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Abstract

In many applications, one is required to estimate the projective transformation
between two sets of points, which is also known as collineation or homography. This
report presents a number of techniques for this purpose.
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1 Introduction

Projective Transformation is a concept used in projective geometry to describe how a set of
geometric objects maps to another set of geometric objects in projective space. The basic
intuition behind projective space is to add extra points (points at infinity) to Euclidean
space, and the geometric transformation allows to move those extra points to traditional
points, and vice versa.

Homogeneous coordinates are used in projective space much as Cartesian coordinates are
used in Euclidean space. A point in two dimensions is described by a 3D vector. A point
in three dimension is described by a 4D vector. If the homogeneous coordinates of a given
point are multiplied by a non-zero scalar, the resulting homogeneous coordinates represent
the same point. That is, Am (A # 0) and m represent the same point. Consider a point
p = [u,v]T on a plane in Euclidean space; its corresponding homogeneous coordinates are
m = Au,v,1]T. A point at infinity on the plane is represented by [a, 3,0]7, i.e., the last
element is 0. A point at infinity in 2D space can be used to describe the direction of a line
on the plane. Now consider a point p = [z, ¥, 2] in 3D Euclidean space; its corresponding
homogeneous coordinates are m = Az, y, z, 1]7. A point at infinity in 3D space is represented
by [a, 3,7,0]T, i.e., the last element is 0.

Projective linear transformations do not preserve sizes and angles. They do preserve
incidence (e.g., points on a line remain on a line after transformation; two lines intersecting
with each other will intersect after transformation) and cross-ratio. A projective linear
transformation are also known as a collineation or projectivity. In the case of projective
plane (P?), it is also known as a homography or plane projectivity. In computer vision,
homography plays an important role because any two images of the same planar surface are
related by a homography. It has been used for camera calibration [4], image rectification [2],
among others.

In this report, I consider the collineation in projective 3D space. The methods described
can be easily applied for estimating homography. Also, I have not discussed all the important
methods such as robust methods to deal with outliers. The interested reader is referred to
my tutorial on parameter estimation [3].

Let m = [my, mg, m3, my|” and m’ = [m/, mj, mj, m}]” be two P? points in homogeneous
coordinates, related by the following collineation:
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we have
Am’ = Pm , (2)

where ) is an arbitrary scalar because P is only defined up to a scale.
We can now state the problem as follows:



Given n point correspondences {(m;, m})}, i =1,...,n with n > 5,

determine the projective transformation P (collineation matrix)
between the two sets of points {m;} and {m/}.

2 Method 1: Five-correspondences case

To determine P, we need at least five point correspondences. If we are given 5 point cor-
respondences, to compute P, we first compute the collineation A; which maps the stan-
dard reference points (e; = [1,0,0,0]%, e; = [0,1,0,0]7, e3 = [0,0,1,0]7, e, = [0,0,0,1]7,
e; = [1,1,1,1]7) to the first set of points m; (i = 1,...,5). This gives

A, = P\1m1,)\2m2, Asms, )\4m4] )

where
[A17 /\2) A3) /\4]T = [m17 my, ms, m4]_1m5 :

Similarly, we can compute the collineation A, which maps the standard reference points e;
(¢t =1,...,5) to the second set of points m}(i = 1,...,5). It is then easy to see that the
collineation P which maps the first set of points m;(i = 1,...,5) to the second set of points
m, (i=1,...,5)1is

P = AA;L.

The above method is simple. It is however unstable if the data are corrupted by the
noise because only the minimum number of points are used. In the following, we will develop
several robust methods when more data are available.

3 Method 2: Compute P together with the scalar fac-
tors

Given n point correspondences, we have n vector equations:
/

This implies that we have 4n equations in 16 +n unknowns: P; (i=1,...,4; j=1,...,4)
and \; (i =1,...,n). If n > 5, the problem becomes over-determined.

As P is defined up to a scale, we can set one of P;;’s to, say, 1. However, this is dangerous
because the true value of the F;; we choose could be zero. An alternative and safe way is to
set one of \;’s, say Ay, to 1.

Let x = [Py, Pia, ..., Pu, Mo, ..., \]T be the vector of the 15 + n parameters to be
computed. It is easy to say that (3) can be rewritten as

Ax=Db, (4)



where A is a 4n x (15 + n) matrix!

M,
M2 —m’2

A= M3 —l’né
M, —m/

m;
m?
with M; = E m7 , and b is a 4n vector
i
m;

b=[m,",0,...,0".

The least-squares solution to (4) is given by
x = (ATA) AT , (5)

which minimizes the error function ||b — Ax||* .

If the uncertainties in points (m;, m}) are known and represented by the covariance
matrices (Am,, A ), a weighted least-squares solution can be carried out to obtain a better
estimation of x. The error function to be minimized can be defined as

F=(b-Ax)"W (b - Ax), (6)

where W is a 4n X 4n matrix:

Wy,

and W; is a 4 x 4 matrix, the covariance matrix corresponding to the four equations of the
ith point pair (m;, m}). The W,;’s are computed as follows:

W; = PAm PT + N A (7)

which requires an estimation of P and A;. The initial estimates of P and \; can be the
non-weighted least-squares estimation given by (5). The solution to (6) is given by

x = (ATWA)TATW b . (8)

As the weights are approximately computed by (7), a few iterations are necessary.
One disadvantage of this method is that the system becomes prohibitive when a large
number of points, say 1000, are available and we want to take all into account.

'In this paper, any element of a matrix which is not explicitly specified is identified to be zero.
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4 Method 3: Compute P only (a batch approach)

From (2), the two vectors m’ and Pm are parallel. Let v = Pm = [vy, vy, v3,v4]7, then we
have the following three independent equations:

mavy —mivy =0

myv; —mijvs =0 (9)

myvy —mivy = 0.

Let x = [Py, Pia, - .., Pu]” be the 16 parameter vector to be computed. It is easy to show
that (9) is equivalent to the following equation:
Bx =0, (10)
where
mhym?  —mim”
B = | mim” —m/m? . (11)
m/ym? —mm?

Given n correspondences (m;, m}), we have n equations of the type (10). The problem

is then to estimate x by minimizing the following error function:

F = Xn:(Bz‘X)Q =x (Zn: BZTBZ') X. (12)

=1

Let A = > BTB;, which is a symmetric matrix. As P is only defined up to a scale, we

can normalize x with ||x|| = 1. It is well known that the solution to (12) is the eigenvector

of A corresponding to the smallest eigenvalue of A.

If the uncertainties in points (m;, m}) are known and represented by the covariance

matrices (Am,, Am), we can estimate x by minimizing the following weighted error function
F=xT (Z BiTWi_lBi) x =x' Ax. (13)

i=1
The solution is still the eigenvector of A corresponding to the smallest eigenvalue of A. The
3 x 3 matrix W, is the covariance matrix of B;x, given by

T T
W, = JmiAmi ‘]mi + Jm;Am; Jm; , (14)
where Jp,, and Jm; are the Jacobian matrices of B;x with respect to m; and m), :
B 1 [T ! ST
mQP% - mlp%
_ / !
Jm; = m3p1T - m1P3T
/ /
| TP — Py
—U2 U1
Jm; = | —Us U1 ’
—U4 U1




where m/, = [m/, mh, my, my)T, v = [v1,v9,v3,04]7 = Pm,, and p; is the ith row of the
matrix P, i.e., p; = [P, P2, Pi3, Pu)?. Thus the computation of the weights, (14), requires
an estimation of P, which can be obtained without considering the weights by (12). If the

initial estimate of P is not close enough to the true one, several iterations are required.

Computation of the scalar factors. The scalars, \;’s, are usually not useful. However,
they can be computed either from a simple least-squares solution

A = m, Pm;/m, m;
or from a weighted least-squares solution based on (3)
A =m, W, 'Pm;/m,"W; 'm, ,

where W is given by (7), and requires an initial estimate of \;.

5 Method 4: Compute P only (an iterative approach)

The method described just above can be considered as an iterative one. Let A be the ma-
trix A computed with n point correspondences. When one more correspondence is available,
one only need update A by

A = A BT W, 1B, .

n+1

The solution after incorporating the new correspondence is then the eigenvector of A1
corresponding to the smallest eigenvalue of A"+D.

Here we present an iterative method based on the Kalman filtering technique. Since P
is defined up to a scale, we should set one element to a nonzero value. Of course, the true
value of the element chosen should not be zero. As this method will need an initial estimate
of P, we can apply either of the previous methods to the first m (m > 5) correspondences
to obtain such an estimate, and then normalize P by one of the nonzero elements, say the
largest element.

In the following, without loss of generality, we assume the last element of P, Py, is
nonzero, and we set it to 1. Let x = [Py, Pio, ... ,P43]T be the parameter vector to be
estimated. Before processing the ¢th correspondence, we have an estimate of x, denoted by
X;—1, and its associated covariance matrix Ay, ,. Given the ith correspondence, we have
three scalar equations (9) relating the measurements (m;, m}) to the parameter vector x.
They are called the measurement/observation equation, denoted by f(m;, m}, x), i.e.,

! /
/ . / /
f(m,;, m},x) = | mhv; —mjuvs | . (15)
miyvy — mivy



As f is nonlinear, we should apply the extended Kalman filtering technique, that is, we
should first linearize the measurement equation at the previous estimate x;_;. The linearized
measurement equation is:

where y; is the new measurement vector, &, is the noise vector of the new measurement, and
M, is the linearized observation matrix. They are given by

(9f(ml, m;, )A(Z',1>
0x

! A A~
yi = —f(m;, m},x, 1) + M;x;_; ,

M, =

and &; has mean zero and covariance as computed by (14). In fact, M; is the matrix B given
in (11) with the last column dropped, and y; is simply [0, 0, m}m4]”. Now we can apply the
standard Kalman filter to the linearized measurement equation, and an updated estimate X;
can be obtained.

If the initial estimate x;_; is very different from the true one, the first-order approx-
imation we have made is not good anymore. One approach to reducing the influence of
the nonlinearities is to apply iteratively the Kalman filter, the so-called iterative extended
Kalman filter.

6 Method 5: Compute P through normalization

Kanatani [1] proposes a method to compute the collineation P from P? point correspondences
(m;, m}) where m; and m/ are normalized so that their norms are 1, and P is normalized
so that det P = 1. In the following, we generalize the method in order to deal with the P?
case.

Let h; be the distance of the endpoint of vector Pm; to the line which passes through
the starting point of vector Pm; and extends in the direction of m}. Note that |m;|| = 1,
|m}|| =1, and det P = 1. We have

h} = |[Pmy|* — (m] Pm;)*.
The problem is to compute P by minimizing the following error function
F = Z h} = Z (miTPTPmi — (m;TPmi)2> : (17)
i=1 i=1
However, it is difficult to compute the solution under the constraint det P = 1. Instead, the
solution under the constraint ||P|| = 1 is computed as an approximation, as to be described
below, and then P is rescaled so that det P = 1.

Like in Sect. 4, let x = [Py, Pra, . . . ,P44}T be the 16 parameter vector to be computed.
It is easy to show that (17) is equivalent to the following:

.7-":><TZAZ»X7 (18)
i=1

7



where A; is a symmetric matrix given by

T

m; 1T m;

A, = (14 — m;m; ! T )
m;

m; m

where I, is the 4 x4 identity matrix. Let A = >""" | A;, then the solution x is the eigenvector
of A corresponding to the smallest eigenvalue of A.

7 Method 6: Maximum Likelihood Estimation

For each point m;, its uncertainty is assumed to be known. To resolve the scalar ambiguity,
we assume the last element is set to 1, and we use m, to denote the first 3 elements of
m;, i.e., m; = [m/,1]”. The uncertainty of m; is assumed to be represented by covariance
matrix Ay . If the uncertainty can be considered as identical and isotropic for all points,
then it can be set to an identity matrix.

Furthermore, for each given point pair (m;, m}), let m; be the corresponding ideal point
in the same coordinate system as m;. Then, we can formulate the problem as maximum
likelihood estimation of both P and {m,} by solving the following problem:

Pn{lin} [(m; — m,)" AL, (m,; — ;) + (m] - Pﬁli)TA;ll/ (m; — Pm,)] (19)
Am;} & = - T -
7
This is potentially a large minimization problem. Note, however, each ideal point is only
involved in the two corresponding terms. We can rewrite the above problem as
min ) min[(m; — @,)" Ay (m; — ) + (m] — Piy) AL (m] — Pi)] (20)
] m, - -
7
Now the estimation of each individual m; is a small problem, and is embedded inside the
estimation of P. This makes the overall estimation very efficient. The nonlinear minimization
can be performed with the Levenberg-Marquardt algorithm.
In the following, we show that the estimation of m,, i.e.,
min[(m; — m;)" Ay, (m; — m;) + (m; — Pm;)" A (m] — Pmy)] (21)

7 !
T
—1

can be performed through linearlization. Let

m, = Pm,; = plm; (22)

where p; (7 =1,2,3,4) is the j-th row vector of matrix P. Given an initial estimate of m;,
denoted by m; , we can linearize it around m; as

m)=m; +Jg (M, - m;) (23)

8



where

. L [pimy
17 [ pimy
P (25)
After some simple algebra, we get the Jacobian matrix J_ - as
Ja- = 1/\ (Pyys — My, [Pu Pi Pus)) (26)
= pimy o
where P33 is the upper left 3 x 3 submatrix of P, and Py is the (k,[)-element of P.
With the above linearization, the objective function in (21) can be rewritten as
F(m;) = (m; — m,)" Ay, (m; — m,)
(m) — m; — T (0, — m; ) A (m) — m, —Jg (B, —m;))  (27)

The derivative of F(m;) with respect to m, (after ignoring the constant factor) is given by

5o = Ag (my — ) + LA (m] — iy~ Jg (B, - @) (28)

Setting it to zero yields the solution to m;, which is

i, = W AL m, + JL AL (m) — i, + - im;)] (29)

2

_ Al T A-1
W, = Ami + J@;AQQJ@; (30)
Now, substituting m, with the above solution, we can easily get

m] — ;)] (31)
)] (32)

m, — @, = W I AT (m, - @)~ 35 AL (m
!
1

m, —m; =W, AL (m, —my) + I A 1<m —m,
The objective function (27) can then be computed explicitly.
Finally, let’s discuss how to choose the initial guess m; . During the iteration process, it
can be computed from the previous iteration using (29). For the very first iteration, a good
initial guess is obviously m; = m,. Yet a better initial guess is to also consider m/. We first
transform m; to the first coordinate system with the initial guess of P, and then average
them. That is:
m, + P~'m)) (33)
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