient systems from
unreliable nanoscale memories. In International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2010), March 2010.

[7] K. Kim et al. Technology for sub-50 nm DRAM and NAND flash
manufacturing. IEDM Tech. Dig, 144, 2005.

[8] B. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase-change
memory as a scalable DRAM alternative. In International
Symposium on Computer Architecture, June 2009.

[9] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddy, and K. Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation, June 2005.

[10] Micron Technology, Inc. Micron Technical Note TN-41-01:
Calculating Memory System Power for DDR3, 2007.

[11] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and
B. Calder. Using SimPoint for accurate and efficient simulation. In
ACM SIGMETRICS Performance Evaluation Review, volume 31.
ACM, 2003.

[12] M. Qureshi, M. Franceschini, and L. Lastras. Improving read
performance of phase change memories via write cancellation and
write pausing. In International Symposium on High-Performance
Computer Architecture, January 2010.

[13] M. Qureshi, M. Franceschini, L. Lastras, and J. Karidis. Morphable
memory system: A robust architecture for exploiting multi-level
phase change memories. In International Symposium on Computer
Architecture, June 2010.

[14] M. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high
performance main memory system using phase-change memory
technology. In International Symposium on Computer Architecture,
June 2009.

[15] M. K. Qureshi, M. Fraceschini, V. Srinivasan, L. Lastras, B. Abali,
and J. Karidis. Enhancing lifetime and security of phase change
memories via start-gap wear leveling. In International Symposium on
Microarchitecture, December 2009.

[16] M. K. Qureshi, M. Franceschini, and L. A. L.-M. no. Improving read
performance of phase change memories via write cancellation and
write pausing. In International Symposium on High Performance
Computer Architecture, 2010.

[17] S. Schechter, G. Loh, K. Strauss, and D. Burger. Use ECP, not ECC,
for hard failures in memories. In International Symposium on
Computer Architecture, June 2010.

[18] N. H. Seong, D. H. Woo, and H.-H. Lee. Security refresh: Prevent
malicious wear-out and increase durability for phase-change memory
with dynamically randomized address mapping. In International
Symposium on Computer Architecture, June 2010.

[19] N. H. Seong, D. H. Woo, V. Srinivasan, J. Rivers, and H.-H. Lee.
SAFER: Stuck-at-fault error recovery for memories. In International
Symposium on Microarchitecture, December 2010.

[20] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu. A
low power phase-change random access memory using a
data-comparison write scheme. In International Symposium on
Circuits and Systems, June 2007.

[21] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. P.
Jouppi, and M. Erez. FREE-p: Protecting non-volatile memory
against both hard and soft errors. In International Symposium on
High Performance Computer Architecture, 2011.

[22] W. Zhang and T. Li. Characterizing and mitigating the impact of
process variations on phase change memory systems. In
International Symposium on Microarchitecture, December 2009.

[23] W. Zhang and T. Li. Exploring phase change memory and 3D
die-stacking for power/thermal friendly, fast and durable memory
architectures. In International Conference on Parallel Architectures
and Compilation Techniques, September 2009.

[24] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy
efficient main memory using phase change memory technology. In
International Symposium on Computer Architecture, June 2009.

195

