
Data-Parallel String-Manipulating Programs
Microsoft Research Technical Report MSR-TR-2012-72

Margus Veanes David Molnar Todd Mytkowicz Benjamin Livshits

Microsoft Research

{margus,dmolnar,toddm,livshits}@microsoft.com

Abstract

Applications ranging from malware detection to graphics
to Web security sanitization depend on string transforma-
tions, but writing such transformations is a challenge. Mak-
ing these transformations run in parallel on a cluster of ma-
chines or special hardware, as often required for scalability,
is an even greater challenge. We answer this challenge with
fast, parallel string manipulating code compiled from Bek,
a domain-specific language for writing complex string ma-
nipulation routines [9].

First, our new compilation pipeline maps a Bek program
to an intermediate format consisting of symbolic transduc-
ers, which extend classical transducers with symbolic pred-
icates and symbolic assignments. We present a novel algo-
rithm that we call exploration which performs a symbolic
partial evaluation of these transducers to obtain simplified,
stateless versions of the original program. These simplified
versions can be lifted back to Bek, and from there compiled
to C#, C, or JavaScript. Next, we show how the resulting
transducers, post-exploration, fit into a recent advance in
data-parallel compilation of finite state machines. Finally,
we describe a concrete implementation built on the Win-
dows High Performance Computing framework in a cluster.

We have implemented our code generation pipeline for
Bek code corresponding to several real string manipulating
functions, such as security sanitizers for Web applications.
We use an automatic testing approach to compare our gener-
ated code to the original C# implementations and found no
semantic deviations. Our generated C# code out-performs
handwritten code by a factor of up to 3 and we generate
code in C that is a factor of 5 faster. For a cluster with 32
nodes, we see speedups of 13.7 times compared to sequential
C# code for an HTML sanitizer over 32 GB of data.

1. Introduction

We produce an optimizing data-parallel code pipeline for
Bek, a domain-specific language for writing string manipu-
lating programs. The original motivation for Bek came from
Web programs called sanitizers that are evaluated on in-
puts from untrusted sources [9]. The language can further
express a variety of string-manipulating programs. Previous
work described how image blurring, GPS trace anonymiza-
tion, and malware fingerprinting can be expressed in this
way [20].

Unfortunately, previous work did not show how to com-
pile Bek to standard languages, even for sequential code.
We demonstrate compilation that generates faster code than
manually-written string-manipulating routines. We then
turn to parallelism. Previous work has shown that special

state variables called registers are needed to express common
functions. Unfortunately registers introduce data dependen-
cies that are obstacles to parallelism. Manually removing
registers requires reasoning about which state values will
cause different behavior, which is difficult and time consum-
ing.

We fix this problem with a novel exploration algorithm
that attempts to remove registers from Bek programs. The
exploration algorithm uses SMT solvers to determine ranges
of state values that matter, then creates a new, equivalent
program that has the register values removed. We combine
this with recent advances in data-parallel compilation to ob-
tain a data-parallel back-end for Bek programs. By data-
parallel we mean that the computation can be distributed
across the data with minimal need for cross-communication
between threads. Data-parallelism enables processing giga-
bytes of text in a short time using multiple cores or multi-
ple machines, as we show in Section 5. Our end result is a
fully-automatic compilation from programs in an expressive
language, Bek, to a LINQ-to-HPC data-parallel framework
running on a cluster.

We do this without compromising the core strength of
Bek: fast and precise analysis. Previous work has showed
how to perform composition, equivalence checking, and com-
mutativity checking that scale quadratically in the number
of states, and which are fast in practice. Simply put, Bek
is a tool for programmers to specify arbitrary finite state
transformations. Before this work, there was no easy way to
deploy the results, much less in a data-parallel way.

1.1 The Bek Language

We briefly describe the Bek domain-specific language for
writing string transformations. As introduced in [9], the core
construct in Bek is an iteration over each character in an
input string. Programs can then have case statements that
describe different behavior for different input characters.
Typically the program will perform some local computation,
then yield, or output, a new character. In this way a new
string is built up based on the characters of the input string.

Programs can also have register variables that keep state
during the iteration. Figure 1 shows a sample Bek program
that checks each character and then updates a register vari-
able r. Depending on input character, the program may then
output the contents of the register, or it may simply pass
through the character unchanged. For more details on Bek
we refer to previous work or to the online Bek evaluator
at http://rise4fun.com/bek. While the language is lim-
ited, it still is expressive enough to capture a wide range of
string-manipulating functions, including many of the func-

1 2012/12/13



tions commonly used in Web sanitization and functions used
in graphics processing [9, 20].

function E(x)=
( i te (x<=25,x+65,

i te (x<=51,x+71,
i te (x<=61,x−4, i te ( x==62, ’+’ , ’ / ’ ) ) ) ) ) ;

program b64e ( input ){
return iter ( x in input ) [ q :=0; r :=0 ; ]{

case (x>0xFF ) : raise Inva l id Input ;
case ( q==0): yield (E(x>>2));

q :=1; r :=(( x&3)<<4);
case ( q==1): yield (E( r | ( x>>4)));

q :=2; r :=(( x&0xF)<<2);
case ( q==2): yield (E( ( r | ( x>>6))) ,E(x&0x3F ) ) ;

q :=0; r :=0;
end case ( q==1): yield (E( r ) , ’= ’ , ’= ’ ) ;
end case ( q==2): yield (E( r ) , ’= ’ ) ;

} ;
}

Figure 1: Sample Bek program that does base64 encoding.

1.2 Exploration and Data-Parallelism

The register variables in Bek are important for making it
easy to translate string-manipulating functions written in
C# or other languages to Bek, because existing functions
typically keep state through an iteration. These variables
are also convenient for writing functions in Bek directly.
Unfortunately, these register variables are enemies of data-
parallelism, because they introduce control flow that de-
pends on the registers and not on the individual character.

The key contribution of this work is a novel partial sym-
bolic evaluation algorithm that enables removing registers
from Bek programs. Without this algorithm, we would not
be able to exploit recent advances in data parallel finite
transducers. We describe the algorithm in detail in Section 3.
While the algorithm is not guaranteed to work in all cases
(much like type checking, the algorithm is solving an unde-
cidable problem), when it does work it produces a transducer
that is semantically equivalent to the original, but without
register state variables. We then put this algorithm into a
fully-automatic pipeline that compiles Bek into a parallel
implementation in the C# LINQ-to-HPC framework. This
relieves the programmer from the burden of explicitly de-
scribing parallelism in Bek programs and allows them to use
the full expressibility that registers provide. Removing regis-
ters manually is a difficult task because it requires reasoning
about the different behavior exhibited by the program for
different values of the register and so an automated solution
is preferred.

1.3 Paper Contributions

This paper makes the following contributions.

• Previous work on Bek introduced an extension to sym-
bolic transducers with registers [20]. Registers can be
used to remember small amounts of state and are essen-
tial for modeling real sanitizers. In this paper, we present
a novel partial-evaluation algorithm modulo theories that
is complete for finite-valued register update functions and
works modulo arbitrary background theories. The algo-
rithm, if it terminates, outputs new transducers that are
equivalent to the input but have no registers present.

• Our algorithm has several interesting features. First,
the algorithm uses an SMT solver to eliminate regis-

q0
r:=0

q1
(c<=0xFF)/
[E(B(7,2,c))];
r:=(B(1,0,c)<<4)

true/[E(r),'=','=']

q2

(c<=0xFF)/
[E(r|B(7,4,c))];
r:=(B(3,0,c)<<2)(c<=0xFF)/

[E(r|B(7,6,c)),
E(B(5,0,c))];
r:=0

true/[E(r),'=']

Figure 2: Symbolic transducer of the program in Figure 1.

ters (by folding them into control states) while main-
taining symbolic representation from input sequences to
output sequences. Next, the algorithm uses the model-
generation feature of state-of-the-art SMT solvers to
compute a finite control state partitioning as a dynamic
forward reachability analysis. Finally, it uses unsatisfia-
bility checks to prune provably unreachable states as a
dynamic backward reachability analysis.

• We show how to compile from Bek into C#, JavaScript,
and C. We show how to check the resulting code for
semantic differences from the original code. For server-
side C# and C code, we achieve significant speedups:
our transformation from Bek to C# results in code
that outperforms production hand-written versions of the
same function by as much as 3x and our C code is up to
5x faster. For JavaScript, our compiled code is sometimes
faster and sometimes slower than common Web libraries,
but our JavaScript comes with a guarantee that today’s
libraries cannot match: that the code will have the same
semantics as the server-side filter.

• As our main application of the partial-evaluation or ex-
ploration algorithm, we show how to combine it with a
recent advance by Mytkowicz and Schulte [14] to obtain
a fully-automatic data-parallel compilation of Bek pro-
grams into the LINQ-to-HPC framework. To the best
of our knowledge, this is the first fully-automatic paral-
lelization of string manipulating code that combines ad-
vanced automata theory with state-of-the-art SMT tech-
nology. We achieve between 8.7x and 13.7x speedup on
a 32 GB file transformed with representative benchmarks
on a 32-machine cluster.

1.4 Paper Organization

The rest of this paper is organized as follows. Section 3
presents algorithms for transducer exploration. Section 4
describes the Bek back-end, focusing on the translation
process for C#, C++, and JavaScript. Section 5 provides
our experiment evaluation. Finally, Sections 6 and 7 describe
related work and conclude.

2. Symbolic Transducers

We now formally define symbolic transducers or STs and
give examples of how STs capture behavior of programs.
We assume a background structure that has an effectively
enumerable background universe U , and is equipped with a
language of function and relation symbols with fixed inter-
pretations. Definitions below are given with U as an implicit
parameter. We assume closure under Boolean operations and
equality. Operations that are specific to U do not affect the
results. We use λ-expressions for dealing with anonymous
functions that we call λ-terms. In general, we use standard
first-order logic and follow the notational conventions that
are consistent with [20]. The universe is multi-typed with Uτ
denoting the subuniverse of elements of type τ . We make use
of the empty tuple type T0 such that UT0 = {〈〉}. While the
definition below is consistent with the definition of STs as

2 2012/12/13



originally introduced in [20], here we use a variant where
the control state component is explicit. This variant in bet-
ter suited for presenting and explaining the key results of
this paper.

Definition 1: A Symbolic Transducer or ST with input
type σ output type γ and register type τ is a tuple A =
(Q, q0, r0, R),

• Q is a finite set of states;
• q0 ∈ Q is the initial state;
• r0 ∈ Uτ is the initial register value;
• R is a finite set of rules R = ∆ ∪ F ;

• ∆ is a set of transitions ρ = (q, ϕ, o, u, q′), or q
ϕ/o;u−−−−→ q′,

q ∈ Q is the start state of ρ;
ϕ, the guard of ρ, is a (σ × τ)-predicate;
o, the output of ρ, is a finite sequence of λ-terms of
type (σ × τ)→ γ;
u, the update of ρ, is a λ-term of type (σ × τ)→ τ ;
q′ ∈ Q is the end state of ρ.

• F is a set of finalizers ρ = (q, ϕ, o), or q
ϕ/o−−→ •,

q ∈ Q is the start state of ρ;
ϕ, the guard of ρ, is a τ -predicate;
o, the output of ρ, is a finite sequence of λ-terms of
type τ→ γ.

If τ is the empty tuple type T0 then A is called a Symbolic
Finite Transducer or SFT.1 �

We write [e1, . . . , ek] or [ei]
k
1 for finite sequences of length

k ≥ 0 and if f is a sequence [fi]
k
1 of λ-terms of type

σ→ γ then [[f ]] is the function that maps a ∈ Uσ to
[[[f1]](a), . . . , [[fk]](a)] ∈ Uγ∗, where X∗ denotes the set of
all finite sequences over X. The empty sequence is [] or ε.

The semantics of A is given by the following concrete
transition relation. Let q, q′ ∈ Q, r, r′ ∈ Uτ , a ∈ Uσ,

b ∈ Uγ∗. Then (q, r)
[a]/b−−−→A (q′, r′) denotes that there exists

a transition q
ϕ/o;u−−−−→ q′ such that ϕ(a, r) holds, the output

sequence b is [[o]](a, r) and the new register r′ is [[u]](a, r).

Similarly, (q, r)
ε/b−−→A • denotes that there exists a finalizer

q
ϕ/o−−→ • such that ϕ(r) holds and b is [[o]](r).

The reachability relation p
a/b−−→→A p

′ for a ∈ Uσ∗, b ∈ Uγ∗,
and p, p′ ∈ (Q × Uτ ) ∪ {•} is defined through the closure
under the following conditions, where ‘·’ is concatenation of
sequences, note that ε · x = x · ε = x:

• If p
a/b−−→A p

′ then p
a/b−−→→A p

′.

• If p
a/b−−→→A p1

a′/b′−−−→→A p2 then p
a·a′/b·b′−−−−−−→→A p2.

Definition 2: The transduction of A, denoted TA, is the
following function from Uσ∗ to 2(Uγ∗):

TA(a)
def
= {b | (q0

A, r
0
A)

a/b−−→→A •}
A is single-valued when |TA(a)| ≤ 1 for all a ∈ (Uσ)∗ and A

is deterministic when, for all a, b1, b2, p, p1, p2, if p
a/b1−−−→A p1

and p
a/b2−−−→A p2 then b1 = b2 and p1 = p2. �

It is easy to show that determinism implies single-
valuedness. Deterministic STs form a practically important
subclass of STs and in the examples and case studies we only
consider deterministic STs. For the data-parallel translation

1 In other words, an SFT is an ST without registers.

explained in Section 4 the STs are required to be deter-
ministic, that is naturally the case for the kinds of string
transformations we have in mind with this approach.

Example 1 The Bek program in Figure 1 does base64
encoding of byte sequences. Base64 is a standard used to
transfer binary data over textual media. In the program, q
is a state variable and r is a register. The input type, output
type and register type is int. The ST, shown in Figure 2, has
3 states, Q = {q0, q1, q2}, initial state is q0, and the initial
register value is 0. There are 3 transitions, and 3 finalizers.
For example, the transition from state q0 to state q1 is

q0
λ(c,r).(c≤FF16)/[λ(c,r).E(Bits(7,2,c))]; λ(c,r).Bits(1,0,c)�4−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q1

and the finalizer from state q0 is q0
λr.true/ε−−−−−−→ •, i.e., state q0

is final in the classical sense. Fix r = 0 and c = ‘A’ =
10000012. Clearly c ≤ FF16. We have E(Bits(7, 2, c)) =
E(100002) = E(16) = 16 + 65 = ‘Q’ and (Bits(1, 0, c) �
4) = (1� 4) = 100002 = 16, so the concrete transition is

(q0, 0)
[‘A’]/[‘Q’]−−−−−−→ (q1, 16)

If we do one more step from configuration (q1, 16) with input
‘B’ we get the concrete transition

(q1, 16)
[‘B’]/[‘U’]−−−−−−→ (q2, 8)

Suppose that the input sequence ends here. Then we use the
finalizer from state q2 for the concrete input-ε transition:

(q2, 8)
ε/[‘I’,‘=’]−−−−−−→ •

By using the derived reachability relation we have

(q0, 0)
[‘A’,‘B’]/[‘Q’,‘U’,‘I’,‘=’]−−−−−−−−−−−−−−−→→ •

Thus, Tb64e("AB") = {"QUI="}. The base64 example is avail-
able in an online tutorial of Bek2.

3. Partial Exploration of STs

In this section we develop an algorithm that allows us to
concretize either all or some part of the the register used
in a Symbolic Transducer A. To simplify the discussion, we
assume, without loss of generality, that the register type τ
comes with projection functions π1 : τ→ τ1, π2 : τ→ τ2, and
pairing function d , e : τ1 × τ2→ τ . The aim is to compute
a new ST A′ that is equivalent to A but whose register type
is τ2 and the first projection of the register values has been
folded into the state space of A′. Equivalence of A and A′

means that TA = TA′ . If we want to eliminate the register
completely, we take τ2 to be T0.

E(π1,π2)(A) The basic algorithm uses a least fixpoint com-
putation that constructs a set of transitions ∆′ and fi-
nalizers F ′ over a state space Q′ ⊆ QA × Uτ1 such that
the following conditions are met:

1. 〈q0
A, π1(r0

A)〉 ∈ Q′;
2. for each 〈q, r〉 ∈ Q′:

(a) If q
ϕ/[oi]

k
1 ;u

−−−−−−→ q′ ∈ ∆A and there is r′ ∈ Uτ1 s.t.

i. ϕ′ = λ(x, y).(ϕ(x, dr, ye)∧r′ = π1(u(x, dr, ye)))
is satisfiable;

ii. let, for 1 ≤ i ≤ k, o′i = λ(x, y).oi(x, dr, ye);
iii. let u′ = λ(x, y).π2(u(x, dr, ye));

2 http://www.rise4fun.com/Bek/tutorial/base64

3 2012/12/13



then 〈q′, r′〉 ∈ Q′, 〈q, r〉
ϕ′/[o′i]

k
1 ;u′

−−−−−−−→ 〈q′, r′〉 ∈ ∆′.

(b) If q
ϕ/[oi]

k
1−−−−−→ • ∈ FA and

i. ϕ′ = λy.ϕ(dr, ye) is satisfiable;

ii. let, for 1 ≤ i ≤ k, o′i = λy.oi(dr, ye);

then 〈q, r〉
ϕ′/[o′i]

k
1−−−−−→ • ∈ F ′.

The result is (Q′, 〈q0
A, π1(r0

A)〉, π2(r0
A),∆′ ∪ F ′).

The calculation of values for r′ (in step 2(a)) in the
algorithm uses iterated model search modulo a decision
procedure for U (such as, a backend SMT solver). The search
starts with the quantifier free formula ϕ(x, dr, ye) ∧ z =
π1(u(x, dr, ye)), say ψ, in a logical context where x, y and
z are uninterpreted constants. While ψ is satisfiable with
model M |= ψ, the value r′ = zM is stored, ψ is updated to
be ψ ∧ z 6= r′, and the search is repeated.

Theorem 1: If Eπ̄(A) terminates then TEπ̄(A) = TA.

We omit the formal proof of the theorem but note that
termination of the algorithm depends on two factors: decid-
ability of the background theory, and finiteness of the reach-
able subset P of Uτ1 . Then there are finitely many transi-
tions computed in step 2(a), and since Q× P is finite there
can be no infinite computation paths (because no pair 〈q, r〉
is repeated on an exploration path). Thus, the computation
terminates by virtue of Königs Lemma.

The basic algorithm is subject to several optimizations,
such as deadend elimination (a deadend is a state q from
which there is no path to •, here ignoring registers), incre-
mental model search (taking advantage of logical contexts
of modern SMT solvers), and register restriction (program
transformation intended to limit the possible range of values
for r′ in step 2(a)).

Example 2 To illustrate the idea of register restriction
consider the following transitions (here > = λ(x, y).true and
all types are int):

q0
>/ ; λ(x,y).x−−−−−−−−→ q1

>/[λ(x,y).(x+(y mod 4))]; λ(x,y).v(x)
−−−−−−−−−−−−−−−−−−−−−−−−→ q2

Then, the transformed transitions

q0
>/ ; λ(x,y).(xmod 4)
−−−−−−−−−−−−−→ q1

>/[λ(x,y).(x+y)]; λ(x,y).v(x)−−−−−−−−−−−−−−−−−−−→ q2

are equivalent (with respect to the transduction semantics)
but restrict the distinct register values assigned from state
q0 (underlined) to only 4 possible values, as opposed to
unboundedly many in the original case.

Example 3 As a concrete example of full register elim-
ination we use the ST b64e in Figure 2. The function
B(m,n, c) extracts bits m through n from c. For example
B(7, 4, 101101102) = 10112. Here π1 is λx.x, π2 is λx.〈〉,
and dx, ye def

= x.
Start with Q′ = {〈q0, 0〉}, ∆′ = ∅, F ′ = ∅. Let q = q0

and r = 0 and consider the transition from q0 to q1 in 2(a).
Let ψ be the predicate (r′ = (B(1, 0, x) � 4)). Iterated
model search of ψ provides four possible distinct satisfying
assignments for r′: {0, 1016, 2016, 3016}. Q′ is updated to

{〈q0, 0〉, 〈q1, 0〉, 〈q1, 1016〉, 〈q1, 2016〉, 〈q1, 3016〉}

q0r:=0

q1
g0(c)/[];
r:=(D(c)<<2) q5

q2

g1(c)/
[(r|B(5,4,D(c)))];
r:=(B(3,0,D(c))<<4)

q4

(c=='=')/[];
r:=0

q3

g2(c)/
[(r|B(5,2,D(c)))];
r:=(B(1,0,D(c))<<6)

(c=='=')/[];
r:=0

g3(c)/[(r|D(c))];
r:=0

(c=='=')/[];
r:=0

Figure 3: ST of a base64 decoder, b64d, guards g2 and g3 do not
accept ‘=’ (so b64d is deterministic). Function D is the inverse
of E from Figure 1.

∆′ is updated to (we omit the register)

{〈q0, 0〉 λx.(0=(B(1,0,x)�4))/[E(B(7,2,x))]−−−−−−−−−−−−−−−−−−−−−−−→ 〈q1, 0〉,
〈q0, 0〉 λx.(1016=(B(1,0,x)�4))/[E(B(7,2,x))]−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈q1, 1016〉,
〈q0, 0〉 λx.(2016=(B(1,0,x)�4))/[E(B(7,2,x))]−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈q1, 2016〉,
〈q0, 0〉 λx.(3016=(B(1,0,x)�4))/[E(B(7,2,x))]−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈q1, 3016〉}

Now consider 2(b). We have q0
λy.true/ε−−−−−−→ • and thus F ′

becomes {〈q0, 0〉 /ε−→ •}. Step 2 is repeated for the new states
in Q′. The algorithm terminates with |Q′| = |F ′| = 21, and
|∆′| = 84.

From our experience, full exploration works well for string
encoders (such as sanitizers). A direct application of full ex-
ploration is less suited for decoders that require a lookahead
of more than 2 characters (such as HtmlDecoder), where full
exploration may lead to state space explosion. The following
example is a border line case.

Example 4 Similar to the base64 encoder, a base64 decoder
b64d can also be described as an ST, see Figure 3. Full
exploration of b64d produces an SFT with 87 states, 1159
transitions and 2 finalizers.

A unique advantage of the symbolic approach is that
it allows us to “adjust” the granularity of characters and
to use more powerful character theories without sacrificing
precision. The following example illustrates this aspect of
STs.

Example 5 Consider the ST if Figure 3. Notice that the
lengths of all sequences accepted by b64d are multiples of
4. Using this observation, we can symbolically compose all
possible paths of length 4 from state q0 and lift the input
type to int4. Now, in this case, trivial application of full
exploration (because register updates are 0 in the composed
transitions) will eliminate the register and we are left with
2 states and 3 transitions.

Notice that in Example 5 we changed the input type from
int to int4 while the output type remained the same. For the
purposes of the data-parallel translation this transformation
is fine because it does not affect the semantics of the input-
output behavior. Formally it means that the initial input
sequence is passed through a function that first groups
individual elements into 4-tuples that are then consumed
by the transducer.

Rules

Coder FSM SFT SFT+

UTF8Encode 216 12 5
UTF8Decode 216 6371 5
Base64Encode 5397 105 4
Base64Decode 5445 1161 5

Figure 4: Exploration sizes in to-
tal nr of rules. FSM is the classi-
cal explicit representation. SFT+

is SFT + grouping.

Impact of Explo-
ration Algorithm
Figure 4 compares
the sizes of the state
machines needed to
achieve the differ-
ent encoding and
decoding tasks. The
table indicates the
advantages of using
the exploration algo-

4 2012/12/13



rithm, in particular,
in combination with
grouping the succinctness is quite remarkable. While the
grouping used in Example 5 was an easy one (a fixed length
one), in the other cases the groupings are variable length
sequences (ranging between 1 and 4 characters).

Without this dramatic reduction in the size of the SFT,
we would not be able to compile the SFT to exploit Mytkow-
icz and Schulte’s data parallel finite state machines. In par-
ticular, their approach requires that the number of states
in the transducer be small, which our exploration algorithm
provides.

4. Data-Parallel Translation

In the prior sections we demonstrated how to remove regis-
ters from ST and turn them into SFTs. In this section we
describe how to compile ST into SFT so it can exploit data-
parallel hardware. In particular, we demonstrate an end to
end compilation of SFT to a large cluster running LINQ-to-
HPC [12].

Recently, Mytkowicz and Schulte framed the evaluation
of finite state transducers as associative operations over vec-
tors and matrices [14]. Because their approach uses associa-
tive operations, it can take advantage of data-parallel hard-
ware. Their approach, however, requires that the number of
states in the ST be small in order to be efficient.

Our key insight that allows us to combine SFT and the
approach of Mytkowicz and Schulte is that SFT exploration
removes registers and at the same time reduces the number
of states in the SFT. In effect, SFT exploration pushes the
complexity of the SFT into the edges, which in turn allows
us to efficiently target data-parallel hardware.

In the sections that follow, we demonstrate an automatic
approach that compiles a Bek program into a SFT and
then down into the data parallel formulation described by
Mytkowicz and Schulte that runs on a large cluster.

4.1 Data-Parallel Operators

To aid our discussion, we introduce two higher-order data-
parallel primitives.

zipwith takes a binary function and maps that function
over two sequences of equal sized length. For example,
to pairwise add the numbers in two sequences we could
use

zipwith(+, [0, 1, 2], [3, 4, 5]) = [3, 5, 7]

scan applies a binary associative function, ⊕, over every
prefix of a sequence. For example, given a sequence of
n elements

[x0, x1, x2, . . . , xn]

scan produces a new sequence

[x0, (x0 ⊕ x1), (x0 ⊕ x1 ⊕ x2), . . . , (x0 ⊕ x1 ⊕ . . . xn)]

We next show how to define SFT in terms of these primitives.

4.2 Describing SFT With Higher-Order Functions

Recall that a SFT is a tuple (Q, q0, R ∪ F ) where q0 is the
initial state, R∪F is a finite set of input and finalizer rules.
Each rule defines a transition from a pair of input symbol
and state to an output symbol and a new state. Let δ(q, s)
be the (flattened) transition function, implicitly defined by
the rule sets R and F , which takes as arguments a state and
a symbol and produces a new state. (In this view we assume

that that the final rule from a state is triggered by a special
“end-of-input” symbol and leads to a unique final state.)

To transduce a string s by a SFT, the SFT starts in state
q0 and sequentially reads the symbols of s. When the SFT
reads the i’th symbol, si from s, it enters state q = δ(q, si)
and calls function φ(q, si) with state q and symbol si, which
maps to a sequence of symbols in the output alphabet.

We call the algorithm to transduce a string by a SFT,
Transduce which takes as input a SFT and a string s and
produces a new string s′ which is the result of applying φ to
each state of the SFT, after the SFT reads the ith symbol in
s. Using the higher-order functions introduced in Section 4.1,
we can write Transduce3 as:

Transduce(SFT, s) = zipwith(φ, scan(δ, q0, s), s)

4.3 Translating SFT to δ and φ

We then produce the following pipeline. First, a program-
mer writes string manipulating functions in Bek. Next, we
compile from Bek into an ST and then to an SFT by using
the exploration algorithm. Finally, we compile from the SFT
to C# functions which encode φ and δ. These functions can
then be applied as part of our data-parallel computation.

For example, consider a simple Bek program (here chosen
so that exploration is not needed):

program sample ( t ) {
return iter ( c in t ) [ s t a t e := 0 ; ] {
case ( s t a t e ==0):
i f ( c==’ 6 ’ ){ s t a t e :=2;}
else i f ( c==’ 7 ’ ){ s t a t e :=1;}
else { s t a t e :=0; yield ( c ) ;}

case ( s t a t e ==1):
i f ( ( c==’ 6 ’ ) | | ( c==’ 7 ’ ) ){ s t a t e :=0; yield (22+c ) ;}
else { s t a t e :=0; yield ( ’ 7 ’ ) ; yield ( c ) ;}

case ( s t a t e ==2):
i f ( ( c==’ 6 ’ ) | | ( c==’ 7 ’ ) ){ s t a t e :=0; yield (12+c ) ;}
else { s t a t e :=0; yield ( ’ 6 ’ ) ; yield ( c ) ;}

} ;
}

A simple syntax-directed translation produces the follow-
ing sequential C# implementation which takes state as an
out parameter and the current character and (i) updates the
state of the SFT and (ii) returns an enumeration of output
characters based on both the current state and the character
passed in.

IEnumerator<char> Apply (out int s tate , char c ) {
switch ( s t a t e ){

case ( 0 ) : {
i f ( c == ’ 6 ’ ) { s t a t e = 2 ; yield break ;}
else i f ( c == ’ 7 ’ ) { s t a t e = 1 ; yield break ;}
else { s t a t e = 0 ; yield return c ;}

}
case ( 1 ) : {

i f ( c == ’ 6 ’ | | c == ’ 7 ’ ) {
s t a t e =0; yield return 22+c ;

}
else {

s t a t e =0; yield return ’ 7 ’ ; yield return c ;
}

}
case ( 2 ) : {

i f ( c == ’ 6 ’ | | c == ’ 7 ’ ) {
s t a t e =0; yield return 12+c ;

}
else {

s t a t e =0; yield return ’ 6 ’ ; yield return c ;

3To aid discussion and demonstrate Transduce type-checks visit
http://pastebin.com/axXZcw3f

5 2012/12/13



}
}}}

To build a data-parallel version of this SFT we need two
functions δ and φ. We alter the syntax directed translation of
a SFT to C# to produce Delta such that we keep the control
flow during the translation but remove the statements in
Apply that generate output (e.g. the yield statements).

int Delta ( int s tate , char c ) {
switch ( s t a t e ){

case ( 0 ) : {
i f ( c == ’ 6 ’ ) { return 2 ;}
else i f ( c == ’ 7 ’ ) { return 1 ;}
else { return 0 ;}

}
case ( 1 ) : {

return 0 ;
}
case ( 2 ) : {

return 0 ;
}

}}

Likewise, to produce φ, we no longer update the state
variable, we use the current state and character to produce
an enumeration of output characters.

IEnumerable<char> Phi ( int s tate , char c ) {
switch ( s t a t e ){

case ( 0 ) : {
i f ( c == ’ 6 ’ | | c == ’ 7 ’ ) { yield break ; }
else { yield return c ; }

}
case ( 1 ) : {

i f ( c == ’ 6 ’ | | c == ’ 7 ’ ) {
yield return ( char )(22+(( int ) c ) ) ;

}
else {

yield return ’ 7 ’ , yield return c ;
}

}
case ( 2 ) : {

i f ( c == ’ 6 ’ | | c == ’ 7 ’ ) {
yield return ( char )(12+(( int ) c ) ) ;

}
else {

yield return ’ 6 ’ , yield return c ;
}

}}}

4.4 Data-Parallel SFT

The prior section formalized SFT in terms of higher-order
data parallel primitives. If the function on which these primi-
tives operate (e.g. δ and φ) are not associative, they must ex-
ecute sequentially. If the BEK code contains registers, then
in general it is not possible to directly write the resulting
SFT with an associative δ and φ. Fortunately, as we saw in
the previous section, the exploration algorithm can remove
registers in many cases.

Following Mytkowicz and Schulte, we compile δ and φ
into associative operations on vectors and matrices. Because
matrix multiplication is an associative operation that en-
codes graph traversals, this representation is amenable to
data parallelism.

Graph Traversals with Matrix Multiplication: A con-
venient way to view SFT is as a graph where nodes in the
graph are states and there exists an edge from state i to
state j on symbol s if δ(i, s) = j. A graph is simple to rep-
resent as an adjacency matrix: the set of allowed transitions
for each symbol s in our input alphabet can be described
by Ms, a n × n adjacency matrix, where n is the number

of states, such that (Ms)ij = 1 if state i transitions to state
j on symbol s, and (Ms)ij = 0, otherwise. In other words,
an adjacency matrix is a symbolic representation of how a
symbol from the input alphabet transitions every state in
an SFT.

More precisely, first the universe Uσ of input symbols s is
divided into finitely many equivalence classes ŝ where each
equivalence class is defined by a minterm of all guards of
transitions that occur in the SFT. There are finitely many
such minterms, independent of the size of Uσ and for all
e ∈ ŝ, Ms = Me. So we have finitely many such matrices
(one per minterm). In this way we lift the technique in [14]
to work here over arbitrary input types. This is important for
dealing with infinite alphabets and grouped symbols (such
as the one used in Example 5) even when Uσ is finite but
large.

Given this formulation, we use matrix multiplication as a
mechanism for graph traversal; if the identity matrix (MI)
encodes the initial state of the SFT then the adjacency
matrix that encodes the state of the SFT after reading the
first symbol so in an input s is MI · Ms0 . Further, the
adjacency matrix that encode the state of the SFT after
reading the second symbol, s1 in an input s is MI ·Ms0 ·Ms1 ,
and so on.

From SFT to Matrices: To transform a SFT to oper-
ations on vectors and matrices, we follow Mytkowicz and
Schulte and define the following two functions, inflate and
project. inflate generates a matrix from each symbol in
the input alphabet. Given a symbol s, inflate returns a
n× n matrix Ms such that:

inflate(s) = (Ms)ij =

{
1 if δ(i, s) = j
0 otherwise

Next, project extracts from matrix Ms the state of the SFT
after reading symbol s, starting from state q0:

project(Ms) = Vq0 ·Ms · VF
where Vq0 is an n-component row vector

Vq0 =

{
1 if i = q0
0 otherwise

and VF , an n-component column vector

V TF = ( 0, 1, . . . , n )

Given this formulation, we implement an associative version
of the transition function, δ:

δ̂(M, si) = M · inflate(si)

where M is a matrix that encodes the state of the SFT, and
si is the ith symbol in string s.
With an associative version of δ, we implement a data
parallel version of Transduce as:

Transduce(SFT, s) =

zipwith(φ, map(project, scan(δ̂,MI , s)), s)

To increase efficiency (e.g. remove a pass over the input)
we take advantage of the fact that functions compose. For
example:

map(f, map(g, list)) = map(f · g, list)

and thus we can compose φ with project to rewrite
Transduce as:

Transduce(SFT, s) = zipwith(φ·project, scan(δ̂,MI , s), s)

6 2012/12/13



BEK Program Transducer
φ· project

scan(δ,M,s)
zipwith out

Figure 5: The pipeline for compiling from Bek to a data-parallel
implementation.

In other words, given an SFT, this section describes an au-
tomatic method to compile an SFT into an implementation
that is suitable to data-parallel hardware. The end-to-end
pipeline is shown in Figure 5. We start with a Bek program,
then compile the program to a symbolic transducer. From
the transducer we derive the associative operators φ and δ̂.
Finally we feed these to the zipwith primitive which in turn
yields the output out. After a brief example, we demonstrate
how we implement Transduce on a LINQ-to-HPC cluster.

0

c/[c]       

2

a/[]

1

b/[]

a/[12+a]

b/[12+b]

c/[a,c]

a/[22+a]

b/[22+b]

c/[b,c]

A Concrete Example: In this sec-
tion we walk through how to build a
data-parallel implementation of the
simple BEK program introduced in
Section 4.3.

In order to simplify the exposi-
tion we use a for the digit 6, we use
b for the digit 7, and we use c for
any other character besides a and b.
More precisely, a, b, and c are char-
acter predicates that partition the
alphabet Ubv7, but it is convenient
for the exposition to view them as three distinct characters.

In this view, the SFT has control states {0, 1, 2}, input
alphabet Σ = {a, b, c}, initial state 0, and whose δ and φ are
shown to the right.

There are three symbols in our input alphabet a, b and
c: thus we have three adjacency matrices (Ma, Mb and Mc)
that describe how every state in the SFT transitions when
reading symbols a, b and c, respectively.

Ma = inflate(a) =

 0 0 1
1 0 0
1 0 0



Mb = inflate(b) =

 0 1 0
1 0 0
1 0 0



Mc = inflate(c) =

 1 0 0
1 0 0
1 0 0


Suppose we are given the input s = εab. To Transduce(s), we
first calculate a scan over the symbols in s which produces
the sequence

[(MI), (MI ·Ma), (MI ·Ma ·Mb)]

With matrices:

[

 1 0 0
0 1 0
0 0 1

,
 0 0 1

1 0 0
1 0 0

,
 1 0 0

0 1 0
0 1 0

]

We then compute the higher-order functions

zipwith(φ · project, [(MI), (MI ·Ma), (MI ·Ma ·Mb)], εab)

to produce the output string: [12 + b]

4.5 Implementing SFT on Parallel Hardware

Mytkowicz and Schulte describe their approach in terms of
a modern multicore desktop. In this section, we demonstrate
how to extend that work to a large cluster of machines using
LINQ-to-HPC. LINQ-to-HPC is a data-parallel framework
that translates declarative SQL like queries into a dataflow
graph, which it then compiles to run on a large cluster [12].
Unfortunately, LINQ-to-HPC does not implement the data-
parallel primitives scan and zipwith and thus we were
forced to implement these primitives.

In particular, scan is non-trivial to implement
efficiently[16, 19]. Our first implementation in LINQ-
to-HPC that was based off the implementations detailed
in prior work had terrible performance; in these imple-
mentations, at each step of the parallel algorithm, each
processor has to communicate with another and thus
parallel performance is dominated by communication. In
a GPU, where on-chip memory is used for communication
between threads this may be sufficient to get good parallel
performance. However, in a LINQ-to-HPC cluster where
communication occurs over the network, we were unable to
get good performance.

Given this first failed attempt, our second and final im-
plementation was optimized to reduce the amount of com-
munication required during scan to a minimum. We did this
by making each machine perform a sequential scan on large
amounts of data before communicating the result of that
scan to other processors in the cluster.

Our implementation is a few hundred lines of C#. The
intuition behind our approach is that we can break the
input up into sections, so each processor in a cluster works
on an isolated contiguous section of the input. If each
processor knew the starting state of the SFT for its section
of the input, the problem would be embarrassingly parallel
(e.g. each processor works in isolation over its part of the
input). Our implementation of scan is designed to efficiently
calculate the starting state of the SFT for each of the
P processors in the cluster. Our implementation has the
following steps:

1. Local Reduce: Given an input string s with N = |s|
symbols and P processors, each processor computes a
local sequential reduction of δ̂ over N/P consecutive
symbols in s. This results in P matrices where Mp is

the partial reduction of δ̂ over processor p’s section of
the symbols in s.

2. Scan: One processor does a scan, using δ̂, of the P
matrices computed in the prior step. After this scan,
matrix Mp encodes the starting state of the SFT for
processor p.

3. Local Zipwith: The problem has now become embar-
rassingly parallel: the prior two steps calculated the start-
ing state of the SFT for each of the P processors in the
cluster. Each of the P processors takes a second pass over
its section of the input, calling φ ·project for each matrix

The following picture shows the communication pattern:

7 2012/12/13



1) Local Reduce

2) Scan

3) Local Zipwith

p0 p1 p2 p3

p0

p0 p1 p2 p3

Note that our approach has little communication; each pro-
cessor works in isolation in both the first and third steps.
The only serialization of the algorithm occurs when a sin-
gle processor does a scan over the partial reductions com-
puted in the Step 1. If p is the number of processors, and
n is the size of the input, then when p << n our im-
plementation will have good performance and scaling be-
cause p bounds the amount of communication—and thus
performance-killing serialization—in the cluster.

5. Evaluation

This section is organized as follows. Section 5.1 talks about
the exploration overhead. Section 5.2 discusses consistency
of our Bek encoders and those from other libraries. Sec-
tion 5.3 focuses on compiling to JavaScript, C, and C# from
Bek. Finally, Section 5.4 talks about compiling Bek pro-
grams to run on a data-parallel cluster and discusses the
significant throughput improvements achieved with this ap-
proach.

5.1 Exploration Overhead

Figure 6 shows the number of states in some repre-
sentative encoders/decoders before exploration and with
full exploration. These encoders match those extracted
from Microsoft AntiXSS and other similar sanitization li-
braries [9]. Their Bek translations can be found online at
http://rise4fun.com/bek. The speed of the exploration al-
gorithms depends on the size of the reachable state space.
For our examples, in most cases, this is small due to the re-
stricted range of the values stored in the registers. The time
to do full exploration is less than .1 seconds for the first six
coders in Figure 6 while it takes around a second to fully
explore UTF8Decode.

States

Coder Original Explored

HtmlEncode 1 1
UTF8Encode 2 5
CssEncode 2 5
Base64Encode 3 21
Base64Decode 6 87
HtmlDecode 4 113
UTF8Decode 9 1284

Figure 6: Input statistics on number
of control states in unexplored STs and
fully-explored SFTs. HtmlDecode here
is the restricted version from [20].

The case of
HtmlEncode is
special in the
sense that the ST
does not need a
register and there
is a simple loop
over characters,
so SFT generation
is trivial in this
case.

First, we dis-
cuss the cost of
our exploration al-
gorithm in terms

Impl. Running time
Language Routine 50 500

UTF8Encode implementations compared

C#
.NET 2 16
Bek 2 14
Bek explored 1 10

C Bek explored 1.06 3.35

CSSEncode implementations compared

C#
AntiXSS hand-written 7 73
Bek default 2 21
Bek explored 2 25

C
Bek 2.44 14.28
Bek explored 2.41 15.07

HtmlDecode implementations compared

C#
Bek default <1 5
Bek explored <1 6

HtmlEncode implementations compared

C#
AntiXSS hand-written 6 55
Bek default 3 25
Bek explored 3 30

Figure 8: Running times for inputs of size 50 and 500.

of the speed to
perform exploration and the number of states added.

SFTs often provide an exponential reduction, in terms of
the size of the alphabet, compared to classical finite state
transducers. Classical transducers would need in the order
of 216 transitions in all cases except for base64 coding where
they need around 212 transitions.

5.2 Consistency of Encoders

Our approach to checking the consistency of
the Bek-generated sanitizers with the orig-
inal versions relies on large-scale testing.

0 0-D7FF|E000-FFFF

1

D800-DBFF       DC00-DFFF

We generate a set of 1,000 strings
and evaluate both the origi-
nal sanitizer and the generated
code on each input. The strings
are chosen randomly and then
checked to ensure that they are
accepted by the finite state au-
tomaton to the right to ensure
that the inputs are legal. (The
automaton represents all valid sequences of UTF16 encoded
strings, that is the standard for in-memory representation
of Unicode strings.)

Routine Lib. Ver. LOC

CSSEncode AntiXSS 2.4 206

UTF8Encode .NET 4.5 310

HTMLEncode AntiXSS 2.4 110

Figure 7: Pre-existing coders used
for comparison.

We used
independently-
produced imple-
mentations in C#
listed in Figure 7
for comparison. The
independent imple-
mentations came
from .NET 4.5 core
libraries and the
AntiXSS encoder
library.

5.3 Serial Execution

We discuss client-side compilation to JavaScript and server-
side compilation to C and C# in turn. We evaluated
the running time of our client-side JavaScript implemen-
tations obtained from Bek using Google Chrome ver-

8 2012/12/13



sion 20.0.1132.47, build 144678, with the V8 JavaScript en-
gine version 3.10.8.19. We run for 100 iterations each on two
sets consisting of 1, 000 randomly generated test strings. The
first set contains strings of 50 characters while the second
contains strings of 500 characters.

Client-side: compiling to JavaScript: The results
for JavaScript compilation are shown in Figure 9.
Overall, the running times for the Bek-provided
implementation in JavaScript are comparable to
those for other libraries. In some cases (UTF8Encode)
we run slower, in some cases (CSSEncode) faster.

Impl. Running time
Language Routine 50 500

UTF8Encode implementations compared

JavaScript
PHP.JS 0.79 5.39
WebTK 2.34 15.17
Bek 9.83 88.45

CSSEncode implementations compared

JavaScript
OWASP 196.73 1,976.02
Bek 9.47 80.68

HtmlDecode implementations compared

JavaScript Bek 9.45 81.16

HtmlEncode implementations compared
JavaScript Bek 21.66 201.05

Figure 9: Client-side running times for
inputs of size 50 and 500.

We believe
that part of
our speed
difference
may arise
from edge
case checks
performed by
Bek code that
are not in the
other imple-
mentations. In
practice, hav-
ing encoders
that run the
same no mat-
ter where the
code is exe-
cuted is necessary to fluidly migrate code between the server
and the client. The main advantage of using Bek is the
ability to achieve parity with server-side implementations
in JavaScript.

Server-side: Compiling to C and C#: Next, we focus
on compiling to C# and C so that our encoders can run on
the server. Figure 8 shows a speed comparison.

The C# running times are competitive with other library
implementations, beating AntiXSS 3-fold for CSSEncode
and 2-fold for HtmlEncode. Translating to C gives a consid-
erable boost in terms of execution time, especially noticable
for larger inputs (strings of length 500). Speed improvements
range from 2x to about 5x. These increases in execution time
are consistent with the overall speed of a managed runtime
such as .NET compared to a C version. We hypothesize that
in our case, for small inputs, the overhead of explicit memory
allocation calls to malloc and free dominates the execution
time for UTF8Encode at length 500, the built-in .NET version
is about 60% slower than the Bek-generated version and is
almost 5 times slower than the C version.

5.4 Cloud: Compiling to a Data-Parallel Cluster

While sequential performance is of great practical value,
our translation from Bek really shines when we use par-
allel hardware as a translation target. In this section we
demonstrate our translation approach on a small LINQ-to-
HPC cluster and show multi-factor performance improve-
ments over a sequential baseline.

Platform: We conducted all experiments on an un-
loaded cluster of 32-machines. Each machine is an In-
tel 2 GHz (L5420) workstation with 16 GB of RAM per
machine. During our experiments, one machine of the 32
is used as a “head node” to coordinate communication and
schedule jobs across the cluster. This means we have 31 ma-
chines for core computation.

141 

205 

196 

126 

0

50

100

150

200

2 4 8 1
6

3
2

64 1
2

8

2
5

6

5
1

2

1
,0

2
4

2
,0

4
8

4
,0

9
6

8,1
9

2

1
6

,3
8

4

3
2

,7
6

8

CSSEncode

UTF8Encode

HTMLDecode

HTMLEncode

Figure 10: The throughput of various Bek encoders on large
data, shown in GB/s on the y axis, as function on input size on
the x axis.

Distributed Measurement: For our experiments in this
section, we used a very large 32 GB HTML file, obtained
from the web. We distributed the 32 GB of data to each of
the 31 machines; each machine stored a little over 1 GB of
HTML locally on its hard disk. We measured the time it
takes to complete a single transduction of the HTML (e.g.
reading HTML from disk, computing the transduction, and
finally writing the transformed input to disk). We then com-
puted the Bek program’s throughput by dividing the num-
ber of bytes encoded by the time it takes to do the encoding.
To get statistically significant results, we ran each experi-
ment 10 times and reported the mean and 95% confidence
interval of the mean.

Throughput of Data-Parallel Bek Programs: We eval-
uate the performance of the four Bek encoders intro-
duced in Section 5.1: CSSEncode, UTF8Encode, HTMLDecode,
HTMLEncode.

In Figure 10 we show our data-parallel implementations
are much faster at 13x, 9.5x, 13.7x, and 8.7x respectively, for
UTF8Encode, CSSEncode, HTMLDecode, and HTMLEncode than
their sequential C# implementations. To compute a baseline
for each encoder, we ran the sequential C# encoders over a
32 GB data file obtained from the Bing search engine. We
then ran each data-parallel version of the encoder on a 32
node cluster running the LINQ-to-HPC framework.

There are two interesting features of this graph.

• Our data-parallel Bek programs are fast: the through-
put for 32 GB of data (far right point of x -axis)
are 141, 205, 196, and 126 megabytes per second, re-
spectively, for CSSEncode, UTF8Encode, HTMLDecode, and
HTMLEncode, respectively. The reason for the difference is
due to the amount of data each encoder writes. For ex-

9 2012/12/13



ample, most HTML input is already in UTF8 so for every
byte in the input, the encoder writes a single byte. In con-
trast, HTML encoding sometimes writes more than one
byte for any input byte (e.g. to encode the & character
the encoder writes &amp;). Furthermore, CSSEncode does
the most encoding and thus has the lowest throughput.

• We see nice scaling as we increase the size of the input
from 1 megabyte up to 5,000 megabytes (i.e. as we
move along the x axis). At this point, throughput of the
algorithm ceases to scale. We suspect this is due to disk
IO being the bottleneck in the computation. Because our
approach is data-parallel, we expect that if we increase
the size of the cluster, we can amortize this IO across
more machines and thus get more scaling.

Overall, these order-of-magnitude throughput improvements
across the board are significant and enable considerably
larger amounts of cloud-based data processing than would
be possible on a single machine.

6. Related Work

Symbolic finite transducers (SFTs) and Bek were originally
introduced in [9] with a focus on security analysis of sanitiz-
ers. The formal foundations and the theoretical analysis of
the underlying SFT algorithms, in particular, an algorithm
for deciding equivalence of single-valued SFTs, modulo a
decidable background theory is studied in [20], where Sym-
bolic Transducers (STs) are also introduced as an extension
of SFTs with registers, but exploration of STs and code gen-
eration are not studied in [9, 20]. In contrast, the focus of
the current paper and its motivation is efficient transforma-
tion from STs to SFTs with the particular application of
code generation that supports efficient parallel execution.
Another recent extension of SFTs, extended SFTs [5], is
SFTs with “lookahead” where the primary motivation is to
overcome limitations of SFTs in order to support analysis of
decoders, unlike SFTs, ESFTs are not closed under compo-
sition.

In recent years there has been considerable interest in au-
tomata over infinite languages [18], starting with the work
on finite memory automata [10], also called register au-
tomata. Finite words over an infinite alphabet are often
called data words in the literature. Other automata mod-
els over data words are pebble automata [15] and data au-
tomata [4]. Several characterizations of logics with respect to
different models of data word automata are studied in [3].
This line of work focuses on fundamental questions about
definability, decidability, complexity, and expressiveness on
classes of automata on one hand and fragments of logic on
the other hand. A different line of work on automata with in-
finite alphabets introduces lattice automata [7] that are finite
state automata whose transitions are labeled by elements of
an atomic lattice with motivation coming from verification
of symbolic communicating machines. Streaming transduc-
ers [1] provide another recent symbolic extension of finite
transducers where the label theories are restricted to be to-
tal orders, in order to maintain decidability of equivalence.
To the best of our knowledge, we do not know of prior work
that has investigated the use of extensions of transducers for
code generation.

In our implemenation we use the off-the-shelf SMT solver
Z3 [6] for incrementally solving label constraints that arise
during the exploration algorithm. Similar applications of
SMT techniques have been introduced in the context of sym-
bolic execution of programs by using path conditions to rep-

resent under and over approximations of reachable states [8].
The distinguishing feature of our exploration algorithm E is
that it computes a transformation E(A) that is equivalent
to the original ST A with respect to the transduction se-
mantics, which is important for correct code generation, as
opposed to other applications such as test case generation,
where under-approximations are used, or verification where
over approximations are used.

Finite state transducers have been used before for dy-
namic and static analysis to validate sanitization functions
in web applications in [2], by an over-approximation of the
strings accepted by the sanitizer using static analysis of ex-
isting PHP code. Other security analysis of PHP code, e.g.,
SQL injection attacks, use string analyzers to obtain over-
approximations (in form of context-free grammars) of the
HTML output by a server [13, 21]. Yu et.al. show how mul-
tiple automata can be composed to model looping code [22].
Our work is complementary to previous efforts in using
SMT solvers to solve problems related to list transforma-
tions. HAMPI [11] and Kaluza [17] extend the STP solver
to handle equations over strings and equations with multiple
variables. We are not aware of previous work investigating
the use of finite state transducers for efficient code gener-
ation. One explanation for this is that classical finite state
transducers are not directly suited for this purpose; as we
have demonstrated, SFTs can be exponentially more suc-
cinct than classical finite transducers with respect to the
alphabet size.

7. Conclusions

This paper demonstrates how to compile a domain-specific
language called Bek to produce consistent and fast sani-
tizers across a range of languages, some server- and others
client-based. We use symbolic finite state transducers as an
intermediate language. We then introduce a novel algorithm
which performs a symbolic partial evaluation of these trans-
ducers to obtain simplified, stateless versions of the origi-
nal Bek program. We showed how to compile the resulting
stateless transducers to both sequential and data-parallel
hardware. Our compilation results in significant runtime im-
provements: our generated C# code outperforms the previ-
ous hand-tuned code by a factor of up to 3. Our data-parallel
compilation achieves more impressive results of up to 13.7
times speedup on a 32-node cluster, compared to a sequen-
tial implementation.

References
[1] R. Alur and P. Cerný. Streaming transducers for algorithmic verification

of single-pass list-processing programs. In POPL’11, pages 599–610. ACM,
2011.

[2] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Saner: Composing static and dynamic analysis to validate
sanitization in web applications. In IEEE Oakland Security and Privacy, 2008.

[3] M. Benedikt, C. Ley, and G. Puppis. Automata vs. logics on data words. In
CSL, volume 6247 of LNCS, pages 110–124. Springer, 2010.

[4] M. Bojańczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-
variable logic on words with data. In LICS, pages 7–16. IEEE, 06.

[5] L. D’Antoni and M. Veanes. Static analysis of string encoders and decoders.
In VMCAI’13, LNCS. Springer, 2013.

[6] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS’08,
LNCS, 2008.

[7] T. L. Gall and B. Jeannet. Lattice automata: A representation for languages
on infinite alphabets, and some applications to verification. In SAS 2007,
volume 4634 of LNCS, pages 52–68, 2007.

[8] P. Godefroid. Compositional dynamic test generation. In POPL’07, pages
47–54, 2007.

[9] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes. Fast
and precise sanitizer analysis with Bek. In Proceedings of the USENIX Security
Symposium, August 2011.

10 2012/12/13



[10] M. Kaminski and N. Francez. Finite-memory automata. In 31st Annual
Symposium on Foundations of Computer Science (FOCS 1990), volume 2, pages 683–
688. IEEE, 1990.

[11] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. HAMPI:
a solver for string constraints. In ISSTA, 2009.

[12] Microsoft Corporation, 2011. http://msdn.microsoft.com/en-

us/library/hh378101.aspx.

[13] Y. Minamide. Static approximation of dynamically generated web pages. In
WWW ’05: Proceedings of the 14th International Conference on the World Wide Web,
pages 432–441, 2005.

[14] T. Mytkowicz and W. Schulte. Maine: a library for data parallel finite
automata. Technical report, Microsoft Research, 2012.

[15] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings
over infinite alphabets. ACM Trans. CL, 5:403–435, 2004.

[16] P. Sanders and J. L. Träff. Parallel prefix (scan) algorithms for MPI. In Pro-
ceedings of the 13th European PVM/MPI User’s Group conference on Recent advances
in parallel virtual machine and message passing interface, EuroPVM/MPI’06, pages
49–57, Berlin, Heidelberg, 2006. Springer-Verlag.

[17] P. Saxena, D. Akhawe, S. Hanna, S. McCamant, F. Mao, and D. Song. A
symbolic execution framework for JavaScript. In IEEE Security and Privacy,
2010.

[18] L. Segoufin. Automata and logics for words and trees over an infinite

alphabet. In Z. Ésik, editor, CSL, volume 4207 of LNCS, pages 41–57, 2006.

[19] S. Sengupta, A. E. Lefohn, and J. D. Owens. A work-efficient step-efficient
prefix sum algorithm, in: Workshop on edge computing using new commod-
ity architectures, 2006.

[20] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner. Symbolic
finite state transducers: Algorithms and applications. In Proceedings of the
Symposium on Principles of Programming Languages (POPL’12), 2012.

[21] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su.
Dynamic test input generation for web applications. In ISSTA, 2008.

[22] F. Yu, T. Bultan, and O. H. Ibarra. Relational string verification using
multi-track automata. In Proceedings of the 15th international conference on
Implementation and application of automata, CIAA’10, pages 290–299, 2011.

11 2012/12/13


