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Abstract. Video retargeting aims at transforming an existing video in order to
display it appropriately on a target device, often in a lower resolution, such as
a mobile phone. To preserve a viewer’s experience, it is desired to keep the im-
portant regions in their original aspect ratio, i.e., to maintain them distortion-
free. Most previous methods are susceptible to geometric distortions due to the
anisotropic manipulation of image pixels. In this paper, we propose a novel ap-
proach to distortion-free video retargeting by scale-space spatiotemporal saliency
tracking. An optimal source cropping window with the target aspect ratio is
smoothly tracked over time, and then isotropically resized to the retargeted dis-
play. The problem is cast as the task of finding the most spatiotemporally salient
cropping window with minimal information loss due to resizing. We conduct the
spatiotemporal saliency analysis in scale-space to better account for the effect
of resizing. By leveraging integral images, we develop an efficient coarse-to-fine
solution that combines exhaustive coarse and gradient-based fine search, which
we term scale-space spatiotemporal saliency tracking. Experiments on real-world
videos and our user study demonstrate the efficacy of the proposed approach.

1 Introduction

Video retargeting aims at modifying an existing video in order to display it appropri-
ately on a target display of different size and/or different aspect ratio [1–3]. The vast
majority of the videos captured today have 320 × 240 pixels or higher resolutions and
standard aspect ratio 4:3 or 16:9. In contrast, many mobile displays have low reso-
lution and non-standard aspect ratios. Retargeting is hence essential to video display
on these mobile devices. Recently, video retargeting has been applied in a number of
emerging applications such as mobile visual media browsing [3–6], automated lecture
services [7], intelligent video editing [8, 9], and virtual directors [10, 7].

In this work, we focus on video retargeting toward a smaller display, such as that of a
mobile phone. Directly resizing a video to the small display may not be desirable, since
by doing so we may either distort the video scene, which is visually disturbing, or pad
black bars surrounding the resized video, which wastes precious display resources. To
bring the best visual experiences to the users, a good retargeted video should preserve
as much the visual content in the original video as possible, and it should ideally be
distortion-free. To achieve this goal, we need to address two important problems: 1)
how to quantify the importance of visual content? 2) How to preserve the visual content
while ensuring distortion-free retargeting?
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Fig. 1. Retargeting system overview: scale-space spatiotemporal saliency map (b) is calculated
from consecutive n video frames (a). A minimal information loss cropping window with the
target aspect ratio is identified via smooth saliency tracking (c), and the cropped image (d) is
isotropically scaled to the target display (e). This example retargets 352×288 images to 100×90.

Previous works [11, 12, 1, 4, 2] approach to the first problem above by combining
multiple visual cues such as image gradient, optical flow, face and text detection re-
sults etc. in an ad hoc manner to represent the amount of content information at each
pixel location (a.k.a. the saliency map). It is desirable to have a simple, generic and
principled approach to accounting for all these different visual information. In this pa-
per, we improve and extend the spectrum residue method for saliency detection in [13]
to incorporate temporal and scale-space information, and thereby obtain a scale-space
spatiotemporal saliency map to represent the importance of visual content.

Given the saliency map, retargeting should preemptively preserve as many salient
image pixels as possible. Liu and Gleicher [1] achieve this by identifying a cropping
window which contains the most visual salient pixels and then anisotropically scale it
down to fit with the retargeting display (i.e., allowing different scaling in horizontal
and vertical directions). The cropping window is restricted to be of fixed size within
one shot, and the motion of the cropping window can only be one of the three types,
i.e., static, horizontal pan, or a virtual cut. It can not perform online live retargeting
since the optimization must be performed at the shot level. Avidan and Shamir [11]
use dynamical programming to identify the best pixel paths to perform recursive cut
or interpolation for image resizing. Wolf et. al [2] solve for a saliency aware global
warping of the source image to the target display size, and then resample the warped
image to the target size. Nevertheless, it is not uncommon for all the aforementioned
methods to introduce geometry distortions to the video objects due to the anisotropic
manipulation of the image pixels.

In this paper, we propose to smoothly track an optimal cropping window with the
target aspect ratio across time, and then isotropically resize it to fit with the target
display. Our approach is able to perform online retargeting. We propose an efficient
coarse-to-fine search method, which combines coarse exhaustive search and gradient
based fine search, to track an optimal cropping window over time. Moreover, we only
allow isotropic scaling during retargeting, and therefore guarantee that the retargeted
video is distortion-free. An overview of our retargeting system is presented in Fig. 1.

There are two types of information loss in the proposed retargeting process. First,
when some regions are excluded due to cropping, the information that they convey are
lost. We term this the cropping information loss. Second, when the cropped image is
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scaled down, details in the high frequency components are thrown away due to the low
pass filtering. This second type of loss is called the resizing information loss. One may
always choose the largest possible cropping window, which induces the smallest crop-
ping information loss, but may potentially incur huge amount of resizing information
loss. On the other hand, one can also crop with exactly the target display size, which
is free of resizing information loss, but may result in enormous cropping information
loss. Our formulation takes both of them into consideration and seeks for a trade-off
between the two. An important difference between our work and [1] is that the resiz-
ing information loss we introduce is content dependent, which is based on the general
observation that some images may be downsized much more than some other images
without significantly degrading their visual quality. This is superior to the naive content
independent scale penalty (a cubic loss function) adopted in [1].

The main contributions of this paper therefore reside in three-fold: 1) we pro-
pose a distortion-free formulation for video retargeting, which yields to a problem of
scale-space spatiotemporal saliency tracking. 2) By leveraging integral images, we de-
velop an efficient solution to the optimization problem, which combines a coarse ex-
haustive search and a novel gradient-based fine search for scale-space spatiotemporal
saliency tracking. 3) We propose a computational approach to scale-space spatiotempo-
ral saliency detection by joint frequency, scale space, and spatiotemporal analysis.

The remainder of the paper is organized as follows. A general distortion-free video
retargeting framework is introduced in Sec. 2. Salient region detection and tracking
is presented in Sec. 3. The novel scale-space spatiotemporal saliency computation is
illustrated in Sec. 4. Experimental results and conclusions are presented in Sec. 5 and 6,
respectively.

2 Distortion-Free Video Retargeting

2.1 Problem Formulation

Consider an original video sequence with T frames V = {It, t = 1, · · · , T}. Each
frame is an image array of pixels It = {It(i, j), 0 ≤ i < W0, 0 ≤ j < H0}, where W0

and H0 are the width and height of the images. For retargeting, the original video has
to be fit into a new display of size Wr ×Hr. We assume Wr ≤ W0,Hr ≤ H0.

To ensure that there is no distortion during retargeting, we allow only two operations
on the video – cropping and isotropic scaling. LetW = {(x, y), (W,H)} be a rectangle
region in the image coordinate system, where (x, y) is the top-left corner, and W and
H are the width and the height. The cropping operation on frame It can be defined
as CW(It) , {It(m + x, n + y), 0 ≤ m < W, 0 ≤ n < H}, where m and n are
the pixel index of the output image. The isotropic scaling operation is parameterized
with a single scalar variable s (for scaling down, 1.0 ≤ s ≤ smax), i.e., Ss(It) ,
{It(s · m, s · n), s · m < W0, s · n < H0}. Distortion-free video retargeting can be
represented as a composite of these two operations on all the video frames such that
Ît(st, xt, yt) = Sst(CWt(It)), t = 1, · · · , T , where Wt = {(xt, yt), (stWr, stHr)} is
the cropping window at frame It. We further denote V̂ = {Ît, t = 1, · · · , T} to be the
retargeted video, and P , {(st, xt, yt), t = 1, · · · , T} to be the set of unknown scaling
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and cropping parameters, where P ∈ R = {st, xt, yt|1.0 ≤ st ≤ smax, 0 ≤ xt <
W0 − stWr, 0 ≤ yt < H0 − stHr}.

Both cropping and scaling will lead to information loss from the original video. We
propose to exploit the information loss with respect to the original video as the cost
function for retargeting, i.e.:

P∗ = arg max
P∈R

L(V, V̂), (1)

where L(V, V̂) is the information loss function, which shall be detailed in Sec. 2.2.
Since ensuring the smooth transition of the cropping and resizing parameters is essential
to the visual quality of the retargeted video, we also introduce a few motion constraints
that shall be included when optimizing Eq. (1) in Sec. 2.3.

2.2 Video Information Loss

The cropping and resizing information loss are caused by very different reasons, hence
they can be computed independently. We represent the video information loss function
with two terms, i.e.,

L(V, V̂) = Lc(V, V̂) + λLr(V, V̂), (2)

where λ is the control parameter to obtain a tradeoff between the cropping information
loss Lc and the resizing information loss Lr, which are detailed as follows.

Cropping information loss We compute the cropping information loss based on spa-
tiotemporal saliency maps. We assume in this section such a saliency map is available
(see Sec. 4 for our computation model for the spatiotemporal saliency map).

For frame It, we denote the per-pixel saliency map as {St(i, j), 0 ≤ i < W0, 0 ≤
j < H0}. Without loss of generality, we assume that the saliency map is normalized
such that

∑
ij St(i, j) = 1. Given Wt, the cropping information loss at time instant t is

defined as the summation of the saliency values of those pixels left outside the cropping
window, i.e.,

Lc(Wt) = 1−
∑

(i,j)∈Wt

St(i, j). (3)

The cropping information loss between the original video and the retargeted video is
thereby defined as Lc(V, V̂) =

∑T
t=1 Lc(Wt) = T −∑T

t=1

∑
(i,j)∈Wt

St(i, j).

Resizing information loss The resizing information loss Lr(V, V̂) measures the amount
of details lost during scaling, where low-pass filtering is necessary in order to avoid
aliasing in the down-sampled images. For a given frame It, the larger the scaling factor
st, the more aggressive the low-pass filter has to be, and the more details will be lost
due to scaling. In the current framework, the low-pass filtered image is computed as
Ist = Gσ(st)(It), where Gσ(·) is a 2D Gaussian low-pass filter with isotropic covariance
σ, which is a function of the scaling factor st, i.e., σ(st) = log2(st), 1.0 ≤ st ≤ smax.
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Fig. 2. Resizing information loss curve.

The resizing information loss is defined as the squared error between the cropped image
in the original resolution and its low-pass filtered image before down-sampling, i.e.,

Lr(Wt) =
∑

(i,j)∈Wt

(It(i, j)− Ist(i, j))
2. (4)

The image pixel values are normalized to be in [0, 1] beforehand. For the whole video
sequence, we have Lr(V, V̂) =

∑T
t=1 Lr(Wt) =

∑T
t=1

∑
(i,j)∈Wt

(It(i, j)−Ist(i, j))
2.

Fig. 2 presents the resizing information loss curve calculated for the cropping window
presented in Fig. 1(c) using Eq. 4. As we expected, the loss function increases mono-
tonically with the increase of the scaling factor.

2.3 Constraints for video retargeting

If there is no other additional cross-time constraints, Eq. 1 can indeed be optimized
frame by frame. However, motion smoothness constraints of the cropping window, for
both scaling and translation, is very important to produce visually pleasant retargeted
video. To ease the optimization, we do not model motion constraints directly in our
cost function. Instead we pose additional smoothness constraints on the solution space
ofP at each time instant t, i.e., the optimalWt is constrained by the optimal solutions of
Wt−1 andWt−2. By doing so, an additional benefit is that retargeting can be performed
online. Mathematically, we have
∣∣∣∣
∂st

∂t

∣∣∣∣ ≤ vz
max,

∥∥∥∥(
∂xt

∂t
,
∂yt

∂t
)
∥∥∥∥ ≤ vmax,

∣∣∣∣
∂2st

∂t2

∣∣∣∣ ≤ az
max,

∥∥∥∥(
∂2xt

∂t2
,
∂2yt

∂t2
)
∥∥∥∥ ≤ amax (5)
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where vz
max, vmax, az

max and amax are the maximum zooming and motion speed, and the
maximum zooming and motion acceleration during cropping and scaling, respectively.
Such first and second order constraints ensure that the view movement of the retar-
geted video is small, and ensure that there is no abrupt change of motion or zooming
directions. They are both essential to the aesthetics of the retargeted video. Additional
constraints may be derived from rules suggested by professional videographers [7]. It
is our future work to incorporate these professional videography rules.

3 Detecting and tracking salient regions

We develop a two stage coarse-to-fine strategy for detecting and tracking salient regions,
which is composed of an efficient exhaustive coarse search, and a gradient-based fine
search as well. Since this two stage search process is performed at each time instant, to
simplify the notation and without sacrificing clarity, we shall leave out the subscript t
for some equations in the rest of this section.

Both search processes are facilitated by integral images, we employ the follow-
ing notations for the integral image [14] of the saliency image S(x, y) and its partial
derivatives, i.e., T (x, y) =

∫ x

0

∫ y

0
S(x, y)dxdy, Tx(x, y) = ∂T

∂x =
∫ y

0
S(x, y)dy, and

Ty(x, y) = ∂T
∂y =

∫ x

0
S(x, y)dx. All these integral images can be calculated very effi-

ciently by accessing each image pixel only once. We further denote x̂(x, s) = x+sWr,
and ŷ(y, s) = y + sHr. Using T (x, y), the cropping information loss can be calculated
in constant time, i.e., Lc(s, x, y) = 1− (T (x̂, ŷ) + T (x, y))− (T (x̂, y) + T (x, ŷ)).

The calculation of the resizing information loss can also be speeded up greatly using
integral images. We introduce the squared difference image Ds(x, y) for scaling by s as
Ds(x, y) = (I(x, y) − Is(x, y))2. We then also define the integral images of Ds(x, y)
and its partial derivatives, which are denoted as Ds(x, y), Ds

x(x, y), and Ds
y(x, y). We

immediately have Lr(s, x, y) = (Ds(x̂, ŷ)+Ds(x, y))− (Ds(x̂, y)+Ds(x, ŷ)). In run
time, we keep a pyramid of the integral images of Ds(x, y) for multiple s. Since both
Lc and Lr can be calculated in constant time, we are able to afford the computation of
an exhaustive coarse search over the solution space for the optimal cropping window.

Once we have coarsely determined the location of a cropping window W , we fur-
ther exploit a gradient-based search to refine the optimal cropping window. By sim-
ple chain rules, it is easy to figure out that ∂L

∂a = Ta(x̂, y) + Ta(x, ŷ) − Ta(x, y) −
Ta(x̂, ŷ) + λ[Ds

a(x̂, y) + Ds
a(x, ŷ) − Ds

a(x, y) − Ds
a(x̂, ŷ)], for a = x or a = y, and

∂L
∂s = A(x, y, s)Wr + B(x, y, s)Hr + λ∂Lr

∂s , where A(x, y, s) = Tx(x̂, y)− Tx(x̂, ŷ),
B(x, y, s) = Ty(x, ŷ)−Ty(x̂, ŷ), ∂Lr(x,y,s)

∂s = Lr(x,y,s+4s)−Lr(x,y,s−4s)
24s is evaluated

numerically. Then we perform a gradient descent step with backtracking line search to
refine the optimal cropping window. Note that the gradient descent step is also very
efficient because all derivatives can be calculated very efficiently using integral images
and its partial derivatives. This two-step coarse-to-fine search ensures us to obtain the
optimal cropping window very efficiently.

The feasible solutions Ωt = {[xmin
t , xmax

t ], [ymin
t , ymax

t ], [smin
t , smax

t ]} are de-
rived from Eqs. 5 and strictly reenforced in tracking. DenoteW∗

t−1 = (x∗t−1, y
∗
t−1, s

∗
t−1)

be the optimal cropping at the time instant t− 1, and let the optimal cropping window
after these two stage search process at time instant t be Ŵt, we perform an exponential
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moving average scheme to further smooth the parameters of the cropping window, i.e.,
W∗

t = αŴt + (1− α)W∗
t−1. We use α = 0.7 ∼ 0.95 in the experiments. It in general

produces visually smooth and pleasant retargeted video, as shown in our experiments.

4 Scale-space spatiotemporal saliency

We propose several extensions of the spectrum residue method for saliency detection
proposed by Hou and Liu [13]. We refer the readers to [13] for the details of their al-
gorithm. Fig. 4(a) presents one result of saliency detection using the spectrum residue
method proposed in [13]. On one hand we extend the spectrum residue method tem-
porally, and on the other hand, we extend it in scale-space. The justification of our
temporal extension may largely be based on the statistics of optical flows in natural im-
ages revealed by Roth and Black [15], which shares some common characteristics with
the natural image statistics. It is also revealed by Hou and Liu [13] that when apply-
ing the spectrum residue method to different scales of the same image, different salient
objects of different scales will pop out. Since for retargeting, we would want to retain
salient object across different scales, we aggregate the saliency results from multiple
scales together to achieve that.

Moreover, we also found that it is the phase spectrum [16] which indeed plays the
key role for saliency detection. In other words, if we replace the magnitude spectrum
residue with constant 1, the resulted saliency map is almost the same as that calculated
from the spectrum residue method. We call such a modified method to be the phase
spectrum method for saliency detection. The difference of the resultant saliency maps is
almost negligible but it saves significant computation to avoid calculating the magnitude
spectrum residue, as we clearly demonstrate in Fig. 4. Fig. 4(a) is the saliency map
obtained from the spectrum residue and Fig. 4(b) is the saliency map produced from the
phase spectrum only. Note the source image from which these two saliency maps are
generated is presented as the top image in Fig. 3(a). The difference is indeed tiny. This
is a common phenomenon that has been verified constantly in our experiments.

More formally, let Vn
t (i, j, k) = {It−n+1(i, j), It−n+2(i, j), . . . , It(i, j)} be a set

of n consecutive image frames and k indexes the image. Denote f = (f1, f2, f3) as
the frequencies in the fourier domain, where (f1, f2) represents spatial frequency and
f3 represents temporal frequency. The following steps are performed to obtain the spa-
tiotemporal saliency map for Vn

t :

1. Let Θ(f) = Pha(F[Vn
t ]) be the phase spectrum of the 3D FFT of Vn

t .
2. Perform the inverse FFT and smoothing, i.e., St(i, j, k) = g(i, j)∗F−1 [exp{jΘ(f)}]2.

The smoothing kernel g(i, j) is applied only spatially, since the temporal informa-
tion will be aggregated.

3. Combine S(i, j, k) to be one single map, i.e., St(i, j) = 1
n

∑n
k=1 St(i, j, k)

The above steps present how to compute the spatiotemporal saliency map at a single
scale. We aggregate the visual saliency information calculated from multiple scales
together, this leads to the scale-space spatiotemporal saliency. More formally, let Vn

t (s)
be the down-sampled version of Vn

t by a factor of s, i.e., each image in Vn
t is down-

sampled by a factor of s in Vn
t (s). Denote Ss

t (i, j) as the spatiotemporal saliency image



8 Hua et al.

calculated from Vn
t (s) based on the algorithm presented above. We finally aggregate the

saliency map across different scales together, i.e.,St(i, j) = 1
ns

∑
s Ss

t (i, j), where ns

is the total number of levels of the pyramid. Fig. 3 presents the results of using the
proposed approach to scale-space spatiotemporal saliency detection. The current image
frame is the top one showing in Fig 3(a). We highlight the differences between the
scale-space spatiotemporal saliency image (Fig. 3(c)) and the saliency maps (Fig. 4(a)
and (b)) produced by the spectrum residue method [13] and the phase spectrum method,
using color rectangles.

The proposed method successfully identified the right arm (the red rectangle) of the
singer as a salient region, while the saliency map in Fig. 4(a) and (b) failed to achieve
that. The difference comes from the scale-space spatiotemporal integration (the arm
is moving) of saliency information. Moreover, in the original image, the gray level of
the string in the blue rectangle is very close to the background. It is very difficult to
detect its saliency based only on one image (Fig. 4 (b)). Since the string is moving, the
proposed method still successfully identified it as a salient region (Fig. 3 (c)).

Fig. 3. Scale-space spatiotemporal saliency detection.

Fig. 4. Saliency detection using (a) spectrum residue [13], and (b) phase spectrum. The source
image is shown in Fig. 3(a).
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Fig. 5. Left column: the source image and its saliency map. Right column: the progress of the
gradient search.

Fig. 6. Retargeting from 368× 240 to 132× 120 for movie video “300”. The first four columns
present the saliency tracking results and the corresponding saliency map. The fifth column shows
our retargeting results. The sixth column shows the results by directly scaling.

5 Experiments

The proposed approach is tested on different videos for various retargeting purpose,
including both standard MPEG-4 testing videos and a variety of videos downloaded
from the Internet. All experiments are running with λ = 0.3 in Eq.2, which is empiri-
cally determined to achieve a good tradeoff. Furthermore, n = 5 video frames and an
ns = 3 level pyramid are used to build the scale-space spatiotemporal saliency map.
We recommend the readers to look into the supplemental video for more details of our
experimental results.
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5.1 Spatiotemporal saliency tracking

To better understand the proposed approach to scale-space spatiotemporal saliency de-
tection and tracking, we show a retargeting example on a video sequence from the bat-
tle scene of the movie “300”. The video sequence has 1695 frames in total, we present
some sample results in Fig. 6. As we can clearly see, the proposed saliency detection
and tracking algorithms successfully locked onto the most salient regions. The fifth
column of Fig. 6 presents our retargeting results. For comparison, the sixth column of
Fig. 6 shows the results of directly resizing the original image frame to the target size.
It is clear that in our retargeting results, the objects look not only larger but also keep
their original aspect ratios even though the image aspect ratio changed from 1.53 to 1.1.
To demonstrate the effectiveness of the gradient-based refinement step, we present the
intermediate results of the gradient search at frame #490 in in Fig. 5.

5.2 Content-aware v.s. content independent resizing cost

One fundamental difference between our approach and Liu and Gleicher [1] is that
our resizing cost (Eq. 4) is dependent on the content of the cropped image. In contrast
Liu and Gleicher only adopt an naive cubic loss (s − 1.0)3 to penalize large scaling.
To better understand the difference, we implemented a different retargeting system by
replacing Eq. 4 with the naive cubic loss. The other steps remain the same. Therefore
the differences in results are solely decided by the two different resizing costs. We call
them content aware scheme and content blind scheme, respectively.

Fig. 7. Retargeting MPEG-4 standard test sequence “tennis”. From left to right: first column–our
approach, second column– Wolf et. al[2]’s method (by courtesy), third column– direct scaling.
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Fig. 9. Retargeting MPEG-4 standard test sequence “Akiy” to be half of its original size: (a) direct
scaling; (b) proposed approach; (c) Wolf et. al [2] (by courtesy).

We analyze the behaviors of the two methods based on the retargeting results of
“300” video. Both cost values are normalized to be between 0 and 1 for fair comparison.
For the content blind scheme, the λ is empirically determined on this video to be 0.2 for
the best retargeting result. All other parameters are the same for the two methods. The
curves in the upper and lower part of Fig. 8 present the scaling parameters from content
aware resizing, and content blind resizing across the video, respectively.

It is clear that the content blind loss strongly favors small scaling. This bias may
be very problematic because of the potentially large cropping information loss. In con-
trast, the content aware resizing does not have such a bias and also shows much larger
dynamic range. This indicates that it is more responsive to capture the video content
change. To achieve good results, we find that for the content blind scheme, the λ needs
to be carefully tuned for each video, and its variance is large across different videos. In
contrast, for the content aware scheme, a constant λ = 0.3 usually works well.

5.3 Video re-targeting results

We tested the proposed approach in a wide variety of long range video sequences for dif-
ferent retargeting tasks. We mainly show the retargeting results from the source video to
128× 160 displays (Motorola-T7xx, NEC-5x5, SonyEricsson-T610,T620, SumSung-
V I660) or 128 × 128(SumSung-E175, SonyEriccson-Z200), since these are the two
widely adopted resolutions for mobile phones.
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Fig. 10. Retargeting to 128× 160. Fig. 11. Retargeting to 128× 160.

The first retargeting result we present is performed on the standard MPEG-4 test
video sequence“tennis”. We re-target the source video to 176 × 240. The retargeted
results from our approach on frame #10 and #15 are shown in the first column of
Fig. 7. For comparison, we also present the retargeting results from Wolf et. al[2]1, and
the results by direct scaling, in the second and third columns of Fig. 7, respectively. Due
to the nonlinear warping of image pixels in Wolf et. al’s method [2], visually disturbing
distortion appears, as highlighted by the red circles in Fig. 7. In Fig. 9, we further
compare our results with Wolf et. al [2] on the standard MPEG-4 testing video “Akiy”.
The task is to re-target the original video down to half of its original width and height.
As we can clearly observe, the retargeted result from Wolf et. al [2] (Fig. 9 (c)) induces
heavy nonlinear distortion, which makes the head size of the person in the video to be
unnaturally big compared to her body size. In contrast, the result from the proposed
approach keeps the original relative size and distortion free. Moreover, compared with
the result from the direct scaling method in Fig. 9 (a), our result shows more details of
the broadcaster’s face when presented in a small display.

Fig. 10, Fig. 11, Fig. 12 and Fig. 13 present the video retargeting results on stan-
dard MPEG-4 testing video “stef”, the best fighting scene of “Crouching Tiger” (2329
frames), a “Tom and Jerry” video (5692 frames), and a football video (517 frames). In
all these figures, the first and third image in the first row presents the retargeting re-
sults from our approach, while the second and fourth images in the first row presents
the results from direct scaling. The second and third row show the saliency tracking
results, and the corresponding scale-space spatiotemporal saliency map, respectively.
Compared with the direct scaling method, our retargeting results show significant bet-
ter visual quality. In Fig. 11, when performing retargeting we purposely include the

1 We thank Prof. Lior Wolf and Moshe Guttmann for their result figures.
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Fig. 12. Retargeting to 128× 128. Fig. 13. Retargeting to 128× 128.

padding black bars in the original video to demonstrate the effectiveness of our saliency
detection method. Notice how the caption text has been detected as salient region. These
results demonstrate the advantages of the proposed approach. We strongly recommend
the readers to watch our supplemental video for detailed results.

5.4 Effects of camera motion

Camera motion of the source video poses special challenges for video retargeting, espe-
cially for saliency detection. Previous approach for saliency detection, which combines
motion cues with other visual cues such as image gradient and face detection results
in an ad hoc manner, all suffer from this issue. Detecting and compensating camera
motion is an effective way of resolving this issue. For example, Liu and Gleicher [1]
perform motion segmentation to estimate the foreground motion more reliably. Our
experiments show that the computational model introduced in 4 for scale-space spa-
tiotemporal saliency detection is quite robust to camera motion. Fig. 14 presents the
scale-space spatiotemporal saliency maps obtained on sample frames of a football video
downloaded from YouTube (the source video is the same as the retargeting results we
showed in Fig. 13). Both the original frame and the saliency map are presented. As we
can observe, although the camera motion is very large, the foreground players still pop
out as the most salient regions. The background advertisement board and the audiences
are also somewhat salient because they are spatially salient. They are blurred a bit due to
the camera motion, though. However, in our experiments, we found that such blurriness
does not cause much issues, as shown in our retargeting results, e.g., on the “football”
and “Tom& Jerry” sequence. While we agree that compensating camera motion may
further improve the results, we trade it for computation efficiency and leave it to be our
future work.
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Fig. 14. The spatiotemporal saliency maps under heavy camera motions.

Fig. 15. The distribution of all the scores given
by 30 users on 8 video clips. A score of 1 (5) is
strongly positive (negative) about our approach.

Fig. 16. The score of each individual video clip.
The horizontal bars and vertical lines show the
average scores and the standard deviations.

5.5 User study

We also performed a user study to evaluate the results. Without revealing to the users
which results are from which methods, we ask the participants to look side-by-side the
retargeting results on 8 video clips from the proposed approach, and those from the
direct scaling (please refer to the supplemental video, in which video clips are shown
in the same order as in our user study.). The users then mark in 5 scales regarding their
preferences of the results, with 1 being preferring much more of the proposed approach,
3 being neutral, and 5 being preferring much more of the direct scaling approach. So
the smaller the score, the more preference over the results from the proposed approach.
There are 30 users with various background who participated in our user study.

We first present the distribution of all the scores over the 8 clips from all the 30 users
in Fig. 15. Over all the scores, 22.5% strongly prefer and 22.92% moderately prefer the
retargeted video from our approach, which add up to 45.42%. While 17.08% vote that
our results and the results from direct scaling are almost the same. In contrast, there
are also 31.25% moderately prefer and only 6.25% strongly prefer the direct scaling
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results, i.e., 37.5% in total. This shows that 62.50% of the time, the users would feel
that the results from the proposed approach are better or not worse than those from
direct scaling. We also present the mean scores and standard deviations of each test
video clip in Fig. 16. In total five clips got average scores lower than 3, two clips got
average scores slightly higher than 3, and the last one got an average score of 3. This also
manifests that users generally prefer the retargeting results from the proposed approach.

6 Conclusion and future work

We proposed a novel approach to distortion-free video retargeting by scale-space spa-
tiotemporal saliency tracking. Extensive evaluation on a variety of real world videos
demonstrate the good performance of our approach. Our user study also provide strong
evidences that users prefer the retargeting results from the proposed approach. Future
works may include further investigating possible means of integrating more profes-
sional videography rules into the proposed approach.
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