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Abstract– In several e-commerce applications, non-truthful auctions have been pre-
ferred over truthful weakly dominant strategy ones partly because of their simplicity and
scalability. Although non-truthful auctions can have weaker incentive constraints than
truthful ones, the question of how much more revenue they can generate than truthful
auctions is not well understood. We study this question for natural and broad classes
of non-truthful mechanisms, including quasi-proportional sharing and weakly monotonic
auctions. Quasi-proportional sharing mechanisms allocate to each bidder i an amount of
resource proportional to a monotonic and concave function f(bi) where bi is the bid of
bidder i and ask for a payment of bi. Weakly monotonic auctions refer to a more general
class of auctions which satisfy some natural continuity and monotonicity conditions.

We prove that although weakly monotonic auctions are much broader and require
weaker incentive constraints than dominant strategy auctions, they are not more powerful
with respect to the revenue in the setting of selling a single item. Furthermore, we show
that quasi-proportional sharing with multiple bidders cannot guarantee a revenue that is
larger than the second highest valuation, asymptotically as the number of bidders grows
large. However, in a more general single-parameter setting modeled by a downward-
closed set system, a version of the proportional sharing mechanism can obtain a constant
factor of the optimal social welfare of the game where the highest valuation is replaced
by the second highest valuation, which is essentially the best revenue benchmark in the
prior-free framework. This is in sharp contrast to weakly dominant strategy mechanisms
that cannot achieve better than log n approximation for this benchmark.

1 Introduction

Revenue maximization is a fundamental problem in mechanism design. Although maximizing net
social surplus is usually considered a desirable goal of a mechanism, in practice, it is often the case
that the mechanism designer is the seller, who wants to raise the greatest possible revenue from sales.
Thus, profit maximization has been one of the central problems of mechanism design in the economics
literature and in the new area of algorithmic mechanism design.

For revenue maximizing problems, the following two main classes of mechanisms have been consid-
ered in the literature: truthful (weakly dominant strategy) and Bayesian incentive compatible mecha-
nisms. In the Bayesian settings, it is assumed that private information comes from a prior distribution,
which is known to the seller (and buyers) and a revenue maximizing mechanism depends on the details
of the assumed distribution [20]. This approach has raised the following two well known concerns: first,
in many scenarios it is hard or impossible to know the prior distribution; second, even small uncertainty
about the prior distribution can cause significant uncertainty about what auction to use. Therefore,
a natural and important goal is to design mechanisms that are “detail-free”. The recent approach of
prior-free truthful mechanism design [8, 9] provides a solution by proposing a “reasonable” worst-case
revenue benchmark and trying to design a truthful dominant strategy mechanism that always gener-
ates a revenue that is at least a constant factor of the benchmark. However, thus far, most known
constant factor approximations in this framework are for simple auction settings, where the goods
are in unlimited supply and/or the bidders are symmetric. Moreover, because of the strong incentive
constraints, many negative results on the set of implementable outcomes and several worst-case upper
bounds for the revenue of truthful dominant strategy mechanisms are known [7, 25, 24, 15, 21].1

These negative results led naturally to the consideration of different solution concepts other than
truthfulness in the prior-free framework. Furthermore, in practice, many mechanisms currently used in
the context of computer systems are not truthful. Although non-truthful auctions have weaker incentive

1These results are based on the dominant strategy incentive constraints only, not on computational constraints.
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constraints than truthful auctions, the question of how much more revenue they can generate than
truthful auctions is not well understood. We study this question for natural and broad classes of non-
truthful mechanisms that accommodate auctions that are widely used in practice, namely, we consider
quasi-proportional sharing and weakly monotonic auctions. Quasi-proportional sharing mechanisms
generalize the traditional proportional sharing that is common in resource allocation problems ([14]).
This mechanism allocates to each bidder i, an amount of resource proportional to a monotonic (concave)
function f(bi), where bi is the bid of bidder i, and asks for a payment of bi. Weakly monotonic
auctions refer to a more general class of auctions that includes quasi-proportional sharing and truthful
mechanisms as special cases; this class of auctions requires an auction only to satisfy some rather weak
continuity and monotonicity conditions (defined in Section 4).

We prove that although weakly monotonic auctions are more general and require weaker incentive
constraints than dominant strategy auctions, they are not more powerful with respect to the revenue
guarantee in the setting of selling a single item. Furthermore, we show that quasi-proportional shar-
ing with multiple bidders cannot guarantee a revenue asymptotically larger than the second highest
valuation. However, in a more general single parameter setting, modeled by a downward-closed set
system (e.g. including single-item auctions, digital good auctions and some combinatorial auctions),
we constructed an auction that combines a VCG mechanism and a variant of proportional sharing
that guarantees a revenue that is a constant factor of the optimal social welfare of the game where the
highest buyer’s valuation is replaced by the second highest valuation. For this general setting, we show
that no weakly dominant strategy mechanism can achieve better than log n approximation for this
benchmark. Furthermore, for our proportional sharing mechanism, the equilibrium can be computed
in polynomial time and there exists a learning dynamics that converges to the equilibrium.

Related Work From a broad view, our work continues the line of research on profit maximization
in mechanism design. Design of prior-free mechanisms is an important topic in computer science
literature. This approach was first considered by [8] and studied by many thereafter, see the survey [9]
and the citations therein.

From a mathematical point of view, our approach is different from the papers cited above in the
constraints of the information structure. We assume that bidders can observe and adapt to others’
strategies, thus, one can think of our approach as a Nash implementation problem in full information
setting. The theory of Nash implementation assumes that bidders have full information about each
other’s preferences, but the planner (auctioneer) only knows the set of outcomes and does not have
any information about the private type of bidders. This framework was first introduced by the work
of Maskin [16], who gave an almost complete characterization of the set of implementable outcomes.2

There is a large body of literature on this topic, see the surveys and the citations in [16, 23]. However,
almost all the mechanisms in the Nash implementation literature use the so called integer game struc-
ture. These mechanisms require bidders to report others’ private information and if any two bidders
report differently, they receive large penalties. This type of cross-reporting is a well known concern in
the implementation theory. Moreover, in our setting these mechanisms can generate many equilibria
including ones with arbitrarily small revenue. In the present paper, by focusing on a special class of
mechanisms we avoid this issue. Furthermore, the justification of the full information structure in our
setting comes from the fact that in repeated auctions (which are commonplace in computer systems
and services), bidders can observe others’ bids and might gradually learn their types. On the contrary,
the Nash implementation literature assumes the full information structure to begin with. This is unlike
to our setting, as we show that our mechanism has a learning dynamics which alleviates the need for
the bidders to know each other’s preferences.

2Maskin’s result holds for the case of more than 2 agents. The complete characterization was given later by Moore
and Repullo [19] and Dutta and Sen [4].
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In the computer science literature, our paper is not the first one that relaxes the truthful domi-
nant strategy constraints. Babaioff, Lavi and Pavlov [1] considered the concept of implementation in
undominated strategies. The focus of their work was, however, on the social welfare and the computa-
tional issues of single value combinatorial auctions. Chen, Hassidim and Micali [3] considered the same
problem as ours: maximizing revenue in full information setting, however, as in the implementation
literature, they also use cross-reporting mechanisms.

The most closely related work to the present paper is [18] and [21]. In [18], Mirrokni, Muthukrishnan
and Nadav show that in a single-item auction, quasi-proportional sharing rule can generate better
revenue than the traditional second-price auction. They left open the question of what optimum quasi-
proportional mechanisms are in the prior-free framework. Our work answers this question by two
negative results. First, if there is no restriction on the number of bidders, then quasi-proportional
sharing mechanism cannot generate a larger revenue than the second-price auction, asymptotically
for large number of bidders. Second, the revenue upper-bound for a larger class of weakly monotonic
auctions is the same as for the narrower class of weakly dominant-strategy auctions. In [21], the
author proposed a similar mechanism, based on a combination of proportional sharing and a truthful
mechanism, which also gives a separation result between truthful dominant strategy auctions and non-
truthful auctions. The present paper supersedes [21] in two important aspects. First, the revenue
benchmark in [21] is weaker than in this paper; in fact, our new benchmark is essentially the best
possible that one would hope for. Second, it is not known whether the equilibrium in [21] can be
computed in polynomial time, while the equilibrium of our new mechanism is the optimal point of a
convex optimization problem and there is a converging distributed learning dynamics.

Our learning dynamics is derived as a natural subgradient method for solving an associated (primal)
convex optimization problem to the resource allocation game studied, where the objective function of
this problem incorporates the resource constraints as a cost function. This class of dynamics is in the
same spirit to those introduced in [14] and was studied by many thereafter. We prove the convergence
of these dynamics to an arbitrary small neighborhood of the Nash equilibrium point under some mild
conditions on the resource cost functions.

Structure of The Paper We introduce notation and some preliminarily results in the next section.
Section 3 presents our main results on the revenue bounds for the setting of selling a single item,
specifically, providing a revenue upper-bound for the quasi-proportional sharing (Theorem 1) and
showing that the revenue guarantee of weakly dominant strategy auctions cannot be improved by
allowing for more general class of weakly monotonic auctions (Theorem 2). In Section 4 we consider the
general setting of downward-closed set systems and present our main results on the revenue guarantees
in this setting. In particular, we show that there exists a non-truthful mechanism that can guaranteed
a revenue that is a constant factor of the aforementioned benchmark (Theorem 3) while truthful
mechanisms cannot do better than log n approximation (Theorem 4). In Section 5 we conclude. Some
missing proofs and our analysis of the learning dynamics are provided in Appendix.

2 Notations and Preliminaries

2.1 The Problem

In this paper we consider auctions for n bidders in single parameter environments modeled by downward-
closed set systems previously studied in [10]. More precisely, let F ⊂ 2[n] be a set system, then F is
said to be downward-closed if for every F ∈ F and G ⊂ F , it holds that G ∈ F . A set F ∈ F , called
a feasible set, represents a set of bidders that can be served simultaneously. We consider randomized
mechanisms that can output feasible sets Fk ∈ F with probability qk, where

∑

k qk = 1. Given this
outcome, let xi be the probability the service is allocated to bidder i, that is xi =

∑

k:i∈Fk
qk. Each
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bidder i’s valuation for receiving the service is vi. We assume that bidders have quasi-linear utilities
expressed as vixi − pi, where pi is the payment of bidder i.

This class of problems accommodates many auction settings in theory and practice; for example, in
single-item auctions, the feasible set system contains singletons, while in combinatorial auctions with
single-minded bidders, feasible sets correspond to subsets of bidders seeking disjoint bundles of goods.

Given a set system F , we call vector ~x = (x1, x2, . . . , xn) a feasible allocation if there is a randomized
outcome {Fk, qk} such that the corresponding probability of getting the service for each agent i is xi.
It is not hard to see that the set of feasible allocations can be captured by a polyhedron specified by
A~x ≤ ~1 and ~x ≥ ~0 where A is a non-negative matrix. See [21] for a formal proof. For example, in the
single-item setting, the resource constraint is

∑

i xi ≤ 1 while in the setting of digital goods [8], the
constraints are 0 ≤ xi ≤ 1, for every i. We can think of this auction setting as a resource allocation
problem, where the auctioneer has a resource to allocate to bidders by an auction with the constraints
induced by the set system. Therefore, we often call these constraints resource constraints in this paper.

2.2 VCG Mechanism

The VCG mechanism for downward-closed set system allocates the service to a feasible set of bidders
with the highest total valuation. Each winning bidder (xi = 1) pays the lowest amount such that this
bidder can still win with this valuation. Bidders who loose (xi = 0) pay 0.

We will use a version of the VCG mechanism, where instead of allocating the full amount of resource
to the winning bidders, we only allocate xi = α ≤ 1 to them. We will call this mechanism VCG with
scaling constant α. Clearly, because of the quasi-linear payoff, if the price per unit good of a winning
bidder i is pi, then with scaling constant α, this bidder needs to pay αpi.

Notice that in a VCG mechanism, the payoff of a losing bidder is 0, thus we have the following
simple observation that we will need later.

LEMMA 1 If a bidder i does not win in the VCG mechanism and would like to bid higher in order
to win, then the payment of this bidder is larger or equal to her valuation vi.

2.3 Proportional Sharing Mechanism

As discussed above, the downward-closed set system can be seen as an auction environment where
the feasible allocations form a polyhedron. This formulation allows us to use a proportional sharing
mechanism for multiple resources. This is a well studied mechanism that can be applied also for general
concave utility functions [12]. Here, instead of bidding a single number, each bidder submits a vector
of bids, one bid for each individual resource constraint e ∈ E where E denotes the set of constraints.
The disadvantage of this approach for general polyhedron setting is that it is unknown whether the
equilibrium is unique and can be found in polynomial time. However, we only use a special case of this
general setting for our result.

Specifically, we consider a particular type of constraints such that for every resource constraint
e ∈ E and a subset of bidders Ie, it holds

∑

i∈Ie xi ≤ C, for the same value C > 0 on every resource
constraint e ∈ E. Each bidder i is endowed with a linear utility function Ui(xi) = vixi.

To get an intuition for the general proportional sharing mechanism, consider the case of a single
resource with the resource constraint

∑

i xi ≤ C. Here each bidder i bids and pays value bi and receives
the allocation xi = C bi∑

j bj
. The payoff of user i is then Ui(C

bi∑
j bj

) − bi. Taking the derivate of this

payoff function we can show that the condition for Nash equilibrium is the following, for some p > 0,

U ′
i(xi)

(

1− xi
C

)

= p if xi > 0 and U ′
i(0) ≤ p if xi = 0. (1)
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Here p = 1
C

∑

i bi, and for linear utility functions, we have U ′
i(xi) = vi . The value p can be understood

as the price per unit good because each bidder i needs to pay pxi when receiving the allocation xi. This
mechanism can be generalized to general networks and general polyhedrons [13, 22]. In our special
setting, the mechanism is described by the following definition.

DEFINITION 1 Our environment has multiple constraints of the following form: for each resource
constraint e ∈ E, there is a set of bidders Ie and the allocations need to satisfy

∑

i∈Ie xi ≤ C.
In the mechanism, each bidder i submits a bid bei and a requested amount rei for each constraint e

where i ∈ Ie. For constraint e, we use the following allocation. For i ∈ Ie,

• if
∑

k: k∈Ie b
e
k > 0 then xei = C

bei∑
k: k∈Ie

be
k
;

• If
∑

k: k∈Ie b
e
k = 0 and

∑

k: k∈Ie r
e
k ≤ C then xei = rei , else, set xei = 0.

A bidder i’s payment is
∑

e:i∈Ie b
e
i and her final allocation is xi = mine:i∈Ie x

e
i .

In the game defined above, because all the resources have the same capacity, the condition for Nash
equilibrium becomes simpler than that for more general polyhedrons. We can apply the condition of
equilibrium for the general case to our environment to get the following lemma.

LEMMA 2 There always exists a Nash equilibrium for the game defined by Definition 1. An allocation
vector ~x, a bid vector ~b and a request vector ~r is a Nash solution if and only if:

U ′
i(xi)(1− xi

C
) =

∑

e:i∈Ie p
e for xi > 0

and U ′
i(0) ≤

∑

e:i∈Ie p
e for xi = 0

(2)

where pe = 1
C

∑

i∈Ie b
e
i .

Furthermore, the condition above is exactly the condition of the following convex optimization prob-
lem

maximize
∑

i

∫ xi

0 U ′
i(y)(1− y

C
)dy

over xi ≥ 0 for i = 1, 2, . . . , n
subject to

∑

i∈Ie xi ≤ C for e ∈ E.
(3)

The allocation vector ~x in Nash equilibrium is unique if all utility functions Ui(xi) are nondecreasing
and concave.

In Lemma 2, we stated conditions for general concave utilities Ui. In our setting, the utilities are linear,
so we can replace U ′

i(xi) with vi. Even with general concave utilities, we can see that (3) is trivially
implied by (2) because of the KTT conditions. The proof of Lemma 2 is a direct application of [13].
One can show this by deriving from the “first-order” condition for each bidder i’s payoff in a similar
way as deriving equation (1). We also refer to [12] for a formal proof.

In Section 4 we will combine this mechanism with a VCG mechanism to construct our main auction.

3 Revenue Upper Bounds for Single-Item Sales

We start our investigation of the optimal revenue of non-truthful auctions by considering the case of
single-item auctions. In this section, we present our revenue upper bounds for the classes of quasi-
proportional auctions and weakly monotonic auctions. This will establish fundamental bounds on the
best possible revenue guarantee that may be achieved by the respective classes of auctions.
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3.1 Quasi-Proportional Mechanisms

Our first result is for the class of quasi-proportional sharing auctions.

DEFINITION 2 An auction is said to be a quasi-proportional sharing auction if it uses the following
allocation rule: given a non-decreasing and concave function f : IR+ → IR+, the allocation to each buyer

i is given by xi =
f(bi)∑
j f(bj )

and each buyer pays his own bid, i.e. pi = bi.

Allocation rules of this form are commonly referred in literature as success functions with various
regularity properties established in previous work, e.g. [11, 26]. The special case of quasi-proportional
sharing where f(w) = wr, for 0 ≤ r ≤ 1, is often referred to as Tullock auctions or contests, in
recognition of an early work on such allocations [28].

THEOREM 1 For every increasing function R : IR+ → IR+ satisfying limv→∞ R(v) = ∞ and every
quasi-proportional sharing auction, there exists an integer n > 1 and a valuation vector ~v ∈ IRn

+ such
that the revenue in Nash equilibrium is less than R(v(1)), where v(1) is the highest buyer’s valuation.

This result shows that no quasi-proportional sharing can generate a revenue that increases with
v(1) and tends to infinity as v(1) → ∞, assuming that v(1) is the largest valuation, and all other
valuations are fixed. In particular, while Mirrokni et al [18] show that for the case of two bidders,
proportional sharing can guarantee a revenue of Ω(

√
v(1)), using our result, it follows that this cannot

be guaranteed in the general case of an unlimited number of bidders. This essentially shows that for
quasi-proportional sharing mechanisms, the worst-case revenue is O(v(2)), where O(v(2)) denotes the
second highest buyer’s valuation. Interestingly, proportional sharing guarantees a revenue of at least
1
2v(2) (simple fact showed in Appendix A.4), and is thus in this sense optimal.

The proof of Theorem 1 is provided in Appendix A.3.

3.2 Weakly Monotonic Auctions

We now study a more general class of mechanisms that we call weakly monotonic auctions. This is
a class of auctions that includes both quasi-proportional and anonymous truthful dominant strategy
auctions as special cases. An optimal revenue bound for truthful auctions was given by Lu, Teng and
Yu [15]. Our result show that the same bound holds for a larger class of mechanisms with weaker
incentive constraints. It is surprising that very weak and seemingly trivial properties of mechanisms
are enough to give the same revenue upper-bound as for dominant-strategy auctions.

We first introduce some notations. We assume that each bidder i can bid a value bi ≥ 0 and the
allocation and payment rules are given by non-negative functions xi(b1, b2, . . . , bn) and pi(b1, b2, . . . , bn),
where

∑

i xi ≤ 1. We assume that xi and pi are differentiable almost everywhere. We further assume

that if bi = 0, then xi(~b) = pi(~b) = 0. That is, bidders can always bid 0 to satisfy the individual
rationality constraint.

Now, consider a bidder i with the valuation vi ≥ 0 and given bid vector of other bidders ~b−i. Bidder
i’s best response is the set of values bi that maximize the payoff vixi(bi,~b−i) − pi(bi,~b−i). If vi = 0,
then bi = 0 is a best response regardless of ~b−i. For each bidder i, we call the function fi(vi,~b−i),
the best response function of bidder i that depends on the valuation vi, and the bids of others ~b−i if
fi(0,~b−i) = 0 and fi(vi,~b−i) is one of the elements in the best response set.

DEFINITION 3 We call a mechanism (given by functions {xi, pi}) weakly monotonic if the following
conditions are true:

(A1) For every ~b−i, bidder i has a best response function fi(vi,~b−i) that is continuous and differentiable
with respect to the valuation vi.
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(A2) Given any ~b and the indexes i and j such that bi < bj, there exist ε > 0 and b′i, both depending

on ~b−i, such that b′i ≥ bj and xi(b
′
i,
~b−i) > xi(bi,~b−i) + ε.

(A3) Given a bidder i and ~b−i, then there exists B > 0 such that if bi > B, then pi(~b) ≥ pj(~b) for every
j 6= i.

Remark Among the conditions above, condition (A1) may appear to be the strongest one. How-
ever, without the continuity property in the best response function, there may not exist a pure Nash
equilibrium. Therefore, (A1) is a natural condition to guarantee existence of pure Nash equilibrium.
Condition (A1) holds for many known auctions, including truthful auctions and quasi-proportional
mechanisms. For truthful auctions, fi(vi,~b−i) = vi is a valid continuous best response function; for
quasi-proportional sharing mechanisms, the bidder i’s payoff function is a concave function of bi and
it is not hard to see that the unique best response for each vi gives a continuous function (and differ-
entiable almost everywhere). More generally, if xi and pi satisfy some differentiability and continuity
properties and the payoff function for each bidder always has a unique optimal point, then (A1) is
automatically true.

Conditions (A2) and (A3) can be understood as conditions for “monotonicity” properties of a
mechanism. In particular, (A2) means that if a bidder i’s bid is not the highest, this bidder can always
increase his bid for some amount to increase the resource he gets by at least ε. (A3) says that if bidder
i keeps increasing his bid, he will sooner or later pay more than others.

Our revenue upper-bound for weakly monotonic auctions is stated in the following theorem.

THEOREM 2 For every weakly monotonic auction satisfying assumptions (A1)-(A3) and every con-
stant α > 0, there exists a valuation vector ~v and a bid vector ~b that is in Nash equilibrium of the game
and the revenue in this equilibrium is less than α

v(1)
log(v(1)+1) , where v(1) is the highest buyer’s valuation.

Remark The result implies that the revenue guarantee for the class of weakly monotonic auctions is
o(

v(1)
log(v(1)+1)), which is the same as for the narrower class of truthful auctions as the bound coincides with

that of Lu, Teng and Yu [15], which was derived for the class of truthful auctions. Note that [15] also
established that there exists a truthful auction that achieves the asserted revenue bound. Therefore,
perhaps surprisingly, we observe that relaxing the solution concept cannot guarantee larger revenue.

It is noteworthy that the above theorem also resolves an open question posed by Mirrokni, Muthukr-
ishnan and Nadav [18] on the existence of quasi-proportional sharing that would guarantee Ω(v(1))
revenue. Our result tells that this is impossible as quasi-proportional sharing is a weakly monotonic
auction.

In the rest of this section we prove Theorem 2.

Proof of Theorem 2 We will prove the revenue upper-bound for the game with two bidders. The
main idea is to consider a valuation vector (v1, v2) such that the bid vector of the form (b1, 1) is an
equilibrium. We will show that for every v1 large enough such v2 and b1 always exist. In this case, b1
is a best response of bidder 1 given b2 = 1 is fixed. This will allow us to establish a relation between v1
and the payment p1(b1, 1) and the allocation x1(b1, 1) via the envelope theorem (Theorem 2 of [17]).
The relation is similar to the formulation in truthful auctions. This is the key step in proving our
upper bound.

We first need the following lemma, whose proof is provided in Appendix A.1. We note that to
prove this lemma, we need to use conditions (A1) and (A2) in Definition 3.

7



LEMMA 3 Given a weakly monotonic auction there exists T0 > 0 such that the following is true.
For every t > T0 there exist b1(t) ≥ 1 and v2(t) such that (b1, b2) = (b1(t), 1) is in equilibrium of the
auction where bidders’ valuation vector is (v1, v2) = (t, v2(t)).

To prove Theorem 2, we will assume a contradiction that the revenue obtained in every equilibrium
is at least α

v(1)
log(v(1)+1) .

Using this assumption and condition (A3), we can show that there exists T > T0 such that if t ≥ T
then p1(b1(t), 1) > p2(b1(t), 1). This is true because by condition (A3) there exists B such that if
b1(t) > B, then p1(b1(t), 1) > p2(b1(t), 1). All we need to show now is that if t is large enough, then
b1(t) > B. Assume that b1(t) < B for all t, then the total revenue p1(b1(t), 1) + p2(b1(t), 1) is bounded
while v(1) > t is unbounded. Therefore, the total revenue cannot always be at least α

v(1)
log(v(1)+1) .

We now consider v1 = t ≥ T . Because p1(b1(t), 1) > p2(b1(t), 1), p1(b1(t), 1) is at least the total
revenue, which by the contradiction assumption is at least α

v(1)
log(v(1)+1) . Thus,

p1(b1(t), 1) ≥
α

2

v(1)

log(v(1) + 1)
≥ α

2

t

log(t+ 1)
. (4)

We now derive a relation between p1(b1(t), 1), v1(b1(t), 1) and t. We define the following two-variable
function, which represents the payoff for buyer 1,

u(t, w) = t · x1(w, 1) − p1(w, 1).

Let V (t) = maxw u(t, w) and w∗(t) = argmaxwu(t, w). Because the best response of bidder 1 is b1(t),
we have w∗(t) = b1(t). We will use the envelope theorem for the function V (t) = maxw u(t, w), which
allows us to write3

V (s) = V (T ) +

∫ s

T

∂u(t, w∗(t))

∂t
dt.

Now, w∗(t) = b1(t) and, thus ∂u(t,w∗(t))
∂t

= x1(b1(t), 1). In the remainder, we slightly abuse the notation
by writing x1(t) and p1(t) in lieu of p1(b1(t), 1) and x1(b1(t), 1). From the envelope formula above, we
have

V (s) = V (T ) +

∫ s

T

x1(t)dt.

We know that V (s) is the payoff of bidder 1 when her valuation is s. Thus, V (s) = sx1(s) − p1(s),
which implies

p1(s) = sx1(s)− V (s) = sx1(s)−
∫ s

T

x1(t)dt− V (T ). (5)

One can see that (5) has a similar formulation as in truthful auctions. In fact such relation in truthful
auction can also derived from the envelope theorem (see [17]). Now, functions p1(s) and x1(s) are
differentiable almost everywhere, thus, one can take the derivative of (5) to obtain

p′1(s) = sx′1(s) almost everywhere, which implies x′1(s) =
p′1(s)

s
almost everywhere.

By taking the integral of x′(s) from T to ∞ we have

1 >

∫ ∞

T

x′(s)ds =

∫ ∞

T

p′1(s)

s
ds =

p1(s)

s

∣

∣

∣

∣

∞

T

+

∫ ∞

T

p1(s)

s2
dv(s) ≥

∫ ∞

T

p1(s)

s2
dv(s). (6)

However, because of (4) we have p1(s) ≥ α
2

s
log(s+1) , for every s ≥ T . Thus,

∫ ∞

T

p1(s)

s2
ds ≥ α

2

∫ ∞

T

1

s log(s+ 1)
ds = ∞

which contradicts (6). By this, we complete the proof.

3The function u(·, w) is applied to f(x, ·) in Theorem 2 of [17].
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4 General Setting

In this section, we consider a general auction setting which is captured by a downward-closed set system
F as introduced in Subsection 2.1. Our revenue benchmark is defined as follows.

DEFINITION 4 Given a downward-closed set system F and a valuation vector ~v, let ~v(2) be the
valuation vector that is identical to ~v except for the highest valuation replaced by the second highest
valuation. Our revenue benchmark is then defined as follows:

S2(~v) = max
F∈F

∑

i∈F
v
(2)
i .

In other words, the revenue benchmark is the optimal social welfare under the distorted valuation
vector ~v(2). For example, in the single-item auction, the benchmark gives the second highest valuation
and in the digital goods auction setting, it essentially gives the total valuation except for the highest
one valuation. Note that S2 is essentially the best revenue benchmark that one may hope for.4

Our main result in this section is to provide a mechanism that is S2(~v) competitive. One important
feature of our mechanism is that each bidder needs to bid a roughly n/2 dimensional vector, in contrast
to the single-item auctions discussed in the previous section, where each bidder submits a single scalar
bid. In this section, we also show that truthful dominant strategy mechanisms can only give a log n
approximation of S2. Our results are given formally in the following two theorems.

THEOREM 3 There exists a mechanism whose allocation vector is always feasible and in the Nash
equilibrium guarantees the revenue of at least S2(~v)/32. Furthermore, the Nash equilibrium can be
found in polynomial time and there exists a distributed learning that converges to an arbitrarily small
neighborhood of the Nash equilibrium.

THEOREM 4 Truthful mechanisms cannot generate a revenue larger than Ω(S2(~v)
logn ). Furthermore,

the log n factor is tight, that is, there exists a truthful mechanism that generates a revenue of Ω(S2(~v)
logn ).

The proof of Theorem 4 is provided in Appendix A.5. The revenue upper bound is proved for the
special case of digital goods in a similar way to the proof in [21].

In the rest of this section we will prove Theorem 3. We will only focus on defining the mechanism
and proving the bound on the revenue while the learning issue is discussed in Appendix B.

Outline of the main idea The main idea of our mechanism leverages an observation about the
revenue of proportional sharing mechanisms that can be intuitively described as follows. Given a Nash
equilibrium allocation vector ~x of the proportional sharing mechanism for a set of resource constraints
E, let N0 be the set of bidders who obtain a “small” fraction of resource, then the revenue is at least a
constant factor of the maximum social welfare for the set of bidders N0 subject to the constraints E.
The idea is then to reduce the available resource to create more competition among the bidders such
that in an equilibrium of proportional sharing, “many” bidders receive a small fraction of resource.
However, at the same time, we do not want to reduce the resource too much so that we can still
generate large enough revenue. We will take a random partition of the bidders into 2 groups and add
the extra constraint that only sets of bidders in the same group are feasible. In other words, we take
a random partition of bidders and consider the new set system induced by the original set system and
the partition.

4The only case where S2(~v) does not give a high value is when v(1) � S2(~v) where v(1) is the highest valuation. How-

ever, once we have a competitive mechanism for S2(~v), it is easy to construct a mechanism that is max{S2(~v),
v(1)

log(v(1)+1)
}

competitive by combining with the truthful mechanism of Lu et al [15] with a positive probability.
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We will prove a technical lemma showing that the expected maximum social welfare in both groups
of the partition is at least a constant factor of the S2 benchmark. This is a probability lemma that is
of interest in its own right.

Now given the above described idea and the technical lemma (Lemma 5), one can use the general
proportional sharing mechanism directly for the downward-closed set system. However, it is not known
that there exist converging dynamics for this general setting. We would like to design an auction with
a simpler structure. The idea is to run VCG mechanism first on the two set systems induced by the
partition, which gives us two winning sets. We then use proportional sharing for the two winning
sets. The constraints of this environment are now simpler and can be seen as in the framework of
Definition 1. However, one problem is that by running proportional sharing after VCG, truth telling
is no longer an equilibrium strategy. This is because the loosing bidders of VCG can try to bid higher
to enter the second stage, in which they might get the resource for cheaper prices. To fix this problem,
we will modify the proportional sharing mechanism by asking each bidder to make an extra payment,
equal to the product of the price per unit good (unit price) in the first-stage VCG mechanism and the
amount of resource received in the second stage. This way, we can show that bidding truthfully is a
Nash equilibrium in the first stage of our mechanism.

The Mechanism

As discussed above, we first define the proportional mechanism with reserve unit price that we will use
in our main mechanism.

DEFINITION 5 Proportional Sharing with Reserve Unit Prices (~τ). The mechanism is for
a set of resource constraints

∑

i∈Ie xi ≤ C, for e ∈ E, and given reserve unit price τi for each bidder i.
The mechanism is described as in Proportional Sharing Mechanism Definition 1, but we add an extra
payment for each bidder i for the amount τixi. That is, each bidder i needs to pay

∑

e:i∈Ie b
e
i + τixi to

receive xi.

Remark In proportional sharing with reserve unit prices, the payoff of bidder i is vixi−
∑

e b
e
i −τixi =

(vi − τi)xi −
∑

e b
e
i . One can think of this game as if bidder i’s valuation were vi − τi, thus, the Nash

equilibrium condition and the result on the convergence of the dynamics in Appendix B do not change.

We are now ready to define the mechanism.

DEFINITION 6 (Two Stage Mechanism (α)) Given a parameter α < 1
2 , the mechanism is de-

scribed as follows.

1. Randomly partition the set of bidders into two parts N1 and N2 by flipping a fair coin for each
bidder.

2. Run VCG mechanism on two set systems induced by N1 and N2 with the scaling constant α.5 Let
W1 and W2 be the two winning sets. Let α · τi be the payment of bidder i in this mechanism.

3. For the set of constraints xi + xj ≤ C = 1 − 2α, for all i ∈ W1 and j ∈ W2, run proportional
sharing with reserve unit price τi for each bidder i as defined in Definition 5 .

To give an intuition, we describe the proportional sharing for the particular set of constraints
xi + xj ≤ C = 1 − 2α, for all i ∈ W1 and j ∈ W2. In this case, the proportional sharing mechanism

requires each bidder i ∈ W1 to submit bi,j for all j ∈ W2 and vice versa. Denote xi,j = C
bi,j

bi,j+bj,i
. The

5Recall that a winning bidder i receives xi = α instead of 1. (See Subsection 2.2).
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final allocation that bidder i receives is xi = minj∈W2 xi,j , for i ∈ W1, and vice versa with respect to
W1 and W2.

We first show the following lemma about the structure of the equilibrium of this mechanism.

LEMMA 4 The outcome of the mechanism is feasible. Bidding truthfully in the first stage is an
equilibrium and a bid vector ~b and an allocation ~x in the second stage are in equilibrium if and only if

(vi − τi)(1− xi

1−2α ) =
∑

e:i∈Ie p
e if xi > 0

and vi − τi ≤
∑

e:i∈Ie p
e if xi = 0.

(7)

The revenue of the mechanism is
∑

i ατi + (1− 2α)
∑

e p
e +

∑

τixi.

In this lemma, the constraints are xi + xj ≤ C = 1 − 2α, for i ∈ W1 and j ∈ W2, we can think of

e = (i, j) and pi,j is the fraction
bi,j+bj,i

1−2α (see Definition 1 for a more formal description).

Proof. To show that the outcome allocation is feasible, we observe that in the first stage of the
mechanism, bidders in the feasible sets W1 and W2 are given α ≤ 1/2, and in the second stage each
bidder i ∈ W1 gets xi and each bidder j ∈ W2 gets xj . We need to make sure that the total amount of
resource that i and j get is at most 1. But we always have xi + α+ xj + α ≤ 1 because in the second
stage of the mechanism the constraints are xi + xj ≤ 1− 2α, for i ∈ W1 and j ∈ W2.

Consider first a loosing bidder i in the first stage of the mechanism. Because in the first stage,
we run a VCG mechanism, if bidder i would like to increase his bid to be in the winner set, he needs
to pay a unit price that is at least his valuation. (See Lemma 1). That is, τi ≥ vi. However, in the
second stage of the mechanism, he needs to pay more than τixi for receiving xi, thus bidder i’s payoff
is negative. Therefore, bidder i is better off bidding his true valuation.

Consider a winning bidder j of the first stage of the mechanism. By decreasing his bid, bidder j
might become a “loser” and thus cannot participate in the second stage, which makes his payoff 0. In
other cases, the reserve unit price τi and the set of bidders that he needs to compete with in the second
stage are independent of his bid. By this, we show that bidding truthfully in the first stage is a Nash
equilibrium.

The proof of the condition for Nash equilibrium in the proportional sharing with reserve prices is
exactly the same as in the proof of Theorem 2. The formula for the revenue follows trivially from the
mechanism.

The Revenue of Two Stage Mechanism

We begin with the analysis of the revenue obtained in Nash equilibrium of the mechanism by the
following probability lemma, which is a key to establish our result.

LEMMA 5 Given values a1 ≥ a2 ≥ · · · ≥ an ≥ 0, consider a random partition of these values into 2
groups (by flipping an independent fair coin for each ai). Denote the sums of ai in each group by the
random variables S1 and S2. It is true that E(min{S1, S2}) ≥ 1

6

∑n
i=2 ai.

Remark The proof of this lemma is provided in Appendix A.2. Note that it is important that the
lower bound of E(min{S1, S2}) in the formula above does not include a1. It is easy to see that the
lemma otherwise will not be true; for example, consider a1 = 1 and ai = 0 for i ≥ 2. The proof of the
lemma uses a subtle inductive argument, which may be of interest in its own right. In fact, the lemma
is a generalization of the technical lemma in the work of Goldberg et al [8] for digital good auctions.

We are now ready to prove our main result.
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Proof of Theorem 3 We will show that the revenue of Two Stage Mechanism (α) with α = 1/4 is
at least S2(~v)/32.

In this proof we use the following notation. Given a set A of bidders and a valuation vector ~v, we
denote the total valuation

∑

i∈A vi by v(A). We also assume that v1 ≥ v2 ≥ . . . ≥ vn. Let O be a

feasible set such that v(2)(O) is maximum, i.e. v(2)(O) = S2(~v). As described in the definition of the
mechanism, the sets N1 and N2 form a random partition of the set of bidders, and W1 and W2 are the
winning sets of the set systems induced by N1 and N2, respectively. Assume that under this partition,
the set O is divided into O1 and O2.

S2(~v) = v(2)(O1) + v(2)(O2)

O1 O2

W1

W2

N1 N2

Figure 1: Partitioning of the set system.

We have
v(W1) ≥ v(O1) ≥ v(2)(O1) and v(W2) ≥ v(O2) ≥ v(2)(O2).

Therefore,
min{v(W1), v(W2)} ≥ min{v(2)(O1), v

(2)(O2)}. (8)

Assume that v∗ = maxi∈O v
(2)
i , we know that v∗ ≤ v2 and because of Lemma 5, we have

E(min{v(2)(O1), v
(2)(O2)}) ≥

1

6
(v(2)(O)− v∗) ≥ 1

6
(v(2)(O)− v2). (9)

On the other hand, it is not hard to see that

E(min{v(W1), v(W2)}) ≥
1

2
v2. (10)

Combining (8), (9) and (10) we have

8E(min{v(W1), v(W2)}) ≥ v(2)(O). (11)

In the rest of the proof we show that with α = 1/4, the mechanism defined in Definition 6 generates
a revenue of at least 1

4 min{v(W1), v(W2)}. With this and (11), the main theorem will be proved.
Now consider the second stage of the game. Let ~x be the allocation in the equilibrium, according

to Lemma 4, we have
(vi − τi)(1 − xi

1−2α) =
∑

e:i∈Ie p
e if xi > 0

and vi − τi ≤
∑

e:i∈Ie p
e if xi = 0.

(12)

Let N0 be the set of bidders such that xi ≤ 1−2α
2 . For each i ∈ N0, we have

(vi − τi)
1

2
≤ (vi − τi)

(

1− xi
1− 2α

)

≤
∑

e:i∈Ie

pe. (13)
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Now, our constraints are xi + xj ≤ 1 − 2α for all i ∈ W1 and j ∈ W2, therefore, either all xi
for i ∈ W1 or all xj for j ∈ W2 are less than 1−2α

2 . Also, because our constraints are of the form
xi + xj ≤ 1− 2α, for i ∈ W1 and j ∈ W2, we can identify e with a pair i, j. Therefore, we can rewrite
(13) for either i ∈ W1 or j ∈ W2, which give us

either
∑

j∈W2

pi,j ≥ 1

2
(vi − τi) ∀ i ∈ W1 or

∑

i∈W1

pi,j ≥ 1

2
(vj − τj) ∀ j ∈ W2.

In either case by summing over the other index we obtain

either
∑

(i,j)∈W1×W2

pi,j ≥ 1

2

∑

i∈W1

(vi − τi) or
∑

(i,j)∈W1×W2

pi,j ≥ 1

2

∑

j∈W2

(vj − τj).

Using Lemma 4, the revenue R obtained in both stages of the mechanism satisfies

R = α
∑

i

τi + (1− 2α)
∑

(i,j)∈W1×W2

pi,j +
∑

i

τixi ≥ α
∑

i

τi + (1− 2α)
∑

e

pe.

Therefore, for α = 1/4, we have

R ≥ 1

4





∑

i

τi +min







∑

i∈W1

vi − τi,
∑

i∈W2

vi − τi









 ≥ 1

4
min







∑

i∈W1

vi,
∑

i∈W2

vi







.

By this and (11), we complete the proof.

5 Conclusion

We studied the optimal auction design in the prior-free framework. We showed that for selling a single
item, allowing for optimal auction design within a wide class of weakly monotonic auctions cannot
yield a larger revenue than within the narrower class of truthful auctions. On the contrary, in a more
general setting of downward-closed set systems, if we allow bidders to submit vector bids, then there
exists a mechanism that obtains a constant factor of the optimal social welfare in the game where the
highest valuation is replaced by the second highest valuation. This mechanism is in a sense “learnable”
by polynomial algorithms and does not require any cross-reporting used in the implementation theory.
The benchmark is essentially the best revenue benchmark in the prior-free framework. This stands
in a sharp contrast to weakly dominant strategy mechanisms that cannot achieve better than log n
approximation for this benchmark.

There are several interesting directions for future work. For example, could one obtain a tight
revenue upper-bound for the case of selling of multiple indistinguishable items using weakly monotonic
auctions? Another interesting question is: What is the optimal non-truthful auction if each bidder is
only allowed to submit a vector bid of dimension k ≥ 1 that is independent of the number of bidders?
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Appendix

A Missing Proofs

A.1 Proof of Lemma 3

Recall the condition (A2) in Definition 3 for the bid (b1, 1), where b1 < 1: there exist ε > 0 and b′1,
which does not depend on b1, such that b′1 ≥ 1 and x1(b

′
1, 1) > x1(b1, 1) + ε. Let

T0 =
p1(b

′
1, 1)

ε
.

Given t, let b1(t) be the best response of bidder 1 when his valuation is v1 = t and bidder 2 bids 1.
Assume that there exists t > T0 such that b1(t) < 1. Now, the payoff of bidder 1 when bidding b1(t) is

t · x1(b1(t), 1) − p1(b1(t), 1) ≤ t · x1(b1(t), 1). (14)

On the other hand, the payoff of bidder 1 when bidding b′1 is

t · x1(b′1, 1) − p1(b
′
1, 1) > t · (x1(b1(t), 1) + ε)− p1(b

′
1, 1). (15)

Clearly when t · ε > p1(b
′
i, 1), then the right-hand side in (15) is larger than the right-hand side in (14),

which implies a contradiction because b1(t) were the value to maximize bidder 1’s payoff. Thus, for
t > T0, b1(t) ≥ 1.

Clearly, the argument above can be generalized to the prove following general argument. Let
f1(v1, b2) is a best response function of bidder 1 when his valuation is v1 and bidder 2 bids b2. Assume
f1(v1, b2) < b2, then there exist V , depending on b2, such that if v′1 > V then f1(v

′
1, b2) ≥ b2. Because

of the symmetry, this argument holds if we exchange the role of bidder 1 and bidder 2. Thus we can
apply this argument to bidder 2 best response to the bid b1(t) ≥ 1.

In particular, for a given v2, consider f2(v2, b1(t)) (the best response of bidder 2 if his valuation is
v2, and bidder 1 bids b1(t)). If f2(v2, b1(t)) < b1(t), then there is v′2 such that f2(v

′
2, b1(t)) ≥ b1(t) ≥ 1.

In both cases there exist v such that f2(v, b1(t)) ≥ 1. But we also know that f2(v, b1(t)) = 0 and f2 is
continuous. Therefore, there exists a value, v2(t), such that f2(v2(t), b1(t)) = 1.

Thus, also because f1(t, 1) = b1(t), we have when (v1, v2) = (t, v2(t)), the bid (b1, b2) = (b1(t), 1) is
in an equilibrium. This proves the lemma.

A.2 Proof of Lemma 5

To prove the lemma, we will use an inductive argument. Note that we will need to consider a more
general setting to make the induction argument work. Consider the following n random variables
X1,X2, . . . ,Xn, where Xi is either bi or ci each with 1/2 probability, where bi and ci are assumed
to be positive real values. Without loss of generality, we assume 0 ≤ bi ≤ ci. Indeed, we have
E(
∑

iXi) =
∑

i
bi+ci

2 . We would like to bound the conditional expectation of
∑

iXi given that
∑

i Xi

is less than
∑

i
bi+ci
2 . Let us define

V (X1,X2, . . . ,Xn) = E(
∑

i

Xi|
∑

i

Xi <
∑

i

E(Xi)). (16)

Note that in the case bi = 0 and ci = ai, we have E(min{S1, S2}) ≥ V (X1,X2, . . . ,Xn) for S1 and S2

defined in our lemma, where the equality holds provided that
∑

iXi = E(
∑

iXi) with probability 0.
We will now show that we can replace any two random variables, without loss of generality, say

X1 and X2 by a single variable Y of the same type: Y ∈ {b, c} each with 1/2 probability such that
E(Y ) = E(X1 +X2) and V (Y,X3, . . . ,Xn) ≤ V (X1,X2, . . . ,Xn).
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To see this, we will expand V (X1,X2, . . . ,Xn) with respect to the values of X1 and X2. To simplify
the formulas, let S =

∑n
i=3Xi, and m =

∑n
i=1E(Xi) =

∑n
i=1

bi+ci
2 . We have

V (X1,X2, . . . ,Xn) =
1

4
E(S + c1 + c2|S + c1 + c2 < m) +

1

4
E(S + b1 + b2|S + b1 + b2 < m) +

+
1

4
E(S + b1 + c2|S + b1 + c2 < m) +

1

4
E(S + c1 + b2|S + c1 + b2 < m)

=
1

4
α1 +

1

4
α2 +

1

4
α3 +

1

4
α4

where α1, α2, α3 and α4 denote the conditional expectations in the above equation in the respective
order. Consider the following simple optimization problem:

minimize F (x) = xα1 + xα2 + (1/2 − x)α3 + (1/2 − x)α4

over 0 ≤ x ≤ 1/2.

Since F (x) is a linear function, the minimum will take value at either x∗ = 0 or x∗ = 1/2. If x∗ = 0,
then we consider the random variable Y taking either value b1+c2 or value b2+c1 with 1/2 probability.
Similarly, if x∗ = 1/2, then we consider the random variable Y taking either value b1+b2 or value c1+c2
with 1/2 probability. In both cases, we have E(Y ) = E(X1 + X2) and F (x∗) = V (Y,X3, . . . ,Xn).
Therefore, we can always replace X1,X2 with Y such that

V (Y,X3, . . . ,Xn) = F (x∗) ≤ F (1/4) = V (X1,X2, . . . ,Xn).

We are now ready to prove the lemma. First, observe that it is without loss of generality to prove
the lemma for the case a1 = a2. This is because by reducing a1 to a2, we can only decrease the value of
E(min{S1, S2}), while the value

∑n
i=2 ai remains unchanged. As noted above, if we let Ai be a random

variable taking values 0 and ai each with probability 1/2, then E(min{S1, S2}) ≥ V (A1, A2, . . . , An).
We will use the inductive argument above to gradually merge the random variables Ai until we are

left with only 2 variables whose means are close to each other. Now, because two random variables are
merged into a new one such that the total of the means does not change, we can think of this merging
process as an algorithm for putting jobs of different sizes together. We would like to obtain only 2
variables at the end, so this is a scheduling problem for two machines. It is well known (straightforward
to see) that if we apply a greedy algorithm that schedules jobs in decreasing order of sizes to the machine
with lower load, and with the condition that the two largest jobs are equal, a1 = a2, then the load
of one machine is at most twice the load of the other. In other words, we can find an algorithm to
merge the random variables such that at the end we obtain M1 and M2, where Mi is either αi or βi
each with probability 1/2 and

E(M1 +M2) = E(
∑

i

Ai) =
1

2
(a2 +

n
∑

i=2

ai) ≥
1

2
(

n
∑

i=2

ai).

Furthermore,
E(M2)

2
≤ E(M1) ≤ 2E(M2)

and
E(min{S1, S2}) ≥ V (A1, A2, An) ≥ V (M1,M2).

Consider V (M1,M2) and, without loss of generality, assume that α1 + β2 ≤ α2 + β1. We have

V (M1,M2) =
1

2
(α1 + α2) +

1

2
(α1 + β2) ≥

1

2
(α2 + β2) = E(M2) ≥

1

3
E(M1 +M2).
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Therefore, we have

E(min{S1, S2}) ≥ V (A1, A2, . . . , An) ≥ V (M1,M2) ≥
1

6

n
∑

i=2

ai.

A.3 Proof of Theorem 1

In order to arrive at a contradiction, let us assume that there exist a function R(·) and a function f(·)
that is concave, monotonic and increasing such that the revenue at the Nash equilibrium is at least
R(v1). We will separately consider the cases of all-pay and winner-pay auctions. The main idea of the
proof is to first derive a relation that holds at the Nash equilibrium, and then come up with a valuation
profile for which the revenue cannot be larger than R(v1).

The payoff of buyer i is vi
f(bi)∑
j f(bj)

− bi. Taking the partial derivative with respect to bi and noting

that the payoff must be non-negative, we have that the following relations hold at Nash equilibrium:

vi(1− xi)f
′(bi) =

∑

j

f(bj) if xi > 0 (17)

vixi − bi ≥ 0. (18)

In the following, we consider three distinct cases with respect to the function f(·), and in each, we
use different arguments to show that the auction is not competitive to R(v1).

Case 1: f ′(0) = ∞ (e.g., f(w) = wr, 0 < r < 1). In this case, we will consider buyers’ valuations
v, 1, 1, . . . , 1, for v ≥ 1. Because of the symmetry, at Nash equilibrium, buyer 1 is allocated a positive
value x1 and all other buyers are allocated a positive value x2. Therefore, xi < 1/2 for i 6= 1. Together
with the condition (17), we have

1

2
f ′(b2) ≤ 1 · (1− x2)f

′(b2) = v(1− x1)f
′(b1) < vf ′(b1).

Therefore,
f ′(b2) < 2vf ′(b1).

Since we assume that the auction is competitive to R(v1) and we can collect at most a revenue of
1 from every buyer except buyer 1, there exists a value v∗ such that if we take v > v∗, then b1 > 1. It
follows, f ′(b2) < 2vf ′(1), and thus b2 > (f ′)−1(2vf ′(1)) > 0. The last inequality is true because of the
assumption f ′(0) = ∞.

Now, we have derived that b2 is greater than a positive constant that is independent of the number
of buyers n. This leads to a contradiction, because as n goes to infinity, the payoff of buyer 2, x2 − b2
goes to a negative value, which contradicts (18).

Case 2: f ′(0) = c < ∞ and f(∞) = ∞ (e.g., f(w) = w or f(w) = log(w + 1)). In this case, we also
consider the valuation vector of the form (v, 1, 1, . . . , 1), for v ≥ 1. From condition (17), we have

∑

j

f(bj) = (1− x2)f
′(b2) < f ′(0) = c.

The last inequality follows from the fact that f(·) is a concave function. Thus, we have f(b1) < c, and
therefore, b1 cannot go to infinity as v tends to infinity, which is a contradiction.
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Case 3: f ′(0) = c < ∞ and f(∞) < ∞. Without loss of generality, we can assume f(∞) = 1 (e.g.
f(w) = w/(w + 1)).

In this case, we will consider the following valuation vector (v0, v0, . . . , v0), for v0 > 0. Then, at
Nash equilibrium, every buyer is allocated 1/n, and pays b0 that satisfies

v0(1− 1/n)f ′(b0) = n/2.

From this, we obtain

v0f
′(b0) =

n2

2(n − 1)
. (19)

Let w∗ be the value such that f(w∗) = 1/16. We note that w∗ only depends on f(·), not on the
number of buyers n. We will show that if we increase the valuation of buyer 1 and keep all other
buyer’s valuations fixed to v0, then at Nash equilibrium, the payment of buyers with valuation v0 will
be at least w∗. For now, assume that this is true. Then, this will lead to a contradiction, because

x1 =
f(b1)
∑

j f(bi)
≤ 1

1 + (n− 1)f(w∗)

and, thus, x1 goes to 0 as n goes to infinity. This means that given the valuation v1 of buyer 1, if
the number of buyers with valuation v0 < v1 increases, the revenue obtained from buyer 1 is at most
v1x1, which tends to 0. From this we conclude that the revenue that is extracted from buyer 1 cannot
be a function that only depends on v1 and v0, a contradiction to the assumption that the auction is
competitive to R(v1).

h(w)

g(w)
n2

2(n−1)

2

w∗ b0

Figure 2: w > w∗.

It remains only to show that at Nash equilibrium, each buyer 2, . . . , n, pays w such that w > w∗.
Because of the Nash condition (17), we have

v0(1− xi)f
′(w) = f(b1) + (n − 1)f(w).

We have xi < 1/2 and f(b1) ≤ 1, because of the condition on the present subclass of functions f that
we consider. Thus, 1

2v0f
′(w) < 1 + (n− 1)f(w), which is equivalent to

v0f
′(w) < 2(1 + (n − 1)f(w)). (20)

We will prove w > w∗ from (19) and (20). Consider two functions h(w) := v0f
′(w) and g(w) :=

2(1 + (n− 1)f(w)). (See Figure 2). v0f
′(w) is decreasing, while 2(1+ (n− 1)f(w)) is increasing, thus,

in order for (20) to be satisfied, w is at least the value where the two curves intersect. But we have

h(w∗) > h(b0) =
n2

2(n − 1)
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and

g(w∗) = 2(1 + (n− 1)f(w∗)) = 2

(

1 +
n− 1

16

)

≤ n2

2(n− 1)
if n > 2.

Therefore, the intersection of the two curves has to be at a point larger than w∗.

A.4 Revenue of Proportional Sharing in Single Item Setting

We note the following revenue guarantee provided by proportional sharing.

THEOREM 5 The revenue of proportional sharing is at least 1/2 of the second highest valuation.

Proof. For the proportional sharing mechanism, the condition for Nash equilibrium is that each buyer
i maximizes the payoff each buyer optimizes

vi
bi

∑

j bj
− bi.

Taking the derivative respect to bi we have

either vi(1− xi) =
∑

j

bj or bi = 0.

On the one hand, if the first case holds for i = 2, since v1 ≥ v2 ≥ · · · ≥ vn, we have x2 ≤ x1 and
thus, x2 ≤ 1/2. From this, and the condition for the Nash equilibrium, we have

∑

j

bj = v2(1− x2) ≥
1

2
v2.

On the other hand, if the second case holds for i = 2, notice that by non-negativity of a buyer’s payoff,
we have v2 ≤

∑

j bj, which completes the proof.

A.5 Proof of Theorem 4

We will prove the revenue upper bound for the special case of digital good auctions, i.e. for the the
resource constrains 0 ≤ xi ≤ 1 for every i.

We will use the Yao’s principle to reduce the proof for a worst case scenario of randomized truthful
mechanisms to the case of deterministic truthful mechanisms for valuations that are samples from a
distribution. It is well known that in single parameter settings, randomized truthful weakly dominant
strategy mechanism can be decomposed to deterministic truthful mechanism, which is a reserve price
auction [9]. That is, given price p, a bidder can either take the item with price p or leave it.

The distribution that we consider is vi = 1
k

with probability 1
n
, where k ∈ {1, 2, . . . , n}. It is

a straightforward calculation to see that the expected revenue from n bidders of any deterministic
truthful auction for this setting is at most n× 1

n
= 1.

However, we need to show that a constant revenue bound also holds for the cases where S2(~v) =
Ω(log n). The following simple argument will show that under the condition

∑

i vi ≥ log n − 2, the
expected revenue (denoted by R) can be at most 2. We have that the expected value and variance of
valuation vi are as follows

E(vi) =
1

n

n
∑

k=1

1

k
=

1

n
Hn

18



and

σ2(vi) =
1

n

n
∑

k=1

(

1

k
− Hn

n

)2

=
1

n

n
∑

k=1

1

k2
−
(

Hn

n

)2

≤ 2

n
.

Moreover,

Pr(

n
∑

i=1

vi < log n− t) < Pr(

n
∑

i=1

vi < Hn − t) ≤ nσ2(vi)

t2
≤ 2

t2
.

Thus, we obtain

Pr(

n
∑

i=1

vi ≥ log n− 2) ≥ 1

2
.

Now, we have

E(R) = E(R|
∑

vi < log n− 2) · Pr(
∑

vi < log n− 2)

+E(R|
∑

vi ≥ log n− 2) · Pr(
∑

vi ≥ log n− 2).

which implies

E(R|
∑

vi ≥ log n− 2) ≤ E(R)

Pr(
∑

vi ≥ log n− 2)
≤ 1

1/2
= 2.

Thus, we show that while S2(~v) can be at least
∑

i vi−1 ≥ log n−3, the revenue of a truthful mechanism
cannot be more than 2. This show that a better than O(log n) approximation is not possible.

We now give a mechanism attaining the log n factor. We first observe that in the setting of digital
good auctions, given a set of valuation v1 ≥ v2 ≥ . . . ≥ vn, we consider the F2 benchmark introduced
by [8]

F2(v) = max
i≥2

ivi.

Observe that

F2(v) ≥ ivi thus, vi ≤
1

i
F2(v).

Summing over 2lei ≤ n, we obtain

n
∑

i=2

vi ≤ (
n
∑

i=2

1

i
)F2(v) ≤ log nF2(v). (21)

To design a mechanism obtaining a O(log n) approximation of S2, we use similar ideas as in our
mechanism in Definition 6 and [8].

We randomly partition the set of bidders into 2 groups, N1 and N2. Find the values F(N1) and
F(N2) where

F(Ni) = max
p

{p× k| k is the largest number of bidders that form

a feasible set in Ni and each of their valuations is at least p}.

We will denote with Wi the set of bidders in Ni that maximizes F(Ni).
Similar to the mechanism in [8], we then find the largest number of bidders in W1 that can equally

share the cost F(N2) and the largest number of bidders in W2 that can equally share the cost F(N1).
Note that here in order to ensure the feasibility constraint, we can only allocate a half of the item for
bidders in each group. Therefore, this mechanism is truthful and generates a revenue of at least

1

2
min{F(N1),F(N2)}.
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Now let O be the feasible set such that v(2)(O) = S2(~v). Let O1 and O2 be the partitions of O under
the random partition. We have

F(Oi) ≤ F(Ni)

and, thus,
min{F(N1),F(N2)} ≥ min{F(O1),F(O2)}.

However, we also have

E(min{F(O1),F(O2)}) ≥
1

4
F2(O).

Now, from (21), we have

F2(O) ≥ 1

log n
v(2)(O) =

S2(~v)

log n
.

Combining the above inequalities, we have that the revenue of this truthful mechanism is at least S2(~v)
8 logn .

B Learning Dynamics

Dynamics of proportional sharing mechanisms were studied by Even-Dar, Mansour and Nadav in [6],
where no-regret dynamics are proved to converge to a Nash equilibrium in a special case of the single
resource game and linear utility functions.

In this section we take a different approach by considering a class of natural differential dynamics,
where bidders change their bids in a continuous way in the direction of their own payoffs’ derivatives.
Modeling game dynamics in this way is known as differential games and is common in several research
areas such as control theory, operations management, marketing and economics [5, 27, 2].

The proportional sharing game that we consider in this paper has a close relationship with a model
of market clearing prices with price taking buyers, that we will explain below. The differential game
for price taking buyers is intuitive and standard, we will adapt this approach for modeling the dynamic
of our game. We will start our discussion with the case of single resource constraint.

Single Resource

Consider the game with the resource constraint
∑

i xi ≤ C and increasing concave utility functions
Ui(xi) for every bidder i. The market clearing price is a unit price p∗ such that when we assume that
bidders are price takers, the total demand is equal to the total supplies. More precisely, when each
bidder i would buy an xi fraction of the resource to maximize his payoff Ui(xi) − p∗xi, equivalently,
U ′
i(xi) = p∗ if xi > 0, the total demand

∑

i xi is equal to the available resource,
∑

i xi = C. Thus,
to find the market clearing price in the price-taking model, the seller needs to increase or decrease
the unit price depending on the total demand at the current price until supply is equal to demand.
A bidder i, on the other hand, will increase his xi if his marginal utility at xi is still larger than the
current price, and decrease xi if the marginal utility is smaller than the current price. Assuming both
seller and bidders adjust the price and demand continuously, one can capture the game by the following
standard dynamical system [27, 5]:

d
dt
p(t) = κ(

∑

i xi(t)−C)
d
dt
xi(t) = γ(U ′

i(xi(t))− p(t)), i = 1, 2, . . . , n,
(22)

where κ and γ are positive constants.
Now, in proportional sharing mechanism, each user chooses a bid bi and because of the proportional

sharing rule, we always have
∑

i xi = C. Furthermore, the unit price that each bidder pays is the same
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and equal to bi
xi

=
∑

i bi
C

= p. Furthermore, this game has a unique equilibrium. Thus, one could
say that without a seller adjusting the unit price, bidders can find the market clearing price in a
decentralized manner via the proportional sharing mechanism. However, this statement is not entirely
correct. In proportional sharing mechanism, because the unit price depends on the bids of strategic
bidders, there is a difference between p and p∗. In particular, as shown in Section 4, because of the
price anticipating affect, instead of having U ′

i(xi) = p, we have the following condition for the Nash
equilibrium

U ′
i(xi)

(

1− xi
C

)

= p =

∑

i bi
C

if xi > 0. (23)

Despite the difference, one can argue that for example, in large markets xi

C
tends to be small and

thus p∗ can be well approximated by p. Furthermore, similar to the dynamical system (22), we can
also define a differential game for the proportional sharing game. To make it easier to understand, let
us first describe this system in a discrete update scheme.

Assume at time t+ dt bidder i can observe the unit price in the previous round p(t) = 1
C

∑

j bj(t)
and would like to update his bid bi(t + dt), which can be understood as the amount of resource

xi(t+ dt) = bi(t+dt)
p(t) that he would hope to receive at the unit price p(t). Bidder i is aware of the fact

that the unit price depends on his bid, which is translated into the condition for Nash equilibrium (23),
by considering the derivative of bidder i’s payoff function. Thus, we assume that bidder i follows the
following dynamic:

xi(t+ dt)− xi(t) = dt · κ ·
(

U ′
i(xi(t))(1 −

xi(t)

C
)− p(t)

)

where

xi(t+ dt) =
bi(t+ dt)

p(t)
and p(t) =

∑

i bi(t)

C

and κ is a positive parameter. Observe that in this dynamic

p(t+ dt) =

∑

i bi(t+ dt)

C
= p(t)

∑

i xi(t+ dt)

C
.

That is, while xi(t) is updated by an additive term, p(t) is multiplied each time with
∑

i xi(t)
C

. First,

consider the case when
∑

i xi(t)
C

≥ 1 + δ, for δ > 0. If we take dt small enough (compared with δ), then
after a number of updating steps (depending on δ), while xi(t) does not change much, p(t) becomes

large. In particular, p(t) approaches infinity as dt tends to 0. Similarly, when
∑

i xi(t)
C

≤ 1− δ, p(t) → 0
as dt → 0.

Thus, to make the dynamic more robust so that it can also be implemented where one can only

take a discrete time process, we will approximate p(t) by an arbitrary increasing function f(
∑

i xi(t)
C

)
such that f(1 + δ) > Nδ and f(1− δ) < 1

Nδ
.

In the rest of this section for simplicity, we will choose Nδ = 1/δ, which is a technical detail and is
not crucial for our result.

With this intuition, we now consider the following continuous dynamical system as a model of the
updating process in our single resource price anticipating game, given a nonnegative and monotone
function f satisfying f(1− δ) < δ and f(1+ δ) > 1/δ for a small parameter δ, we have for each bidder
i,

bi(t) = xi(t)p(t)

d

dt
xi(t) = κ ·

(

U ′
i(xi(t))

(

1− xi(t)

C

)

− p(t)

)

(24)

where p(t) = f

(

∑

j xj(t)

C

)

.
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We will show that the dynamical system always converges to a unique solution and by choosing
δ small enough to the limit point and the corresponding bid vector ~b give an ε-Nash equilibrium for
every ε > 0.

Multiple Resources

The dynamics (24) can be generalized to the proportional sharing mechanism for multiple resources
with the constraints of the type

∑

i∈Ie xi ≤ C. Starting from the condition for Nash equilibria (2),
which is derived from the derivative function of each bidder payoff, we have

xU ′
i(xi)

(

1− xi
C

)

=
∑

e:i∈Ie

pe if xi > 0

where

pe =
1

C

∑

i∈Ie

bei .

The unit price that a bidder i needs to pay is now
∑

e:i∈Ie p
e. Similar to the case of single resource,

each time t+ dt bidder i would update bei (t+ dt) such that

xi(t+ dt) =
bei (t+ dt)

pe(t)
=

∑

e b
e
i (t+ dt)

∑

e p
e(t)

for every e such that i ∈ Ie.

The same argument will hold for multiple resources as in the single resource above, when we take the
update time dt small enough, we can approximate pe as a function fe(

∑

i∈Ie xi/C) such that fe is a
nonnegative and increasing function such that fe(1 − δ) ≤ δ and fe(1 + δ) ≥ 1/δ. We can define the
dynamics for the game with multiple resources as follows, for each buyer i and resource constraint e:

bei (t) = xi(t)p
e(t)

d

dt
xi(t) = κ ·

(

U ′
i(xi(t))

(

1− xi(t)

C

)

−
∑

e:i∈Ie

pe(t)

)

(25)

where pe(t) = fe

(
∑

i∈Ie xi(t)

C

)

.

Remark Note that one can define a similar dynamics for the more general polyhedral environment
based on the derivatives of bidders’ payoffs. However, in our case, because all the constraints have
the same capacity C, the Nash condition is much simpler and can be separated into two terms, one
depends solely on xi and the other is the sum of the unit prices on the resources. This is a crucial
observation that allows us to prove the convergence of the dynamical system.

We now prove the result of the convergence of (25) and the relation between its fixed point and the
approximate Nash equilibria of the proportional sharing game. We first recall that a strategy profile
is an ε-Nash equilibrium if no agent can change strategy to improve his payoff by more than ε.

THEOREM 6 The differential equation system (25) has a unique stable point to which all trajectories
converge. Furthermore, given any ε > 0 there exists δ > 0 small enough, such that if all the functions
fe satisfy fe(1 − δ) ≤ δ and fe(1 + δ) ≥ 1/δ, then the bid vector that corresponds to this stable point,
i.e. bei = xip

e for every i, is an ε-Nash equilibrium.
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Proof. Denote the total
∑

i∈Ie xi by xe, we define the following function

Φ(x) =
∑

i

∫ xi

0
U ′
i(y)

(

1− y

C

)

dy −
∑

e∈E

∫ xe

C

0
fe(z)dz.

It is straightforward to check that Φ(x) is strictly concave. Furthermore Φ(x) is a Lyapunov function
of the system of differential equations (25). To see this observe d

dxi
Φ(x) = U ′

i(xi)
(

1− xi

C
)−∑e:i∈Ie fe(

xe

C

)

.
Moreover,

d

dt
Φ(x(t)) =

∑

i

d

dxi
Φ(x)

d

dt
xi(t)

= κ
∑

i

(

U ′
i(xi(t))

(

1− xi(t)

C

)

−
∑

e:i∈Ie

fe

(

xe

C

)

)2

.

This shows that Φ(x(t)) is strictly increasing with t unless x(t) is the unique maximizer of Φ(x).
Therefore, all trajectories converge to this unique stable point.

In the remainder of this section, we will assume that ~x is the unique stable point of the dynamical
system. Let bei = xip

e and x∗ be the allocation vector of the proportional sharing mechanism given

the bid vector ~b. We need to show that given an ε > 0, there exists a δ such that if fe’s satisfy the
condition stated in the theorem, then the bid vector ~b is an ε-Nash equilibrium.

We first observe that if fe(1 + δ) ≥ 1/δ for δ small enough, then for every e we have
∑

i:e∈Ie xi ≤
(1 +

√
δ)C. This is true because otherwise one would have

∫

xe

C
0 fe(z)dz ≥ (

√
δ − δ)1

δ
= 1√

δ
− 1, which

can be arbitrarily large when δ is small, thus ~x cannot be the point that maximizes Φ(x). Therefore,

given the bid vector ~b, the resource that bidder i gets on resource e is C
bei∑
j b

e
j
= C xi∑

j:j∈Ie
xj

≥ xi
1

1+
√
δ
.

Now, if there exists a resource e such that
∑

j:j∈Ie xj ≥ C(1− ε), then the amount of resource that

i gets on e is at most C
bei∑
j b

e
j
= C xi∑

j:j∈Ie
xj

≤ xi
1

1−δ
. The final allocation that bidder i gets x∗i is the

minimal among the allocations on the resources, therefore we have xi
1

1+
√
δ
≤ x∗i ≤ xi

1
1−δ

. On the other

hand, we have

U ′
i(xi)

(

1− xi
C

)

=
∑

e:i∈Ie

pe. (26)

Thus, by choosing δ small enough, we can make sure that x∗i is close to xi and therefore U ′
i(x

∗
i )
(

1− x∗

i

C

)

is close to
∑

e:i∈Ie p
e. This means that the derivative of bidder i’s payoff is close to 0, which shows that

by choosing δ properly, bidder i cannot change his bids to improve his payoff by more than ε.
We now consider the case where for all resources e that i ∈ Ie, we have xe < C(1 − δ). But then

because of the condition that fe(1− δ) ≤ δ and (26), the value U ′
i(xi)(1− xi

C
) can be arbitrarily small

as δ tends to 0. Therefore either U ′
i(xi) is close to 0 or xi is close to the maximum available resource

C. We also have that x∗i ≥ 1
1+

√
δ
xi, which shows that either U ′

i(x
∗
i ) is close to 0 or x∗i is close to C.

(Here we use the assumption that Ui is nondecreasing and concave.) In both cases by bidding higher
to gain more of the resource, bidder i cannot improve his utility Ui(x

∗
i ) by much. On the other hand,

the current payment that bidder i is paying is
∑

e:i∈Ie b
e
i ≤

∑

e:i∈Ie p
e, and because of the condition on

fe, this value can be arbitrarily small.
By this we have showed that ~b is in ε-Nash equilibrium.
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