Fast: a Transducer-Based Language for Tree Manipulation

Loris D’Antoni
University of Pennsylvania
lorisdan@cis.upenn.edu

Margus Veanes Benjamin Livshits
Microsoft Research
{margus,livshits,dmolnar}@microsoft.com

Abstract
Tree automata and tree transducers are used in a wide range of applications in software engineering, from XML processing to language type-checking. While these formalisms are of immense practical use, they can only model finite alphabets, and since many real-world applications operate over infinite domains such as integers, this is often a limitation. To overcome this problem we augment tree automata and transducers with symbolic alphabets represented as parametric theories. Admitting infinite alphabets makes these models more general and succinct than their classical counterparts. Despite this, we show how the main operations, such as composition and language equivalence, remain computable given a decision procedure for the alphabet theory.

We introduce a high-level language called Fast that acts as a front-end for the above formalisms. Fast supports symbolic alphabets through tight integration with state-of-the-art satisfiability modulo theory (SMT) solvers. We demonstrate our techniques on practical case studies, covering a wide range of applications.

1. Introduction
This paper introduces Fast, a new language for analyzing and modeling programs that manipulate trees over potentially infinite domains. Fast builds on top of satisfiability modulo theory (SMT) solvers, tree automata, and tree transducers. Tree automata are used in variety of applications in software engineering, from analysis of XML programs [23] to language type-checking [32]. Tree transducers extend tree automata to automata over trees, and appear in fields such as natural language processing [26, 28, 29] and XML transformations [27]. While these formalisms are of immense practical use, they suffer from a major drawback: in the most common forms they can only handle finite alphabets.

In order to overcome this limitation, symbolic tree automata (STAs) and symbolic tree transducers (STTs) extend these classical objects by allowing transitions to be labeled with formulas in a specified theory. While the concept is straightforward, traditional algorithms for deciding composition, equivalence, and other properties of finite automata and transducers do not immediately generalize. A notable example appears in [8] where it is shown that while in the classical case allowing finite automata transitions to read subsequent inputs does not add expressiveness, in the symbolic case this extension makes most problems, such as checking equivalence, undecidable. Symbolic tree automata still enjoy the closure and decidability properties of classical tree automata [33] under the assumption that the alphabet theory is expressible as a Boolean algebra (i.e. closed under Boolean operations) and it is decidable. In particular STAs are closed under complement, and intersection, and it is therefore decidable to check whether two STAs accept the same language. STAs can also be minimized.

Taking a step further, tree transducers model transformations from trees to trees. A symbolic tree transducer (STT) traverses the input tree in a top-down fashion, processes one node at a time, and produces an output tree. This simple model can capture several scenarios, however in most useful cases it is not closed under sequential composition [18]. In the case of finite alphabets this problem is solved by augmenting the transducer’s rules with regular lookahead [11], that is the capability of checking whether the subtrees of each processed node belong to some regular tree languages. We extend STTs in a similar way, and introduce symbolic tree transducers with regular lookahead (STTRs). The main theoretical result of this paper is a new composition algorithm for STTRs together with a proof of its correctness. Similarly to the classical case, we show that two STTRs A and B can be composed into a single STTR A ◦ B if either A is single-valued (for every input produces at most one output), or B is linear (traverses each node in the tree at most once). Remarkably, the algorithm works modulo any decidable alphabet theory that is an effective Boolean algebra.

We introduce the language Fast as a frontend for STAs and STTRs. FAST (Functional Abstraction of Symbolic Transducers) is a functional language that integrates symbolic automata and transducers with Z3 [9], a state-of-the-art solver able to support complex theories that range from data-types to non-linear real arithmetic.3 We use FAST to model several real world scenarios and analysis problems: we demonstrate applications to HTML sanitization, interference checking of augmented reality applications submitted to an app store, deforestation in functional language compilation, and analysis of functional programs over trees, and CSS programs. All such problems require the use symbolic alphabets. Figure 1 summarizes our applications and the analyses enabling each one. In Section 6 we further contrast Fast with previous DSLs for tree manipulation.

Contributions summary:
1. a theory of symbolic tree transducers with regular lookahead (STTR), that non-trivially extends the classical theory of tree transducers (§3);
2. a new algorithm for composing STTRs together with a proof of correctness (§4);
3. Fast, a domain-specific language for tree manipulations founded on the theory of STTRs (§3); and
4. five concrete applications of Fast showing how composition of STTR can be beneficial in practical settings (§5).

1 A running version of Fast can be accessed at http://rise4fun.com/Fast/, including several of the examples from this paper.

2013/11/20
2. Motivating Example

We use a simple scenario to illustrate the main features of the language FAST, and the analysis enabled by the use of symbolic transducers. We choose to model a basic HTML sanitizer. An HTML sanitizer is a program that traverses an input HTML document and removes or modifies nodes, attributes and values that can cause malicious code to be executed on a server. Every HTML sanitizer works in a different way, but the general structure is usually the following: 1) the input HTML is parsed into a DOM (Document Object Model) tree, 2) the DOM is modified by a sequence of sanitization functions f_1, \ldots, f_n, and 3) the modified DOM tree is transformed back into an HTML document\(^2\). In the following we use FAST to describe some of the functions used during step 2. Each function f_i takes as input a DOM tree received from the browser’s parser and transforms it into an updated DOM tree. As an example, the FAST program sani (Figure 2, line 31) traverses the input DOM and outputs a copy of it in which all subtrees in which the root is labeled with the string "script" have been removed, and all the characters "" and "" have been escaped with a "\"".

We informally describe each component of Figure 2. Line 2 defines the data-type HtmlE of our trees. Each node of type HtmlE contains a tag of type string and is built using one of the constructors nil, val, attr, or node. Each constructor has a number of children associated with it (2 for attr) and all such children are HtmlE nodes. We use the type HtmlE to model DOM trees. Since DOM trees are unranked (each node can have an arbitrary number of children), we will first encode them as ranked trees. We adopt a slight variation of the classical binary encoding of unranked trees (Figure 3). We first informally describe the encoding and then show how it can be formalized in FAST.

Each HTML node n is encoded as an HtmlE element $\text{node}(x_1, x_2, x_3)$ with three children x_1, x_2, x_3 where: 1) x_1 encodes the list of attributes of n, 2) x_2 encodes the first child of n in the DOM, 3) x_3 encodes the next sibling of n, and 4) tag contains the node type of n (div, etc.). Each HTML attribute a with value s is encoded as an HtmlE element $\text{attr}(x_1, x_2)$ with two children x_1, x_2 where: 1) x_1 encodes the value s (nil if s is the empty string), 2) x_2 encodes the list of attributes following a (nil if a is the last attribute), and 3) tag contains the name of a (id, etc.). Each non-empty string $w = s_1 \ldots s_n$ is encoded as an HtmlE element $\text{val}(x_1)$ where tag contains the string "s_1", and x_1 encodes the suffix $s_2 \ldots s_n$. Each element nil has $\text{tag} = \varepsilon$, and can be seen as a termination operator for lists, strings, and trees.

This encoding can be expressed in FAST (lines 4-13). For example, nodeTree (lines 4-7) is the language of correct HTML encodings (nodes): 1) the tree $\text{node}(x_1, x_2, x_3)$ is in the language nodeTree if x_1 is in the language attrTree, x_2 is in the language nodeTree, and x_3 is in the language nodeTree.

\(^2\) Some sanitizers process the input HTML as a string, often causing the output not to be standards compliant.

[Figure 1: Representative applications of FAST discussed in Section 5. For each application we show which analyses of FAST are needed.]

[Figure 2: Implementation and analysis of an HTML sanitizer in FAST.]

[Figure 3: HtmlE encoding of the HTML tree <div id="e" text="script">\text{script}</div></div>
 \text{script} and
 div, script, and
 are built using the constructors node. Nodes labeled with id, text, are built using attr. Single character nodes are built using val, and ε's using nil. The strings appearing in the figure are the tags of each node. Sanitizing this tree with the function sani of Figure 2 yields the HtmlE tree corresponding to the <div id="e" text="script"></div></div>
.

\text{nodeTree}; 2) the tree nil is in nodeTree if its tag contains the empty string. The other language definitions are similar. We now describe the sanitization functions. The transformation remScript (lines 15-19) takes an input tree t of type HtmlE and produces an output tree of type HtmlE: 1) if $t = \text{node}(x_1, x_2, x_3)$ and its tag is different from "script", remScript outputs a copy of t in which x_2 and x_3 are replaced by the results of invoking remScript on x_2 and x_3 respectively; 2) if $t = \text{node}(x_1, x_2, x_3)$ and its tag is equal to "script", remScript outputs a copy of x_3, 3) if $t = \text{nil}$, remScript outputs a copy t. The transformation esc (lines 20-27) of type HtmlE to HtmlE escapes the characters '"' and "", and it outputs a copy of the input tree in which each node val with tag "$" or "" is pre-pended a node val with tag "ε". The transformations remScript and esc are then composed into a single transformation remEsc (line 29). One might notice that remEsc also accepts input trees that are not in the language nodeTree, and therefore do not correspond to...
Indentifiers
ID : (a,x,[k,2],(a,x,[k,2]),[0,9])
Basic types
σ : String | Int | Real | Bool ...
Built-in operators
op : < | > | = | + and | or | ...
Constructors
c : ID | Natural numbers k : N
Tree types
τ : ID | Language states p : ID
Transformation states q : ID | Attribute fields x : ID
Subtree variables y : ID

Main definitions:

Fast ::= type τ (((x:σ)) ((k:σ)) τ) tree t : τ := TR
| lang p : τ (Lrue+τ) | trans q : τ := τ (True+τ)
| def p : τ := Ldef q : τ := τ := T
assertive A | assert-false A
Lrue ::= (ey,...,eν) (where Aexp) ? (given ((p y) ?))
True ::= Lrue to Tout
Tout ::= { (q y) } (e {Aexp+} Tout')
Aexp ::= ID | Const | (op Aexp)

Operations over languages, transactions, and trees:
L := (intersect L L) | (union L L) | (complement L L) | (difference L L) | (minimize L L) | (domain T)
| (pre-image T L) | p
T ::= (compose T T) | (restrict T L) | (restrict-out T L) | q
TR ::= t | (e {Aexp*T} TR') | (apply T TR) | (get-witness L)
A ::= L == L | (is-empty L) | (is-empty T) | TR ∈ T
| (type-check L T L)

Figure 4: Concrete syntax of FAST. Nonterminals and metasymbols are in italic. Constant expressions for strings and numbers use C# syntax [20]. Additional well-formedness conditions (such as well-typed terms) are assumed to hold.

3. Symbolic Tree Transducers and FAST

The concrete syntax of FAST is shown in Figure 4. FAST is designed for describing trees, tree languages and functions from trees to trees. These are supported using symbolic tree automata (STAs), and symbolic tree transducers with regular lookahead (STTRs). This section describes these objects and how they describe the semantics of FAST.

3.1 Background

All definitions are parametric with respect to a given background theory, called a label theory, over a fixed background structure with a recursively enumerable universe of elements. Such a theory is allowed to support arbitrary operations (such as addition, etc.), however all the results in the following only require it to be 1) closed under Boolean operations and equality, and 2) decidable (quantifier free formulas with free variable can be checked for satisfiability).

We use λ-expressions for defining anonymous functions called λ-terms without having to name them explicitly. In general, we use standard first-order logic and follow the notational conventions that are consistent with [34]. We write σ for a type and the universe of elements of type σ is denoted by σ. A σ-predicate is a λ-term X.φ(x) where x has type σ, and φ is a formula whose free variables FV(φ) are contained in {x}. Given a σ-predicate φ, [φ] denotes the set of all a ∈ σ such that φ(a) holds. The set of σ-predicates is denoted by Ψ(σ).

Given a type σ (such as int), we extend the universe with σ-labeled finite trees as an algebraic datatype Tσ where Σ is a finite set of tree constructors f with rank f(σ) ≥ 0; f has type σ × (Tσ)σ(σ) → Tσ. Let Σ(k) def = { f ∈ Σ | f(σ) = k }. We require that Σ(0) is non-empty so that Tσ is non-empty.

We write f(τ)(u) for (f, u) and abbreviate f{e} by f[e].

Example 1. The first program in Figure 2, declares HtmE ∈ E_string over Σ = {nil, val, attr, node}, where nil(val) = 0, val(attr) = 1, and node = 2, and (node) = 3. For example node[a][b][c] is in Σ_string.

We write e for a tuple (sequence) of length k ≥ 0 and denote the i-th element of e by ei for 1 ≤ i ≤ k. We also write (e1,...,ek) for e. The empty tuple is () and (e1,...,ek) = ek.

We use the following operations over k-tuples of sets. If X and Y are k-tuples of sets then X × Y def = (X1 × Y1) k=1. If X is a k-tuple of sets, j ∈ {1,...,k} and Y is a set then (Xj × Y) is a k-tuple Z such that, for i ∈ {1,...,k}, Zj = Xi ∪ Yi if i = j; Zj = Xi, otherwise.

3.2 Alternating Symbolic Tree Automata

We introduce and develop the basic theory of alternating symbolic tree automata, which adds a form of alternation to the basic definition originally presented in [33].

Definition 1. An Alternating Symbolic Tree Automaton (Alternating STA) A is a tuple (Q, Tσ, δ), where Q is a finite set of states, Tσ is a tree type, and δ ⊆ UQ×Q×Σ(k) × Ψ(σ) × (2σ)k is a finite set of rules (q, f, φ, δ), where q is the state, f the symbol, φ the guard, and δ the lookahead.

For q ∈ Q, δ(q) def = { r | δ(φ(q)) }, in Fast δ(q) is

Example 2. Consider the following Fast program.

Example 3. An equivalent STA A over BBT gen has states {o, p, q} and rules

Since the first subtree in the definition of g is unconstrained, the corresponding component in the last rule is empty. The definition for q has no case for L, so there is no rule.

3
Next, we define the semantics of an STA $A = (Q, T^A, \delta)$.

Definition 2. For every state $q \in Q$ the language of A at q, is the set

$$L^A_q \overset{\text{def}}{=} \{ a | (q, f, \varphi, \bar{\ell}) \in T^A_q \}$$

Each subtree lookahead ℓ, above is treated as a conjunction of conditions. If ℓ is empty then there are no restrictions on the i'th subtree t_i. We extend the definition to all $q \subseteq Q$:

$$L^A_q \overset{\text{def}}{=} (\bigcup_{q \subseteq Q} L^A_q, \text{if } q \neq \emptyset; \ T^A_q, \text{otherwise.})$$

When compared to the model in [7], the STAs defined above are “almost” alternating, in the sense that they can only allow disjunctions of conjunctions, rather than arbitrary positive Boolean combinations. Concretely, the lookahead of a single rule r corresponds to a conjunction of states applied to the subtrees from the source state, while several rules from the same source state provide a disjunction of cases. In the following we say STA for alternating STA.

Definition 3. A is normalized if for all $(p, f, \varphi, \bar{\ell}) \in \delta$, and all i, $1 \leq i \leq (r(f), f)$, ℓ is a singleton set.

For example, the STA in Example 2 is not normalized because of the rule with source q. Normalization is a practically useful operation of STAs that is used on several occasions.

Normalization. Let $A = (Q, T^A, \delta)$ be an STA. We compute merged rules $(q, f, \varphi, \bar{\ell})$ over merged states $q \in 2^Q$ where $\rho \in (2^Q)^{r(f)}$. For $f \in \Sigma$ let $\delta^f = \bigcup_{p \subseteq Q} \delta^f(p)$ where:

$$\delta^f(\emptyset) = \{(\emptyset, f, \emptyset, (\emptyset)^{r(f)})\}$$

$$\delta^f(p \cup q) = \{ \tau \land s | r \in \delta^f(p), s \in \delta^f(q)\}$$

$$\delta^f(p) = \{(p, f, (\varphi, \rho), (p, f, \varphi, \rho) \in \delta\}$$

where merge \land of rules is defined as follows:

$$(p, f, \varphi, \bar{\ell}) \land (q, f, \psi, \bar{\ell}) \overset{\text{def}}{=} (p \cup q, f, \varphi \lor \psi, \bar{\ell} \cup \bar{\ell})$$

We can then define Normalize(A) as the STA

$$(2^Q, T^A, \{(p, f, \bigvee \varphi, \{(q_i)^{r(t_i)}) | f \in \Sigma, (p, f, \varphi, q_i) \in \delta^f\})$$

where the original rules are precisely the ones whose states are singleton sets in 2^Q. In practice, merged rules are computed lazily starting from the initial state. Merged rules with unsatisfiable guards φ are eliminated eagerly. New concrete states are created for all the reachable merged states. Finally, the normalized STA is cleaned by eliminating states that accept no trees, e.g., by using elimination of useless symbols from a context-free grammar [22, p. 88-89].

Checking whether $L^A_q \neq \emptyset$ can be done by first normalizing A, then removing unsatisfiable guards using the decision procedure of the theory $\text{Psi}(\sigma)$, and finally using emptiness of classical tree automata.

Proposition 1. The non-emptiness problem of STAs is decidable if the label theory is decidable.

While normalization is always possible, an STA may be exponentially more succinct than the equivalent normalized STA. This is true already for the classical case, i.e., when $\sigma = \{()\}$. Using the interaction non-emptiness problem of classical tree automata [15, 32], and emptiness of alternating tree automata [7] we have the following bound.

Proposition 2. The non-emptiness problem of alternating STAs without attributes is ExpTime-complete.

Proof. For inclusion in ExpTime, consider an STA $A = (Q, T^A, \delta)$ and $q \in Q$. Here $\sigma = \{()\}$, i.e. there are no labels. Construct an alternating tree automaton $A = (Q, \Sigma, \{q\}, \Delta)$ over Σ with state set Q, initial state q, and mapping Δ such that for $(q, f) \in Q \times \Sigma$,

$$\Delta(q, f) \overset{\text{def}}{=} \bigcup_{(q, f, \varphi, \bar{\ell}) \in \delta(q)} t_i \in 2^Q$$

Then $L(A)$ is nonempty if L^A_q is nonempty. For inclusion in ExpTime use [7, Theorem 7.5.1].

For EXPTime-hardness a converse reduction is not as simple because alternating tree automata allow general (positive) Boolean combinations of $Q \times \Sigma$ in the mapping Δ. Instead, let $A_i = (Q_i, T_{S_i}, \delta_i)$ be classical top-down tree automata with initial states $q_i \in Q_i$ for $1 \leq i \leq n$. Consider all these automata as STAs without attributes and with pairwise disjoint Q_i. In particular, all A_i are normalized. Expand Σ to $\Sigma' = \Sigma \cup \{f\}$ where f is a fresh symbol of rank 1. Let A be the STA $(\{(q_i) \cup Q, T_{S_i}, \bigcup_{1 \leq i \leq n} (q_i, f, \lambda x. \text{true}, \{(q_i)^{r(t_i)}\}), \emptyset\})$ where f is a new state. It follows from the definitions that $L^A_q \neq \emptyset$ if $\bigcap_{1 \leq i \leq n} L_{A_i} \neq \emptyset$, ExpTime-hardness follows now from the intersection nonemptiness problem of tree automata [15] (already restricted to the top-down-deterministic case [32]).

We decided to use alternating STAs instead of the normalized ones because not only are they succinct, but they also arise naturally when composing tree transducers.

3.3 Symbolic Tree Transducers with Regular Lookahead

Symbolic tree transducers (STTs) augment STAs with outputs. Symbolic tree transducers with regular lookahead further augment STTs by allowing rules to be guarded by symbolic tree automata. Intuitively, a rule is applied to a node if and only if its children are accepted by some symbolic tree automata. We first define terms that are used below as output components of transformation rules. We assume that we have a given tree type T_Σ for both the input trees as well as the output trees. In the case that the input tree type and the output tree type are intended to be different, we assume that T_Σ is a combined tree type that covers both. This assumption avoids a lot of cumbersome overhead of type annotations and can be made without loss of generality because we have partial definitions. The guards and the lookaheads can be used to restrict the types as needed.

The set of extended tree terms is the set of tree terms of type $T_{\Sigma, \text{State}}$ where $\text{State} \notin \Sigma$ is a new fixed symbol of rank 1. A term $\text{State}[q](t)$ is always used with a concrete value q and $\text{State}[q]$ is also written as \bar{q}. The idea is that, in \bar{q} the value q is always viewed as a state.

Definition 4. Given a tree type T_Σ, a finite set $Q \subseteq \sigma$ of states, and $k \geq 0$, the set $\Lambda(T_\Sigma, Q, k)$ is defined as the least set T of λ-terms called k-rank tree transformers that satisfies the following conditions, let y be a k-tuple of variables of type $T_{\Sigma, \text{State}}$ and let x be a variable of type σ.

- for all $q \in Q$, and all i, $1 \leq i \leq k$, $x(y, \bar{q})(y_i) \in T$;
- for all $f \in \Sigma$, all $e : \sigma \rightarrow \sigma$ and, all $t_1, \ldots, t_{(i(f))} \in T$, $x(y, \bar{q})(t_1(x), \ldots, t_{(i(f))}(x), y_i) \in T$.

Definition 5. A Symbolic Tree Transducer with Regular lookahead (STTR) S is a tuple $(Q, q^0, T_\Sigma, \Lambda)$, where Q is a finite set of states, $q^0 \in Q$ is the initial state, T_Σ is the tree
type, $\Delta \subseteq \bigcup_{k \geq 0} (Q \times \Sigma(k) \times \Psi(\sigma) \times (2^Q)^k \times \Lambda(T^\omega_k, Q, k))$ is a finite set of rules $(q, f, \varphi, \bar{t}, t)$, where t is the output. A rule is linear if its output is $\lambda(x, y).a$ where each y_i occurs at most once in s. \bar{q} is linear if all rules of \bar{q} are linear.

A rule $(q, f, \varphi, \bar{t}, t)$ is also denoted by $q \xrightarrow{f, \varphi, \bar{t}} t$. The open view of a rule $q \xrightarrow{f, \varphi, \bar{t}} t$ is $\tilde{q}(f[x](\tilde{y})) \xrightarrow{\varphi(x), \bar{t}} t(x, \tilde{y})$. The open view is technically more convenient and more intuitive for term rewriting. The lookahead, when omitted, is \emptyset by default. Figure 5 illustrates an open view of a linear rule.

Let S be an STTR $(Q, q^o, T^\omega_k, \Delta)$. The following construction is used to extract an STA from S that accepts all the valid input trees accepted by S. Let t be a k-rank tree transformer. For $1 \leq i \leq k$ let $S(i, t)$ denote the set of all states q such that $\tilde{q}(y_i)$ occurs in t.

Definition 6. The domain automaton of S, $d(S)$, is the STA $(Q, T^\omega_k, \{(q, f, \varphi, \emptyset, \emptyset)\}_{(f)\subseteq\Delta} \mid q \xrightarrow{f, \varphi, \emptyset} t \in \Delta\})$.

The rules of the domain automaton also take into account the states that occur in the outputs in addition to the lookahead states. For example, the rule in Figure 5 yields the domain automaton rule $(q, g, \lambda x.x < 4, \{(p), (q), (p)\})$.

In the following let T be the STTR and let $L^\omega_k(t)$ be the STTR and let $L^\omega_k(t)$. Let $T^\omega_k(t)$ be the STTR and let $T^\omega_k(t)$.

Definition 7. For all $q \in Q_T$, the transduction of T at q is the function $T^\omega_k(q)$ such that, for all $t = f[a](\bar{t}) \in T^\omega_k$, $T^\omega_k(q)(\bar{t}) = \psi_T(q)(\bar{t})$.

The transduction of T is $T^\omega_k(q) = T^\omega_k(q)$. The definitions are lifted to sets using union. We write $T_T(u)$ for u in $T_T(u)$.

We omit T from $T^\omega_k(q)$ and $\psi_T(q)$ when T is clear from the context. In FAST, a transduction Δ is defined by the statement

$$\text{trans } q \xrightarrow{\tau} \{ f(y) \mid \varphi(x) \} \quad \text{given } \ell(y) \text{ to } t(x, \tilde{y}) \} \ldots$$

where $\ell(y)$ denotes the lookahead $(\{ r \mid (r, y_i) \in \ell(y)\})_{i=1}^{(f)}$.

Example 3. Recall the transformation remScript in Figure 2. These are the corresponding rules. We use q for the state of remScript, and t for a state that outputs the identity transformation. The “safe” case is

$$q(\text{node}[x](y_1, y_2, y_3)) \xrightarrow{\text{x=x-script}} \text{node}[x](\bar{t}(y_1), \bar{q}(y_2), \bar{q}(y_3))$$

the “unsafe” case is $q(\text{node}[x](y_1, y_2, y_3)) \xrightarrow{\text{x=x-script}} \bar{t}(y_3)$, and the “harmless” case is $q(\text{nil}[x]()) \xrightarrow{\text{true}} \text{nil}[x]().$

Single-valuedness is a semantic property of STTRs that is used later in Section 4.

Definition 8. S is single-valued if $\forall t \in T^\omega_k, q \in Q_S : |T^\omega_k(t)| \leq 1$.

Determinism, as defined next, implies single-valuedness and determinism is easy to decide (modulo decidability of $\Psi(\sigma)$). Intuitively, determinism means that there are no two distinct transformation rules that are enabled for the same input tree. In contrast, decidability of single-valuedness of STTRs is an open problem.

Definition 9. S is deterministic when, for all $q \in Q$, $f \in \Sigma$, and all rules $q \xrightarrow{f, \varphi, \bar{t}} t$ and $q \xrightarrow{f, \varphi, \bar{t}} u$ in Δ_S, if $[\varphi] \cap [\bar{t}] \neq \emptyset$ and, for all $i \in \{1, \ldots, \sharp(f)\}$, $L^i \cap L'^i \neq \emptyset$, then $t = u$.

3.4 The Role of Regular Look-ahead

In this section we briefly describe what motivated our choice of considering STTRs in place of STTs. The main drawback of STTs is that they are not closed under composition, even for very restricted classes. As shown in the next example, when STTs are allowed to delete subtrees, the domain is not preserved by the composition.

Example 4. Consider the following Fast program

```plaintext
type BBT(b : Bool(L(0), N(3)))
trans s1 : BBT -> BBT { L() where b to Lb()
| N(x, y) where b to N(b(s1) x (s1) y) }
trans s2 : BBT -> BBT { L() to Ltrue \[ N(x, y) to Ltrue \] }
```

Given an input t, s_1 outputs the same tree iff all the nodes in t have label $true$. Given an input t, s_2 always outputs $L[true]$. Both transductions are definable using STTs since they do not use lookahead. Now consider the composed transduction $s = s_1 \circ s_2$ that outputs $L[true]$ iff all the nodes in t have label $true$. This function cannot be computed by an STT: when reading a node $N[b](x, y)$, if the STT does not produce any output, it can only continue reading one of the two subtrees. This means that the STT cannot check whether the other subtree contains any false labels. However, s can be computed using an STTR that checks that both x and y contain only true labels.

The next example shows how STTRs are simpler than STTs.

Example 5. The following STTR describes the function h that negates a node value when the value in its left child is odd, leaves it unchanged otherwise, and is then invoked recursively on the children.

```plaintext
type BT[x : Int]{L(0), N(2)}
lang oddRoot : BT { N(t1, t2) where (odd x) N() where (odd x) def evenRoot : BT := (complement oddRoot)
trans h : BT -> BT { N(t1, t2) given (oddRoot t1) to N[-x](h t1)(h t2) }
trans s1 : BBT -> BBT { N(t1, t2) given (evenRoot t1) to N[x](h t1)(h t2) }
```

This function can be expressed using a nondeterministic STT that guesses if the label of the left child is odd or even. Using a deterministic STTR is a more natural solution.

3.5 Operations on Automata and Transducers

FAST allows to define new languages and new transformations in terms of previously defined ones. FAST also supports an assertion language for checking simple program properties such as assert-true (is-empty a).
Operations that compute new languages:

- **minimize**, **intersect**, **complement**, etc.: operations over STAs;
- **domain** \(t \): computes the domain of the STTR \(t \) using
 the operation from Definition 6; and
- **pre-image** \(t l \): computes an STA accepting all the in-
 puts for which \(t \) produces an output belonging to \(l \).

Operations that compute new transformations:

- **restrict** \(t l \): constructs a new STTR that behaves like \(t \),
 but is only defined on the inputs that belong to \(l \);
- **restrict-out** \(t l \): constructs a new STTR that behaves
 like \(t l \), but is only defined on the inputs for which \(t l \)
 produces an output that belongs to \(l \); and
- **compose** \(t_1 t_2 \) constructs a new STTR that computes
 the functional composition \(t_1 \circ t_2 \) of \(t_1 \) and \(t_2 \)
 (algorithm described in Section 4).

Assertions:

- \(a \in t_1 t_2 \) is-empty: decision procedures for STAs;
- **type-check** \(t_1 t_2 \) true iff for every input in \(t_1 \), \(t \) only
 produces outputs in \(t_2 \).

Several operations are special applications of composition. For example **restrict-out** \(q p = \text{compose} q \) (restrict \(I \) \(p \)),
where \(I \) is the identity STTR.

4. Composition of STTRs

Closure under composition is a fundamental property for
transducers. Composition is needed as a building block for
many operations, such as pre-image computation and output
restriction. Unfortunately, as shown in Example 4 and
in [18], STTRs are not closed under composition. Particularly,
when tree rules may delete and/or duplicate input subtrees,
the composition of two STTR transductions might not be ex-
pressible as an STTR transduction. This is already known for
classical tree transducers and can be avoided either by con-
sidering restricted fragments, or by instead adding regular
lookahead [2, 10, 12]. In this paper we consider the latter
option. Intuitively, regular lookahead acts as an additional
child-guard that is carried over in the composition so that
even when a subtree is deleted, the child-guard remains in
the composed transducer and is not “forgotten”. While dele-
tion can be handled by STTRs, duplication is a much more
difficult feature to support. When duplication is combined
with nondeterminism, as shown in the next example, it is
still not possible to compose STTRs. In practice this case is
unusual, and it can only appear when programs produce
more than one output for a given input.

Example 6. Let \(f \) be the function that, given a tree of type
\(\text{BT} \) (see Example 2) transforms it by nondeterministically
replacing some leaves with the value 5.

\[
\text{trans } f : \text{BT} \rightarrow \text{BT} \{
\begin{align*}
&L() \rightarrow (L[[]]) \\
&L() \rightarrow (L[\{\}]) \\
&N(x,y) \rightarrow (N[\{f(x)f(y)\}])
\end{align*}
\}
\]

Let \(g \) be the function that transforms a tree \(t \) into \(N[0](t, t) \).
So \(g(f(L[1])) \) produces the trees \(N[0](L[1], L[1]) \) and \(N[0](L[5], L[5]) \),
where the two leaves are guaranteed to contain the same
value since they are “synchronized” on the same run. The
function \(f \circ g \) cannot be expressed by an STTR.

4.1 Composition Algorithm

Algorithms for composing transducers with regular looka-
head have been studied extensively [16]. However, as shown
in [18], extending classical transducers results to the sym-

dolic setting is a far from trivial task. The key property that
makes symbolic transducers semantically different and much
more challenging than classical tree transducers, apart from
the complexity of the label theory itself, is the output com-
putation. In symbolic transducers the output labels depend
symbolically on the input label. Effectively, this breaks the
application of some well-established classical techniques that
no longer carry over to the symbolic setting. For example,
while for classical tree transducers the output language is
always regular, this is not the case for symbolic transducer.
Such anomaly is caused by the fact that the input attribute
can appear more than once in the output of a rule.

Let \(S \) and \(T \) be two STTRs with disjoint states We want
to construct a composed STTR \(S \circ T \) such that,
\(S_0 \circ T = S_0 \circ T \).

4.1 Composition Algorithm

Algorithms for composing transducers with regular looka-
head have been studied extensively [16]. However, as shown
in [18], extending classical transducers results to the sym-

dolic setting is a far from trivial task. The key property that
makes symbolic transducers semantically different and much
more challenging than classical tree transducers, apart from
the complexity of the label theory itself, is the output com-
putation. In symbolic transducers the output labels depend
symbolically on the input label. Effectively, this breaks the
application of some well-established classical techniques that
no longer carry over to the symbolic setting. For example,
while for classical tree transducers the output language is
always regular, this is not the case for symbolic transducer.
Such anomaly is caused by the fact that the input attribute
can appear more than once in the output of a rule.

Let \(S \) and \(T \) be two STTRs with disjoint states We want
to construct a composed STTR \(S \circ T \) such that,
\(S_0 \circ T = S_0 \circ T \).

4.1 Composition Algorithm

Algorithms for composing transducers with regular looka-
head have been studied extensively [16]. However, as shown
in [18], extending classical transducers results to the sym-

dolic setting is a far from trivial task. The key property that
makes symbolic transducers semantically different and much
more challenging than classical tree transducers, apart from
the complexity of the label theory itself, is the output com-
putation. In symbolic transducers the output labels depend
symbolically on the input label. Effectively, this breaks the
application of some well-established classical techniques that
no longer carry over to the symbolic setting. For example,
while for classical tree transducers the output language is
always regular, this is not the case for symbolic transducer.
Such anomaly is caused by the fact that the input attribute
can appear more than once in the output of a rule.

Let \(S \) and \(T \) be two STTRs with disjoint states We want
to construct a composed STTR \(S \circ T \) such that,
\(S_0 \circ T = S_0 \circ T \).

4.1 Composition Algorithm

Algorithms for composing transducers with regular looka-
head have been studied extensively [16]. However, as shown
in [18], extending classical transducers results to the sym-

dolic setting is a far from trivial task. The key property that
makes symbolic transducers semantically different and much
more challenging than classical tree transducers, apart from
the complexity of the label theory itself, is the output com-
putation. In symbolic transducers the output labels depend
symbolically on the input label. Effectively, this breaks the
application of some well-established classical techniques that
no longer carry over to the symbolic setting. For example,
while for classical tree transducers the output language is
always regular, this is not the case for symbolic transducer.
Such anomaly is caused by the fact that the input attribute
can appear more than once in the output of a rule.

Let \(S \) and \(T \) be two STTRs with disjoint states We want
to construct a composed STTR \(S \circ T \) such that,
\(S_0 \circ T = S_0 \circ T \).

4.1 Composition Algorithm

Algorithms for composing transducers with regular looka-
head have been studied extensively [16]. However, as shown
in [18], extending classical transducers results to the sym-

dolic setting is a far from trivial task. The key property that
makes symbolic transducers semantically different and much
more challenging than classical tree transducers, apart from
the complexity of the label theory itself, is the output com-
putation. In symbolic transducers the output labels depend
symbolically on the input label. Effectively, this breaks the
application of some well-established classical techniques that
no longer carry over to the symbolic setting. For example,
while for classical tree transducers the output language is
always regular, this is not the case for symbolic transducer.
Such anomaly is caused by the fact that the input attribute
can appear more than once in the output of a rule.

Let \(S \) and \(T \) be two STTRs with disjoint states We want
to construct a composed STTR \(S \circ T \) such that,
\(S_0 \circ T = S_0 \circ T \).

4.1 Composition Algorithm

Algorithms for composing transducers with regular looka-
head have been studied extensively [16]. However, as shown
in [18], extending classical transducers results to the sym-

dolic setting is a far from trivial task. The key property that
makes symbolic transducers semantically different and much
more challenging than classical tree transducers, apart from
the complexity of the label theory itself, is the output com-
putation. In symbolic transducers the output labels depend
symbolically on the input label. Effectively, this breaks the
application of some well-established classical techniques that
no longer carry over to the symbolic setting. For example,
while for classical tree transducers the output language is
always regular, this is not the case for symbolic transducer.
Such anomaly is caused by the fact that the input attribute
can appear more than once in the output of a rule.
lookheads. Assume, without loss of generality, that $d(T)$ is normalized. We let $\varepsilon(\{e\}) \overset{df}{=} e$ for any singleton set $\{e\}.$

\textbf{Look(φ, L, q, t)} \overset{df}{=}

1. if $t = \tilde{p}(y)$ where $p \in Q_S$ then return ($\varphi, L \uplus_i \{p.q\}$)
2. if $t = g[u_0](i)$ where $g \in \Sigma$ then
 (a) \textbf{choose} $(q, g, \psi, \tilde{e}) \in \delta_{\Delta(T)}$ where $\text{IsSat}(\varphi \land \psi(u_0))$
 (b) $L_0 := L, \varphi_0 := \varphi \land \psi(u_0)$
 (c) for $(i = 1; i \leq \sharp(g); i++)$
 \textbf{choose} (φ_i, L_i) from Look($\varphi_{i-1}, L_{i-1}, \varepsilon(i), u_i$)
 (d) return ($\varphi_{\sharp(g)}(i), L_{\sharp(g)}(i)$)

The function \textbf{Look(φ, L, q, t)} returns a finite (possibly empty) set of pairs because there are only finitely many choices in 2(a), and in 2(c) the term u_i is strictly smaller than t. Moreover, the satisfiability check in 2(a) ensures that $\varphi_{\sharp(g)}(i)$ is satisfiable. The combined conditions allow cross-level dependencies between labels, which are not expressible by classical tree transducers.

\textbf{Example 8.} Consider the instance \textbf{Look}($x > 0, \emptyset, q, t$) for $t = g[x+1][g[x-2][\tilde{p}_1(y_2)]]$ where $g \in \Sigma(1)$. Suppose there is a rule $(q, g, \lambda, x, odd(x), \{g\}) \in \delta_{\Delta(T)}$ that requires that all labels of g are odd and assume that there is no other rule for g from t. The term t itself may arise as an output of a rule $\tilde{p}(f(x)) \to g[x+1][g[x-2][\tilde{p}_1(y_2)]]$ of S. Clearly, this outrules t as a valid input of T at q because of the cross-level dependency between labels due to x, implying that both labels cannot be odd at the same time. Let us examine how this is handled by the \textbf{Look} procedure.

In \textbf{Look}($x > 0, \emptyset, q, t$) line 2(c) we have the recursive call \textbf{Look}($x > 0 \land odd(x+1), \emptyset, q, g[x-2][\tilde{p}_1(y_2)]$). Inside the recursive call we have the failing satisfiability check of $\text{IsSat}(x > 0 \land odd(x+1) \land odd(x-2))$ in line 2(a). So that there exists no choice for which 2(d) is reached in the original call so the set of return values of \textbf{Look}($x > 0, \emptyset, q, t$) is empty.

In the following we pretend, without loss of generality, that for each rule $\tau = (q, f, \varphi, \tilde{e}, t)$ there is a state q_τ that uniquely identifies the rule $(q_\tau, f, \varphi, \tilde{e}, t)$; q_τ is used to refer to the guard and the lookahead of τ chosen in line 2(a) in the call to \textbf{Look} in 2(b) below, q_τ is not used elsewhere.

\textbf{Reduce(γ, L, v)} \overset{df}{=}

1. if $v = \tilde{q}(\tilde{p}(y))$ where $q \in Q_T$ and $p \in Q_S$ then return ($\gamma, L, \tilde{q}(\tilde{p}(y))$)
2. if $v = \tilde{q}(g[u_0](i))$ where $q \in Q_T$ and $g \in \Sigma$ then
 (a) \textbf{choose} $\tau = (q, g, \ldots, \tau)$ from Δ_T
 (b) \textbf{choose} (γ_1, L_1) from Look($\gamma, L, \tilde{q}(g[u_0](i))$)
 (c) \textbf{choose} χ from Reduce($\gamma_1, L_1, t(u_0, \tilde{u})$) return χ
3. if $v = g[t_0](i)$ where $g \in \Sigma$ then
 (a) $\gamma_0 := \gamma, L_0 := L$
 (b) for $(i = 1; i \leq \sharp(g); i++)$
 \textbf{choose} (γ_i, L_i, u_i) from Reduce($\gamma_{i-1}, L_{i-1}, t_i$)
 (c) return ($\gamma_{\sharp(g)}(i), L_{\sharp(g)}(i), g[t_0](i)$)

There is a close relationship between \textbf{Reduce} and \textbf{Definition 7}. We include the case $T^q_p(T(t)) \overset{df}{=} T^q_T(T^q_p(t))$ for $p \in Q_S$ and $t \in T^q_S$.

that allows states of S to occur in the input trees to T^q_T in a non-nested manner. Intuitively this means that rewrite steps of T are carried out first while rewrite steps of S are being postponed (called by name). In order to justify the extension (1) we need the following Lemma.

\textbf{Lemma 3.} For all $t \in \Lambda(T^q_T, Q_S, k), a \in \sigma$, and $u_i \in T^q_S$:

1. $T^q_T(\psi_S(t(t(a, u), k)) \subseteq T^q_T(t(t(a, u), k))$
2. $T^q_T(\psi_S(t(t(a, u), k)) = T^q_T(t(t(a, u), k))$ when S is single-valued or T is linear.

\textbf{Proof.} We prove statements 1 and 2 by induction over t. The base case is $t = \lambda(x, y), \tilde{p}(y)$ where $p \in Q_S$ and some $1 \leq i \leq k$. We have

$$T^q_T(\psi_S(t(t(a, u), k)) = T^q_T(T^q_S(u_i)) = T^q_T(\tilde{p}(u_i))$$

where the last equality holds by using equation (1). The induction case is as follows. Let $t = \lambda(x, y), f(t_0(x))$ for some $p \in Q_S$ and some $i, 1 \leq i \leq k$. We have

$$T^q_T(\psi_S(t(t(a, u), k)) = T^q_T(T^q_S(u_i)) = T^q_T(\tilde{p}(u_i))$$

The step (*) becomes ‘=’ when either $\|\psi_S(t(t(a, u), k))\| \leq 1$ or $m \leq 1$. The first case holds if S is single-valued. The second case holds if T is linear in which case the induction step becomes ‘=’. Both statements of the lemma follow by using the induction principle.
The assumptions on \(S\) and \(T\) given in Lemma 3 are the same as in the classical setting, however the proof of Lemma 3 does not directly follow from classical results because either the concrete alphabet \(\Sigma \times \sigma\) is infinite, or else, if \(\sigma\) is encoded as trees, linear rules become non-linear in the classical sense, such as the rule in Figure 5. Theorem 4 uses Lemma 3. It implies that, in general, \(T_{S\circ T}\) is an overapproximation of \(T_{S}\circ T_{T}\) and that \(S_{S\circ T}\) captures \(T_{S}\circ T_{T}\) precisely when either \(S\) behaves as a partial function or when \(T\) does not duplicate its tree arguments.

Theorem 4. For all \(p \in Q_{S}\) and \(q \in Q_{T}\) and \(t \in \mathcal{T}_{S}\), \(T_{S\circ T}(t) \supseteq T_{S\circ T}(t)\), and if \(S\) is single-valued or if \(T\) is linear then \(T_{S\circ T}(t) \subseteq T_{S\circ T}(t)\).

Proof. We start by introducing auxiliary definitions and by proving additional properties that help us to formalize our arguments precisely. For \(p \in Q_{S}\) and \(q \in Q_{T}\), given that \(L^{p,q}\) is the language accepted at the pair state \(p,q\), we have the following relationship that is used below:

\[
L^{p,q} \overset{\text{def}}{=} \{ t \mid t \notin T_{p}(\mathcal{T}_{p}(t)) \neq \emptyset \}
\]
\[
= \{ t \mid \exists u \in \mathcal{T}_{p}(t) \land t \notin L_{p}^{u} \}
\]
\[
= \{ t \mid \exists u \in \mathcal{T}_{p}(t) \land u \in L_{p}^{u} \}
\]
\[
= \{ t \mid T_{p}(t) \cap L_{p}^{u} \neq \emptyset \}
\]

The **concrete semantics** of \(\text{Look}(\varphi, P, q, t)\) is the set of all pairs returned in line 1 and line 2(d) after some nondeterministic choices made in line 2(a) and the elements of recursive calls made in line 2(c). For a set \(P\) of pair states, and for a \(k\) tuple \(P\),

\[
L^{P} \overset{\text{def}}{=} \bigcap_{p,q \in P} L^{p,q}
\]

\[
L^{P} \overset{\text{def}}{=} \{ u \mid \bigwedge_{i=1}^{k} u_{i} \in L^{P_{i}} \}
\]

The **concrete semantics** of a single pair \((\varphi, P)\) is

\[
[\text{Look}(\varphi, P, q, t)] \overset{\text{def}}{=} \{ (a, \bar{u}) \mid a \in \mathcal{L}_{\varphi}, \bar{u} \in L^{P} \}
\]

We now prove (3). It is the link between the symbolic and the concrete semantics of Look and Definition 2.

\[
[\{ x \} \mid \text{Look}(\varphi, P, q, t)] \text{ returns } \chi \iff [\text{Look}(\varphi, P, q, t)]
\]

We prove (3) by induction over \(t\). The base case is when \(t = f(t_{0})\) for some \(p \in Q_{S}\) and \(y\), for some \(i \in \{1, \ldots, k\}\):

\[
[\{ x \} \mid \text{Look}(\varphi, P, q, \bar{p}(y)) \text{ returns } \chi]
\]

\[
= [\{ \varphi, \bar{p}(y), p, q \}]
\]

\[
= \{ (a, \bar{u}) \mid a \in [\varphi], \bar{u} \in L^{P}, u_{i} \in L^{P_{i}} \}
\]

\[
= \{ (a, \bar{u}) \mid a \in [\varphi], \bar{u} \in L^{P}, \mathcal{T}_{S}(u_{i}) \cap L_{P_{i}} \neq \emptyset \}
\]

\[
= \{ (a, \bar{u}) \mid a \in [\varphi], \bar{u} \in L^{P}, \mathcal{S}_{S}(\bar{p}(u_{i})) \cap L_{P_{i}} \neq \emptyset \}
\]

\[
= [\text{Look}(\varphi, P, q, \bar{p}(u_{i}))]
\]

The induction case is when \(t = f(t_{0})\). Assume \(\exists(f) = 2\). IH is that (3) holds for \(t_{1}\) and \(t_{2}\). Assume, without loss of generality, that \(d(T)\) is normalized. We have for all \(a \in \Sigma\) and \(u \in (T_{S})^{k}\),

\[
(a, \bar{u}) \in \bigcup\{[\{ x \} \mid \text{Look}(\varphi, P, q, f(t_{0})(\bar{t})) \text{ returns } \chi]\}
\]

(2) states \(\exists(f) = 1\), given that \(d(T)\) is normalized. We have for all \(a \in \Sigma\) and \(u \in (T_{S})^{k}\),

\[
(a, \bar{u}) \in \bigcup\{[\{ x \} \mid \text{Look}(\varphi, P, q, f(t_{0})(\bar{t})) \text{ returns } \chi]\}
\]

(3) follows by the induction principle. Observe that, so far, no assumptions on \(S\) or \(T\) were needed.

A triple \((\varphi, P, t)\) of valid arguments of \(\text{Reduce}\) denotes the function \(\theta(\varphi, P, t)\) such that for all \(a \in \Sigma\) and \(u \in T_{S}^{k}\),

\[
\theta(\varphi, P, t)(a, \bar{u}) \overset{\text{def}}{=} \begin{cases} \mathcal{S}_{S}(t(a, \bar{u})), & \text{if } (a, \bar{u}) \in \bigcup \{ [\{ x \} \mid \text{Look}(\varphi, P, q, f(t_{0})(\bar{t})) \text{ returns } \chi] \}; \\ \emptyset, & \text{otherwise.} \end{cases}
\]

Next, we prove (5) under the assumption that \(S\) is single-valued or \(T\) is linear. For all \(a \in \Sigma\) and \(u \in T_{S}^{k}\) and \(v \in T_{S}^{k}\),

\[
(\exists a) \nu \in \theta(a, \bar{u}), \text{\textbf{Reduce}(}\varphi, P, t\text{ returns } a \nu \iff \nu \in \theta(\varphi, P, t)(a, \bar{u})\nu\}
\]

(5) follows because \(\text{Reduce}(\varphi, P, \bar{p}(y))\) returns \((\varphi, P, \bar{p}(y))\) and \(\lambda y.\bar{p}(y)\) denotes, by definition, the composition \(\lambda y.\bar{p}(y)\).
We use the extended case (6) of Definition 7 that allows states of S to occur in \tilde{t}. This extension is justified by Lemma 3. For all $q \in Q_T$:

$$\psi_r(\tilde{q}(f[a](\tilde{t}))) \equiv \bigcup \{ \psi_r(u(a, \tilde{t})) \mid (q, f, \varphi, \tilde{t}, u) \in \Delta_T, a \in \varphi \},$$

$$\bigwedge_{i=1}^{\#(\tilde{f})} \psi_r(t_i(a, \tilde{u})) \cap L_{t_i}^f \neq 0 \}$$

Observe that when \tilde{t}, does not contain any states of S then $\psi_r(t_i) = \{ t_i \}$ and thus the condition $\psi_r(t_i) \cap L_{t_i}^f \neq 0$ simplifies to the condition $t_i \in L_{t_i}^f$ used in the original version of Definition 7.

There are two induction cases. The first induction case is $t = \tilde{q}(f[t_0](\tilde{t})))$ where $q \in Q_T$ and $f \in \Sigma$. Let $t' = f[t_0](\tilde{t})$. For all $a \in \sigma$, $u \in T_2^\sigma$ and $v \in T_2^\sigma$,

$$\exists \alpha \psi_r(\varphi, \tilde{P}, \tilde{q}(t')) \text{ returns } \alpha$$

$$\exists \alpha \psi_r(\varphi, \tilde{P}, \tilde{q}(t')) \text{ returns } \alpha$$

$$\exists \alpha \psi_r(\varphi, \tilde{P}, \tilde{q}(t')) \text{ returns } \alpha$$

$$\exists \alpha \psi_r(\varphi, \tilde{P}, \tilde{q}(t')) \text{ returns } \alpha$$

The second induction case is $t = f[t_0](\tilde{t})$. Assume $\#(\tilde{f}) = 2$. Generalization to arbitrary ranks is straightforward by repeating IH steps below $\#(\tilde{f})$ times. For all $a \in \sigma$, $u \in T_2^\sigma$ and $v \in T_2^\sigma$.

Equation (5) follows by the induction principle.
Finally, we prove $T_{S,T}^{p,q} = T_{S}^{p} \circ T_{T}^{q}$. Let $p \in Q_{S}$, $q \in Q_{T}$ and $f[a](\bar{u})$, $\bar{w} \in T_{S}^{p}$ be fixed.

\[w \in T_{S}^{p}(f[a](\bar{u})) \]

\[\forall \varphi, \bar{t},) (p, f, \varphi, \bar{t},) \in \Delta_{S} \]

\[(\exists \alpha) \text{Reduce}(\varphi, \emptyset, \tilde{g}(t)) \text{ returns } \alpha \]

\[v \in \partial_{\alpha}(a, \bar{u}), \bar{u} \in L_{S}^{k} \]

\[\text{Eq.}[(\exists \varphi, \bar{t},) (p, f, \varphi, \bar{t},) \in \Delta_{S} \]

\[v \in \partial_{(p, \bar{a}, \tilde{g}(t))(a, \bar{u})}, \bar{u} \in L_{S}^{k} \]

\[\Delta_{S} \]

\[a \in [\varphi], \bar{u} \in L_{S}^{k}, \bar{w} \in \tilde{\varphi}(\tilde{g}(t(a, \bar{u}))), \bar{u} \in L_{S}^{k} \]

\[\text{Def } \theta \]

\[(\exists \varphi, \bar{t},) (p, f, \varphi, \bar{t},) \in \Delta_{S} \]

\[a \in [\varphi], \bar{u} \in L_{S}^{k}, \bar{w} \in T_{T}^{q}(t(a, \bar{u})) \]

\[\forall \bar{w} \in T_{S}^{p}(\tilde{\varphi}(f[a](\bar{u}))) \]

Step (*) uses Lemma 3.2. It holds only when S is single-valued or T is linear. Otherwise, only `\Leftarrow' holds.

5. Evaluation

Fast can be applied in multiple different applications. We first consider HTML input sanitization for security. Then we show how augmented reality (AR) applications can be checked for conflicts. Next, we show how FAST can perform deforestation and verification for functional programs. Finally, we sketch how CSS analysis can be captured in FAST.

5.1 HTML Sanitization

A central concern for secure web application is untrusted user inputs. These lead to cross-site scripting (XSS) attacks, which, in its simplest form, is echoing untrusted input verbatim back to the browser. Consider bulletin boards that want to allow partial markup such as `<a>` and `<i>` tags or HTML email messages, where the email provider wants rich email content with formatting and images but wants to prevent active content such as JavaScript from propagating through. In these cases, a technique called sanitization is used to allow rich markup, while removing active (executable) content. However, proper sanitization is far from trivial: unfortunately, for both of these scenarios above, there have been high-profile vulnerabilities stemming from careless sanitization of specially crafted HTML input leading to the creation of the infamous Samy worm for MySpace (http://namb.la/popular/) and the Yaman- nek worm for the Yahoo Mail system. In fact, MySpace has repeatedly failed to properly sanitize their HTML inputs, leading to the Month of MySpace Bugs initiative (http://momby.livejournal.com/586.html).

This has lead the emergence of a range of libraries attempting to do HTML sanitization, including PHP Input Filter, HTMLSafe, kses, htmLawed, Safe HTML Checker, HTML Purifier. Among these, the last one, HTML Purifier (http://htmlpurifier.org) is believed to be most robust, so we choose it as a comparison point for our experiments.

Note that HTML Purifier is a tree-based rewriter written in PHP, which uses the HTMLTidy library to parse the input.

In this study we show how FAST is expressive enough to model HTML sanitizers, and we argue that writing such programs is easier with FAST than with current tools. Our version of an HTML sanitizer written in FAST and automatically translated by the Fast compiler into C# is partially described in Section 2. Although we can’t argue for the correctness of our implementation (except for the basic analysis shown in Section 2), sanitizers are much simpler to write in FAST thanks to composition. In all the libraries mentioned above HTML sanitization is implemented as a monolithic function in order to achieve reasonable performance. In the case of FAST each sanitization routine can be written as a single function and all such routines can be then composed preserving the property of traversing the input HTML only once.

Evaluation: To compare different sanitization strategies in terms of performance, we chose 10 web sites and picked an HTML page from each content, ranging from 20 KB (Bing) to 409 KB in size (Facebook). For speed, the FAST-based sanitizer is comparable to HTML Purify. In terms of maintainability, FAST wins on two counts. First, we can apply analysis to FAST programs that is precise, unlike analyses for PHP. Second, our sanitizer is only 200 lines of FAST code instead of 10000 lines of PHP. While these are different languages, we argue that our approach is more maintainable because FAST captures the high level semantics of HTML sanitization, as well as being fewer lines of code to understand. We manually spot-checked the outputs to determine that both produce reasonable sanitizations.

5.2 Conflicting Augmented Reality Applications

In augmented reality the view of the physical world is enriched with computer-generated information. For example, applications (often called taggers) on the Layar phone AR platform applications provide up-to-date information such as data about crime incidents near the user’s location, information about historical places and landmarks, real estate, and other points of interest.

We call a tagger an AR application that labels elements of a given set with a piece of information based on the properties of such elements. As an example, consider a tagger that assigns to every city a set of tags representing the monuments in such city. A large class of shipping mobile
phone AR applications are taggers, including Layar, Nokia City Lens, Nokia Job Lens, and Junaio. We assume that the physical world is represented as a list of elements, and each element is associated with a list of tags (i.e. a tree). Users should be warned if not prevented from installing applications that conflict with others they have already installed. We say that two taggers conflict if they both label the same node of some input tree. In order to detect conflicts we perform the following four-step check for each pair of taggers \((p_1, p_2)\):

- **composition** we compute \(p\), composition of \(p_1\) and \(p_2\);
- **input restriction** we compute \(p'\), a restriction of \(p\) that only accepts trees where each node contains no tags;
- **output restriction** we compute \(p''\), a restriction of \(p'\) that only outputs trees in which some node contains two tags;
- **check** we check if \(p''\) is the empty transducer: if it is not the case, \(p_1\) and \(p_2\) conflict on every input accepted by \(p''\).

Evaluation: Figure 6 shows the timing results for conflict analysis. To collect this data, we randomly generated 100 taggers in FAST and checked whether they conflicted with each other. Each tagger we generated conforms to the following properties: 1) it is non-empty; 2) it tags on average 3 nodes; and 3) it tags each node at most once.

The sizes of our taggers varied from 1 to 95 states. The language we used for the input restriction has 3 states, the one for the output 5 states. We analyzed 4,950 possible conflicts and 222 will be actual conflicts. The three plots show the time distribution for the steps of a) composition, b) input restriction, and c) output restriction respectively.

All the compositions are computed in less than 250 ms, and the average time is 15 ms. All the input restrictions are computed in less than 150 ms. The average time is 3.5 ms. All the output restrictions are computed in less than 33,000 ms. The average time is 175 ms. The output restriction takes longer to compute in some cases, due to the following two factors: 1) the input sizes are always bigger: the size of the composed transducers after the input restriction \((p')\) in the list before) vary from 5 to 300 states and 10 to 4,000 rules. This causes the restricted output to have up to 5,000 states and 100,000 rules; and 2) since the conditions in the example are randomly generated, some of them may be complex causing the SMT solver to slow down the computation. The 33,000 ms example contains non-linear (cubic) constraints over reals. The average time of 193 ms per pairwise conflict check is quite acceptable: indeed, adding a new app to a store already containing 10,000 apps will incur an average checking overhead of about 35 minutes.

5.3 Deforestation

Next we explore the idea of deforestation. First introduced by Wadler in 1988 [35], deforestation aims at eliminating intermediate computation trees when evaluating functional programs. For example, to compute the sum of the squares of the integers between 1 and \(n\), the following small program might be used: \[\text{sum (map square (upto 1 n))}\]. Intermediate lists created as a result of evaluation are a source of inefficiency. However, it has been observed that transducer composition can be used to eliminate intermediate results. This can be done as long as individual functions are representable as transducers. Unfortunately [35] only considers transformations over finite alphabets. We analysed the performance gain obtained by deforestation in FAST with the following experiment.

Evaluation: We considered the function \(\text{map_caesar}\) from Figure 8 that replaces each value \(x\) of a integer list with \((x + 5)\)(mod 26). We composed the function \(\text{map_caesar}\) with itself several times to see how the performance changed when using FAST. Let’s call \(\text{map}\)’ the composition of \(\text{map_caesar}\) with itself \(n\) times. We run the experiments on lists of size varying from 2 elements to 4,096 randomly generated elements and we consider up to 512 composed functions. Figure 7 shows the running time with and without deforestation for a list of 4,096 integers used as the input. The running time of the FAST composed version is almost unchanged, even for 512 compositions while the running time of the naively composed functions degrades linearly in the number of composed functions.

5.4 Analysis of Functional Programs

FAST can also be used to perform static analysis of simple functional programs over lists and trees. Consider again the functions from Figure 8. As we described in the previous experiment the function \(\text{map_caesar}\) replaces each value \(x\) of a integer list with \((x + 5)\)(mod 26). The function \(\text{filter_ev}\) removes all the odd elements from a list.

One might wonder what happens when such functions are composed. Consider the case in which we execute the map followed by the filter, followed by the map, and again by the filter. This transformation is equivalent to deleting all the elements in the list! This property can be stastically checked in FAST. We first compute \(\text{comp2}\) as the composition described above. As show in Figure 8, the language of non-empty lists can be expressed using the construct \(\text{not_emp_list}\). Finally, we can use the output restriction to restrict \(\text{comp2}\) to only output non-empty lists and show that such function is empty. In this example the whole analysis can be done in less than 10 ms.

5.5 CSS Analysis

Cascading style-sheets (CSS) is a language that allows to stylize and format HTML documents. A CSS program is a...
Table 1: Summary of main domain specific languages for tree-manipulating programs and their properties; σ indicates whether the language supports finite (f) or infinite (∞) alphabets.

<table>
<thead>
<tr>
<th>Language</th>
<th>σ</th>
<th>Analysis</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAST</td>
<td>∞</td>
<td>composition; typechecking, pre-image, language equivalence, determinization, complement, intersection</td>
<td>Tree-manipulating programs</td>
</tr>
<tr>
<td>Tiburon</td>
<td>ff</td>
<td>composition; type-checking; training; weights; language equivalence, determinization, complement, intersection</td>
<td>NLP</td>
</tr>
<tr>
<td>TTT</td>
<td>ff</td>
<td>-</td>
<td>XML query</td>
</tr>
<tr>
<td>ASF+SDF</td>
<td>∞</td>
<td>-</td>
<td>Parsing</td>
</tr>
<tr>
<td>XPath</td>
<td>∞</td>
<td>emptiness for a fragment</td>
<td>XML query (only selection)</td>
</tr>
<tr>
<td>XDuce</td>
<td>∞</td>
<td>type-checking for navigational part</td>
<td>XML query (finite alphabet)</td>
</tr>
<tr>
<td>XQuery, XSLT, STX</td>
<td>∞</td>
<td>-</td>
<td>XML transformations</td>
</tr>
</tbody>
</table>

sequence of CSS rules, where each rule contains a selector and an assignment. The selector decides which nodes are affected by the rule and the assignment is responsible for updating the selected nodes. The following is a typical CSS rule: `div p { word-spacing:30px; }`. In this case `div p` is the selector while `word-spacing:30px` is the assignment. This rule sets the attribute `word-spacing` to `30px` for every `p` node inside a `div` node. We call `C(H)` the updated HTML resulting from applying a CSS program `C` to an HTML document `H`.

In [19] CSS programs are analyzed using tree logic. For example one can check whether given a CSS program `C`, there doesn’t exist an HTML document `H` such that `C(H)` contains a node `n` for which the attributes `color` and `background-color` both have value `black`. This property ensures that black text is never written on a black background, causing the text not to be readable. Ideally one would want to check that `color` and `background-color` never have the same value, but, since tree logic explicitly model the alphabet, the corresponding formula would be too large. By modelling CSS programs as symbolic tree transducers we can overcome this limitation. This analysis clearly relies on the alphabet being symbolic, and we plan on extending FAST with primitives for representing CSS programs.

6. Related Work

Tree transducers. Tree transducers have been long studied, surveys and books are available on the topic [7, 17, 30]. The first models were top-down and bottom-up tree transducers [2, 10], later extended to top-down transducers with regular lookahead in order to achieve closure under composition [11, 12, 16]. Extended top-down tree transducers [26] (XTOP) allow rules to read more than one node at a time, as long as such nodes are adjacent. When adding lookahead such a model is equivalent to top-down tree transducers with regular lookahead. More complex models, such as macro tree transducers [13], have been introduced to improve the expressiveness at the cost of higher complexity. Due to this reason we don’t consider extending them in this paper.

Symbolic transducers. Symbolic finite transducers (SFTs) over lists, together with a front-end language Bek, were originally introduced in [21] with a focus on security analysis of string sanitizers. The main SFT algorithms, in particular, an algorithm for deciding equivalence of SFTs modulo a decidable background theory is studied in [34]. Variants of SFTs in which multiple input symbols can be read by a single transition are studied in [8] and in [5]. Symbolic tree transducers are originally introduced in [33], where it is wrongly claimed that STTs are closed under composition by referring to a generalization of a proof of the classical case in [17] which is only stated for total deterministic finite tree transducers. In [18] this error is discovered and other properties of STTs are investigated. The main result of [33] is an algorithm for checking equivalence of single-valued linear STTs. For classical transducers, equivalence has been shown to be decidable for deterministic or finite-valued tree transducers [31], streaming tree transducers [1], and MSO tree transformations [14]. We are currently investigating the problem of checking equivalence of single-valued STTRs.

DSL for tree manipulation. Domain specific languages for tree transformation have been studied in several different contexts. TTT [29] and Tiburon [28], are transducers based languages used in natural language processing. TTT allows complex forms of pattern matching, but does not enable any form of analysis. Tiburon supports probabilistic transitions and several transducers algorithms. Both the languages are limited to finite input and output alphabets. ASF+SDF [6] is a term-rewriting language for manipulating parsing trees. ASF+SDF is simple and efficient, but does not support any analysis. In the context of XML processing numerous languages have been proposed for querying (XPath [37], XQuery [36]), stream processing (STX [3]), and manipulating (XSLT [38], XDuce [23]) XML trees. While being very expressive, these languages support very limited forms of analysis. Emptiness has been shown decidable for restricted fragments of XPath [4]. XDuce [23] allows to define basic XML transformations, and supports a tree automata based type-checking that is limited to finite alphabets. We plan to extend FAST to better handle XML processing and to identify a fragment of XPath expressible in FAST. However, to the best of our knowledge, FAST is the first language for tree manipulations that supports infinite input and output alphabets while preserving decidable analysis. Table 1 summarizes the relations between FAST and the other domain-specific languages for tree transformations.

Applications. The connection between tree transducers and deforestation was first investigated in [35], and then further investigated in [25]. In this setting deforestation is done via Macro Tree Transducers (MTT) [13]. While being more expressive than Top Down Transducers with regular lookahead, MTTs only support finite alphabets and their composition is very expensive. We are not aware of an actual implementation of the techniques in [25]. Higher-Order Multi-Parameter Tree Transducers (HMTT) [24] are used for type-checking higher-order functional programs. HMTTs enable sound but incomplete analysis of programs which takes multiple trees as input, but only support finite alphabets. Extending our theory to multiple input trees and higher-order functions is an open research direction.

Open problems. Several complexity related questions for STAs and STTRs are open and depend on the complexity of the label theory, but some lower bounds can be established using known results for finite tree automata and transducers [7]. Concrete open problems are decidability of: single-valuedness of STTRs, equivalence of single-valued STTRs, and finite-valuedness of STTRs. Classically these problems
are decidable, but some proofs are mathematically quite challenging [31]. Algorithms for minimization and learning of STAs are also unexplored topics.

Conclusions. We introduce FAST, a new domain-specific language for tree manipulation based on symbolic tree automata and symbolic tree transducers. To allow FAST to perform useful program analysis, we design a novel algorithm for composing symbolic tree transducers with regular lookahead and we prove its correctness. FAST strikes a delicate balance between precise analysis and expressiveness, and we show how multiple applications benefit from this analysis. A running version of FAST can be accessed at http://rise4fun.com/Fast/.

References

